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Abstract. This article is the second in a series of three papers, whose aim
is to give new proofs to the well known theorems of Calderón, Coifman,
McIntosh and Meyer [1], [4], and [5]. Here we treat the case of the Cauchy
integral on Lipschitz curves and some of its generalizations.

1. Introduction

This paper is a continuation of [9] and it is the second of a three papers series.
Let A be a Lipschitz function on the real line R. It defines a Lipschitz curve Γ in
the complex plane, with the parametrization x→ x+ iA(x). The Cauchy integral
associated with this curve is the singular integral operator CΓ given by

(1.1) CΓf(x) := p.v.

∫
R

f(y)

(x− y) + i(A(x) −A(y))
dy.

The goal of this article is to give a new proof of the well known theorem of
Coifman, McIntosh, and Meyer [5], which says that CΓ extends naturally as a
bounded linear operator from Lp into Lp for any 1 < p < ∞. Moreover, the
method of proof will also allow us to obtain several new generalizations of this
important theorem, which will be described in the last section of the paper.

As is known, standard arguments reduce this problem to the problem of proving
polynomial bounds for the associated Calderón commutators defined by

(1.2) Cdf(x) := p.v.

∫
R

(A(x) −A(y))d

(x− y)d+1
f(y) dy.

Mathematics Subject Classification (2010): Primary 42; Secondary 35.
Keywords: Cauchy integral on Lipschitz curves, Littlewood–Paley projections, logarithmic esti-
mates, polynomial upper bounds.



1090 C. Muscalu

More precisely, it is enough to prove that

(1.3) ‖Cdf‖p ≤ C(d) · C(p) · ‖f‖p · ‖A′‖d∞
for any f ∈ Lp, where C(d) grows at most polynomially in d.

Simple and standard calculations, similar to the ones in [9], show that for
Schwartz functions a := A′ and f , (1.2) exists and can be rewritten as∫

Rd+1

[ ∫
[0,1]d

sgn(ξ + α1 ξ1 + · · ·+ αd ξd) dα1 · · · dαd

]
(1.4)

· f̂(ξ) â(ξ1) · · · â(ξd) e2πix(ξ+ξ1+···+ξd) dξ dξ1 · · · dξd.

As a consequence, Cd can be seen as a (d + 1)-linear operator. More specifically,
it is given by the map

(f, g1, . . . , gd) →
∫
Rd+1

[ ∫
[0,1]d

sgn(ξ + α1 ξ1 + · · ·+ αd ξd) dα1 · · · dαd

]
· f̂(ξ) ĝ1(ξ1) · · · ĝd(ξd) e2πix(ξ+ξ1+···+ξd) dξ dξ1 · · · dξd.

However, since its symbol

(1.5) md(ξ, ξ1, . . . , ξd) :=

∫
[0,1]d

sgn(ξ + α1 ξ1 + · · ·+ αd ξd) dα1 · · · dαd

is not a classical Marcinkiewicz–Mihlin–Hörmander symbol, there are no esti-
mates for Cd that can be easily passed to the multilinear theorem of Coifman
and Meyer [4] and this is why proving (1.3) even without polynomial bounds, is a
more delicate problem than estimating paraproducts. In [9], we gave a new proof
of (1.3) in the particular case of the first Calderón commutator C1. The proof was
based on the observation that even thoughm1(ξ, ξ1) is not a classical symbol, when
smoothly restricted to Whitney squares (with respect to the origin) the Fourier co-
efficients of the corresponding functions decay at least quadratically. This fact,
together with the logarithmic bounds for the shifted Hardy–Littlewood maximal
functions and Littlewood–Paley square functions (also proved in [9]), were enough
to reduce the problem to a setting where the method developed in [11] and [12]
could be applied. It is on the other hand not difficult to realize, that even if
one were to assume that such quadratic estimates hold true in the general case
of md(ξ, ξ1, . . . , ξd), these observations alone would not be enough to obtain (1.3),
since then one would end up summing O(d) power series, which would finally gen-
erate an exponential upper bound of type Cd. The main new idea to obtain the
desired polynomial bounds in (1.3), is to realize that instead of treating md as a
whole multiplier of d + 1 variables, one can see it as being a multiple average of
various m1 type multipliers. In other words, throughout this paper, we will never
need to go beyond the understanding of the symbol of the first Calderón com-
mutator, to be able to obtain polynomial bounds for all the other commutators.
This may seem surprising at first glance, but could also be seen as an explanation
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of a somewhat similar observation of Verdera [14] who showed that in a certain
sense, the Cauchy integral is dominated by the first Calderón commutator.

Now, coming back to (1.3), we will prove the following.

Theorem 1.1. Let 1 < p1, . . . , pd+1 ≤ ∞ and 1 ≤ p < ∞ be so that 1/p1 + · · ·+
1/pd+1 = 1/p. Denote by l the number of indices i for which pi �= ∞. Then, Cd

extends naturally as a (d+1)-linear bounded operator from Lp1 ×· · ·×Lpd+1 → Lp

with an operator bound of type

(1.6) C(d) · C(l) · C(p1) · · · · · C(pd+1) ,

where C(d) grows at most polynomially in d and C(pi) = 1 as long as pi = ∞ for
1 ≤ i ≤ d+ 1.

Assuming for a moment Theorem 1.1, we see immediately that our desired
estimate (1.3) follows from it by taking p1 = p and p2 = · · · = pd+1 = ∞.

We now recall that since Cd is a (d+ 1)-linear operator, it has (d+ 1) natural
adjoints. To define them, recall the definition of the associated (d + 2)-linear
form Λd given by

(1.7)

∫
R

Cd(f1, . . . , fd+1)(x) fd+2(x) dx = Λd(f1, . . . , fd+2) ,

where all the functions involved are Schwartz functions. Then, for every 1 ≤ i ≤
d+ 1, one defines C∗i

d by

(1.8)

∫
R

C∗i
d (f1, . . . , fi−1, fi+1, . . . , fd+2)(x) fi(x) dx = Λd(f1, . . . , fd+2).

For symmetry, we also use the notation Cd = C∗d+2
d .

To prove Theorem 1.1, we will show that for every 1 ≤ i ≤ d + 2 and for all
Schwartz functions φ1, . . . , φd+1, one has

(1.9) ‖C∗i
d (φ1, . . . , φd+1)‖p ≤ C(d)·C(l)·C(p1) · · ·C(pd+1)·‖φ1‖p1 · · · ‖φpd+1

‖d+1,

where pj for 1 ≤ j ≤ d+1 and p are as before. From this one can immediately ex-
tend C∗i

d by density to an arbitrary product of Lpj spaces, as long as 1<pj<∞ and
to §∞ spaces (the closure of the family of Schwartz functions in L∞) in the case
when pj = ∞.

In the next section we will explain how one can then use duality arguments,
to extend the definition of C∗i

d even further, to generic products of Lpj and L∞

spaces. These duality arguments will also clarify the necessity of proving the wider
range of estimates which appears in Theorem 1.1 and (1.9) for Cd and its adjoints.

Acknowledgements. The author wishes to thank the referees for their careful
corrections, which helped to improve the presentation.
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2. Duality and the extension from S ∞ to L∞

For any # = 0, 1, . . . , d denote by S(#) the statement that the inequalities (1.9)
for Cd and all its adjoints, extend naturally to the situation when at most # of
the Lpj spaces are equal to L∞ and the rest are either S ∞ or correspond to an
index j for which 1 < pj < ∞. The goal will be to prove that S(d) holds true,
assuming S(0) (which we shall prove later). To show that S(#) implies S(#+ 1),
we fix some indices 1 < p1, . . . , pd+1 ≤ ∞ as in the hypothesis of Theorem 1.1.
Since the argument is completely symmetric (in particular all the adjoints can
be treated similarly) we can assume without loss of generality that we want to
extend (1.9) for Cd, when the first # + 1 functions f1, . . . , f#+1 belong to L∞

while the other φ#+2, . . . , φd+1 are Schwartz functions.

Case 1: p > 1. Since in this case (Lp)∗ = Lp′
for 1/p + 1/p′ = 1, one can

simply use duality and define Cd(f1, . . . , f#+1, φ#+2, . . . , φd+1) to be the unique L
p

function with the property that∫
R

Cd(f1, . . . , f#+1,φ#+2, . . . , φd+1)(x)φd+2(x) dx

=

∫
R

C∗1
d (f2, . . . , f#+1, φ#+2, . . . , φd+1, φd+2)(x) f1(x) dx

for any Schwartz function φd+2 with ‖φd+2‖p′ = 1. This is clearly well defined as
a consequence of S(#) for C∗1

d .

Case 2: p = 1. In this case one has to be a bit careful since the dual of L1

is L∞ and the Schwartz functions are not dense in L∞. However, we first observe
that since p = 1, there must be at least two indices j1 and j2 for which 1 <
pj1 , pj2 <∞. Again, by the symmetry of the argument, assume that these indices
are precisely #+2 and #+3. To define Cd(f1, . . . , f#+1, φ#+2, . . . , φd+1) properly
as an element of L1, we first observe that one can define it as an element of (say)
L2, by taking advantage of the fact that all the functions φj are Schwartz and
therefore belong to all the Lq spaces, for 1 < q <∞. Indeed, one can for instance
think of φ#+2, φ#+3 as being in L4 while the rest of Φj lie in S ∞ and then
define Cd(f1, . . . , f#+1, φ#+2, . . . , φd+1) as being the unique function in L2 with
the property that∫

R

Cd(f1, . . . , f#+1,φ#+2, . . . , φd+1)(x)φd+2(x) dx

=

∫
R

C∗1
d (f2, . . . , f#+1, φ#+2, . . . , φd+1, φd+2)(x) f1(x) dx

exactly as before, for any φd+2 Schwartz function with ‖φd+2‖2 = 1, since one can
rely again on S(#) for C∗1

d .

Now that we know that Cd(f1, . . . , f#+1, φ#+2, . . . , φd+1) is a well defined L2

function, we would like to prove that it is in fact in L1, as desired. One can write,
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for any large M > 0,∫ M

−M

∣∣Cd(f1, . . . ,f#+1, φ#+2, . . . , φd+1)(x)
∣∣ dx(2.1)

=

∫
R

Cd(f1, . . . , f#+1, φ#+2, . . . , φd+1)(x) χ̃[−M,M ](x) dx ,

where |χ̃[−M,M ](x)| = χ[−M,M ](x) almost everywhere.

Now pick a smooth and compactly supported sequence (fn
d+2)n so that fn

d+2 →
χ̃[−M,M ](x) weakly and so that ‖fn

d+2‖∞ ≤ 1 (one can simply convolve χ̃[−M,M ]

with a smooth approximation of the identity, to obtain such a sequence). In par-
ticular, one can then majorize (2.1) by

lim
n

∣∣∣ ∫
R

Cd(f1, . . . ,f#+1, φ#+2, . . . , φd+1)(x) f
n
d+2(x) dx

∣∣∣
≤ sup

n

∣∣∣ ∫
R

C∗1
d (f2, . . . , f#+1, φ#+2, . . . , φd+1, f

n
d+2)(x) f1(x) dx

∣∣∣,
and since now fn

d+2 ∈ S ∞ and ‖fn
d+2‖∞ ≤ 1, one can again use the induction

hypothesis to complete the argument.
Also, a careful look at the whole duality procedure shows that if we assume (1.9)

with C(d) growing polynomially, then this will be preserved after replacing all
the S ∞ by the corresponding L∞.

