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H*®° functional calculus and square function
estimates for Ritt operators

Christian Le Merdy

Abstract. A Ritt operator T: X — X on a Banach space is a power
bounded operator satisfying an estimate n||T" — 7" '|| < C. When
X = LP(9Q) for some 1 < p < oo, we study the validity of square functions
estimates H (X, kIT"(x) — Tk_l(a:)|2)1/2| » S llzl[ze for such operators.
We show that 7" and T both satisfy such estimates if and only if 7" ad-
mits a bounded functional calculus with respect to a Stolz domain. This is
a single operator analogue of the famous Cowling—Doust—McIntosh—Yagi
characterization of bounded H“°-calculus on LP-spaces by the bounded-
ness of certain Littlewood—Paley—Stein square functions. We also prove
a similar result for Hilbert spaces. Then we extend the above to more
general Banach spaces, where square functions have to be defined in terms
of certain Rademacher averages. We focus on noncommutative LP-spaces,
where square functions are quite explicit, and we give applications, exam-
ples, and illustrations on such spaces, as well as on classical L”.

1. Introduction

Let X be a Banach space and let T: X — X be a bounded operator. If F' C C is
any compact set containing the spectrum of 7', a natural question is whether there
is an estimate

(L.1) le(T)] < K sup{le(A)] : A € F}

satisfied by all rational functions . The mapping ¢ — ¢(7T') on rational functions
is the most elementary form of a “holomorphic functional calculus” associated to T’
and (1.1) means that this functional calculus is bounded in an appropriate sense.

The most famous such functional calculus estimate is von Neumann’s inequality,
which says that if F' =D is the closed unit disc centered at 0, then (1.1) holds with
K =1 for any contraction T on Hilbert space. Von Neumann’s inequality was a
source of inspiration for the development of various topics around functional cal-
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culus estimates on a Hilbert spaces, including polynomial boundedness, K-spectral
sets and related similarity problems. We refer the reader to [5], [48], [49], [52] and
the references therein for comprehensive information. See also [13], [11] for striking
results in the case when F' is equal to the numerical range of T

When X is a non-Hilbertian Banach space, our knowledge on operators 7: X —
X and compact sets F' satisfying (1.1) for some K > 1 is quite limited. Positive
examples are provided by scalar type operators (see [15]). A more significant
observation is that this issue is closely related to the H>°-functional calculus asso-
ciated to sectorial operators and indeed, that topic plays a key role in this paper.
He°-functional calculus was introduced by McIntosh and his co-authors in [10]
and [45] and was then developed and applied successfully to various areas, in par-
ticular to the study of maximal regularity for certain PDESs, to harmonic analysis
of semigroups, and to multiplier theory. We refer the reader to [32] for more
information.

In this paper we deal with a holomorphic functional calculus for Ritt operators.
Recall that, by definition, T: X — X is a Ritt operator provided that T' is power
bounded and there exists a constant C' > 0 such that n||T™ — T"~ || < C for
any integer n > 1. In this case, the spectrum of 7T is included in the closure B,
of a Stolz domain of the unit disc; see Section 2 and Figure 1 below for details.
In accordance with the preceding discussion, this leads to the question whether T
satisfies an estimate (1.1) for F = B.,. We will say that T has a bounded H>(B,)
functional calculus in this case (this terminology will be justified in Section 2).
The general problem motivating the present work is to characterize Ritt operators
having a bounded H>(B,) functional calculus for some v € (0,7/2) and to exhibit
explicit classes of operators satisfying this property.

If X = H is a Hilbert space and T: H — H is a bounded operator, we define
the “square function”

(1.2) lellz = (> k| T () —T’“_l(m)HZ)lﬂ, e H.
k=1

Likewise for any measure space (2, i), for any 1 < p < oo and for any T': LP(Q2) —
LP(Q), we consider

(1.3) lzllr = H(ikﬁk(x) kaf1(m)|2>1/2‘
k=1

Let T: X — X be a Ritt operator on either X = H or X = LP(Q). It was
implicitly proved in [39] that if 7" has a bounded H*(B,) functional calculus for
some v € (0,7/2), then it satisfies a uniform estimate ||z||r < [|z|.

This paper has two main purposes. First we establish a converse to this result
and prove the following. (Here p’ = p/(p — 1) is the conjugate of p.)

LP(Q).
iy TELO

Theorem 1.1. Let T: LP(2) — LP(QY) be a Ritt operator, with 1 < p < co. The
following assertions are equivalent.

(i) The operator T admits a bounded H*(B.) functional calculus for some v €

(0,7/2).
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(ii) The operator T and its adjoint T*: L (Q) — L¥ (Q) both satisfy uniform
estimates

lzllz < llellze and |yl

for x € LP(Q) and y € L¥ ().

S Iyl

We also prove a similar result for Ritt operators on Hilbert space.

Second, we investigate relationships between the existence of a bounded H>(B,)
functional calculus and adapted square function estimates on general Banach spaces.
We pay a special attention to noncommutative LP-spaces and prove square function
estimates for large classes of Schur multipliers and self-adjoint Markov operators
on those spaces.

Ritt operators can be considered as discrete analogues of sectorial operators
of type < m/2, as explained, e.g., in [7], [8] or Section 2 of [39]. According to
this analogy, Theorem 1.1 and its Hilbertian counterpart should be regarded as
discrete analogues of the main results of [10], [45] showing the equivalence between
the boundedness of H*°-functional calculus and some square function estimates for
sectorial operators. Likewise, in the noncommutative setting, our results are both
an analogue and an extension of the main results of the memoir [25].

The definitions of the discrete square functions (1.2) and (1.3) go back at least
to [56], where they were used to study self-adjoint Markov operators and diffusion
semigroups on classical (= commutative) LP-spaces. They appeared, in the context
of Ritt operators, in [28] and [39], [40].

We now turn to a brief description of the paper. In Sections 2 and 3, we in-
troduce the H>°(B,) functional calculus and square functions for Ritt operators,
and we prove basic preliminary results. Our definition of square functions on gen-
eral Banach spaces relies on Rademacher averages. Regarding such averages as
abstract square functions is a well-known principle; see e.g. [53], [30], [25] for il-
lustrations. If T is a Ritt operator, then A = Iy — T is a sectorial operator and
we show in Section 4 that 7" has a bounded H>(B,,) functional calculus for some
v < 7/2 if and only if A has a bounded H*(%y) functional calculus for some
0 < /2. This observation, stated as Proposition 4.1, provides a tool for trans-
ferring bounded H *°-calculus results from the sectorial setting to Ritt operators.
There is apparently no similar way to compare square functions associated to T to
square functions associated to A. This is at the root of most of the difficulties in
our analysis of Ritt operators. Proposition 4.1 will be applied in Section 8, where
we give applications and illustrations on Hilbert spaces, classical LP-spaces, and
noncommutative LP-spaces.

We will make use of R-boundedness and the notion of R-Ritt operators. This
class was introduced by Blunck [7], [8] as a discrete counterpart of R-sectorial
operators. Our first main result, proved in Section 5, says that if a Ritt operator
T: LP(Q)) — LP(Q) satisfies condition (ii) in Theorem 1.1 above, then it is actually
an R-Ritt operator. In Section 6, we show that on a Banach space X with finite
cotype, any Ritt operator T': X — X with a bounded H*(B,) functional calculus
satisfies square function estimates. This is based on the study of a strong form
of the H°-functional calculus called “quadratic H°°-functional calculus”, where
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scalar valued holomorphic functions are replaced by ¢2-valued functions. Section 7
is devoted to the converse problem of whether square function estimates for T
and 7™ imply a bounded H> (B, ) functional calculus. We show that this holds
true whenever T is R-Ritt, and complete the proofs of Theorem 1.1 and similar
equivalence results.

To close the introduction, we record some notation used throughout this paper.
We let B(X) denote the algebra of bounded operators on X and we let Ix (or
simply I if there is no ambiguity on X) denote the identity operator on X. We
let o(T') denote the spectrum of the operator 7' (bounded or not) and we let
R(\,T) = (Mx — T)~! denote the resolvent operator when A\ belongs to the
resolvent set C\ o(T"). Next, we let Ran(T") and Ker(T') denote the range and the
kernel of T, respectively.

For any a € C and r > 0, we let D(a, ) denote the open disc of radius r centered
at a. Also, we let D = D(0,1) denote the open unit disc. For any nonempty open
set @ C C and any Banach space Z, we let H>*(O; Z) denote the space of bounded
holomorphic functions ¢: O — Z. This is a Banach space for the supremum norm

el =02y = sup{lle(N]z : A € O}.

In the scalar case, we write H>°(O) instead of H*°(O;C) and ||¢[|~ o instead of
¢ zro (0)- Finally we let P denote the algebra of complex polynomials.

In Theorem 1.1 and subsequently in the paper we use the notation < to indicate
an inequality valid up to a constant which does not depend on the particular
element to which it applies. Then A(z) =~ B(z) means that we have both A(z) <
B(z) and B(x) < A(x).

2. Ritt operators and their functional calculus

We start this section with some classical background on the H°°-functional calculus
associated with sectorial operators. The construction and basic properties below
go back to [10], [45], see also [29], [35] for complementary information.

For any w € (0,7), we let

(2.1) Yo ={2€C" : |Arg(z)| <w}

be the open sector of angle 2w around the positive real axis (0, c0).

Let X be a Banach space. We say that a closed linear operator A: D(A) — X
with dense domain D(A) C X is sectorial of type w if o(A) C ¥, and for any
v € (w, ), the set

(2.2) {zR(z,A) : z€ C\ X}

is bounded.
For any 6 € (0,m), let H§°(3p) denote the algebra of bounded holomorphic
functions f: ¥y — C for which there exist positive real numbers s, ¢ > 0 such that

z € Xy.
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Let 0 <w < 0 < mandlet fe H(Eg). Then we set

(23) 1) = 5= [ FERG A,

where v € (w,0) and the boundary 9%, is oriented counterclockwise. The secto-
riality condition ensures that this integral is absolutely convergent and defines an
element of B(X). Moreover by Cauchy’s theorem, this definition does not depend
on the choice of v. Further the resulting mapping f — f(A) is an algebra homo-
morphism from H§®(3y) into B(X) which is consistent with the usual functional
calculus for rational functions.

We say that A admits a bounded H>(Xy) functional calculus if this last ho-
momorphism is bounded, that is, there exists a constant K > 0 such that

1A < K| fllocze, [ €HG (o).

