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dyadic L logL and A∞ constants

Oleksandra Beznosova and Alexander Reznikov

Abstract. In the dyadic case the union of the reverse Hölder classes,
∪p>1RHd

p , is strictly larger than the union of the Muckenhoupt classes,
∪p>1A

d
p = Ad

∞. We introduce the RHd
1 condition as a limiting case of the

RHd
p inequalities as p tends to 1 and show the sharp bound on the RHd

1

constant of the weight w in terms of its Ad
∞ constant.

We also examine the summation conditions of the Buckley type for
the dyadic reverse Hölder and Muckenhoupt weights and deduce them
from an intrinsic lemma which gives a summation representation of the
bumped average of a weight. We also obtain summation conditions for
continuous reverse Hölder and Muckenhoupt classes of weights and both
continuous and dyadic weak reverse Hölder classes. In particular, we prove
that a weight belongs to the class RH1 if and only if it satisfies Buckley’s
inequality. We also show that the constant in each summation inequality of
Buckley type is comparable to the corresponding Muckenhoupt or reverse
Hölder constant. To prove our main results we use the Bellman function
technique.

1. Definitions and main results

Recently novel approaches to the dyadic and continuous A∞ classes have yielded
essential improvements relevant to the famous A2 conjecture. The improvement,
called the Ap-A∞ bound for Calderón–Zygmund operators, was obtained by means
of the observation that if a weight w belongs to the Muckenhoupt class Ap, then it
belongs to a larger class A∞ and a certain sequence satisfies the Carleson property.
We refer the reader to the papers [10] and [11] for the precise proof of the A2-A∞
bound (in [11] it is not formulated, but can be seen from the proof), and to [9] for
a full proof of the Ap-A∞ bound.
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Carleson sequences are related to Ap weights and have appeared in many papers
related to the boundedness of singular operators. Many such results were proved
using the Bellman function method. Using this method, the Carleson embedding
theorem was proved in [13]. Results related to Carleson measures (partially proved
with certain Bellman functions) also appeared in [14], [15], and [26]. Also, the
“easy” case, [24], of the two weight inequality is a certain summation condition,
and was also obtained by means of Bellman function. Most of our proofs will use
very natural (but not totally sharp) Bellman functions.

We explain our results in more detail. In this paper we present equivalent
definitions of Muckenhoupt classes Ap and reverse Hölder classes RHp, and prove
sharp inequalities, that show that these definitions are indeed equivalent. One of
these definitions is given in terms of Carleson sequences. Also, we define limiting
cases A∞ and RH1, which in the continuous case appear to yield the same sets
(see [1]), but in the dyadic case the class RH1 is strictly larger. We give equivalent
definitions of these classes in terms of certain Carleson sequences; besides this,
we give a sharp estimate for the so-called A∞ and RH1 constants, which appears
to be much harder than in the continuous case (and, actually, somehow uses the
continuous result).

The paper is organized as follows. We start by following paper [1], providing all
the main definitions of dyadic reverse Hölder and Muckenhoupt classes and state
several equivalent definitions of the class RHd

1 . Also in Section 1 we state our first
main result, Theorem 1.7, in which we establish the sharp dependence of the RHd

1

constant of a weight on its Ad∞ constant.

In Section 2 we study summation conditions, introduced first in [6] and [2]. Our
second and third main results of this paper are, in fact, Lemmas 2.2 and 2.4, two
intrinsic lemmas from which we deduce Theorem 2.6 about the comparability of
sums in Buckley’s summation condition and certain bumped averages of the weight
w. The reader should note that even though Theorem 2.6 turns out to be extremely
strong and is very handy for Hölder and Muckenhoupt classes, our lemmas, espe-
cially Lemma 2.2 are much more general and could be potentially applied to large
class of bumped averages of any nonnegative function w and every interval J ⊂ R.
We show how Theorem 2.6 follows from our lemmas and how Buckley’s theorem
follows from Theorem 2.6. The reader will see that Theorem 2.6 is substantially
stronger than Buckley’s theorem, because it is true for any weight, not necessarily
from Ap of RHp. This is illustrated in Theorem 2.7, where the comparability of
constants in summation conditions and corresponding Hölder and Muckenhoupt
constants of the weight is established in both continuous and dyadic cases.