We are thus left with proving (1.9) for Cd and its adjoints. The advantage of
this is that when applied to Schwartz functions, all the operators C∗i

d for 1 ≤ i ≤
d + 2, are given by well defined expressions similar to (1.4). Later, they will be
decomposed and discretized carefully, and this will allow us to reduce (1.9) even
more, to some similar estimates, but for finite and well localized model operators.

3. Logarithmic estimates and discrete models

In this section the goal is to describe some logarithmic estimates for certain very
concrete discrete model operators, which will play an important role in proving
the desired (1.9).

In order to motivate them, and also to get a general idea of the strategy of the
proof, let us assume for simplicity that instead of (1.9), one would like to prove Lp×
L∞× · · ·×L∞ → Lp estimates (say) for a generic paraproduct Πd+1(f1, . . . , fd+1)
whose (d+ 2)-linear form is given by

(3.1)

∫
R

∑
k

(f1 ∗ Φ1
k)(x) · · · (fd+2 ∗ Φd+2

k )(x) dx ,

where f1 ∈ Lp, fj ∈ L∞ for 2 ≤ j ≤ d+ 1, while fd+2 ∈ Lp′
with 1/p+ 1/p′ = 1.

As usual, all the functions (Φj
k)k are smooth L1 normalized bumps, adapted to

intervals of the form [−2−k, 2−k] for k ∈ Z, and for at least two indices j1 and j2 one
has

∫
R
Φj1

k (x) dx =
∫
R
Φj2

k (x) dx = 0 (in which case we say that their corresponding
families are of Ψ type, while the others are of Φ type).
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We consider several situations.

Case A: j1 = 1 and j2 = d + 2.

We also assume that the L1 norms of the functions in the Φ families are not only
uniformly bounded, but they are bounded by 1. In particular, for any 2 ≤ j ≤ d+1
(in this case) one has

(3.2) |fj ∗ Φj
k(x)| ≤ ‖Φj

k‖1 · ‖fj‖∞ ≤ ‖fj‖∞.

One can then majorize (3.1) by

d+1∏
j=2

‖fj‖∞ ·
∫
R

∑
k

|f1 ∗ Φ1
k(x)| |fd+2 ∗ Φd+2

k (x)| dx

≤
d+1∏
j=2

‖fj‖∞ ·
∫
R

(∑
k

|f1 ∗ Φ1
k(x)|2

)1/2

·
(∑

k

|fd+2 ∗ Φd+2
k (x)|2

)1/2

dx

=

d+1∏
j=2

‖fj‖∞ ·
∫
R

S(f1)(x)S(fd+2)(x) dx

≤
d+1∏
j=2

‖fj‖∞ · ‖S(f1)‖p · ‖S(fd+2)‖p′ �
d+1∏
j=2

‖fj‖∞ · ‖f1‖p · ‖fd+2‖p′

as desired, by using the fact that the Littlewood–Paley square function S is a
bounded operator on any Lq space, for 1 < q <∞.

Case B: j1 = 1 and j2 = 2.

This case is not so simple. This time, one can only majorize (3.1) by

d+1∏
j=3

‖fj‖∞ ·
∫
R

∑
k

|f1 ∗ Φ1
k(x)| |f2 ∗ Φ2

k(x)| |fd+2 ∗ Φd+2
k (x)| dx

≤
d+1∏
j=3

‖fj‖∞ ·
∫
R

(∑
k

|f1 ∗ Φ1
k(x)|2

)1/2

·
(∑

k

|f2 ∗ Φ2
k(x)|2

)1/2

· ( sup
k

|fd+2 ∗ Φd+2
k (x)|) dx

=

d+1∏
j=3

‖fj‖∞ ·
∫
R

S(f1)(x)S(f2)(x)M(fd+2)(x) dx

≤
d+1∏
j=3

‖fj‖∞ · ‖S(f1)‖s1 · ‖S(f2)‖s2 · ‖M(fd+2)‖s′3

�
d+1∏
j=3

‖fj‖∞ · ‖f1‖s1 · ‖f2‖s2 · ‖fd+2‖s′3 ,
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for any 1 < s1, s2, s3 < ∞ so that 1/s1 + 1/s2 = 1/s3, by using the fact that
besides S, the Hardy–Littlewood maximal function M is also bounded on any Lq

space, for 1 < q < ∞. Clearly, the estimate we are looking for corresponds to
s1 = s3 = p and s2 = ∞ and it cannot be obtained in this way, since S is
unbounded on L∞.

If, on the other hand, one freezes the functions f3, . . . , fd+1, the expression (3.1)
becomes a 3-linear form and the above estimates show that its associated bilinear
operator Π2(f1, f2) is bounded from Ls1 ×Ls2 into Ls3 . By symmetry, the same is
true for both Π∗1

2 and Π∗2
2 . The estimate we are interested in can then be rephrased

as

(3.3) Π2 : Lp × L∞ → Lp.

To get it one needs to prove, besides the previous Banach estimates, quasi-Banach
estimates, of the form Π∗2

2 : Lr1 × Lr2 → Lr3 , for any 1 < r1, r2 <∞, 0 < r3 <∞
with 1/r1 + 1/r2 = 1/r3. In the case of paraproducts, there are several ways to
achieve this; see for instance [4]. In the end, one can use multi-linear interpo-
lation between the Banach and quasi-Banach estimates as in [13], to obtain the
intermediate (3.3). Even more precisely, the convexity argument in [13] shows
that there exist two Banach estimates and one quasi-Banach estimate (with im-
plicit boundedness constants C1

B, C
2
B , and Cq−B , respectively) so that if one writes

CB := max{C1
B, C

2
B, Cq−B}, one has that this constant represents an upper bound

for the boundedness constant of (3.3).

Case C: j1 = 2 and j2 = 3.

This final remaining situation can be treated similarly to the previous one.
Finally, we are left with this situation which can be treated similarly to the previous
one. More precisely, one can majorize (3.1) by

d+1∏
j=4

‖fj‖∞ ·
∫
R

∑
k

|f1 ∗ Φ1
k(x)| |f2 ∗ Φ2

k(x)| |f3 ∗ Φ3
k(x)| |fd+2 ∗ Φd+2

k (x)| dx

≤
d+1∏
j=4

‖fj‖∞ ·
∫
R

(∑
k

|f2 ∗ Φ2
k(x)|2

)1/2(∑
k

|f3 ∗ Φ3
k(x)|2

)1/2

· ( sup
k

|f1 ∗ Φ1
k(x)|

)(
sup
k

|fd+2 ∗Φd+2
k (x)|) dx

=

d+1∏
j=4

‖fj‖∞ ·
∫
R

S(f2)(x)S(f3)(x)M(f1)(x)M(fd+2)(x) dx

≤
d+1∏
j=4

‖fj‖∞ · ‖M(f1)‖s1 · ‖S(f2)‖s2 · ‖S(f3)‖s3 · ‖M(fd+2)‖s′4

�
d+1∏
j=4

‖fj‖∞ · ‖f1‖s1 · ‖f2‖s2 · ‖f3‖s3‖fd+2‖s′4 ,

for any 1 < s1, s2, s3, s4 <∞ so that 1/s1 + 1/s2 + 1/s3 = 1/s4.
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The estimate we are looking for corresponds to s1 = s4 = p and s2 = s3 = ∞
and as before, it cannot be obtained in this way.

This time one freezes the functions f4, . . . , fd+1 and then the expression (3.1)
becomes a 4-linear form and the estimates above show that its associated 3-linear
operator Π3(f1, f2, f3) is bounded from Ls1 × Ls2 × Ls3 into Ls4 . By symmetry,
the same is true for its adjoints Π∗1

3 , Π∗2
3 and Π∗3

3 . The estimate we are interested
in becomes

(3.4) Π3 : Lp × L∞ × L∞ → Lp.

As in the previous case, to get it, one needs to prove, besides the previous Banach
estimates, quasi-Banach estimates of the form Π∗2

3 ,Π
∗3
3 : Lr1 × Lr2 × Lr3 → Lr4 ,

for any 1 < r1, r2, r3 <∞, 0 < r4 <∞ with 1/r1+1/r2+1/r3 = 1/r4. In the end,
one can again use multilinear interpolation between the Banach and quasi-Banach
estimates, to obtain the intermediate (3.4). In particular, the same convexity
argument shows that there exist two Banach and two quasi-Banach estimates (with
implicit boundedness constants C1

B, C
2
B , C

1
q−B, and C

2
q−B , respectively) so that if

one denotes by CB := max{C1
B, C

2
B, C

1
q−B , C

2
q−B}, one has that this constant is an

upper bound for the boundedness constant of (3.4). This ends the discussion on
the boundedness of Πd+1 from Lp ×L∞ × · · · ×L∞ into Lp since, by symmetry, it
is easy to realize that any other possibility can be reduced to one of these cases.1

There are a couple of important facts that one learns from the previous argum-
ent. First, the bounds are independent of d. The reason for this is the assumption
that the L1 norms of the Φ families are all at most 1, which implied the crucial (3.2).
Then, there is the fact that after using (3.2) several times, we reduced our analysis
to the study of several (Banach or quasi-Banach) corresponding estimates, for some
minimal bilinear or trilinear operators.

We claim now that in spite of the fact that Cd is not a Coifman–Meyer operator,
it can be studied in an analogous manner. More precisely, one can decompose it
first into polynomially (in d) many paraproduct-like pieces, and then estimate each
piece independently of d. Also as before (since the Banach estimates are easy)
we will reduce the main inequality (via interpolation), to similar quasi-Banach
estimates for minimal l-linear operators, for some 1 ≤ l ≤ d + 1. The proof of
the precise quasi-Banach estimates is in general a delicate issue, but it has already
been discussed in detail in [9].

The necessity of discretizing the minimal (l+1)-linear forms justifies the intro-
duction of the following model operators.

Fix then a positive integer l and arbitrary integers n1, . . . , nl and consider fam-
ilies (Φ1

In1
)I , . . . , (Φ

l
Inl

)I of L2 normalized bumps adapted to dyadic intervals Inj

(as in [9], given I, denote by Inj the interval of the same length as I, but sitting nj

units of length |I| away from I) so that at least two of them are of Ψ type (i.e.,
their integrals are zero). By definition, a smooth function Φ is said to be adapted

1It should also be clear that a similar argument works in the general Πd+1 : Lp1×· · ·×Lpd+1 →
Lp case. Instead of the minimal bilinear or trilinear operators which appeared before, one would
have to deal with l-linear ones for some 1 ≤ l ≤ d+ 1, but the interpolation between the natural
corresponding Banach and quasi-Banach estimates works in precisely the same way.
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to an interval I, if one has

|∂αΦ(x)| � 1

|I||α|
1(

1 + dist(x, I)/|I|)M
for any derivative α so that |α| ≤ 5 and any large M > 0, with the implicit
constants depending on it. Then, also by definition, if 1 ≤ p ≤ ∞, we say that
|I|−1/p Φ is Lp normalized.