If A has dense range and admits a bounded H*°(Xy) functional calculus, then the
above homomorphism extends naturally to a bounded homomorphism f — f(A)
from the whole space H*(Xy) into B(X).

It is well known that the above construction can be adapted to various contexts;
see e.g. [23] and [16]. We shall briefly explain below such a functional calculus
construction for Ritt operators. We first recall some background on this class.

We say that an operator T: X — X is a Ritt operator provided that the
two sets

(2.4) {T" :n>0} and {n(T"-T"""):n>1}

are bounded. The following spectral characterization is crucial: T is a Ritt operator
if and only if

o(T)cD and {(A—1)R(A\,T) : [\ >1} is bounded.

Indeed this condition is often taken as the definition of Ritt operators. We refer to
[44], [46] for this characterization and also to [47], which contains the key argument,
and to [7], [8] and Section 2 of [39] for complementary information. Let

A=1-T.
It follows from the above referenced papers that 7' is a Ritt operator if and only if
(2.5) o(T) cDU{l} and A is a sectorial operator of type < 7/2.
We will need quantitative versions of the above equivalence property. For this
purpose we introduce the Stolz domains B, as in Figure 1. Namely for any an-

gle v € (0,71'/2), we let B, be the interior of the convex hull of 1 and the disc
D(0,sin~).
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FIGURE 1.

Lemma 2.1. An operator T: X — X is a Ritt operator if and only if there exists
an angle o € (0,7/2) such that

o(T) C B,
and, for any 8 € (04,7r/2), the set
{(A=1)R(\T) : Ae C\ Bg}

is bounded.
In this case, A =1 —"T is a sectorial operator of type .

Proof. Assume that T is a Ritt operator and apply (2.5). Let w € (0,7r/2) be a
sectorial type of A. Then o(T') is both included in DU {1} and in the cone 1 — 3.
Hence there exists w < a < 7/2 such that o(T) C B,.

Consider the function h on C\ o(T) defined by h(\) = (A — 1)R(A,T'). This
function is bounded on C \ D(0,2). Indeed if we let Cy = sup,,s, |7, then
writing -

R(/\’T) = z% A+l
when |A| > 1, we have [|[R(A\,T)|| < Cy/(|A] — 1), and hence

(Al +1
Al =17

A= 1[RA T < Co AeC\D.

Let 8 € (a,ﬂ/Q). The compact set
(2.6) Ag={Ne€1-%5: Re(\) <sin®?B and sinB < [N <2}
is contained in the resolvent set of 7. Hence h is bounded on Ag. Furthermore
h(A) = (1= NR((1-X),A)

and A is sectorial of type a. Consequently £ is bounded outside 1 —Y5. Altogether,
this shows that i is bounded outside Bz. The rest of the statement is obvious. O
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The above lemma leads to the following.

Definition 2.2. We say that T: X — X is a Ritt operator of type o € (O, 7r/2) if
it satisfies the conclusions of Lemma 2.1.

Then we construct an H*°-functional calculus as follows. For any v € (0, 7/ 2) , we
let H3°(B,) C H*(B.,) be the space of bounded holomorphic functions ¢: B, — C
for which there exist positive real numbers s, ¢ > 0 such that

(2.7) PO <cll= AP, A€ B,
Assume that T has type o and v € (a, 7r/2). Then for any ¢ € H§°(B,), we define

(28) o) = 3= | RO,

where 3 € (a, ) and the boundary 0Bg is oriented counterclockwise. The bound-
edness of {(A—1)R(\,T) : XA € 9Bz \ {1}} and the assumption (2.7) imply that
this integral is absolutely convergent and defines an element of B(X). It does not
depend on 8 and the mapping

HGo(By) — B(X), ¢ = ¢(T),

is an algebra homomorphism. Proofs of these facts are similar to those in the
sectorial case.
We state a technical observation for further use.

Lemma 2.3. Let T be a Ritt operator of type a. Then rT is a Ritt operator for
any r € (0,1) and:

(1) For any f € (a,ﬂ'/Z), the set
{N=1)R(\,rT) : r €(0,1), A€ C\ Bg}
1s bounded;
(2) For any v € (o, 7/2) and any ¢ € H§®(By), ¢(T) = lim, ;- o(rT).

Proof. Consider 3 € (a,7/2). It is clear that for any A € C\ Bg and any r € (0,1),
that we have A\/r € C\ Bg, A ¢ o(rT), and we have

(A — DR 1T) = ;_ ! (ﬁ 1) R(ﬁ,T).

—r \r r

Since the sets
{A—1)A=r)"":7r€(0,1), x\eC\ Bg, }
and L
{(n=1R(u,T) : peC\ By}
are bounded, we obtain (1).
Applying Lebesgue’s theorem to (2.8), the assertion (2) follows at once. O
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Let HgS(B,) C H*(B,) be the linear span of Hg°(B,) and constant functions.
For any ¢ = c+ ¢, with ¢ € C and ¢ € H§°(B,), set o(T) = cIx + ¢(T). Then
HGS(By) C H*(B,) is a unital algebra and ¢ + ¢(T') is a unital homomorphism
from HEq(B,) into B(X). Note that HgS(B,) contains rational functions with
poles off E, and hence contains all polynomials.

For any T as above and any r € (0,1), o(rT) = ro(T) C Bs. Hence the
definition of ¢(rT) provided by (2.8) is given by the usual Dunford-Riesz functional
calculus of rT. It therefore follows from classical properties of that functional
calculus and the approximation Lemma 2.3 that for any rational function ¢ with
poles off B,, the above definition of ¢(T) coincides with the one obtained by
substituting T for the complex variable. In particular this applies to any ¢ € P.

Likewise, recall that since I — T is sectorial one can define its fractional powers
(I—-T)° for any § > 0. Then this bounded operator coincides with ¢ (T'), where @5
is the element of H§°(B,) given by ps(\) = (1 — A\)°. See Section 6 of [45] and
Chapter 3 of [23] for similar results.

Definition 2.4. Let T be a Ritt operator of type a and let vy € (a, 71'/2). We say
that T' admits a bounded H>(B.) functional calculus if there exists a constant
K > 0 such that

le(D)]| < K [|¢llc,B,, ¢ € H5"(Bs).

In this case ¢ + ¢(T) is a bounded homomorphism on Hg%(B,). The next
statement shows that the above functional calculus property can be tested on
polynomials only.

Proposition 2.5. A Ritt operator T has a bounded H*(B.,) functional calculus
if and only if there exists a constant K > 1 such that, for any ¢ € P,

(2.9) oM < Kll¢llc,B, -

Proof. The ‘only if’ part is clear from the preceding discussion. To prove the
‘if” part, assume (2.9) on P and consider ¢ € HG®(By). Let r € (0,1), let " €
(r,1) be an auxiliary real number and let I' be the boundary of r’B, oriented
counterclockwise.

By Runge’s theorem (see, e.g., Theorem 13.9 in [55]), there exists a sequence
(¢m)m>1 of polynomials such that ¢,, — ¢ uniformly on the compact set 7' B,,.
Since o(rT) C 1’ B, we deduce that

onT) = 50 [ enWROITI AN — 5o [ GVROIT) A = o),

when m — oco. By (2.9),
lm (rT)[| < K"‘Pm”oomb <K ”SOmHOOJ“’Bw
Passing to the limit yields
le(rT) < K |¢llcor B, -

Finally letting » — 1 and applying Lemma 2.3 (2) we deduce ||o(T)|| < K |[¢]|oo,B, -
O
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The above result is closely related to the following classical notion.

Definition 2.6. We say that a bounded operator T: X — X is polynomially
bounded if there is a constant K > 1 such that

[ < Kll¢lloop, ¢ €P.

Obviously any Ritt operator with a bounded H>(B,) functional calculus is
polynomially bounded. See Proposition 7.7 below for a partial converse.

According to Proposition 5.2 in [36], there exist Ritt operators on Hilbert space
which are not polynomially bounded. Thus there exist Ritt operators without any
bounded H>°(B,) functional calculus. Note that various such (counter-)examples
can be derived from Proposition 4.1 below or from Section 8a.

Remark 2.7. Let T be a Ritt operator of type «, let v € (o, 7/2), and assume
that I — T has dense range. Then I — T is one-to-one by Theorem 3.8 in [10], and
arguing as in [10], [45], one can extend the definition of ¢(T') to any ¢ € H*(B,).
Namely let ¢(z) = 1 — 2z and for any ¢ € H*®(B,,), set o(T) = (I —T)~ ' (oy)(T),
where (p¢)(T) is defined by (2.8) and ¢(T') is defined on D(p(T)) = {z € X :
(p)(T)x € Ran(l — T)}. It is easy to check that the domain of ¢(T") contains
Ran(I—T), so that ¢(T) in densely defined, and that ¢(T') is closed. Consequently,
©(T) is bounded if and only if D(p(T)) = X.

Assume that T has a bounded H>(B,) functional calculus. Then ¢(T) is
bounded for any ¢ € H*(B,). Indeed let ¢, (z) = (1 — 2)((1 — 2) + n=1)~? for
any integer n > 1. The sectoriality of (I —T') ensures that (¢,,(T"))n>1 is bounded.
Hence there is a constant K > 0 such that [[(o¢n)(T)|| < K ||¢|ls,B, for any
n > 1. Tt is easy to check that (¢¢,)(T)xz — o(T)x for any « € Ran(I — T'). This
shows the boundedness of p(7"), with the estimate [|o(T)| < K |[¢/co,B, -

Remark 2.8. It is clear that the adjoint 7%: X* — X* of a Ritt operator T €
B(X) (of type «) is a Ritt operator (of type «) as well. In this case, p(T)* = ¢(T*)
for any ¢ € H§°(B,) with v > «. Hence T™* has a bounded H>(B,) functional
calculus if and only if T has one.

3. Square functions

On general Banach spaces, square functions of the forms (1.2) or (1.3) need to be
replaced by suitable Rademacher averages. This short section is devoted to precise
definitions of these abstract square functions, as well as to relevant properties of
Rademacher norms on certain Banach spaces.