In Section 3 we discuss weak reverse Hölder and Muckenhoupt classes. We start
by giving definitions of these classes and state another consequence of Theorem 2.6,
namely Theorem 3.5, which contains a version of Buckley’s theorem but for the
weak reverse Hölder weights. The proof of Theorem 3.5 is essentially the same as
the proof of Theorem 2.6, so we omit most of the details.

All the Bellman function proofs can be found in Section 4. We start with the
proof of Lemma 2.2, which we think is the simplest of the three Bellman function
proofs given in this paper and is a nice introduction to the Bellman function
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technique. The Bellman function technique is not new, but as far as we know this
is the first place where Bellman function technique is applied in such an “intrinsic”
setup. By “intrinsic” here we mean that a lemma has a function A(x) as one of
the parameters, and convexity properties of the function A are then used to build
the Bellman function for the inequality. The proof of Lemma 2.2 is followed by
the proof of Lemma 2.4 which we hope will be easy to digest after having seen the
proof of Lemma 2.2. The proof of Theorem 1.7 is the hardest and occupies the
last half of the section. The proof itself is in fact very similar to the proof of the
continuous version of Theorem 1.7, which can be found in [1]. This dyadic proof
is longer than the continuous one because in the dyadic case we have to deal with
many details that are specific to the dyadic Bellman function proof in a nonconvex
domain. We encourage the reader to understand the proof of Theorem 1.1 from [1]
before reading our proof of Theorem 1.7.

All results of this paper apply to the one-dimensional case only.

Acknowledgements. The authors are grateful to A. Volberg for useful sugges-
tions related to proving Theorem 1.7 and to V. Vasyunin for useful discussions.
We would also like to express our gratitude to C. Thiele, I. Uriarte-Tuero, and
A. Volberg for organizing the Summer School 2010 in UCLA, where this paper
originated, and to C. Pérez and R. Esṕınola for organizing the Summer School
2011 in Seville and AIM workshop, where we finished this paper. We also thank
Paul Hagelstein, Cristina Pereyra, and Vasili Vasyunin for useful corrections, that
made the presentation a lot nicer. Finally, we would like to thank the referee for
several useful remarks about the organization of the text.

1.1. First definitions

Let D be the dyadic grid D: =
{
I ⊂ R : I = [k2−j , (k + 1)2−j); k, j ∈ Z

}
.

We say that w is a weight if it is a locally integrable function on the real line
and positive almost everywhere (with respect to Lebesgue measure). Let 〈w〉

J
be

the average of a weight w over a given interval J ⊂ R,

〈w〉
J

:=
1

|J |

∫
J

w dx

and let ΔJ w be defined by

ΔJ w := 〈w〉
J+ − 〈w〉

J− ,

where J+ and J− are the left and right dyadic children of the interval J .

Definition 1.1. A weightw belongs to the dyadicMuckenhoupt class Ad
p whenever

its dyadic Muckenhoupt constant [w]Ad
p
is finite:

(1.1) [w]Ad
p
:= sup

J∈D
〈w〉

J

〈
w−1/(p−1)

〉p−1

J
< ∞.
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Remark 1.2. The inequality (1.1) can be rewritten in the following way:

0 �
〈
w−1/(p−1)

〉
J
− 〈w〉−1/(p−1)

J
�

(
[w]

1/(p−1)

Ad
p

− 1
)
〈w〉−1/(p−1)

J
.

Later we will use this formulation in writing the definitions Hölder and Mucken-
houpt classes in the proof of Theorem 2.7.

Note that by Hölder’s inequality, [w]Ad
p
� 1 holds for all 1 < p < ∞, as well as

the following inclusion:

if 1 < p � q < ∞ then Ad
p ⊆ Ad

q , [w]Ad
q
� [w]Ad

p
.

Hence, for 1 < p < ∞, the Muckenhoupt classes Ad
p form an increasing chain.

There are two natural limits to consider: as p approaches 1 and as p goes to ∞.
We will be interested in the limiting case as p → ∞, Ad

∞ =
⋃

p>1 A
d
p. There are

several equivalent definitions of A∞. We state the one that we use (the natural
limit of the Ad

p conditions, that also defines the Ad
∞ constant of the weight w); for

other equivalent definitions see [7], [8], or [20]:

(1.2) w ∈ Ad
∞ ⇐⇒ [w]Ad∞ := sup

J∈D
〈w〉

J
e
−〈logw〉

J < ∞,

where log stands for the regular natural logarithm.