Define the l-linear discrete operator TJ , for a finite family J of dyadic inter-
vals, by

(3.5) TJ (f1, . . . , fl) =
∑
I∈J

1

|I|(l−2)/2
〈f1,Φ1

In1
〉 · · · 〈fl,Φl

Inl
〉Φl+1

I .

One has:

Theorem 3.1. For any such a family J , the l-linear operator TJ maps Lp1×· · ·×
Lpl → Lp for any 1 < p1, . . . , pl < ∞ with 1/p1 + · · · + 1/pl = 1/p, 0 < p < ∞,
with a bound of type

O( log <n1> · · · · · log <nl>).
Here, as in [9], <nj> simply denotes 2 + |nj |. Also, the implicit constants above
are allowed to depend on l.

This theorem is the l-linear generalization of the bilinear Theorem 2 in [9] and
since its proof is identical to the proof of that theorem, we leave it to the reader.

More precisely (as in [9]), Theorem 3.1 follows (by scale invariance and inter-
polation) from the more precise statement that for every fj ∈ Lpj with ‖fj‖pj = 1,
1 ≤ j ≤ l and measurable set E ⊆ R of measure 1, there exists a subset E′ ⊆ E of
comparable measure so that∑

J∈J

1

|I|(l−1)/2
|〈f1,Φ1

In1
〉| · · · |〈fl,Φl

Inl
〉||〈fl+1,Φ

l+1
I 〉|(3.6)

� log <n1> · · · log <nl>,

where fl+1 = χE′ .
As in [9], the fact that one loses only logarithmic bounds in the estimates above

will be important later on.
In the rest of the paper we will describe the calculations that are necessary to

show how the desired (1.9) can indeed be reduced to (3.6).

4. Reduction to the discrete model

We treat the case of Cd only, since by the symmetry of the arguments, all its
adjoints can be understood in a similar way. Fix indices pj for 1 ≤ j ≤ d + 1
and p as in the hypothesis of Theorem 1.1. As suggested before, the first step is
to decompose Cd into polynomially (in d) many paraproduct-like pieces which will
be analyzed afterwards.
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Here, the classical Littlewood–Paley decompositions will be of great help. How-
ever, since we want to have the perfect inequalities (3.2) available, we need to work
most of the time with noncompact (in frequency) approximations of the identity,
which will cause several technical difficulties later on. We define them in detail in
the next subsection.

4.1. Noncompact Littlewood–Paley L1 normalized projections

Start with a Schwartz function Φ(x) which is even, positive, and such that∫
R

Φ(x) dx = 1.

Define also Ψ(x) by

Ψ(x) = Φ(x)− 1

2
Φ(x/2)

and observe that
∫
R
Ψ(x) dx = 0. Then, as usual, Ψk(x) and Φk(x) denote

2kΨ(2kx) and 2kΦ(2kx), respectively. Notice that all the L1 norms of Φk are
equal to 1. Observe also that one has

Ψk(x) = Φk(x) − Φk−1(x),

and then it is easy to see that ∑
k≤k

Ψk = Φk ,

and also that

(4.1)
∑
k∈Z

Ψk = δ0,

or, equivalently,

(4.2)
∑
k∈Z

Ψ̂k(ξ) = 1

for almost every ξ ∈ R. On the other hand,

Ψ̂(0) =

∫
R

Ψ(x) dx = 1− 1 = 0.

Moreover, one also has that

Ψ̂′(0) = −2πi

∫
R

xΨ(x) dx = 0

by using the fact that Φ is an even function. As a consequence, one can write Ψ̂(ξ)
as

(4.3) Ψ̂(ξ) = ξ2 φ̂(ξ)

for another smooth and rapidly decaying function φ.
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These are the noncompact L1 normalized Littlewood–Paley decompositions.
The compact decompositions are obtained in a similar manner, but one starts
instead with a Schwartz function Φ having the properties that supp Φ̂ ⊆ [−1, 1]

and Φ̂(ξ) = 1 on the subinterval [−1/2, 1/2].

4.2. Some remarks on the symbols of Cd for d ≥ 2

Before proceeding, it is worthwhile to examine the symbol of the second commu-
tator C2. It is very natural to try to see if its Fourier coefficients satisfy the same
quadratic estimates (proved in [9]) as the symbol of C1. Consider for instance three

Schwartz functions φ̂(ξ), φ̂(ξ1) and φ̂(ξ2) supported in the intervals [−2,−1], [1, 2]
and [−1/2, 1/2] respectively. Clearly, the function

(ξ, ξ1, ξ2) → φ̂(ξ) φ̂(ξ1) φ̂(ξ2)

is supported in a Whitney cube (with respect to the origin) in R
3 and the goal is

to understand the expression∫
R3

[ ∫
[0,1]2

1R+(ξ + αξ1 + βξ2) dα dβ
]
ϕ̂(ξ) ϕ̂(ξ1) φ̂(ξ2)(4.4)

· e−2πinξ e−2πin1ξ1 e−2πin2ξ2 dξ dξ1 dξ2

when n, n1, and n2 are arbitrary integers. Since ξ1 can never be zero, the symbol
in (4.4) can be rewritten as

(4.5)

∫ 1

0

1

ξ1

∫ ξ1

0

1R+(ξ + α+ βξ2) dα dβ.

When one differentiates (4.5) with respect to ξ1 the inner term becomes∫ 1

0

1R+(ξ + ξ1 + βξ2) dβ ,

which coincides with m1(ξ + ξ1, ξ2). The important difference now is that since
ξ + ξ1 lies in the interval [−1, 1] and ξ2 in [−1/2, 1/2] and they both contain the
origin, one can no longer apply the argument in [9].

As a consequence of this example, the Fourier coefficients in (4.4) seem to decay
only linearly, which is clearly not enough. In any event, these comments show that
passing from the analysis of the first commutator to the analysis of the second one
and all the rest, is not at all a routine task. One should recall that ten years passed
between the results of Calderón [1] and those of Coifman and Meyer [3].

On the other hand, this also shows that, from this point of view at least, the
symbol of C2 looks similar to the symbol of the bilinear Hilbert transform (given
by sgn(ξ1−ξ2)) whose Fourier coefficients also decay only linearly, as one can easily
check. This fact might also be considered as another possible explanation of why
Calderón suggested the study of the bilinear Hilbert transform as a step towards
understanding all his commutators, in addition to the one proposed in [9].
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4.3. The generic decomposition of Cd

Coming back to our goal, notice first that, because of (1.4) if f, f1, . . . , fd+1 are
all Schwartz functions, one can write the (d + 2)-linear form Λd(f, f1, . . . , fd+1)
associated with Cd as∫

ξ+ξ1+···+ξd+1=0

[ ∫
[0,1]d

1R+(ξ + α1ξ1 + · · ·+ αd ξd) dα1 · · · dαd

]
(4.6)

· f̂(ξ) f̂1(ξ1) · · · f̂d+1(ξd+1) dξ dξ1 · · · dξd+1.

By combining several Littlewood–Paley decompositions as in (4.2), one can write

(4.7) 1 =
∑

k0,k1,...,kd,kd+1∈Z

Ψ̂k0(ξ) Ψ̂k1(ξ1) · · · Ψ̂kd
(ξd) Ψ̂kd+1

(ξd+1).

Now, for every (d + 2)-tuple (k0, k1, . . . , kd, kd+1) ∈ Z
d+2, one has one of k0 ≥

k1, . . . , kd, kd+1, k1 ≥ k0, k2, . . . , kd+1, . . . or kd+1 ≥ k0, k1, . . . , kd. By replacing
some of these inequalities with strict inequalities, one can also ensure that the
corresponding d+ 2 regions in Z

d+2 are all disjoint.
Fixing always the biggest parameter and summing over the rest, one can rewrite

the constant 1 in (4.7) as2

(4.8)∑
k

Ψ̂k(ξ) Φ̂k(ξ1) · · · Φ̂k(ξd) Φ̂k(ξd+1)+ · · ·+
∑
k

Φ̂k(ξ) Φ̂k(ξ1) · · · Φ̂k(ξd) Ψ̂k(ξd+1).

There are d+2 inner terms in the decomposition (4.8), each containing a single Ψ
type of a function.

For technical reasons that will be clearer later, we assume that for the ξ and ξd+1

variables we use compact Littlewood–Paley decompositions, while for the rest we
use noncompact decompositions from (4.2).

We now assume that, in addition, one has ξ + ξ1 + · · ·+ ξd+1 = 0. Look at the
second (for instance) sum in (4.8) and consider the k = 0 inner term, which we
write for simplicity as

(4.9) Φ̂(ξ) Ψ̂(ξ1) · · · Φ̂(ξd) Φ̂(ξd+1).

Since from (4.3) we know that Ψ̂(ξ1) = ξ21 φ̂(ξ1), one can rewrite this as

Ψ̂(ξ1) = ξ1 φ̂(ξ1)(−ξ − ξ2 − · · · − ξd+1)

= −ξ1 ξ φ̂(ξ1)− ξ1 ξ2 φ̂(ξ1)− · · · − ξ1 ξd+1 φ̂(ξ1).(4.10)

Using this in (4.9), one can write it as another sum of O(d) terms, containing this

time two functions of Ψ type, since besides ξ1 φ̂(ξ1), one obtains in addition either

expressions of type ξj Φ̂(ξj), for j = 2, . . . , d+ 1, or ξ Φ̂(ξ).
If one does this for every scale k ∈ Z and every inner term in (4.8), one obtains

a decomposition of 1{ξ+ξ1+···+ξd+1=0} as a sum of O(d2) expressions whose generic
inner product terms all contain two functions of Ψ type, which are more specifically

2To be totally rigorous, some of these Φk functions should be Φk−1, but this is a minor issue.
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of the form γφ̂(γ).3 If one inserts this into the formula for the (d + 2)-linear
form (4.6), one obtains O(d2) (d+2)-linear forms which will be carefully analyzed
next. This is our generic decomposition. To be able to go further, one needs to
understand how to unfold the symbol of Cd.

As before in the case of paraproducts, the positions of the Ψ functions (we
denote them by j1, and j2 for 0 ≤ j1, j2 ≤ d+ 1) will play an important role.

There are in fact three distinct cases, depending on where these Ψ functions lie.