We let (ex)r>1 be a sequence of independent Rademacher variables on some
probability space (M, dP). Given any Banach space X, we let Rad(X) denote the
closed subspace of the Bochner space L?(M; X) spanned by the set {e,®x : k> 1,
2 € X}. Thus for any finite family (z)r>1 of elements of X,

(3.1) HZ&C(X):E;C Rad / HZ&C ka dP(u )>1/2.
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Moreover, elements of Rad(X) are sums of convergent series of the form

o0
E e QD xk .
k=1

For any bounded operator T: X — X, for any integer m > 1 and for any
r € X, we set

(o]
Izl = HZ Fm=1/2 o @ TR (T — T)m(x)’
k=1

Rad(X)
More precisely for any z € X and any integer k > 1, set
p = km_1/2 Tk—l([ o T)m(l‘)

Then ||z||7,m is equal to the Rad(X)-norm of Y ;7 | e ® zy, if this series converges
in L2(M; X), = oo otherwise.
If X = LP(Q) for some 1 < p < oo, then we have an equivalence

2 [ 0, = I 1x) ]

for finite families (zx)r of X (see, e.g., Theorem 1.d.6 in [41]). Hence for any
T: LP(Q) — LP(Q) and any m > 1, we have

Lr(Q

3)  lrlrn = (SRt -rwP) e

k=1

()

In particular, the square function ||- ||z defined by (1.3) is equivalent to ||-||7,1.
Likewise, the Rademacher average (3.1) of a finite sequence (x); on a Hilbert
space H is equal to (3, |lzx||%)/?, hence for any T' € B(H), we have

el = (g trt - rprl) e

The square functions appearing in (3.3) are analogues of well-known square
functions associated to sectorial operators on LP-spaces. Namely let A be a sec-
torial operator of type < 7/2 on LP(£2). Then —A generates a bounded analytic
semigroup (e~*4);>0 on LP() and for any integer m > 1, one can consider

0 1/2
(/ t2m_1|Ame_tA(m)|2dt> ‘
0

For any t > 0, 9™/0t™(e~'4) = (—=1)™A™e~ "4, Hence, if we regard (T*(I —
T)m)

E>1
the discrete analogue of the continuous square function |- || 4,mm. Thus Theorem 1.1
is a discrete analogue of the main result of [10] showing the equivalence between the
boundedness of H*°-functional calculus and square function estimates for sectorial
operators.

Similar comments apply to the Hilbert space case.

x € LP(Q).

Le(Q)’

as the m-th discrete derivative of the sequence (T*~1);>1, then |- [|1,,, is
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In the sequel, the square functions ||-||7,m will be used for Ritt operators (al-
though their definitions make sense for any operator).

Let X be a Banach space. The space Rad(Rad(X)) is the closure of finite sums
Z € QE; D Tyj
,J
in L2(M x M; X), where z;; € X for any 4,7 > 1. We say that X has property («)
if the above decomposition is unconditional, that is, there exists a constant C' > 0

such that for any finite family (x;;); j>1 of X and any family (¢;;); j>1 of complex
numbers,

HZ € Q&5 ®tij Tij

.3

Rad(Rad(X))

<C tij H E; £ ..
Rad(Rad(X)) S;}JP' ijl ; i ® €5 ® Tij

Classical LP-spaces (for p < 0o) have property («). Indeed we have an equivalence

2\ /2
~ |(XtesP) "]
Rad(Rad(LP(9))) >

for finite families (z;;); ; of LP(€2) which extends (3.2). This holds true as well for
any Banach lattice with finite cotype in place of LP().

On the contrary, infinite-dimensional noncommutative LP-spaces (for p # 2) do
not have property («). This goes back to [50], where property («) was introduced.

We shall now present more precise information, namely the so-called noncom-
mutative Khintchine inequalities in one or two variables. In the one-variable case,
these inequalities, stated as (3.5) and (3.6) below are due to Lust-Piquard for
1 < p < oo ([42]) and to Lust-Piquard and Pisier for p = 1 ([43]). The two-
variable inequalities (3.7) and (3.8) are taken from [51], pp. 111-112.

In the sequel we let M be a semifinite von Neumann algebra equipped with a
normal semifinite faithful trace and for any 1 < p < oo, we let LP(M) denote the
associated noncommutative LP-space. We refer the reader to [53] for background
and general information on these spaces. Any element of LP(M) is a (possibly
unbounded) operator and, for any such z, the modulus of = used in the following
formulas is

(3.4) ;zs ®e; @ T4y o

o] = (@)

The following equivalences, valid for finite families in LP(M ), are the noncommu-
tative counterparts of (3.2). If 2 < p < oo, then

(3.5)
1/2 1/2
o] ~ma[| (o) e ((02E) L 00
sz: R | Raa (e (ary) ijl d L (M) ijl il LP (M)
If 1 <p <2, then
(3.6)
1/2 1/2
it (2 ) ]+ D) 0 )
szzgk(@xk‘laad(m(lu)) m zk]uk' LP(M)+ ;'UM Lr (M)

where the infimum runs over all possible decompositions x; = uy + vg in LP(M).
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Let n > 1 be an integer. The space LP(M,(M)) associated with the von
Neumann algebra M,, (M) can be canonically identified with the vector space of
all n x n matrices with entries in LP(M). The following equivalences are the
noncommutative counterparts of (3.4). If 2 < p < oo, then

n n ) 1/2
HZ S ©E O Ty Rad(Rad(L»(M))) %maX{H(,Z i1 ) ’

3,j=1 i,5=1

I (S

ij=1

e (M)

Loy’ ||[mij]||LP(Mn(M))’ | [‘rji]HLP(]V[,L(]VI))}'

If 1 <p <2, then

n ) n ) 1/2
HZ € ®Ej B Xij Rad(Rad(LP(M))) “mf{H(Z | ) ’

ij=1 ij=1

(3.8) + H(Z |u;;|2)1/2’

4,j=1

Lr(M)

Lo (M) + ||[wij]||LP(]V[,L(]VI)) + H[Zji]HLP(]VI”(]VI))}’

where the infimum runs over all possible decompositions x;; = w;; + vi; +wi; + 245
in LP(M).

4. A transfer principle from sectorial operators to Ritt oper-
ators

Let T: X — X be a Ritt operator on an arbitrary Banach space. We remarked in
Section 2 that
A=1-T

is a sectorial operator of type < 7/2. The following transfer result will be extremely
important for applications. Indeed it allows known results from the theory of the
H®°-calculus for sectorial operators to be used in our context. This principle will
be illustrated in Section 8. The proof is a variant of that of Theorem 8.3 in [22],
adapted to our situation (see also Proposition 3.2 in [39]).

Proposition 4.1. The following are equivalent.
(i) T admits a bounded H>(B,) functional calculus for some v € (0,7/2).

(i) A admits a bounded H*(3g) functional calculus for some 6 € (0,7/2).
Proof. Tt will be convenient to set
A,=1-B,.

for any v € (0, 71/2). This is a subset of the cone X,.
Assume (i). To any f € H$°(X,), associate ¢ given by ¢(A) = f(1—X). Then ¢
is defined on B,, its restriction to that set belongs to H§®(B,), and |[¢|lec,B, =
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[ flloo,a, < [|flloo,x,. Comparing (2.3) and (2.8) and applying Cauchy’s theorem,
we see that

f(A) = o(T).
These observations imply that A has a bounded H*°(X,) functional calculus.

Assume conversely that A admits a bounded H* (%) functional calculus for
some ¢ in (0,7/2). It follows from Lemma 2.1 that

o(A) C A,

for some « € (0, 7r/2). Taking 6 close enough to 7/2, we can assume that « < 6.

We fix v € (0,7/2) and choose an arbitrary 8 € (0,v). Let I'; be the juxtapo-
sition of the segments [cos(3)e”,0] and [0, cos(3)e~%’]. Then let I'y be the curve
going from cos(B)e™* to cos(B)e”® counterclockwise along the circle of center 1
and radius sin(8). Thus

(4.1) 0Ag = {T'1, T2},

the juxtaposition of T'; and 'y (see Figure 2).

cos(f)elf

FIGURE 2.

Let ¢ € H3®(By) and let f: A, — C be the holomorphic function defined by

(4.2) fe)=p(l—2), z€A,

Then again we have || f|lcc,a, = [|¢|loc,B,, moreover there exist two positive con-
stants ¢, s > 0 such that

(4.3) FEI<ell’, zeA,
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We can define f1: C\T';y = C and fo: C\T's — C by

(4.4) filz) = % )Jj(,) dA and fa(z) = 2m/

fA

72

Clearly these functions are holomorphic on their domains. According to (4.1) and
Cauchy’s theorem, we have

(4.5) VzeAp, f(z)=fi(z)+ fa(2).

Since the distance between I'y and ¥y \ Ay is strictly positive and I'y C A, there
is a constant C; > 0 (not depending on f) such that

(4.6) Vze ¥\ Qg [f1(2)] < C1fllooa,-
Likewise there is a constant Cy > 0 (not depending on f) such that

Vze DNy, [f202)] <Colfllos,a,-
Combined with (4.5), this yields

Vze s, [[i(2)]<(1+C2)flloc.a,

Together with (4.6) this shows that fi € H*(3y) and that with C5 = max{Cy, 1+
Cs}, we have

(4'7) HleOCnEe <C3 ”f”oo,AA,-
Now let g: 3y — C be defined by

f2(0)

o) = hiE) +

According to the definition of f; given by (4.4), zf1(z) is bounded when |z| — co.
Hence zg(z) is bounded on ¥y. Further, f; is defined near 0, hence | f2(2) — f2(0)]
< |z] on Ag. By (4.5), we have

f2(0)
142

9(2) = 1)+ (£ = £202)) = F(2) + (£200) = f2(2)) = f2(0) =— on Ao,

1+

Applying the above estimate and (4.3), we deduce that |g(z)| < max{|z|%, |z|}

on Ag. These estimates show that g belongs to H{°(3g). We may therefore
compute g(A) by means of (2.3), and hence f1(A) by

f1(A) = g(A) = £00)(1 + A)~"

From the assumption (ii), we get a constant Cy > 0 (not depending on f) such
that

[f1 (AN < Call frlloo, -
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Combining this with (4.7), we deduce

[f1(A] < C3Callfllc,a, -

The holomorphic function f5 is defined on an open neighborhood of the spectrum
o(A). Hence f2(A) may be defined by the classical Riesz—Dunford functional cal-
culus. Then by Fubini’s theorem and (4.4), we have

f2(A) = L FN RN, A)dX.