Remark 1.3. The inequality (1.2) can be rewritten in the following way:

0 � log〈w〉
J
− 〈logw〉

J
� log [w]Ad∞ .

Note also that if a weight w belongs to the Muckenhoupt class Ad
p for some

p > 1, or, equivalently, to the class Ad∞, then w has to be a dyadically doubling
weight, i.e., its dyadic doubling constant

Dd(w): = sup
I∈D

〈w〉
F (I)

〈w〉
I

,

where F (I) stands for the dyadic parent of the interval I, has to be finite.

Definition 1.4. A weight w belongs to the dyadic reverse Hölder class RHd
p

(1 < p < ∞) if

(1.3) [w]RHd
p
:= sup

J∈D

〈wp〉1/p
J

〈w〉
J

< ∞.

Remark 1.5. The inequality (1.3) can be rewritten in the following way:

0 � 〈wp〉
J
− 〈w〉p

J
�

(
[w]p

RHd
p
− 1

)
〈w〉p

J
.
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Note that by Hölder’s inequality the dyadic reverse Hölder classes satisfy:

if 1 < p � q < ∞, then RHd
q ⊆ RHd

p and 1 � [w]RHd
p
� [w]RHd

q
,

which is similar to the inclusion chain of the Ad
p classes, except inclusion runs in

the opposite direction. Similarly we can consider the two limiting cases RHd∞ (the
smallest) and RHd

1 (the largest). As in the case of Muckenhoupt classes we are
more interested in the largest one, call it RHd

1 : =
⋃

p>1 RHd
p .

The natural limit as p → 1+ of the reverse Hölder inequalities is the condition,
which we will take as a definition of the class RHd

1 ,

(1.4) w ∈ RHd
1 ⇐⇒ [w]RHd

1
:= sup

J∈D

〈 w

〈w〉
J

log
w

〈w〉
J

〉
J
< ∞ ,

where log is a regular logarithm base e, which could be negative. Nevertheless, by
the Jensen inequality the RH1 constant defined this way is always nonnegative.

The RHd
1 constant of the weight w is the natural limit of the RHd

p constants
in the sense that for every interval I ∈ D

(1.5)
〈 w

〈w〉
I

log
w

〈w〉
I

〉
I

= lim
p→1+

p

p− 1
log

〈wp〉1/p
I

〈w〉
I

Remark 1.6. The inequality (1.4) can be rewritten as:〈
w log(w)

〉
J
� 〈w〉

J
log〈w〉

J
+Q〈w〉

J
∀J ∈ D,

where Q = [w]RH1 . Note that since the function x log x is concave, by Jensen’s
inequality we also have

〈w〉
J
log〈w〉

J
�

〈
w log(w)

〉
J
.

In the continuous case, for A∞ and RH1, in 1974 Coifman and Fefferman
showed that A∞ =

⋃
p>1 RHp = RH1. In the dyadic case this is not true. One

can only claim the inclusion Ad∞ ⊂ RHd
1 . As for the other inclusion, it only holds

for the dyadically doubling weights since, unlike the Ad
p weights, dyadic reverse

Hölder weights do not have to be doubling. An example of such a weight can be
found in Buckley [2].

Different ways to define the RHd
1 constant of the weight w

First, observe that, trivially, the logarithm in the definition of the RHd
1 constant

can be replaced by log+(x),
(
log+(x) = max (log x, 0)

)
or log(e + x), which will,

however, increase the RHd
1 constant slightly.

Secondly, from the Stein lemma (see [19]), we know that

3−n
〈
M(f χI)

〉
I

�
〈
f log

(
e+

f

〈f〉
I

)〉
I

� 2n
〈
M(f χI)

〉
I
,
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where Mf is the maximal function of f . Thus an equivalent way to define the RH1

constant is

(1.6) [w]RHd′
1

: = sup
I∈D

1

w(I)

∫
I

M(wχI) dx,

which, indeed, is one of the ways to define the class A∞; see, for example, [25]
or [10]. The constant [w]RHd′

1
is also called the Wilson Ad∞ constant of the weight.

One can also define dyadic reverse Hölder and Muckenhoupt constants us-
ing Luxemburg norms. The same is true for the RHd

1 constant. We first define
the Luxemburg norm of a function in the following way: for an Orlicz function
Φ:[0,∞] �→ [0,∞], we define ‖w‖Φ(L),I by

‖w‖Φ(L),I : = inf
{
λ > 0:

1

|I|

∫
I

Φ
( |w|

λ

)
� 1

}
.