Case 1: j1 = 0 and j2 = 1

For symmetry, we change notation and rewrite the (d+ 2)-linear form as

(4.11)
∑
k

∫
ξ+ξ1+···+ξd+1=0

[ ∫
[0,1]d

1R+(ξ + α1ξ1 + · · ·+ αd ξd) dα1 · · · dαd

]

· Φ̂0
k(ξ) Φ̂

1
k(ξ1) · · · Φ̂d

k(ξd) Φ̂
d+1
k (ξd+1) · f̂ (ξ) f̂1(ξ1) · · · f̂d+1(ξd+1) dξ dξ1 · · · dξd+1,

with both families (Φ0
k)k and (Φ1

k)k being of Ψ type. Without the Cd symbol
above, the expression (4.11) would be the (d + 2)-linear form of a paraproduct,
which could be analyzed as we described earlier. The first idea for handling it, is to
try to decompose it into multiple Fourier series, on the support of the corresponding
Whitney frequency boxes. However, it is clear that in the end this will produce this
will produce an upper bound of the type of a product of O(d) power series, which
will grow exponentially in d even in the case of classical symbols, so one has to be
very careful at this stage. The situation is in fact even worse as we pointed out
earlier, since it seems that the Fourier coefficients of the symbol of Cd for d ≥ 2,
do not decay quadratically as do those of the symbol of C1.

The idea now is to realize that the variable ξ1 (in this case) is in some sense
special and the right thing to do is to look at the Cd symbol as being a multiple
average of C1 symbols (depending on ξ1 and on a new variable ξ̃), which can be
analysed as in [9].

To be able to execute this plan, since the functions Φ̂j
k(ξj) for 1 ≤ j ≤ d do not

have compact support, one has to insert still two more compact Littlewood–Paley
decompositions of unity in (4.11). More precisely, denote by

ξ̃ = ξ + α2 ξ2 + · · ·+ αd ξd

and write

(4.12) 1 =
∑
k0,k1

Ψ̂k0(ξ̃ ) Ψ̂k1(ξ1) =
∑

k0<<k1

· · ·+
∑

k0∼κ1

· · ·+
∑

k0>>k1

· · · ,

which can be rewritten as before as

(4.13)
∑
r

Φ̂r(ξ̃ ) Ψ̂r(ξ1) +
∑
r

Ψ̂r(ξ̃ ) Ψ̂r(ξ1) +
∑
r

Ψ̂r(ξ̃ ) Φ̂r(ξ1) .

3As a consequence, the Schwartz functions whose Fourier transforms are given by such ex-
pression, have integral zero.
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To be totally rigorous, one should write Φ̂r−100 instead of Φ̂r in (4.13) and also
finitely many middle Ψ-Ψ terms, instead of only one. While this should be kept
in mind, it is left as is for notational simplicity.

As a consequence, if we insert (4.13) into (4.11), it splits as a sum of three
distinct expressions which will be analyzed separately. We will denote these cases
by 1a, 1b, and 1c, respectively.

Case 1a

To see the effect of the new splitting (over r) in (4.11), we analyze, for simplicity,
the term corresponding to k = 0. If we ignore the symbol

∫
[0,1]d

1R+(ξ + α1ξ1 +

· · ·+ αd ξd) dα1 · · · dαd, the rest of the expression becomes∑
r

[
Φ̂r(ξ̃ ) Ψ̂r(ξ1)

]
Φ̂0

0(ξ) Φ̂
1
0(ξ1) · · · Φ̂d

0(ξd) Φ̂
d+1
0 (ξd+1)

=
∑
r≤0

· · ·+
∑
r>0

· · · = 1′a + 1′′a.(4.14)

Case 1′
a

Using the fact that Ψ̂r(ξ1) is compactly supported and taking into account the

fact that Φ̂1
0(ξ1) is also of Ψ type (more precisely, as we have seen, it is of the

form ξ1φ̂(ξ1)), one can rewrite 1′a as∑
r≤0

2r Φ̂r(ξ̃ ) Φ̂
0
0(ξ) Ψ̂

1
r(ξ1) · · · Φ̂d

0(ξd) Φ̂
d+1
0 (ξd+1) =

∑
r≤0

2r
[̂̃
Φr(ξ̃ )

̂̃
Ψ1

r(ξ1)
]
Φ̂0

0(ξ) Ψ̂
1
r(ξ1) · · · Φ̂d

0(ξd) Φ̂
d+1
0 (ξd+1) Φ̂r(ξ̃ )

for certain well chosen compactly supported functions
̂̃
Φr(ξ̃ ), Ψ̂

1
r(ξ1) and

̂̃
Ψ1

r(ξ1)
(naturally, the first is of Φ type, while the other two are of Ψ type).

In particular, we can split the symbol[ ∫ 1

0

1R+(ξ̃ + α1ξ1) dα1

]̂̃
Φr(ξ̃ )

̂̃
Ψ1

r(ξ1)

as a double Fourier series of the form

(4.15)
∑
n,n1

Cr
n,n1

e2πi
n
2r

˜ξ e2πi
n1
2r ξ1 ,

where

Cr
n,n1

=
1

2r
1

2r

∫
R2

[ ∫ 1

0

1R+(ξ̃ + α1ξ1) dα1

] ̂̃
Φr(ξ̃ )

̂̃
Ψ1

r(ξ1) e
−2πi n

2r
˜ξ e−2πi

n1
2r ξ1 dξ̃ dξ1

=

∫
R2

[ ∫ 1

0

1R+(ξ̃ + α1ξ1) dα1

]̂̃
Φ0(ξ̃ )

̂̃
Ψ1

0(ξ1) e
−2πin˜ξ e−2πin1ξ1 dξ̃ dξ1 ,

which is an expression independent of r.
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Recall now from [9] the crucial fact that

(4.16) |Cr
n,n1

|(= |Cn,n1 |) �
1

<n>2

1

<n1>#

for any large number # > 0.
These calculations show that the corresponding contribution of 1′a in (4.11) is∫ 1

0

· · ·
∫ 1

0

∑
r≤0

2r
∑
n,n1

Cr
n,n1

∫
ξ+ξ1+···+ξd+ξd+1=0

[
Φ̂0

0(ξ) e
2πi n

2r ξ
][
Ψ̂1

r(ξ1) e
2πi

n1
2r ξ1

]
· [Φ̂2

0(ξ2)e
2πi

nα2
2r ξ2

] · · · [Φ̂d
0(ξd) e

2πi
nαd
2r ξd

]
Φ̂d+1

0 (ξd+1) Φ̂r(ξ̃ )

· f̂(ξ) f̂1(ξ1) · · · f̂d(ξd) f̂d+1(ξd+1) dξ dξ1 · · · dξd+1 dα2 · · · dαd.(4.17)

If now one fixes α2, . . . , αd ∈ [0, 1], r, n and n1, the inner expression becomes∫
ξ+ξ1+···+ξd+ξd+1=0

[f̂(ξ) Φ̂0
0(ξ) e

2πi n
2r ξ] · [f̂1(ξ1) Ψ̂1

r(ξ1) e
2πi

n1
2r ξ1 ]·

· [f̂2(ξ2) Φ̂2
0(ξ2) e

2πi
nα2
2r ξ2 ] · · · [f̂d(ξd) Φ̂d

0(ξd) e
2πi

nαd
2r ξd ](4.18)

· [f̂d+1(ξd+1) Φ̂
d+1
0 (ξd+1)] Φ̂r(ξ + α2 ξ2 + · · ·+ αdξd) dξ dξ1 · · · dξd+1.

We need now the following.

Lemma 4.1. If F, F1, . . . , Fd+1 and Φ are Schwartz functions, then one has∫
ξ+ξ1+···+ξd+ξd+1=0

F̂ (ξ) F̂1(ξ1) · · · F̂d+1(ξd+1)

· Φ̂(aξ + a1ξ1 + · · ·+ ad+1ξd+1) dξ dξ1 · · · dξd+1

=

∫
R2

F (x− at)F1(x − a1t) · · ·Fd+1(x− ad+1t)Φ(t) dt dx,(4.19)

for all real numbers a, a1, . . . , ad+1.

Proof. The formula is based on the following fact. If Γ is a vector subspace of Rd+2

and δΓ represents the Dirac distribution associated to it and defined by

δΓ(φ) =

∫
Γ

φ(γ) dγ

for every Schwartz function φ, then, δ̂Γ = δΓ⊥ . In our case,

(4.20) Γ = {(ξ, ξ1, . . . , ξd+1) ∈ R
d+2 : ξ + ξ1 + · · ·+ ξd + ξd+1 = 0},

and as a consequence Γ⊥ is the 1-dimensional subspace along the vector (1, . . . , 1).
Using this and the Plancherel identity, the left-hand side of (4.19) can be written as∫

R

F̂ (ξ) F̂1(ξ1) · · · F̂d+1(ξd+1) Φ̂(aξ + a1ξ1 + · · ·+ ad+1ξd+1)

· e2πix(ξ+ξ1+···+ξd+1) dξ dξ1 · · · dξd+1 dx.
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If one adds to it

Φ̂(aξ + a1ξ1 + · · ·+ ad+1 ξd+1) =

∫
R

Φ(t)e−2πit(aξ+a1ξ1+···+ad+1 ξd+1) dt,

one immediately obtains (4.19) by using the Fourier inversion formula several times.
�

We record also the following generalization of (4.19), which will be used later:∫
Γ

F̂ (ξ) F̂1(ξ1) · · · F̂d+1(ξd+1) Φ̂1(aξ + a1ξ1 + · · ·+ ad+1ξd+1)

· Φ̂2(bξ + b1ξ1 + · · ·+ bd+1ξd+1) dξ dξ1 · · · dξd+1

=

∫
R3

F (x− at− bs)F1(x− a1t− b1s)(4.21)

· · ·Fd+1(x− ad+1t− ad+1s)Φ1(t)Φ2(s) dt ds dx.

Now, if G is an arbitrary Schwartz function and a a real number, we denote by Ga

the function defined by

(4.22) Ĝa(ξ) = Ĝ(ξ) e2πiaξ.

Equivalently, one has Ga(x) = G(x + a).