21 Ty

Consequently,

1
152040 < 5 [ IFOIIRO, A .
Y Ts
We deduce that there is a constant Cs > 0 (not depending on f) such that

[f2(A)] < C5 [ fllos,a,-
Using (4.2) and (4.5) it is easy to check that

(T) = f1(A) + f2(A).
We deduce (with C' = C3Cy + Cs) the estimate

(D)l < Cll¢llco,s,
which shows the boundedness of the H>*(B,,) functional calculus. O

Remark 4.2. We mention another (easier) transfer principle. Let (T3)i>0 be a
bounded analytic semigroup on X, and let —A denote its infinitesimal generator.
For any fixed ¢t > 0, T} is a Ritt operator. This is easy to check; see Section 3
of [58] for more on this. Writing ¢(7;) = f(A) with f(z) = ¢(e"**), one shows
that if A admits a bounded H>(%y) functional calculus for some 6 € (0,7/2),
then T} admits a bounded H>°(B,) functional calculus for some v € (0,7/2).

5. R-boundedness and R-Ritt operators

This section starts with some background on R-boundedness, a notion which —by
now — plays a prominent role in many questions concerning functional calculi; see
in particular [29], [30], [59]. The notion of R-boundedness was introduced in [6]
and developed in [9]. The resulting notion of R-Ritt operator (see below) was first
studied by Blunck [7], [8].

Let X be a Banach space and let E C B(X) be a set of bounded operators
on X. We say that E is R-bounded if there exists a constant C' > 0 such that for
any finite family (T%)x in £ and any finite family (zy)r in X,

<
oo o] < S0

Rad(X)
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In this case, we let R(E) denote the smallest possible C. Any R-bounded set E
is bounded, with ||T'| < R(E) for any T' € E. If X = H is a Hilbert space,
the converse holds true, because of the isometric isomorphism Rad(H) = ¢?(H).
But if X is not isomorphic to a Hilbert space, then the unit ball of B(X) is not
R-bounded (see [1]).

We will use the following convexity result. This is a well-known consequence
of Lemma 3.2 in [9], see also Lemma 4.2 in [25].

Lemma 5.1. Let J C R be an interval, let E C B(X) be an R-bounded set and
let K > 0 be a constant. Then the set

Ex = {/ h(t)F(t) dt ’F: J — E continuous, h € L*(J;dt) /|h(t)|dt < K}
J J

is R-bounded, with R(Ex) < 2KR(E).

A sectorial operator A on X is called R-sectorial of R-type w provided that
o(A) C ¥, and for any v € (w, ), the set (2.2) is R-bounded.

Likewise, a Ritt operator 7" on X is called R-Ritt provided that the two sets
in (2.4) are R-bounded. The following is an R-bounded version of (2.5) and
Lemma 2.1. We refer to [7] for closely related results.

Lemma 5.2. Let T: X — X be a Ritt operator and let A=1—"T. The following
are equivalent.
(i) T is R-Ritt.
(ii) A is R-sectorial of R-type < m/2.
(iii) There ezists an angle a € (0,7/2) such that o(T) C Bq and, for any 3 €
(a,7r/2), the set
{(A=1)R(\T) : Xe C\ Bs}
is R-bounded.

Proof. The implications ‘(i)=-(ii)” and ‘(iii)=-(i)’ follow from [7]. The proof of
‘(ii)=-(iii)’ is parallel to that of Lemma 2.1, using two elementary but important
results on R-boundedness due to L. Weis. The first says that for any open set
O C C and for any compact set F' C O, any analytic function O — B(X) maps F'
into an R-bounded subset of B(X) (Proposition 2.6 in [59]). With the notation of
the proof of Lemma 2.1, this implies that the two sets

By =h(As) and By = {h(}\) : [A| =2}

are R-bounded. The second is the maximum principle for R-boundedness (Propo-
sition 2.8 in [59]). Together with the R-boundedness of Es, it implies that {h(\) :
[A| > 2} is R-bounded. With these elements in hand, the adaptation of the proof
of Lemma 2.1 is straightforward. O

We say that T is an R-Ritt operator of R-type « if it satisfies condition (iii) of
Lemma 5.2. Tt is clear that in this case, A = I — T is R-sectorial of R-type a.
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In the rest of this section, we focus on commutative LP-spaces; see however
Remark 5.5. Our objective is the following theorem, which is a key step in the
proof of Theorem 1.1.

Theorem 5.3. Let (2, 1) be a measure space, let 1 < p < oo, and let T: LP(Q2) —
LP(Q) be a power bounded operator. Assume that T satisfies uniform estimates

(5.1)

Sllelze and lyllr- 2 S Nyl o

for x € LP(Q) and y € L¥' (Q). Then T is R-Ritt.

Until the end of the proof of this theorem, we fix a bounded operator T': LP(Q) —
LP(Q), with 1 < p < co. The following lemma is inspired by the proof of Theo-
rem 4.7 in [28].

Lemma 5.4. If T satisfies a uniform estimate

(5.2) z € LP(Q),

then it automatically satisfies a umform estimate

(5.3) <Slzll, = e LP(Q).

Proof. We will use the following elementary identity that the reader can easily
check. For any integer k > 1,

k
(5.4) > ik+1-j) = %k(k+1)(k+2).
j=1

Let z € LP(Q) and let N > 1 be an integer. According to the above identity we
have an inequality

Zk?']:r’c NI - T)%|? <6ZZ; (k+1— )T (1 - T)%|.

k=1 j=1

By a change of indices (letting r = k 4+ 1 — j for any fixed j), we have

N k N
STtk + 1 )TN - T)2a|* = Z] (k+1—5)|T* (1 - 7))
k=1 j=1 j=1 k=j
N N+1-—j N N
=575 N T -]t < S | T - T2
7j=1 r=1 j=1 r=1

According to (3.4), we have an estimate

(3 e )

Jir=1

L ()

(5 #2rosams

J,r=1

Rad(Rad(L?(2)))
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Furthermore, writing
T3 -T)x = T (I -T)[T" (I - T)z],

and applying the assumption (5.2) twice, we see that

N
H et @ e @ TTHITA(I - T)Qm‘

Rad(Rad(LP()))

7,r=1
N
<H T%ET®T“1]7T:£’ < .
N ; ( ) Rad(Lr () 2 [l
Altogether, we obtain the estimate
N o\ 1/2
(e =) | s e,
LP(Q)
k=1
which proves (5.3). O

Proof of Theorem 5.3. Since T is power bounded and X = LP(Q) is reflexive, the
mean ergodic theorem ensures that

(5.5) X = Ker(I -T)@®Ran(l - T).
Furthermore the two square function estimates (5.1) imply that
[z[| ~ [lz]|l7,1, = € Ran(l —T).

Indeed this is implicit in Corollary 3.4 of [39], to which we refer for details. Let
(Zn)n>1 be a finite family in Ran(l —T'), and let (1,)n,>1 be a sequence of £1.
The above equivalence yields

HZ%% HZZkl/Q 7)n5k:®Tk_1(IfT)1'n’
n>1

k>1n>1
Averaging over the 7, = 1 and applying (3.4), we obtain that

(5.6) HZE” ® zp ~ H( Z k| TH (I - T)x”|2)1/2‘
n>1

kn>1
for z,, in Ran(I —T).
Applying Lemma 5.4 and similarly averaging the resulting estimates

Tin Tn ,S Tin Tn,
H Z T2 H Z
n n

over all n, = +1, we obtain that
. 1/2
(5.7) H( S BTN =T [) ’
kn>1

for x,, in LP(2).

Rad(L? ()

Lr() =

Rad (L (Q)) Lr()

< € ,
Lr() ™ H;; n Rad(LP(9))
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Our aim is to show that the two sets in (2.4) are R-bounded. Their restrictions
to the kernel Ker(I — T') clearly have this property. By (5.5) it therefore suffices
to consider their restrictions to Ran(l — T).

Let (x)n>1 be a finite family in Ran(I — T"). Each T™x,, belongs to that space.
Hence, by (5.6), we have

[ o

< H( 3 k|T’“+"*1(IfT):cn|2>l/2‘

= Rad(L?(Q)) 2 Lr(Q)
Moreover,
1/2
(2 st -]
Lr(Q)
k,n>1
<Y (k)| TH (T — Tz, | v
_‘( )| (- x”|) ’LI’(Q)
k,n>1
<(Z X uru-mmp)”
= —1)Tn ‘ Lr (@)
n>1k>n+1
o o\ 1/2
< ‘ (Z F|TH (T = T)a)| ) ’Lm).
k,n>1
Using (5.6) we deduce that
DoRL L ) R R
= Rad(LP(Q)) = Rad(LP(Q))
This shows the R-boundedness of {T™ : n > 1}.
Likewise, using (5.6) and (5.7), we have
HZ en @nT" NI —T)xn‘
= Rad(L?(Q))
1/2
< L Tk+n72]'7T2n2> ‘
<[ (X ke —rpa )
k,n>1
<SS (k+n)? T 2(1 - 1), | i
~ ( n) | ( - -Z'n| ) ‘LP(Q)
k,n>1
] o\ 1/2
< ( (k + 13| T (1 = T)2a,| ) ’
LP(Q)
n>1k>n
S|(X wr-ia -1 f)”z‘ ADIELE:
~ n ~ n n .
kn>1 Lr @) n>1 Rad(Lr(%2))

Thus the set {nT"~1(I —T) : n > 1} is R-bounded as well, which completes the
proof. O
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Remark 5.5. It is easy to check that the above proof and hence Theorem 5.3
extend to the case when LP(€) is replaced by a reflexive Banach space with prop-
erty (o). In particular this holds true on any reflexive Banach lattice with finite
cotype. However we do not know whether Theorem 5.3 holds true on noncommu-
tative LP-spaces.

The above proof can be adapted to the sectorial case, which yields a slight
improvement of the main result of [10]. We explain this point in the separate
note [38].

6. From H* functional calculus to square functions

The main aim of this section is to determine when a Ritt operator 7" with a bounded
H>(B,) functional calculus must satisfy square function estimates |||z, < ||z
We will show that this holds true on Banach spaces with finite cotype. We refer
the reader e.g. to [14] for information on cotype.

To this end, we investigate a strong form of bounded holomorphic functional
calculus which is somehow natural for making connections with square functions.
We consider both the sectorial case and the Ritt case.

Let f1,..., fn be a finite family in H>°(QO), for some nonempty open set O C C.
In the sequel we let

[ 1e) L = swe{ (X 1aeR)” s =0},
=1 ’ =1

Equivalently, let (e1,...,e,) be the standard basis of the Hermitian space £2, then

) I o = A2, s,
=1 ’ =1 o

In the following definitions, X is an arbitrary Banach space.