Iwaniec and Verde in [12] showed that for every w and I ⊂ R
n

‖w‖L logL,I �
∫
I

w log
(
e+

w

〈w〉
I

)
dx � 2 ‖w‖L logL,I ,

so another equivalent definition of the RHd
1 constant of the weight w is

(1.7) [w]RHd′′
1

: = sup
I∈D

‖w‖L logL,I

‖w‖L,I

.

1.2. First main result of the paper

In this section we state the first result of the paper, and then explain the other
questions we study.

We prove the following sharp relationship between the RHd
1 and Ad

∞ constants:

Theorem 1.7 (Main result 1: comparability of the RHd
1 and Ad

∞ con-
stants). If a weight w belongs to the Muckenhoupt class Ad∞, then w ∈ RHd

1 .
Moreover,

(1.8) [w]RHd
1

� C [w]Ad∞ ,

where the constant C can be taken to be log (16) (C = log (16)). Moreover, the
constant C = log (16) is the best possible.

A Bellman function proof of this theorem can be found in Section 4.5. An
independent proof of the analogue of this theorem for the constant [w]RHd′

1
was

recently independently obtained in [10].
Note that all of the above is true in the continuous case and can be found in [1]

(with the sharp constant C = e, and with a double exponential lower bound). Note
also that the lower bound (Theorem 1.2 in [1]) in the dyadic case cannot possibly
hold since the class RHd

1 is strictly larger than Ad
∞.
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2. Summation conditions on weights

In this section we will introduce and discuss an important set of inequalities that
characterize the dyadic reverse Hölder and Muckenhoupt classes. We are mostly
interested in the dyadic results here, so we will follow Buckley [4]. Note that the
inequalities we discuss in this section have continuous analogues, and many facts
and questions here apply to the continuous case as well (see [6]).

As we discussed earlier, RHd
1 �= Ad∞ because all dyadic Muckenhoupt condi-

tions imply that the weight is dyadically doubling, while dyadic reverse Hölder
conditions allow nondoubling weights (in the continuous case both reverse Hölder
and Muckenhoupt conditions imply the continuous doubling property). For the
dyadically doubling weights the RHd

1 and Ad
∞ conditions are equivalent.

We now state a theorem that characterizes the dyadic reverse Hölder and Muck-
enhoupt classes via summation conditions. We attribute this theorem to Buckley,
however all parts but the Buckley inequality (part (2)) in the continuous case and
part (4) in the dyadic case first appeared in [6] and are due to Fefferman, Kenig,
and Pipher.

Theorem 2.1 (Buckley ’93). Suppose 1 < p < ∞ and w is a doubling weight.
Then:

(1) w ∈ RHd
p if and only if on every dyadic interval J

(2.1)
1

|J |
∑

I∈D(J)

(ΔI w

〈w〉
I

)2

〈w〉p
I
|I| ≤ K 〈w〉p

J
.

Moreover, K ≤ C[w]p
RHd

p
.

(2) (Buckley’s inequality) w ∈ RHd
1 if and only if for some K > 0 on every

dyadic interval J

(2.2)
1

|J |
∑

I∈D(J)

(ΔI w

〈w〉
I

)2

〈w〉
I
|I| ≤ K 〈w〉

J
.

(3) w ∈ Ad
p if and only if on every dyadic interval J

(2.3)
1

|J |
∑

I∈D(J)

(ΔI w

〈w〉
I

)2

( 〈w〉
I
)
−1/(p−1) |I| ≤ K 〈w〉−1/(p−1)

J
.

(4) (Fefferman–Kenig–Pipher inequality) w ∈ Ad∞ if and only if on every dyadic
interval J

(2.4)
1

|J |
∑

I∈D(J)

(ΔI w

〈w〉
I

)2

|I| ≤ C log[w]Ad∞ .

Buckley’s inequality (part (2)) is the one of the most interest here since as we
will see later it characterizes the class RHd

1 ; it is also the only one stated without
the sharp constant. In [26], Wittwer showed that, in the case w ∈ Ad

2, Buckley’s
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inequality holds with K = C[w]Ad
2
and this linear dependence on the Ad

2 constant
of the weight w is sharp, which is the best known result for Buckley’s inequality.
Also, in the Fefferman–Kenig–Pipher inequality the sharp constant is C = 8; this
was obtained by Vasyunin in [22] using the Bellman function method.