Using this notation and applying (4.19), our previous (4.18) becomes∫
R2

(
f ∗ Φ0,n/2r

0

)
(x− t)

(
f1 ∗Ψ1,n1/2

r

r

)
(x)

·
d∏

j=2

(
fj ∗ Φj,nαj/2

r

0

)
(x− αjt)

(
fd+1 ∗ Φd+1

0

)
(x)Φr(t) dt dx

=

∫
R2

(
f ∗ Φ0,n/2r

0

)
(x − t/2r)

(
f1 ∗Ψ1,n1/2

r

r

)
(x)

·
d∏

j=2

(
fj ∗ Φj,nαj/2

r

0

)
(x− αjt/2

r) (fd+1 ∗ Φd+1
0 )(x)Φ0(t) dt dx

=

∫
R2

(
f ∗ Φ0,(n−t)/2r

0

)
(x)

(
f1 ∗Ψ1,n1/2

r

r

)
(x)

·
d∏

j=2

(
fj ∗ Φj,(n−t)αj/2

r

0

)
(x)

(
fd+1 ∗ Φd+1

0

)
(x)Φ0(t) dt dx.(4.23)

If one makes a similar decomposition for an arbitrary scale k �= 0, the formula
analogous to (4.23) is∫

R2

(
f ∗ Φ0,(n−t)/2r+k

k

)
(x)

(
f1 ∗Ψ1,n1/2

r+k

r+k

)
(x)(4.24)

·
d∏

j=2

(
fj ∗ Φj,(n−t)αj/2

r+k

k

)
(x)

(
fd+1 ∗ Φd+1

k

)
(x)Φ0(t) dt dx.
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Summarizing the preceeding, if one denotes by �α = (α2, . . . , αd), one sees that the
piece of Cd that corresponds to Case 1′a, can be written as

(4.25)

∫
[0,1]d−1

∫
R

(∑
r≤0

2r
∑
n,n1

Cr
n,n1

Cr,n,n1,�α,t
d

)
Φ0(t) dt d�α,

where naturally Cr,n,n1,�α,t
d is the operator whose (d+2)-linear form is given by the

sum over k of the corresponding inner expressions in (4.24).
Clearly, in order to prove (1.9) for (4.25), one would need to prove it for

Cr,n,n1,�α,t
d with upper bounds that are summable over r, n, and n1 and integrable

over t and �α. These operators Cr,n,n1,�α,t
d are essentially paraproducts and for

them one can apply the argument described in the previous section. However, the
presence of all of these parameters, has the consequence of shifting the constituent
functions slightly, so this time one has to be very precise when evaluating the size
of the boundedness constants. As before, the idea is to apply the correspond-
ing (3.2) to all the indices 2 ≤ j ≤ d for which pj = ∞. This is possible because
the noncompact Littlewood–Paley L1 normalized decompositions have been used.
Denote by S the set of indices 2 ≤ j ≤ d for which pj �= ∞. Now, if l = |S| + 2
and one freezes as before the L∞ normalized Schwartz functions corresponding
to the indices in {2, . . . , d} \ S, one obtains a minimal l-linear operator denoted

by Cl,r,n,n1,�α,t
d .

4.4. Banach estimates for C l,r,n,n1,�α,t
d

Fix indices 1 < s1, . . . , sl+1 < ∞ so that 1/s1 + · · · + 1/sl = 1/sl+1. As in the
previous section, the boundedness constants for

(4.26) C l,r,n,n1,�α,t
d : Ls1 × · · · × Lsl → Lsl+1

depend on the boundedness constants of the square functions(∑
k

∣∣f ∗ Φ0,(n−t)/2r+k

k (x)
∣∣2)1/2

and
(∑

k

∣∣f1 ∗Ψ1,n1/2
r+k

r+k (x)
∣∣2)1/2

,

and of several maximal functions of type

sup
k

∣∣fj ∗ Φj,(n−t)αj/2
r+k

k (x)
∣∣ for j ∈ S.

It is not difficult to see that the square functions are the continuous analogues of
the shifted discrete square functions S[(n−t)/2r] and Sn1 of [9] and as a consequence,
they are bounded on every Lq space for 1 < q < ∞, with upper bounds of type
O(log < [(n− t)/2r]>) and O(log <n1>), respectively, see [9].4

Likewise, the maximal functions are bounded by the shifted maximal functions
M [(n−t)αj/2

r] and therefore bounded on every Lq space for 1 < q <∞, with bounds
of type O

(
log < [(n− t)αj/2

r]>
)
; see again [9].

4For every real number γ, we denote its integer part by [γ].
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Using all these facts, one sees that the boundedness constants of (4.26) are no
greater than

(4.27) C <r>l (log <n>)l (log <n1>)
l (log < [t]>)l.

4.5. Quasi-Banach estimates for C l,r,n,n1,�α,t
d

Fix indices 1 < r1, . . . , rl <∞ and 0 < rl+1 <∞ so that 1/r1 + · · · 1/rl = 1/rl+1.
We would like to estimate the boundedness constants of

(4.28) C l,r,n,n1,�α,t
d : Lr1 × · · · × Lrl → Lrl+1

and its adjoint operators. To achieve this, we will have to discretize the corre-
sponding (4.24) even further (with respect to the x variable), to be able to rewrite

the operator C l,r,n,n1,�α,t
d in a form similar to (3.5), to which one can apply (3.6).

First one has to observe that the bump functions corresponding to the index 1
in (4.24) are adapted to scales which are 2−r times greater than the scales of the
bump functions corresponding to the other indices. This fact suggests that the
natural thing to do is to discretize using the bigger scale. On the other hand, one
also observes that if a generic function Φ is a bump adapted to the dyadic inter-
val J , and if J ⊆ J̃ is another dyadic interval 2−r times longer than J , then 25rΦ
is a bump adapted to J̃ as well (5 corresponds to the number of derivatives in the
definition of adaptedness).

These facts, together with standard averaging and approximation arguments
from [9] (including Fatou’s lemma, etc.) show that our problem can be reduced to
estimating expressions of type

(4.29)
1

26rl

∑
I

1

|I|(l−1)/2
|〈f,Φ0

I[n−t]
〉| |〈f1,Φ1

In1
〉|
∏
j∈S

|〈fj ,Φj
I[(n−t)αj ]

〉| |〈fd+1,Φ
d+1
I 〉|

where the functions f and (fj)j are as in (3.6) and the (pj)j there are the same
as our (rj)j here.5 Using (3.6) and interpolation, we deduce that the boundedness
constants of (4.28) are no greater than

(4.30) 2−6lr (log <n>)l (log <n1>)
l (log < [t]>)l,

and the same is true for all the adjoints of the operator.

4.6. The final interpolation

Fix now indices p, (pj)j as in (1.9). Given that the desired estimates are on the edge
of the Banach region, one can first use convexity arguments and linear interpolation
only to obtain many quasi-Banach estimates whose bounds do not grow too much
with respect to r (at a rate of at most 2−εr, say, for some small ε). Then, one can
use the multilinear interpolation theory from [13] and interpolate between these

5 The power 6 above should be read as 5 + 1, where 5 comes from the adaptedness argument
and 1 is a consequence of scaling; in particular all the bump functions are L2 normalized now.
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better quasi-Banach estimates and the previous Banach ones in (4.27), to realize

that (1.9) for Cr,n,n1,�α,t
d comes with a bound which is acceptable by (4.25).

This completes the discussion of Case 1′a.
The analysis of the rest of the cases follow a similar strategy. Besides the

quadratic/logarithmic argument, the presence of the decaying factor 2r in (4.25)
was also crucial. In the rest of the paper we shall describe the adjustments that
one sometimes needs to make in the other cases in order for the above argument
to work.

Case 1′′
a

The 1′′a part, corresponding to r > 0, is actually simpler, since this time the

interaction between Ψ̂r(ξ1) and Φ̂1
0(ξ1) gives

Ψ̂r(ξ1) Φ̂
1
0(ξ1) =

1

2rM
̂̃
Ψr(ξ1)

for some large constant M > 0, where
̂̃
Ψr(ξ1) is another Ψ function adapted to

the same scale as Ψ̂r(ξ1). This huge decaying factor together with an argument
similar to that made before leads to the resolution of this case.

Case 1b

This is very similar to 1a. In fact, the only difference is that this time the corre-
sponding Fourier coefficients can be estimated by

|Cn,n1 | �
1

<n>2

1

<n− n1>#
+

1

<n>#

1

<n1>#
,

as shown in [9] and this still gives a contribution summable over n and n1.

Case 1c

Here, one has first to realize that on the support of Ψ̂r(ξ̃ ) Φ̂r(ξ1) the symbol∫ 1

0
1R+(ξ̃ + α1ξ1)dα1 behaves like a classical Marcinkiewicz–Hörmander–Mihlin

symbol and as a consequence, one has perfect decay for its Fourier coefficients,
of type 1/(<n>#<n1>

#).
There are two subcases 1′c and 1′′c , which correspond as before to r < 0 and

r ≥ 0, respectively.

Case 1′
c

In this situation, one just has to observe that

Φ̂r(ξ1) Φ̂
1
0(ξ1) = Φ̂r(ξ1) ξ1 φ̂

1
0 (ξ1) =

̂̃
Φr(ξ1) ξ1 = 2r

̂̃
Φr(ξ1)

ξ1
2r

= 2r
̂̃
Ψr(ξ1) ,

where
̂̃
Ψr(ξ1) is also of Ψ type. The presence of the factor 2r above shows that

this case can be treated exactly as the case 1′a.
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Case 1′′
c

This time one observes that when the two functions Φ̂r(ξ1) and Φ̂1
0(ξ1) interact,

no decaying factor results and all one can say is that

Φ̂r(ξ1) Φ̂
1
0(ξ1) =

̂̃
Φ1

0(ξ1)

where
̂̃
Φ1

0(ξ1) is another Ψ function, since Φ̂1
0(ξ1) is adapted on an interval which

lies inside the one corresponding to Φ̂r(ξ1) (recall that r ≥ 0 now). To produce a
decaying factor, one would have to argue somewhat differently.

Again, for simplicity, we will explain the changes that must be made in the
k = 0, since as usual the argument is scale invariant. Consider the term

(4.31) Φ̂0
0(ξ) Φ̂

1
0(ξ1) · · · Φ̂d+1

0 (ξd+1).

Recall that Φ̂0
0(ξ) is of Ψ type, but it also has compact support, since the Little-

wood–Paley decompositions have been chosen to be compact for the 0 and d + 1

positions. Pick another Φ function
̂̃
Φ0

0(ξ), supported on a slightly larger interval

and equal to 1 on the support of Φ̂0
0(ξ). Then, split (4.31) as

Φ̂0
0(ξ) Φ̂

1
0(ξ1) · · · Φ̂d+1

0 (ξd+1)
̂̃
Φ0

0(ξ̃ )(4.32)

+ Φ̂0
0(ξ) Φ̂

1
0(ξ1) · · · Φ̂d+1

0 (ξd+1) [1− ̂̃
Φ0

0(ξ̃ )].(4.33)

The (d+2)-linear form determined by (4.32) (and its family of analogues for each
scale) can be treated as in the 1′′a case and in fact it is even simpler, since this time

one has that Ψ̂r(ξ̃ )
̂̃
Φ0

0(ξ̃) = 0 unless r = 1, 2, 3 (say).
To understand (4.33), we rewrite it as

Φ̂0
0(ξ) Φ̂

1
0(ξ1) · · · Φ̂d+1

0 (ξd+1)
[̂̃
Φ0

0(ξ)− ̂̃
Φ0

0(ξ̃ )
]

(4.34)

= −Φ̂0
0(ξ) Φ̂

1
0(ξ1) · · · Φ̂d+1

0 (ξd+1)
[ ∫ 1

0

̂̃
Φ0

0
′((1− s)ξ + sξ̃)ds

]
(ξ̃ − ξ)

= −Φ̂0
0(ξ) Φ̂

1
0(ξ1) · · · Φ̂d+1

0 (ξd+1)
[ ∫ 1

0

̂̃
Φ0

0
′(ξ + s(α2 ξ2 + · · ·+ αd ξd)) ds

]
· (α2 ξ2 + · · ·+ αd ξd).