Definition 6.1. (1) Let A be a sectorial operator of type w € (0,7) on X and
let 6 € (w, 7). We say that A admits a quadratic H>°(Xy) functional calculus
if there exists a constant K > 0 such that for any n > 1, for any fi,..., fn
in H§°(3p), and for any = € X,

62 [Seo ], < K |(Si)

(2) Let T be a Ritt operator of type a € (O, 71'/2) on X and let v € (a, 71/2). We
say that 7' admits a quadratic H*°(B,) functional calculus if there exists a
constant K > 0 such that for any n > 1, for any ¢, ..., ¢, in H°(By), and
for any z € X,

n K n ) 1/2
"% < KIS 0)
H;ezwl( 0y < Kl )
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Arguing as in Proposition 2.5, one can restrict to polynomials in part (2).

It is clear that any sectorial operator with a quadratic H*(Xy) functional
calculus has a bounded H*°(3y) functional calculus. We will see in Proposition 6.7
that the converse does not hold. However we show that, up to a change of angle,
the converse holds on a large class of Banach spaces. We will need the following
remarkable estimate of Kaiser—Weis (Corollary 3.4 in [27]).

Lemma 6.2. ([27]) Let X be a Banach space with finite cotype. Then there exists
a constant C' > 0 such that

(6.3) H Z gl Ek®<€l®l‘k‘
Bi>1

1/2
< Csup(Xlaul?) | H
Rad(Rad(X)) Sl;ip ;'am ggk@mk Rad(X)

for any finite family (awi)ri>1 of complex numbers and any finite family (xg)>1
of X.

Theorem 6.3. Assume that X has finite cotype and let A be a sectorial operator
on X with a bounded H>(Xg) functional calculus. Then A admits a quadratic
H®(3,) functional calculus for any v € (0, 7).

Proof. The proof relies on a decomposition principle for holomorphic functions
due to E. Franks and A. McIntosh. Let 0 < 0 < v < 7 be two angles. The
decomposition principle says that there exist a constant C' > 0 and two sequences
(Fk)kZI and (Gk)k21 in Hg"(Eg) such that:

(a) For any z € ¥y, we have Zk21 |F(2)] < C.
(b) For any z € ¥y, we have Zk21 |Ge(2)| < C.
(¢) For any Banach space Z and for any function F' € H®(X,; Z), there exists
a bounded sequence (by)r>1 in Z such that
bkl < Cl|F (| (s,:2), k=1,
and

F(Z) = ibk Fk(z) Gk(z), z € Xy.
k=1

Indeed, Proposition 3.1 in [16] and the last paragraph of Section 3 in [16] show
this property for Z = C. However it is easy to check that the proof works as well
for Z-valued holomorphic functions.

Since A admits a bounded H*°(3y) functional calculus, we have a uniform
estimate

> mF)|| 5 sup| Yo m Fee)| < sup ol sup Y IF(2)
& zE€Xg & k E17) &

for finite families (n;)g>1 of complex numbers. Hence by (a), we have

(6.4) sup sup HZ"’“F’“(A)H < 00.
m>1 n,==+1 =1



1170 C. LE MERDY

Likewise, (b) implies that

(6.5) sup sup Hzm:nk Gk(A)H < 00

m>1 n,==+1 =1

We will apply property (c) with Z = ¢2 for arbitrary n > 1. Let fi,..., f, be
elements of H§®(3,) and consider

F=Y fioe € H®(S, ).
=1

Let (bg)g>1 be the bounded sequence of ¢2 provided by (c), and write by =

(g1, kg, - . ., Q) for any k > 1. Then
(6.6) filz) = > an Fiu(2) Gi(2), =€ S,
forany [ =1,...,n, and
2\ /2 /2
(6.7) sup (Z vkt ) <C H( |.f1] ) H
ko =1 00,
by (c) and (6.1).
For any Il = 1,...,n and any integer m > 1, we consider the function

m
hmg =Y aw Fy, G,
k=1

which belongs to H§°(X,) and approximates f; by (6.6).
Let 2 € X. By the Khintchine-Kahane inequality (see, e.g., Theorem 1.e.13
in [41]), we have

[0ttt )

/HZFk Zel ) ok G (A )Hd]P’

For any z1,...,2,, in X, we have

zk:Fk(A)ac /(Zek )(Zsk xk)dIP’ v),

hence, by (6.4),

IS Az g/ IS er@ R (A)|[[3 enwyz]| ape)
k M k
< /M szjek(v)mkHdP(v)

A
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Applying this estimate with z = >, €;(u)Gr(A)2 and integrating over (u,v) €
M x M, we deduce that

1> et @ hma(A)e]
l

HZ QR EL R E® Gk(A)x’
e,

<
Rad(X) Rad(Rad (X))’

By assumption, X has finite cotype. Hence it follows from Lemma 6.2 and (6.7)

that
1/2
S )
Rad(X) ~ H(;'m 0,5,

|- et ® humaa)e)
l
Moreover, according to (6.5), we have sz er ® Gk(A)xHRad(X) < |lz]]. Thus we
finally obtain

1/2
Hzl: g ® hm’l(A)mHRad(X) ’S H.Z‘H H (zl: |fl|2) Hoo,E,,-

We deduce the expected result by an entirely classical approximation process,
that we explain for the convenience of the reader. For any ¢ € (0,1), set A, =
(eI + A)(I +eA)~!. Then A, is bounded and invertible, its spectrum is a compact
subset of Xy, and it follows from Cauchy’s theorem that for some contour I'z of
finite length included in the open set Yy, we have

h(A.) = ﬁ /F h(=)R(z, A.) d=

Rad(X)

> ek @ GilA)al
l

for any h € H§°(Xp). Since hy,; — fi pointwise and sup,,, . [hm1(2)| < oo, the
above integral representation ensures that

lm hpi(Ae) = fi(4Ae), 1=1,...,n.
m—r0o0
Furthermore,
lim fi(Ae) = fi(4)

for any [ =1,...,n, by Lemma 2.4 in [35].

Now observe that the A. uniformly admit a bounded H>(Xy) functional cal-
culus. That is, there exists a constant K > 0 such that |h(Ae)| < K ||h]|co,s, for
any h € H§°(Xp) and any € € (0,1). It therefore follows from the above proof that
there is a constant K’ > 0 such that

69 [Sasmmtai,,,, < €|
l l v

for any m > 1 and any € € (0,1). Then (6.2) follows from (6.8). O

We now state a similar result for Ritt operators and their functional calculus.

Theorem 6.4. Assume that X has finite cotype and let T be a Ritt operator on X
with a bounded H>(B,) functional calculus. Then T admits a quadratic H>(B,)
functional calculus for any v € (v, 7/2).
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Proof. There are two ways to get to this result. The first is to mimic the proof of
Theorem 6.3, using a Franks—McIntosh decomposition adapted to Stolz domains.
The existence of such decompositions follows from Section 5 of [16].

The second is to observe that the transfer principle stated as Proposition 4.1
holds (with essentially the same proof) for the quadratic functional calculus. Na-
mely, with A = I — T, the following are equivalent:

(i) T admits a quadratic H>°(B,) functional calculus for some v € (0,7/2).
(ii) A admits a quadratic H>(2y) functional calculus for some 6 € (0,7/2).

Hence the result follows from Theorem 6.3, the implication ‘(i)=-(ii)’ of Proposi-
tion 4.1 and the implication ‘(il)=-(i)’ above. O

Banach spaces with property («) have finite cotype, hence Theorems 6.3 and 6.4
apply to such spaces. It turns out that a much stronger H>° calculus property holds
for such spaces, as follows.

Proposition 6.5. Assume that X has property («).

(1) Let A be a sectorial operator on X with a bounded H™(Xg) functional cal-
culus. Then for any v € (0,7), there exists a constant K > 0 such that

(6.9) H i 5l®flj(A)mj‘
!

> < KzseuzpuH[flj(Z)]HM" ’

n
e 5o
ad(X) = Rad(X)

for any n > 1, for any matriz [fi;] of elements of HG(X,) and for any
Tiyeeoy Ty in X.

(2) Let T be a Ritt operator on X with a bounded H>(B,) functional calculus.
Then for any v € (v, m/2), there exists a constant K > 0 such that

(6.10) || 3 18 o15(T)a|

l,j=1

Rad(X) § K zSEuBPU H [<plj (2)] HMw

n

Zsj ®ijRad(X)
7j=1

for any n > 1, for any matric [pi;] of elements of HG(B,) and for any
T1,...,T, 1 X.

Proof. A Banach space X with property («) satisfies the following property: there
exists a constant C' > 0 such that for any n > 1, for any finite family (by)r>1
of elements of M,, that we denote by by, = [bx(l,j)]1<i,j<n and for any n-tuple
(k1)k>1,- - -5 (Thn )k>1 of families in X,

n
(6.11) HZ > 5k®5l®bk(lvj)mkj‘

k>11,5=1

Rad(Rad (X))

< Csup|lbrllm, | Y er®e; ® %“
k .

Rad(Rad(X))
k.j

This strengthening of (6.3) for these spaces is due to Haak and Kunstmann, see
Lemma 5.2 in [21] (see also [19]).
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We explain (1). We consider an n x n matrix [f;] of elements of H5®(X,) and
we associate F' € H*(X,; M,,) defined by

F(z) = [flj(Z)], zE€X,.

Then, arguing as in the proof of Theorem 6.3 and applying the Franks—McIntosh
decomposition principle with Z = M,,, we find a sequence (by)r>1 of n x n matrices
bk = [bk(l,j)]lgl,jgn such that

o0

fii(z) = > bell,§) Fr(2) Gr(2), =z € %o,

k=1

forany l,7=1,...,n, and
sup ], < € sup{|[[fig()] |y, = 2 € B}

Using the above results in the place of (6.6) and (6.7), the estimate (6.11) in place
of (6.3), and arguing as in the proof of Theorem 6.3, we obtain (6.9). The details
are left to the reader.

Part (2) can be deduced from part (1) in the same manner that Theorem 6.4
was deduced from Theorem 6.3. O

Part (2) of the above proposition generalizes Theorem 3.3 in [39], where this
property is proved for (commutative) LP-spaces.

Remark 6.6. Property (6.9) means that the homomorphism H§°(2,) — B(X)
induced by the functional calculus is matricially R-bounded in the sense of [31],
Section 4. Restricting this property to column matrices, we obtain the property
proved in Theorem 6.3. On the other hand, restricting (6.9) to diagonal matrices,
we recover the following result of Kalton—Weis [30] (see also Theorem 12.8 in [32]):
if A has a bounded H>(3) functional calculus on X with property («), then for
any v € (0, ), the functional calculus homomorphism H§® (X, ) — B(X) maps the
unit ball of H§°(X,) into an R-bounded subset of B(X).

We now show that Theorem 6.3 does not hold true for all Banach spaces.
Namely, the next proposition shows that it fails on ¢g. A similar construction
shows that Theorem 6.4 also fails on ¢g.

Proposition 6.7. Let A: co — ¢ be defined by

Then A is a sectorial operator and, for any 0 € (0,7),

(1) A admits a bounded H>(Xg) functional calculus;

(2) A does not have a quadratic H*(Xg) functional calculus.
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Proof. The facts that A is sectorial and that property (1) holds are easy. Indeed,
for any 6 € (0,7) and any f € H§°(Xg), we have

[F(A))(w) = (F(277)wj)jz1
for any w = (w;);>1 in ¢, and hence
1 (A< F 2o (0,00)-

To prove (2), let us assume that A admits a quadratic H*°(Xy) functional
calculus for some 6 € (0, 7). Let (e;);>1 denote the standard basis of ¢o. For any
integers n,m > 1, for any wy, ..., wy, in C, and any fi,..., f,, in H3®(Xy),

Zé‘l@fl (Z%%) = Zfl(ij)wjel(@ej.
Ly

Hence there is a constant C' > 0 (not depending on n,m or w;) such that

HZZﬁZ ’) wjgl@ej‘md(co) CSUp|w3|H<Z|ﬁ ) H

=1 j5=1
for any fi,..., fn in H§(Zg), By an entirely classical approximation argument,
the above estimate holds also when the f; belong to H*(Xy). Applying this with
w; =1 for all j, one obtains, for f1,..., f, € H>*(3),

(6.12) len;ifz@j)fz@ej‘
i

Let Qum: H*®(Zg;02) — (22(2) be defined by Qnm(F) = (F(Q’j))1<j<m.
Then @, is onto and the vectorial form of Carleson’s interpolation theorem (se_e [_17],
VII. 2) ensures that its lifting constant is bounded by a universal constant not de-
pending on m or n. Thus there is a constant K > 1 such that for any family

00,50

n

e <€ (1)

=1

00,30

(1) 1<j<m, 1<i<n Of complex numbers there exist fi,..., f, in H>(Xg) such that
n 1/2 /2 .
H ( Z |fl|2> H < K sup (Z o] > and o5 = f1(277)
= 00,39 1<j<m

for any 1 < j <m and 1 <[ < n. It therefore follows from (6.12) that

(6.13) HZZQU 5l®ej’

=1 j=1

< CK sup (Z'alﬂ| > /2, ag; € C.

Rad(co) 1<j<m

Let n > 1 be an integer. Since the unit ball of /2 is compact, there exists a finite
family (y1,...,ym) in that unit ball such that

(6.14) lyllee < 2sup{[(yy)| : = 1....m}
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for any y € 2. Let (hy,...,h,) be an orthonormal basis of £2, and let
ayy = (h,y;), 1<j<m, 1<1<n.
Then the supremum in the right-hand side of (6.13) is equal to sup; ||y;|, hence is

less than or equal to 1. Consequently,

m

ISt se

=1 j=1

< CK.

Rad(co)

Now observe that, for any u € M,

>, =[S awmn)e

=1 j=1

. = qu‘<zn: er(u) hl,yj>’.
7 =1

Since (hi, ..., hy,) is an orthonormal basis, the norm of >;% | ;(u) by in €2 is equal
to n'/2. Applying (6.14), we deduce that

n m
n'/?2 <2 HZ Z<hl’ yj) e1(u) ejH
=1 j=1 co
Integrating over M, this yields n'/2 < 2CK for any n > 1, a contradiction. O

Now we return to the question addressed at the beginning of this section. The
following classical result will be used in the next proof: If a Banach space X does
not contain ¢y (as an isomorphic subspace), then a series ), € ® x) converges in
L?(M; X) if and only if its partial sums are uniformly bounded (see [33]).

Proposition 6.8. Assume that X does not contain cy. Let T: X — X be a Ritt
operator and assume that T' has o quadratic H>(B.,) functional calculus for some
v E (0,7r/2), Then for any m > 1, T satisfies a uniform estimate

(6.15) [zllrm S 2, v e X.

Proof. According to the property discussed before the statement of the proposition,
it suffices to show the existence of a constant K > 0 such that for any n > 1 and
any x € X,

Hszfl/%l@TH (IfT)m:cH < K ||z
po Rad(X)

This is obtained by applying Definition 6.1 (2), with
<pl(z) _ lm71/2 Zl71(1 o Z)l.
See the proof of Theorem 3.3 in [39] for the details. O

Finally we summarize what we obtain by combining Theorem 6.4 and Propo-
sition 6.8. Recall that a Banach space with finite cotype cannot contain cg.



1176 C. LE MERDY

Corollary 6.9. Assume that X has finite cotype. LetT: X — X be a Ritt operator
with a bounded H*(B,) functional calculus for some vy € (0, 7T/2). Then it satisfies
a square function estimate (6.15) for any m > 1.

Remark 6.10. It follows from the proof of Proposition 6.7 that the spaces ¢5°
do not satisfy (6.3) uniformly, that is, there is no common constant C' > 0 such
that (6.3) holds with X = ¢£2° for any n > 1. Moreover a Banach space with
no finite cotype contains the ¢5° uniformly as isomorphic subspaces (see, e.g.,
Theorem 14.1 in [14]) and hence cannot satisfy (6.3). Together with Lemma 6.2,
this observation shows that a Banach space satisfies an estimate (6.3) if and only
if it has finite cotype.

(Added in October 2012.) In an early version of this paper, Theorem 6.3 was
stated under the assumption that X satisfies an estimate (6.3). I had overlooked
Corollary 3.4 in [27] and realized only recently that (6.3) is the same as ‘finite
cotype’. This led to the present neater presentation of Section 6.

Bernhard Haak and Markus Haase have informed me that they obtained a
variant of Theorem 6.3 in a work in progress (see [20]). This work is independent
of mine, and was undertaken several months ago.

7. From square functions to H* functional calculus

This section is devoted to the issue of showing that a Ritt operator has a bounded
H*®-functional calculus with respect to a Stolz domain B, provided that it satisfies
suitable square function estimates. We consider an arbitrary Banach space X and
first establish a general result, namely Theorem 7.3 below. Then we consider
special cases in the last part of the section.

Lemma 7.1. Let 0 < a <y < w/2 and let T: X — X be a Ritt operator of type o
(resp., an R-Ritt operator of R-type o). There exists a constant C' > 0 such that
for any ¢ € H3°(B,), we have

klo(m)(T* = T* Y| < Cligloop,, k=1
(resp. the set {ko(T)(T* —T*1) : k> 1} is R-bounded and
R({kp(T)(T* =T 1) - k>1}) < Cll¢]lon, )-

Proof. We will prove this result in the ‘R-Ritt case’ only, the ‘Ritt case’ being
similar and simpler. We fix a real number S € («, ). Recall Lemma 5.2 and let

C1=R{A=1R\T) : A€ 9Bz \ {1}}).
For any function ¢ € H§®(By) and any integer k > 1, we have

ko(T)(TF — T+ 1) = ﬁ - kEoMAH(A = 1)R(A\, T)) dA.
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Hence by Lemma 5.1, we have

R({kp(T)(TF = T*) : k2 1})

IN

Gy / k1
— sups k M| [A d\
- sup 5, [POINE 1}

C p—
< = lelloe.n, sup{k/ APt |d)\|}.
& k>1 9B

The finiteness of the latter supremum is well known; see, e.g., Lemma 2.1 in [57]
and its proof. The result follows at once. O

Lemma 7.2. Let T: X — X be a Ritt operator. For any x € Ran(I —T), we
have

S k(k+1) T NI - T)x = 2a.
k=1

Proof. Let N > 1 be an integer. First, we have

N N N+1
S ok(k+1)TNI-T) =Y k(k+ )T = > (k= 1kTH!
k=1 k=1 k=2
N
=2) kT - N(N +1)T".
k=1
Then we compute
N N N+1 N
SkTHNI-T) =Y kTF = > (k-1 TF = Y TR - NTY,
k=1 k=1 k=2 k=1
and we note that
N
S rF NI -T) =1-T".
k=1

Combining these identities, we obtain that
N
1) Y k(k+1)TFNI-T)? = 2I-2TN —2NTN(I-T)~N(N+1)TN(I-T)*,
k=1

Since T is a Ritt operator, the four sequences

So=(TV)ns1, Si=(NTNUI-T)) ., Sa=(N>TNI-TP)

and
Sz = (N*TN(I -T)%) -,

are bounded (see Lemma 2.1 in [57]).
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If = (I —T)z is an element of Ran(I — T'), the boundedness of S3 implies
that

N—|—1

N(N+1)TN(I - T)%x TN(I-T)*2 — 0 when N — oo.

Then the boundedness of the sequence S5 implies that we actually have

lim N(N + 1) ™I -T)*x =0

for any « in the closure Ran(I — T'). Likewise, using S2,S1 and Sy, we have

Hm NTN(I —T)z =0 and 1limT"z =0
N N

for any « € Ran(/ — T"). Thus applying (7.1) yields the result. O

Theorem 7.3. Let T: X — X be an R-Ritt operator of R-type a € (0,77/2). IfT
and T™ both satisfy uniform estimates

S =l and ly|

1 S |yl

forz € X and y € X*, then T admits a bounded H*(By) functional calculus for
any v € (o, 7/2).

Proof. We fix v in (a 71'/2) Let w = €2™/3. Then the operators wl —T and @I —T
are invertible and I — 7% = (I — T)(wI — T)(wI — T). Hence

Ran(I —T) = Ran(I — T?).

Note moreover that 7 is a Ritt operator.
Let ¢ € P such that ¢(1) = 0 and consider z € X. Then ¢(T)z € Ran(I —T),
so applying Lemma 7.2 to T2 and using the above observations, we obtain

> k(k+ 1) T3 — T3)39(T)z = 2(T) .
k=1

For convenience we set ¢(T) = (I+T+1T2)3/2, so that 2¢(T)(I —T)? = (I - T3)3.
Then for any y € X*, we obtain

oo

(p(D)a,y) =Y (k(k+1)(T) (1) T*E V(1 = T)%a,y)
k=1

Z< [(k + 1)(T)T* (I = T)| k2T (1-T)a, kl/QT*<k—1>(I—T*)¢(T*)y> .