At this point we have to realize that we will lose another factor of d, because of
the parenthesis (α2 ξ2 + · · ·+ αd ξd). Each of these O(d) expressions has the form

(4.35) Φ̂0
0(ξ) Φ̂

1
0(ξ1) · · · Φ̂d+1

0 (ξd+1)
[ ∫ 1

0

̂̃
Φ0

0
′(ξ + s(α2 ξ2 + · · ·+ αd ξd)) ds

]
,

where, for some 2 ≤ j ≤ d one has an extra factor of type αjξj in addition to

the previous Φ̂j
0(ξj). Clearly, this just adds another harmless Ψ function to that j

term, so it is enough to analyze (4.35). The crucial observation here is to realize
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that when one applies to (4.35) a factor of type Ψ̂r(ξ̃ ) Φ̂r(ξ1), one has to have
0 ≤ s ≤ C/2r in order for the corresponding term to be nonzero. This means that
one can simply replace the integral∫ 1

0

̂̃
Φ0

0
′(ξ + s(α2 ξ2 + · · ·+ αd ξd)) ds

in (4.35) by ∫ C/2r

0

̂̃
Φ0

0
′(ξ + s(α2 ξ2 + · · ·+ αd ξd)) ds.

Now, for each fixed r > 0 and each 0 ≤ s ≤ C/2r, the corresponding form can be
estimated exactly as before uniformly in s and in the end, after integration, one

obtains an upper bound summable over r > 0. The extra factor
̂̃
Φ0

0
′(ξ + s(α2 ξ2 +

· · ·+αd ξd)) is of course harmless, since it just adds another average to the generic
formula, as can be seen from (4.21).

This ends Case 1.

Case 2: j1 = 0 and j2 = d+ 1

The goal here is to show that after some calculations, one can in fact reduce this
case to the previous Case 1. To understand this, consider again a generic k = 0
term, as the one in (4.31). One can split it as

Φ̂0
0(ξ) φ̂

1
0 (ξ1) · · · Φ̂d+1

0 (ξd+1) + Φ̂0
0(ξ) ψ̂

1
0 (ξ1) · · · Φ̂d+1

0 (ξd+1) = A+B ,

where φ̂ 1
0 (ξ1) is of Φ type, compactly supported at scale one, while ψ̂ 1

0 (ξ1) is of Ψ
type also adapted at scale one. Clearly, the B terms generate (d+ 2)-linear forms
similar to the ones in Case 1, and so it is enough to discuss the A terms only. Here
it should not be difficult to see that, by construction, at least one of the two Ψ
functions Φ̂0

0(ξ) and Φ̂d+1
0 (ξd+1), has its support away from zero. Moreover, we

claim that without loss of generality, one can assume that Φ̂0
0(ξ) is that function.

To see this, one just has to observe that the roles of the variables ξ and ξd+1 are
totally symmetric. Indeed, since ξ+ξ1+ · · ·+ξd+1 = 0 a simple change of variables
shows that∫

[0,1]d
1R+(ξ + α1ξ1 + · · ·+ αd ξd) dα1 · · · dαd

=

∫
[0,1]d

1R−(ξd+1 + β1ξ1 + · · ·+ βd ξd) dβ1 · · · dβd ,

which is obviously a similar symbol.
In particular, one can clearly rewrite A as

(4.36) Φ̂0
0(ξ) φ̂

1
0 (ξ1) · · · Φ̂d+1

0 (ξd+1)
̂̃
Ψ0

0(ξ)

for another well chosen compactly supported Ψ function
̂̃
Ψ0

0.
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Then, one rewrites (4.36) further as

Φ̂0
0(ξ) φ̂

1
0 (ξ1) · · · Φ̂d+1

0 (ξd+1)
̂̃
Ψ0

0(ξ̃ )(4.37)

+ Φ̂0
0(ξ) φ̂

1
0 (ξ1) · · · Φ̂d+1

0 (ξd+1)
[ ̂̃
Ψ0

0(ξ)− ̂̃
Ψ0

0(ξ̃ )
]
.

Then, one can observe that the symbol∫ 1

0

1R+(ξ̃ + α1ξ1) dα1

is a classical symbol on the support of the first term in (4.37) and its analysis
becomes simpler. In particular, one no longer needs to use the extra decomposition
over r to study it.

We are thus left with the second term of (4.37). Modulo a minus sign, this
term can be written as

Φ̂0
0(ξ)φ̂

1
0 (ξ1) · · · Φ̂d+1

0 (ξd+1)
[ ∫ 1

0

̂̃
Ψ0

0
′((1− s)ξ + sξ̃)ds

]
· (α2 ξ2 + · · ·+ αd ξd)

= Φ̂0
0(ξ) φ̂

1
0 (ξ1) · · · Φ̂d+1

0 (ξd+1)
[ ∫ 1

0

̂̃
Ψ0

0
′(ξ + s(α2ξ2 + · · ·+ αd ξd))ds

]
·

· (α2 ξ2 + · · ·+ αd ξd).

We decompose this last term further as

(4.38) Φ̂0
0(ξ) φ̂

1
0 (ξ1) · · · Φ̂d+1

0 (ξd+1)
[ ∫ 1

0

̂̃
Ψ0

0
′(ξ + s(−ξ))ds

]
· (α2 ξ2 + · · ·+ αd ξd)

+ Φ̂0
0(ξ) φ̂

1
0 (ξ1) · · · Φ̂d+1

0 (ξd+1)
[ ∫ 1

0

∫ 1

0

̂̃
Ψ0

0
′′((1− ts)ξ(4.39)

+ (1− t)s(α2 ξ2 + · · ·+ αd ξd)
)
s ds dt

]
· (α2 ξ2 + · · ·+ αd ξd) · ξ̃.

We claim now that the term in (4.38) can be reduced to Case 1 studied earlier.
Indeed, notice first that the expression (α2 ξ2 + · · · + αd ξd) contributes d − 1
terms and consider for instance the one corresponding to α2 ξ2. The presence of ξ2
transforms the bump function depending on this variable into one of Ψ type in an
intermediate position (as in Case 1) and then, one has only to observe that the
localized Fourier coefficients of symbols of type

(
˜̃
ξ, ξ2) →

∫ 1

0

α2 1R+(
˜̃
ξ + α2 ξ2) dα2

still satisfy the same crucial quadratic estimates that have been proved earlier
in [9].

We are then left with the study of the terms in (4.39). From now on (as many
times before) we think of the variables α2, . . . , αd as being frozen and of our symbol
as being of type

(4.40)

∫ 1

0

1R+(ξ̃ + α1 ξ1) dα1.
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The variables ξ1 and ξ̃ are of course special, but so is (α2 ξ2+ · · ·+αd ξd) as appears
quite explicitly in (4.39). Consider now an extra paraproduct decomposition of the
identity, in the form of finitely many expressions of the type

(4.41)
∑
r

Φ̂r(ξ1) Φ̂r(ξ̃ ) Φ̂r(α2 ξ2 + · · ·+ αd ξd).

This can easily be obtained by combining three independent Littlewood–Paley
decompositions. It is important to emphasize that at least one of the above in-
gredient functions must be of Ψ type. As in Case 1, the idea now is to insert this
extra decomposition (4.41) into (4.39) and study the newly formed expressions.
The support of the function of two variables

(ξ1, ξ̃) → Φ̂r(ξ1) Φ̂r(ξ̃ )

will clearly play an important role, since as long as this support is a Whitney square
one can decompose the symbol (4.40) on it as a double Fourier series, precisely as
in Case 1. We therefore must consider two distinct situations.

The Whitney case

In this case, the above supports are all Whitney squares with respect to the origin.
This means that either Φ̂r(ξ1) or Φ̂r(ξ̃ ) is of Ψ type. It is also useful to observe

that since ξ = ξ̃ − (α2 ξ2 + · · · + αd ξd), it must belong to an interval of size 2r

centered at the origin. This means that one must have r ≥ 0 in order for (4.41)
to have a nontrivial interaction with (4.39) (remember that from the beginning,

we are in the case where Φ̂0
0(ξ) has Ψ type and is also compactly supported away

from the origin).

The case when Φ̂r(ξ1) is of Ψ type is easier since when (4.41) interacts with (4.39)
the only nonzero terms are those corresponding to indices r belonging to the finite
set {0, 1, 2}. After that, one just applies the method of Case 1. Notice that be-

cause of the terms (α2 ξ2 + · · ·+ αd ξd) · ξ̃ in (4.39), one will lose another factor of
type O(d2) (after redistributing the inner terms) which is clearly acceptable.

The other case, when Φ̂r(ξ̃ ) is of Ψ type is more complicated, since all the
scales r ≥ 0 can contribute. However, in this case one observes that when (4.41)
interacts with (4.39) then one must have either s or 1 − t smaller than C/2r/2

in (4.39) (for a certain fixed but large constant C > 0). This then shows that this
case can be treated exactly as the previously considered Case 1′′c .

The non-Whitney case

This case corresponds to the situation when both Φ̂r(ξ̃ ) and Φ̂r(ξ1) are of Φ type.

However, as a consequence of (4.41), the support of Φ̂r(α2 ξ2 + · · · + αd ξd) must
be an interval of the same size 2r whose distance to the origin is comparable to
its length. In particular, ξ = ξ̃ − (α2 ξ2 + · · · + αd ξd) must belong to an interval

of a similar kind. Then, because of the presence of Φ̂0
0(ξ), one must have r ∼ 0 in
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order for (4.41) to have a nontrivial interaction with (4.39). Hence the new term
that gets multiplied with (4.39) in this case, is of the form

(4.42) Φ̂0(ξ1) Φ̂0(ξ̃ ) Φ̂0(α2 ξ2 + · · ·+ αd ξd).

At this point it is important to remember the factor ξ̃ in (4.39). When it is multi-

plied with the above Φ̂0(ξ̃ ) it transforms this function into one of Ψ type, which is

clearly very good news. We denote it by Ψ̂0(ξ̃ ) for the rest of the discussion. We
are still not done yet, since this new Ψ type function does not have support away
from the origin. However, we can apply to this situation a treatment similar to the
one used in the previous Case 1. Before doing so, to summarize, the expression
that we now face consists of a product of a term of the type

(4.43) Φ̂0(ξ1) Ψ̂0(ξ̃ ) Φ̂0(α2 ξ2 + · · ·+ αd ξd)

with the previous (4.39) which no longer contains the original factor ξ̃. At this
point, insert another decomposition of the identity, of the type∑

r

Φ̂r(ξ1) Φ̂r(ξ̃ ),

where as before either Φ̂r(ξ1) or Φ̂r(ξ̃ ) is of Ψ type. And finally, exactly as in
Case 1, observe that when this new decomposition is multiplied with the above (4.43),
the index r must be smaller than zero to produce nontrivial terms, and also a small
factor of type 2r arises naturally, from the interaction between Φ̂r(ξ̃ ) and Ψ̂0(ξ̃ ).
After that, the argument is identical to the one used for Case 1.