Note that for any finite families (z)r>1 in X and (yx)r>1 in X*, we have

St = [ (Serta S ewtwue) o),

k



FUNCTIONAL CALCULUS FOR RITT OPERATORS 1179

and hence

’Z<5Ek,yk> ‘ < HZ €p ® Ik’
k k

by the Cauchy—Schwarz inequality.
Thus for any integer N > 1, we have

[Seeu
Rad(X) [145 Rad(X*)

N
’Z( [(k+ Do(T)TH (I — )] KT — T)a, kY2 T*F=D (1 — ) (T*)y) ‘
k=1

N
< H;Ek @ [(k+1)o(T) Tk_l(I—T)]k1/2 Tk_l(I—T)m‘

Rad(X)
N
* H};Ek @ ( Ju( )y’ Rad(X*)
RE{(k+1) (M) T I =T) : k= 1}) (D) zllz1 [yl

71 [[9(T7)yl

by Lemma 7.1. Applying our assumptions, we deduce that

<
S el ll2] 71

oMz, y)| S elloo, Izl yll-

Since z and y are arbitrary, this implies an estimate ||o(T)[| < |¢[lco,5, for poly-
nomials vanishing at 1. Writing any polynomial as ¢ = (1) + (¢ — (1)), we
immediately obtain a similar estimate for all polynomials. This yields the result
by Proposition 2.5. O

Theorem 7.3 fails if we remove one of the two square function estimates in the
assumption. This will follow from Proposition 8.2.

Finally we consider a special case and combinations with results from the pre-
vious sections. Following [29], we say that a Banach space X has property (A)
if the triangular projection is bounded on Rad(Rad(X)), that is, there exists a
constant C' > 0 such that for finite doubly indexed families (x)g,>1 in X,

HZZEk ® e ®$kl‘ Rad(Rad(X)) <C szfk ® e ®l‘kl‘

E>1 1>k E>11>1

Rad(Rad(X))

This condition is clearly weaker than («). Furthermore any UMD Banach space
has property (A), by Proposition 3.2 in [29]. Thus any noncommutative LP-space
with 1 < p < oo has property (A). On the other hand, property (A) does not hold
uniformly on the spaces £5°, hence any Banach space with property (A) has finite
cotype.

It follows from Theorem 5.3 in [29] that if A is a sectorial operator on X
with property (A) and A admits a bounded H> (%) for some 6 < 7/2, then A
is R-sectorial of R-type < w/2. Combining this with (the easy implication of)
Proposition 4.1 and Lemma 5.2, we deduce the following.
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Proposition 7.4. Let T be a Ritt operator on X with property (A). If T admits
a bounded H*(By) for some v < /2, then T is R-Ritt.

Combining Proposition 7.4 with Corollary 6.9, we obtain the following equiva-
lence result.

Corollary 7.5.
(1) Assume that X has property (A) and let T: X — X be a Ritt operator. The
following assertions are equivalent.
(i) T admits a bounded H*(B.) functional calculus for some v € (0,7/2).
(ii) T is R-Ritt and T and T* both satisfy uniform estimates

lzllra S Nzl and |yl

-1 Syl
forxe X andy € X*

(2) Part (1) applies to Banach spaces with property («) and to noncommutative
LP-spaces for 1 < p < oo.

If X = LP(Q) is a commutative LP-space with 1 < p < oo, then demanding
that 7' be R-Ritt in condition (ii) is superfluous, by Theorem 5.3. In this case, the
above statement yields Theorem 1.1. According to this discussion and Remark 5.5,
Theorem 1.1 holds also on any reflexive space with property («).

Remark 7.6. Let m > 1 be an integer. Theorem 7.3 remains valid if the uniform
estimates ||z||71 S ||z]] and [Jy||lr-1 < ||yl are replaced by

] mem S |yl

rm S |z and |y

Indeed the proof is essentially the same up to simple modifications left to the
reader. Consequently, Corollary 7.5 is also valid with || - |71 and || - ||+ 1 replaced
by || - [|7,m and || - |7+ m, respectively.

We conclude this section with an observation of independent interest on the
role of the R-Ritt condition in the study of H*°(B,) functional calculus. Recall
Definition 2.6.

Proposition 7.7. Let T: X — X be an R-Ritt operator of R-type o. If T is
polynomially bounded, then it admits a bounded H*(B.) functional calculus for

any v € (o, 7/2).

Proof. As was observed in Section 5, the operator A = I — T is R-sectorial of
R-type a. Moreover the proof of the easy implication ‘(i)=-(ii)’ of Proposition 4.1
shows that A admits a bounded H>(¥;/3) functional calculus. According to
Proposition 5.1 in [29], this implies that for any § € (a,7), A admits a bounded
H®(Xy) functional calculus. The result therefore follows from Proposition 4.1. O

The R-boundedness assumption is essential in the above result. Indeed with
F. Lancien we show in [34] the existence of Ritt operators that are polynomially
bounded without admitting any bounded H*°(B,) functional calculus.
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8. Examples and illustrations

In this final section, we give additional results for the following 3 classes of Banach
spaces: Hilbert spaces, commutative LP-spaces, and noncommutative LP-spaces.
We give either characterizations of Ritt operators satisfying the equivalent condi-
tions of Corollary 7.5, or exhibit classes of examples satisfying these conditions.

8.a. Hilbert spaces. Let H be a Hilbert space. Two bounded operators
S,T: H — H are called similar provided that there is an invertible operator
V € B(H) such that S = V7TV, In particular we say that T is similar to a
contraction if there is an invertible operator V' € B(H) such that ||V ~!TV| < 1.
This is equivalent to the existence of an equivalent Hilbert norm on H with re-
spect to which T is contractive. Any T similar to a contraction is polynomially
bounded (by von Neumann’s inequality). Pisier’s negative solution to the Halmos
problem asserts that the converse is wrong; see [52] for details and related results
on similarity problems. It is known, however, that any polynomially bounded Ritt
operator is necessarily similar to a contraction; see [36], [12]. The next statement
(which may be known to some similarity specialists) is a refinement of that result,
also generalizing the Hilbert space version of Theorem 1.1.
Note that the class of Ritt operators is stable under similarity.

Theorem 8.1. For any power bounded operator T € B(H), the following asser-
tions are equivalent.
(i) T is a Ritt operator which admits a bounded H*(B) functional calculus for
some 7y € (0,7r/2),

(il) T and T* both satisfy uniform estimates

ez S Nzl and lyllr-2 < llyll

forxz,y € H.

(iii) T is a Ritt operator and T is similar to a contraction.

Proof. Tt follows from Theorem 4.7 in [28] that T is a Ritt operator if it satis-
fies (ii). With this result in hand, the equivalence between (i) and (ii) reduces to
Corollary 7.5.

If T satisfies (iii), then it is polynomially bounded (see the discussion above).
Hence it satisfies (i) by Proposition 7.7.

Assume (ii). Recall (5.5) (with X = H) and let P: H — H be the projection
onto Ker(I — T') whose kernel equals Ran(I — T'). Then we have an equivalence

(8.1) Izl ~ (1P@)]? + [«]3.,)"

Indeed this follows from the proof of Theorem 4.7 in [28], see also Corollary 3.4
in [39]. Let |||x||| denote the right-hand side of (8.1). Then [||- ||| is an equivalent
Hilbert norm on H. Further for any x € H,

2T71 , x€H.

2

IT@)[3y = S k[T (@) — TH@)|)* < S k|| T (2) - T (@)|]” < el
k=1 k=2
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This implies that 7" is a contraction on (H, |||-|||). Thus 7" is similar to a contrac-
tion, which shows (iii). O

A natural question (also making sense on general Banach spaces) is whether
one can get rid of one of the two square function estimates of (ii) in the above
equivalence result. It turns out that the answer is negative.

Proposition 8.2. There exists a Ritt operator T on a Hilbert space H that is not
similar to a contraction, although it satisfies an estimate

]

1 S llzll, = e H.

Proof. This is a simple adaptation of Theorem 5.2 in [37], so the explanation will
be brief. Let H be a separable infinite dimensional Hilbert space and let (€, )m>1
be a normalized Schauder basis of H which satisfies an estimate

1/2
(8.2) (Z |tm|2) < Hztm em
m m

for finite sequences (¢, )m>1 of complex numbers but for which there is no reverse
estimate, that is,

(8.3) sup{HZtm emH : Z:|tm|2 < 1} = o0.
Let T: H — H be defined by

T(Z tm em> =327 b e

m

According to e.g. Theorem 4.1 in [35], this operator is well-defined and A =1 —T
is sectorial of any positive type. Moreover o(T') C [0, 1], hence T is a Ritt operator.
Arguing as in the proof of Theorem 5.2 in [37], one obtains an equivalence

1/2
HztmemHT,l ~ (Z |tm|2)
m m

for finite sequences (ty,)m>1 of complex numbers.

In view of (8.2), this implies the square function estimate ||z|r1 < ||z|. I T
were similar to a contraction, it would satisfy an estimate |y|lr-1 S [lyll, by
Theorem 8.1. It would therefore satisfy a reverse estimate ||z| < ||z|lr1 by (8.1).
This contradicts (8.3). O

8.b. Commutative LP-spaces. Let (Q,u) be a measure space and let 1 <
p < oo. The following is the main result of [39]. We provide a proof using the
techniques of the present paper.

Theorem 8.3. [39] Let T': LP(Q) — LP(Q2) be a positive contraction and assume
that T is a Ritt operator. Then it satisfies the equivalent conditions of Theorem 1.1.
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Proof. Let (Tt)¢>0 be the uniformly continuous semigroup on LP(2) defined by
T, =et etT, t>0.

Then for any ¢t > 0, T} is positive and ||T;|| < e tetITl < 1. The generator of
(Ty)i>0 is T —I = — A and since T is a Ritt operator, A is sectorial of type < 7/2.
Hence A admits a bounded H*°(Xy) functional calculus for some 6 < 7/2, by
Proposition 2.2 in [39]. According to Proposition 4.1, this implies condition (i) of
Theorem 1.1. O

For applications of this result to ergodic theory see [40].