Case 3: j1 = 2 and j2 = 3

Finally, it is not difficult to see that Case 3 can be analyzed in the same way as
was Case 1, since there are now two Ψ type functions in intermediate positions.

This ends our proof since, by symmetry, any other case can be reduced to one
of these three.

5. Generalizations

To be able to describe and motivate the generalizations we mentioned at the begin-
ning of the paper, we would first like to recall the classical calculations of Calderón,
which gave rise to his commutators.

5.1. Calculus with functions of linear growth

Let A(x) be a complex valued function of one real variable having linear growth,
more precisely satisfying A′ ∈ L∞. We denote by Hf(x) the classical Hilbert
transform given by

(5.1) Hf(x) := p.v.

∫
R

f(x− y)
dy

y
,
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and by Af(x) the operator of multiplication by A(x). The question that started
the whole theory, was whether the commutator [H,A] was smoothing of order one,
or equivalently if [H,A] ◦ D maps Lp into Lp boundedly for 1 < p < ∞, where
Df(x) := f ′(x).6

For f smooth and compactly supported, one can write

(HA−AH) ◦D(f)(x) = (HA−AH)(f ′)(x)

= p.v.

∫
R

A(x − y)f ′(x− y)
dy

y
− p.v.

∫
R

A(x)f ′(x− y)
dy

y

= p.v.

∫
R

A(y)f ′(y)
1

x− y
dy − p.v.

∫
R

A(x)f ′(y)
1

x− y
dy

= −p.v.
∫
R

A(x) −A(y)

x− y
f ′(y) dy = p.v.

∫
R

(A(x) −A(y)

x− y

)′
f(y) dy

= −p.v.
∫
R

A′(y)
x− y

f(y) dy + p.v.

∫
R

A(x) −A(y)

(x − y)2
f(y) dy

= −H(A′f)(x) + C1 f(x),

where C1 is precisely the first Calderón commutator. Since both f → H(A′f)
and C1 are bounded on Lp for 1 < p < ∞, these show that indeed [H,A] is
smoothing of order one.

Besides the commutators, Calderón pointed out that more general operators
such as

(5.2) f → p.v.

∫
R

F
(A(x)− A(y)

x− y

)
f(y)

dy

x− y
,

or even

(5.3) f → p.v.

∫
R

F
(A(x) −A(y)

x− y

)
G
(B(x)−B(y)

x− y

)
f(y)

dy

x− y

merit study as well, since they appear naturally in complex analysis or boundary
value problems in PDE.7

The work of Coifman, McIntosh, and Meyer [5], proved the desired estimates for
all these operators, by reducing them to the previous (1.3). Finally, we also remark
that the above calculations show that, if one writes a := A′, then for g,Dg ∈ Lp

with 1 < p <∞, one has

(5.4) H(ADg) = AH(Dg)−H(aDg) + C1 g.

This is remarkable since a priori there is no direct and obvious way to even define
H(ADg). Notice that on the right-hand side, all the compositions make sense.

6As a consequence of this, HA could be written as HA = AH+[H,A] and therefore belonged
to Calderón’s algebra.

7Here the functions F and G are for instance analytic in a certain disc around the origin,
while ‖A′‖∞ and ‖B′‖∞ are supposed to be strictly smaller than the radii of convergence of F
and G respectively. Of course, one can consider similar operators with more than two factors.
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5.2. Calculus with functions of polynomial growth, part 1

Suppose now that A(x) is a function having quadratic growth, more precisely satis-
fying A′′ ∈ L∞. A natural question is the following. Is it true that the commutator
[H,A] is still a smoothing operator ? We will see that this time [H,A] is smoothing
of order two.

Indeed, for f a smooth and compactly supported function, given also the pre-
vious calculations, one has

(HA−AH) ◦D2(f)(x) = (HA−AH) ◦D(f ′)(x)

= p.v.

∫
R

(A(x) −A(y)

(x− y)2
− A′(y)
x− y

)
f ′(y) dy

= p.v.

∫
R

A(x) −A(y)−A′(y)(x− y)

(x− y)2
f ′(y) dy

= −p.v.
∫
R

−A′(y)−A′′(y)(x− y) +A′(y)
(x − y)2

f(y) dy

+ 2 p.v.

∫
R

A(x)−A(y)−A′(y)(x− y)

(x− y)3
f(y) dy

= H(A′′f)(x) + 2 p.v.

∫
R

(A(x) − T 1
yA(x)

(x− y)2

) f(y)

x− y
dy ,

where

T 1
yA(x) := A(y) +

A′(y)
1!

(x− y)

is the Taylor polynomial of order 1 of the function A about the point y. Since
f → H(A′′f) is clearly a bounded operator, the problem reduces to proving Lp

bounds for the linear operator

(5.5) f → p.v.

∫
R

(A(x) − T 1
yA(x)

(x− y)2

) f(y)

x− y
dy.

For functions of arbitrary polynomial growth satisfying A(d) ∈ L∞ for some d ≥ 1,
one can similarly show that [H,A] is smoothing of order d, if the operator

(5.6) f → p.v.

∫
R

(A(x) − T d−1
y A(x)

(x − y)d

) f(y)

x− y
dy

satisfies the usual estimates, where T d−1
y A(x) is the Taylor polynomial of order d−1

of the function A about the point y.
More generally, as before, one can ask if the operators

(5.7) f → p.v.

∫
R

F
(A(x) − T d−1

y A(x)

(x − y)d

) f(y)

x− y
dy ,

or even

(5.8) f → p.v.

∫
R

G
(B(x) − T d1−1

y B(x)

(x− y)d1

)
H
(C(x)− T d2−1

y C(x)

(x − y)d2

) f(y)

x− y
dy
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are bounded on Lp for 1 < p < ∞, assuming as before, that F,G, and H are
analytic while A(d), B(d1), and C(d2) are all in L∞.8 As a consequence of the
method in this paper, one can answer all these questions affirmatively. Indeed, it
is not difficult to see, thanks to the general averaging formula for the remainder
term of a Taylor series, that as before, the problem reduces to proving Lp ×L∞ ×
· · · × L∞ → Lp estimates for the (k + 1)-linear operator with symbol

1

(d!)k

∫
[0,1]k

sgn(ξ + α1 ξ1 + · · ·+ αk ξk) (1 − α1)
d · · · (1− αk)

d dα1 · · · dαk ,

which grow at most polynomially in k. However this symbol is very similar to the
symbol of the kth Calderón commutator and because of this, one can prove the
desired estimates similarly. In fact, for k = 1 one can actually see that∫ 1

0

sgn(ξ + α1 ξ1) (1− α1)
d dα1

is even better than the symbol of the first commutator, since at least along the line
ξ + ξ1 = 0 it becomes smoother, due to the presence of the extra factor (1− α1)

d.
In particular, the quadratic estimates for its Fourier coefficients are still available.

It is quite likely that the T 1 theorem of David and Journé, [6], can be used to
handle the cases when F,G, and H are of the form xn for some positive integer n.
In fact, for F (x) = x this has been verified in [4].9 The more general case G(x) =
H(x) = x has also been treated directly in [2].

5.3. Calculus with functions of polynomial growth, part 2

There is an alternative calculation that one can perform to understand the previous
question. Let us first observe that [H,A] is smoothing of order two if and only if
[H,A] ◦H is smoothing of order two. Then, using the fact that H2 = −I, one can
write

(AH −HA) ◦H(f) = AH2f −H(AHf)

= −Af −H(AHf) =
1

2

(
H2(Af) +AH2f − 2H(AHf)

)
.

If one ignores the coefficient 1/2, the expression in parentheses (calculated at an
arbitrary point x) becomes

p.v.

∫
R2

f(x+ t+ s)A(x+ t+ s)
dt

t

ds

s
+ p.v.

∫
R2

f(x+ t+ s)A(x)
dt

t

ds

s

− p.v.

∫
R2

f(x+ t+ s)A(x + t)
dt

t

ds

s
− p.v.

∫
R2

f(x+ t+ s)A(x + s)
dt

t

ds

s

= p.v.

∫
R2

f(x+ t+ s)
(
A(x+ t+ s)−A(x + t)−A(x + s) +A(x)

)dt
t

ds

s
.

8In fact, even more generally, one can consider operators having an arbitrary number of similar
factors.

9It is also interesting to see on page 94 of [4], another instance where these operators appear
naturally.



1116 C. Muscalu

To see if the last expression is smoothing of order two, one has (after integrating
by parts with respect to the t variable)

p.v.

∫
R2

f ′′(x + t+ s)
(A(x+ t+ s)−A(x + t)−A(x+ s) +A(x)

ts

)
dt ds

= −p.v.
∫
R2

f ′(x+ t+ s)
(A′(x+ t+ s)−A′(x + t)

ts

)
dt ds

+ p.v.

∫
R2

f ′(x+ t+ s)
(A(x + t+ s)−A(x+ t)−A(x + s) +A(x)

t2s

)
dt ds

:= I + II.

Integrating by parts with respect to the s variable now, one can rewrite I as

p.v.

∫
R2

f(x+ t+ s)A′′(x+ t+ s)
dt

t

ds

s

− p.v.

∫
R2

f(x+ t+ s)
A′(x+ t+ s)−A′(x+ s)

s2
ds
dt

t

= −A′′(x) f(x) −H(C1,A′f)(x) ,

where C1,A′ is the Calderón first commutator associated to the Lipschitz func-
tion A′.

Similarly, one can rewrite II as

−H(C1,A′f)(x) + p.v.

∫
R2

f(x+t+s)
A(x+t+s)−A(x+t)−A(x+s) +A(x)

t2s2
dt ds

= −H(C1,A′f)(x) + p.v.

∫
R2

f(x+ t+ s)
(Δt

t
◦ Δs

s
A(x)

)dt
t

ds

s
,(5.9)

where in general, Δhg(x) denotes the usual finite difference at scale h given by

Δhg(x) = g(x+ h)− g(x).

The problem can therefore be reduced to that of proving Lp estimates for the linear
operator in (5.9). The reader might remember it from our previous paper [9]. If A
has arbitrary polynomial growth (i.e., A(d) ∈ L∞ for some d ≥ 1), then an analogous
calculation shows that [H,A] is smoothing of order d, if the operator

(5.10) f → p.v.

∫
Rd

f(x+ t1 + · · ·+ td)
(Δt1

t1
◦ · · · ◦ Δtd

td
A(x)

) dt1
t1

· · · dtd
td

is Lp bounded.
Then, more generally, one can ask the same question about the operator given

by the expression

(5.11) p.v.

∫
Rd

f(x+ t1 + · · ·+ td)F
(Δt1

t1
◦ · · · ◦ Δtd

td
A(x)

) dt1
t1

· · · dtd
td
,
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or by (in the case of two factors)

p.v.