Ritt operators on LP({2) satisfying Theorem 1.1 do not have any description
comparable to the one given by Theorem 8.1 for a Hilbert space. However in a
separate joint work with C. Arhancet [4], we show that for an R-Ritt operator
T: LP(Q) — LP(QY), T satisfies the conditions of Theorem 1.1 if and only if there
exist a second measure space (', 4'), two bounded maps J: LP(Q) — LP(QY)
and Q: LP(QY) — LP(Q), and an isomorphism U: LP(£') — LP(£)) such that
{U™ :n € Z} is bounded and

T =QU"J, n>0.

8.c. Noncommutative LP-spaces. In this subsection, we let M be a semifinite
von Neumann algebra equipped with a semifinite faithful trace 7. Thanks to
the noncommutative Khintchine inequalities (3.5) and (3.6), Corollary 7.5 has a
specific form on LP(M). We state it in the case 2 < p < oo. The dual case
(1 < p < 2) can be obtained by changing 7" into T*. This is the noncommutative
analogue of Theorem 1.1, the square functions (1.3) being replaced by their natural
noncommutative versions.

Corollary 8.4. Let 2 < p < oo and let T: LP(M) — LP(M) be a Ritt operator.
Then T admits a bounded H*(B.,) functional calculus for some v < 7/2 if and
only if T is R-Ritt and there exists a constant C' > 0 such that the following three
estimates hold:

(1) For any x € LP(M),

H (gk |Tk(x) — Tk_l(x)|2)1/2'

< Cllz| Lran-

Le(M)
(2) For any x € LP(M),
o w10\ 1/2
(It @ - @) ) 7, < Clellan.
k=1

(3) For any y € LP (M), there exist two sequences (uj)g>1 and (vp)g>1 in
LY (M) such that

K2 (T (y) = T4V (y) = we + o
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for any k > 1, and we both have

I(S51o)
IS5

<C o U s
L) lyll, (M)

Lo (M) < CHyHLP’(]VI)'

We will now exhibit two classes of examples satisfying the conditions of the
above corollary. We start with Schur multipliers. Here our von Neumann algebra
is B(£?), the trace 7 is the usual trace and the associated noncommutative LP-
spaces are the Schatten classes that we denote by SP. We represent any element
of B(£?) by a bi-infinite matrix in the usual way. We recall that a bounded Schur
multiplier on B(¢?) is a bounded map T: B(¢£2) — B(£?) of the form

T
(8.4) [cijlijz1 ¥ [tijcizlig>

for some matrix [t;;]; j>1 of complex numbers. See, e.g., Theorem 5.1 in [52] for
a description of those maps. It is well known (using duality and interpolation)
that any bounded Schur multiplier 7': B(¢?) — B(¢?) extends to a bounded map
T:SP — SP for any 1 < p < oo, with

|T: SP — SP|| < ||T: B(¢*) — B(£?)).

In particular, any contractive Schur multiplier T: B(¢?) — B(¢?) extends to a
contraction on SP for any p. In this case, the complex numbers ¢;; given by (8.4)
have modulus < 1. Moreover, T: S? — S? is self-adjoint (in the usual Hilbertian
sense) if and only if the associated matrix [¢;;]; ;>1 is real valued.

We say that a semigroup (7;):>¢ of contractive Schur multipliers on B(f?) is
w*-continuous if w*-limy_,0Ty(z) = z for any z € B(¢?). In this case, (T})i>0
extends to a strongly continuous semigroup of S? for any 1 < p < oo. Further
we say that (T})¢>o is self-adjoint provided that T;: 52 — S2 is self-adjoint for
any t > 0. See Chapter 5 of [25] for the more general notion of noncommutative
diffusion semigroup.

In the sequel we let w, = w|1/p — 1/2|. The following extends 8.C in [25].

Proposition 8.5. Let (1});>0 be a self-adjoint w*-continuous semigroup of con-
tractive Schur multipliers on B(€%). For any 1 < p < oo, let —A, be the infinites-
imal generator of (Ty)i>0 on SP. Then for any 0 € (wy,w), Ap admits a bounded
H®>(3g) functional calculus.

Proof. For any 1 < p < oo, let (Ugp)ier be the translation semigroup on the

Bochner space LP(R;SP). Then it follows from Corollary 4.3 and Theorem 5.3
in [3] that for any b € L'(0, 00),

H/ b(t) Ty dt = S” —» SP|| < H/ b(t)Uyp dt - LP(R; SP) —s LP(R; SP)
0 0
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Let C, be the negative generator of (Uyp)ier. By Lemma 2.12 in [35], the above
inequality implies that for any 6 > /2 and any f € H5®(3),

1 (Ap)ll < 1 (Cp)I-

Since S? is a UMD Banach space, C}, has a bounded H*(Xy) functional calculus
for any 0 > m/2 (see e.g. [24]). Hence the above estimate implies that in turn, A,
has a bounded H*(3y) functional calculus for any 6 > /2.

We assumed that (7});>¢ is self-adjoint. Hence by Proposition 5.8 in [25], the
above property holds true for any 6 > w,. O

Recall Definition 2.6 for polynomial boundedness.

Corollary 8.6. Let T': B(¢?) — B({?) be a contractive Schur multiplier associated
with a real-valued matriz [t;;]; j>1 and let 1 < p < oo.

(1) The induced operator T: SP — SP is polynomially bounded.

(2) If there exists § > 0 such that t;; > —14 9§ for any i,j > 1, then the induced
operator T': SP — SP is a Ritt operator which admits a bounded H>(B.,)
functional calculus for some v < w/2. When p > 2, it satisfies the conditions
(1)—=(3) of Corollary 8.4.

Proof. We first prove (2). Assume that t;; > —1 4 ¢ for any 4,5 > 1. Then the
spectrum of the self-adjoint map T': S? — S? is contained in [—1 +§, 1]. Applying
the Spectral Theorem, this readily implies that T: $? — S2 is a Ritt operator.
According to Lemma 5.1 in [39], this implies that for any 1 < p < oo, T': SP — SP
is a Ritt operator.

For any t > 0, T, = e~ *e'T is a contractive self-adjoint Schur multiplier. Hence
for any 1 < p < oo, A =1—T has a bounded H*(Xy) functional calculus on SP
for any 6 > w,, by Proposition 8.5. Note that w, < m/2. Thus the result now
follows from Proposition 4.1 and Corollary 8.4.

We now prove (1). Under our assumption, the square operator 72%: B(¢?) —
B(¢?) is a contractive Schur multiplier, and its associated matrix is [t%j]i,jzl-
Hence T? satisfies part (2) of the present corollary. Let 1 < p < co. Since poly-
nomial boundedness is implied by the existence of a bounded H*°(B,) functional
calculus, we deduce from (2) that there exists a constant K, > 1 such that

le(T*) | pesey < Kpllellsop, @ €P.
Any polynomial ¢ admits a (necessarily unique) decomposition
p(2) = ¢1(2%) + 22(2?)
and it is easy to check that

lelloon < l@lloop  and  [[p2]loop < [[¢]loo,n-
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Writing ¢(T') = ¢1(T?) 4+ Tp2(T?), we deduce that

(D)l esey < ler(T?)pese) + lle2(T?) | Besr)
< KP(HS"lHoo,D + ||802H<>071D>) < 2K, ||l oo,p- O

We now turn to our second class of examples. Here we assume that 7 is finite
and normalized, that is, 7(1) = 1. In this case, M C LP(M) for any 1 < p < oo.
Following [18], [54], we say that a linear map T: M — M is a Markov map
if T' is unital, completely positive and trace preserving. As is well-known, such
a map is necessarily normal and for any 1 < p < oo, it extends to a contraction
Ty: LP(M) — LP(M). We say that T is self-adjoint if its L2-realization T% is
self-adjoint in the usual Hilbertian sense.

Applying the techniques developed so far, the following analogue of Corol-
lary 8.6 is a rather direct consequence of some recent work of M. Junge, E. Ricard
and D. Shlyakhtenko.

Proposition 8.7. Let T: M — M be a self-adjoint Markov map.

(1) For any 1 < p < oo, the operator T,: LP(M) — LP(M) is polynomially
bounded.

(2) If =1 ¢ o(Tz), then for any 1 < p < oo, T,: LP(M) — LP(M) is a Ritt oper-
ator which admits a bounded H>(B.,,) functional calculus for some v < 1/2.
When p > 2, it satisfies the conditions (1)—(3) of Corollary 8.4.

Proof. Let Ap = Ipp(pr) —T) for any 1 < p < co. Repeating the method applied to
deduce Corollary 8.6 from Proposition 8.5, we see that it suffices to show that for
any 1 < p < oo, A, is sectorial and admits a bounded H>°(3y) functional calculus
for some 0 < /2.
To this end, consider
T, =e =T ¢ >0.

Then (T})¢>0 is a ‘noncommutative diffusion semigroup’ in the sense of Chapter 5
of [25], and, for any 1 < p < oo, —A, is the generator of its LP-realization.
Hence A, is sectorial by Proposition 5.4 in [25].

According to [26], each T} is ‘factorizable’ in the sense of Definition 6.2 in [2] or
Definition 1.3 in [18]. Writing T} = Tt2/2 and using Theorem 5.3 in [18], we deduce
that each T} satisfies the ‘Rota dilation property’ introduced in Definition 10.2
of [25] (see also Definition 5.1 in [18]).

We deduce the result by applying the reasoning in [25], 10.D. Indeed it is
implicitly shown there that whenever (7});>¢ is a diffusion semigroup on a finite
von Neumann algebra such that each T} satisfies the Rota dilation property, then
the negative generator of its LP-realization admits a bounded H>(Xy) functional
calculus for any 0 > w,,. O

Remark 8.8. (1) In regards to the necessity of having two parts in Proposition 8.7,
we note that LP-realizations of self-adjoint Markov maps are not necessarily Ritt
operators. For instance, the mapping T': ¢3° — ¢3° defined by T'(¢,s) = (s,t) is a
Markov map but —1 € o(T).
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(2) If T: M — M satisfies the Rota dilation property, then it is a Markov
map and its L2-realization is positive in the Hilbertian sense. Hence it satisfies
Proposition 8.7. In this case, the previous statement strengthens Corollary 10.9
in [25], where weaker square function estimates were established for operators with
the Rota dilation property.

(3) For any self-adjoint Schur multiplier (resp. Markov map) 7', the square
operator T2 satisfies the second part of Corollary 8.6 (resp. Proposition 8.7). Hence
it satisfies an estimate

HZ K2 e @ (TF () — Tk+1(x))‘ < |zl ze-
k=1

Rad(LP(M))
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