∫
Rd

f(x+ t1 + · · ·+ td)G
(Δa1t1

t1
◦ · · · ◦ Δadtd

td
B(x)

)
(5.12)

·H
(Δb1t1

t1
◦ · · · ◦ Δbdtd

td
C(x)

) dt1
t1

· · · dtd
td

,

where (aj)j and (bj)j are all real numbers different from zero and F,G, and H are
analytic functions as before. It is also interesting to compare these formulas with
the classical expression (5.2), which can be rewritten as

p.v.

∫
R

f(x+ t)F
(Δt

t
A(x)

) dt
t
.

We now claim that essentially without any extra effort, one can prove the desired
estimates for all these operators. Indeed, using that

Δt1

t1
◦ · · · ◦ Δtd

td
A(x) =

∫ 1

0

· · ·
∫ 1

0

A(d)(x+ α1t1 + · · ·+ αdtd) dα1 · · · dαd ,

it is not difficult to see that (5.11) can be reduced to the study of the (k+1)-linear
operator with symbol10

(5.13)
(∫

[0,1]k
sgn(ξ + α1 ξ1 + · · ·+ αk ξk) dα1 · · · dαk

)d

,

while the more general (5.12) to (k+1)-linear operators whose symbols are products
of type

(5.14)

d∏
i=1

( ∫
[0,1]k

sgn(ξ + ci1 α1 ξ1 + · · ·+ cik αk ξk) dα1 · · · dαk

)

for various nonzero real numbers (cij)i,j . The only thing that needs to be real-
ized at this point is that the method extends naturally to cover product symbols
of type (5.13) and (5.14) as well, since each individual factor can be decomposed
as before, as a Fourier series with Fourier coefficients that decay at least quadrat-
ically. More specifically, the only difference in the argument is that instead of
the Littlewood–Paley decomposition in (4.12), which works very well in the d = 1
case, one has to consider a product of d such similar decompositions, each naturally
corresponding to the factors of (5.14).11

10Notice that this is precisely the symbol of the kth Calderón commutator raised to the power d!
11For instance, for d = 2, one takes a product of two 2-dimensional Littlewood–Paley decom-

positions of type (4.12), one for the pair of variables (ξ1, ˜ξ) corresponding to the first factor and

another for the pair of variables (ξ1,
˜

˜ξ) corresponding to the second factor.
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5.4. Extended Calderón algebra

Given the previous discussion, it is also natural to consider operators of type

(5.15) f → p.v.

∫
R

f(x+ t)F
(Δt

t
◦ Δt

t
A(x)

) dt
t
,

or even

(5.16) f → p.v.

∫
R

f(x+ t)G
(Δt

t
B(x)

)
H
(Δt

t
◦ Δt

t
C(x)

) dt
t
,

and so on, and ask if they are Lp bounded if F , G, and H are analytic and
A′′, B′, C′′ ∈ L∞. They can also be treated by the method of this paper. For
instance, the study of (5.15) can be reduced to the study of multilinear operators
with symbols of type∫

[0,1]2k
sgn(ξ + (α1 + β1) ξ1 + · · ·+ (αk + βk) ξk) dα dβ ,

which clearly can be analyzed in a similar manner. One might ask: Are they related
to Calderón’s algebra in any way ? 12 To be able to answer this, we need to recall
the bilinear Hilbert transform ([7], [8]).

If α ∈ R \ {0, 1} the bilinear Hilbert transform with parameter α denoted
by BHTα, is the bilinear operator defined by

(5.17) BHTα(f, g)(x) := p.v.

∫
R

f(x+ t) g(x+ αt)
dt

t
.

It is known that these operators satisfy many Lp estimates of Hölder type ([7], [8]).
As a consequence of the results in [7] and [8] and of the Lp theorem for (5.15) in
the particular case F (x) = x, one obtains by a straightforward calculation that

BHT2(f,A)(x) − 2HAf(x) +AHf(x)

is a smoothing term of order two, if A′′ ∈ L∞. In particular, given also the earlier
calculations for functions of quadratic growth, one has that

BHT2(f,A) = AHf + smoothing term of order 2,

which shows that the operator f → BHT2(f,A) belongs to Calderón’s algebra.13

Also, the parameter 2 above can be replaced by any other α, as a consequence
of the fact that the theorem for (5.15) holds true if one replaces Δt/t ◦ Δt/t by
Δat/t ◦Δbt/t for some appropriate constants a and b.

12Generally speaking, we say that an operator belongs to Calderón’s algebra, if it can be written
as a sum of a classical Fourier integral operator with a well defined symbol a(x, ξ) (such as AH
for example) and a smoothing operator of a certain order.

13An even simpler calculation shows that if A′ ∈ L∞, then BHT2(f, A) = AHf plus first order
smoothing term.



Calderón commutators and Cauchy integral II 1119

Finally, let us also remark that one can add derivatives freely to the general
operators in (5.11) and (5.12) as well and still obtain operators bounded on Lp.
A typical example would be

f → p.v.

∫
R2

f(x+ t+ s)F
(Δt

t
◦ Δt

t
◦ Δs

s
A(x)

)
(5.18)

·G
(Δt

t
◦ Δs

s
◦ Δs

s
◦ Δs

s
B(x)

)dt
t

ds

s

for A′′′, B′′′′ ∈ L∞. The straightforward (by now) details are left to the reader.14

5.5. Circular commutators

In [9] we noticed a certain symmetric bilinear operator which we called a circular
commutator.

We would like to describe its natural trilinear generalization here.15 Thus, we
record the following theorem.

Theorem 5.1. Let a �= 0, b �= 0, and c �= 0 be three fixed real numbers. Consider
also three Lipschitz functions A, B, and C. Then, the expression

p.v.

∫
R3

(Δat1

t1
A(x + t2)

)(Δbt2

t2
B(x+ t3)

)(Δct3

t3
C(x + t1)

) dt1
t1

dt2
t2

dt3
t3

viewed as a trilinear operator in A′, B′, and C′ maps Lp1 × Lp2 × Lp3 into Lp

boundedly, for every 1 < p1, p2, p3 ≤ ∞ with 1/p1 + 1/p2 + 1/p3 = 1/p and
1/2 < p <∞.

The proof of this theorem uses again the same method. If we assume for
simplicity that a = b = c = 1, then the symbol of the corresponding trilinear
operator is given by the following circular product

m2(ξ1, ξ2, ξ3) ·m2(ξ2, ξ3, ξ1) ·m2(ξ3, ξ1, ξ2)

and such symbols can clearly be treated in the same manner as before.

5.6. T1 calculations

It is well known that the T 1 theorem [6] can handle Calderón commutators quite
successfully. More precisely, it allows one to reduce the study of Ck to the study
of Ck−1. Let us briefly recall the details, in the particular case of the first two
commutators.

Assume that A is smooth and compactly supported, and that A′ ∈ L∞.
Rewrite C1,A as

C1,Af(x) = p.v.

∫
R

f(x+ t)
A(x + t)−A(x)

t2
dt.

14The same is true if one considers their natural generalizations, when one may face more than
two kernels and more than two factors in the corresponding expressions.

15There are of course many other multilinear generalizations of this, as the reader can imagine.
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Then, integrating by parts, one gets

C1,A1(x) = p.v.

∫
R

A(x+ t)−A(x)

t2
dt = −p.v.

∫
R

(A(x + t)−A(x))
(1
t

)′
dt

= p.v.

∫
R

A′(x+ t)
dt

t
= H(A′)(x) ,

which is a BMO function.
Suppose now that A and B are smooth, compactly supported and A′, B′ ∈ L∞.

As before, rewrite the second commutator associated to A and B as

C2,A,Bf(x) = p.v.

∫
R

f(x+ t)
(A(x+ t)−A(x)) (B(x + t)−B(x))

t3
dt.

Then, one has

C2,A,B 1(x) = p.v.

∫
R

(A(x + t)− A(x)) (B(x + t)−B(x))

t3
dt

= −1

2
p.v.

∫
R

(A(x+ t)−A(x)) (B(x + t)−B(x))
( 1

t2

)′
dt

=
1

2
p.v.

∫
R

A′(x+ t)
B(x+ t)−B(x)

t2
dt+

1

2
p.v.

∫
R

B′(x+ t)
A(x+ t)−A(x)

t2
dt

=
1

2
C1,B(A

′)(x) +
1

2
C1,A(B

′)(x),

in which both terms of the last sum are BMO functions. Similar calculations can
be made for to more general commutators of type

(5.19) f →
∫
R

f(x+ t)
(Δa1t

t
A1(x)

)
· · ·

(Δadt

t
Ad(x)

) dt
t

for every sequence (aj)j of nonzero real numbers.
Even though the operators of the previous sections do not come in a standard

form (in particular, their kernels have a product structure) it is still tempting to
check if there is an analogous T 1 type reduction of complexity available for them.

Consider smooth and compactly supported functions A and B satisfying A′′, B′′

∈ L∞. The simplest analogue of the first commutator, is the operator T1,A given by

T1,Af(x) = p.v.

∫
R2

f(x+ t+ s)
(Δat

t
◦ Δbt

t
A(x)

) dt
t

ds

s

for nonzero real numbers a and b. One can write

T1,A1(x) = p.v.

∫
R2

A(x+ at+ bs)−A(x+ at)−A(x + bs) +A(x)

t2s2
dt ds

= p.v.

∫
R2

(
A(x + at+ bs)−A(x+ at)−A(x+ bs) +A(x)

) (1
t

)′ (1
s

)′
dt ds

= p.v.

∫
R2

A′′(x+ at+ bs)
1

t

1

s
dt ds = H ◦H(A′′)(x) = −A′′(x) ,

which is in L∞ and therefore still in BMO.
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However, as we will see, the problem becomes more complicated and the sym-
metry gets broken at the next step, when one considers the analogue of the second
commutator T2,A,B given by

(5.20) T2,A,Bf(x) = p.v.

∫
R2

f(x+ t+s)
(Δat

t
◦Δbs

s
A(x)

)(Δct

t
◦Δds

s
B(x)

)dt
t

ds

s

for nonzero real numbers a, b, c, and d. This time, one has

T2,A,B1(x) =
1

4
p.v.

∫
R2

(Δat ◦ΔbsA(x)) (Δct ◦ΔdsB(x))
(1
t

)′′ (1
s

)′′
dt ds.

One particular term that appears after integrating by parts is the one which cor-
responds to the situation when a pair of s and t derivatives arises in the first term
and another similar pair arises in the second term. The operator obtained in this
way is

p.v.

∫
R2

A′′(x+ at+ bs)B′′(x+ ct+ ds)
dt

t

ds

s

is clearly of BHTα,β type and it is unlikely that such operators map L∞ × L∞

into BMO.
Even worse, if instead of (5.20) one considers its natural generalization with

four factors T4,A1,A2,A3,A4 , a similar calculation generates the expression

p.v.

∫
R2

A′′
1(x+ a1t+ b1s)A

′′
2 (x+ a2t+ b2s)A

′′
3 (x+ a3t+ b3s)A

′′
4 (x+ a4t+ b4s)

dt

t

ds

s

and it is known that for generic choices of (aj)j and (bj)j this 4-linear operator
does not satisfy any Lp estimates of Hölder type, [10].
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