Using the method of Bellman functions we are going to show that, in Buckley’s
inequality, K ≤ C[w]RHd

1
. We also show that the assumption that w is a doubling

weight can be dropped. Finally, we show that the above four sums also satisfy
the lower bound estimates in terms of the corresponding constants. We state our
second main result now.

We start with the following lemma, from which Theorem 2.1 will follow.

Lemma 2.2. Let A(x) be a convex twice differentiable function on (0,∞) such
that for all numbers x and t, where x, x± t are in the domain of A, the inequality

(2.5) A(x)− A(x− t) +A(x+ t)

2
+ α t2A′′(x) � 0

holds for some constant α > 0 independent of x and t. Then for every weight w
and any interval J the following inequality holds:

(2.6)
1

|J |
∑

I∈D(J)

(ΔIw)
2
A′′( 〈w〉

I
)|I| � C

(
〈A(w)〉

J
−A( 〈w〉

J
)
)
.

Moreover, if the second derivative of A satisfies the inequality

(2.7)

∫ 1

−1

(1− |t|) A′′(x+ εt) dt � q A′′(x)

for every x ∈ (0,∞) and every ε � 0 with some positive constant q uniformly in x
and ε, then the inequality (2.6) holds with the constant C = 8(1/q).

The Bellman function proof of Lemma 2.2 can be found in Section 4.3.

Remark 2.3. Note that if the second derivative of A is a monotone function
then (2.7) holds trivially with the constant q = 1/2, which makes Lemma 2.2
applicable to a large class of functions producing a number of new inequalities of
Buckley’s type. In particular, the function A(x) can be taken to be A(x) = xp,
p > 1; A(x) = x log x; A(x) = x−1/(p−1) with p > 1; or A(x) = − logx. In what
follows we will see how these choices of the function A(x) imply Buckley’s theorem.

Now we want to introduce the “reverse” lemma, which is true for particular
(those most interesting for us) choices of the function A.

Lemma 2.4. Suppose A(x) is a function bounded from below.

(1) Let A(x) be a function defined on (0,∞) such that

(2.8) A(x)− A(x− t) +A(x+ t)

2
+ β t2A′′(x) � 0,

holds with some positive constant β independent of x and t.
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Then for every weight w and interval J

(2.9)
1

|J |
∑

I∈D(J)

(ΔIw)
2 A′′(〈w〉

I
) |I| � C

(〈
A(w)

〉
J
−A(〈w〉

J
)
)
.

Moreover, condition (2.8) holds for A(x) = xp, for all p > 1, and for A(x) =
x log x.

(2) Suppose A satisfies the inequality

(2.10) A(x)− A(x− t) +A(x+ t)

2
+ β t2A′′(x) � 0

whenever 0 < t < C−1
C x (for C > 1, β depends on C). Then for every

doubling weight w and any interval J we have

(2.11)
1

|J |
∑

I∈D(J)

(ΔIw)
2A′′(〈w〉

I
) |I| � C

(〈
A(w)

〉
J
−A(〈w〉

J
)
)
,

where the constant C depends on the doubling constant of w.

Moreover, condition (2.10) holds for A(x) = x−1/(p−1) for all p > 1.

A Bellman function proof of Lemma 2.4 can be found in Section 4.4.

Remark 2.5. Note that in Lemma 2.4, similarly to Lemma 2.2, we can also write
conditions (2.8) and (2.10) in integral form, but in this case (2.8) and (2.10) are
easier to check at least for the functions we are of interest here.

From our lemmas, by taking A(x) = xp and A(x) = x−1/(p−1), p > 1, A(x) =
x log x, and A(x) = − log (x), we derive the following theorem.

Theorem 2.6 (Main result 2: representation of bumped averages). Sup-
pose 1 < p < ∞ and w is a weight. Then:

(1) Case A(x) = xp, p > 1. There are positive real constants c and C independent
of the weight w, such that for every interval J

(2.12) c
(
〈wp〉

J
−〈w〉p

J

)
� 1

|J |
∑

I∈D(J)

(ΔIw

〈w〉
I

)2

〈w〉p
I
|I| � C

(
〈wp〉

J
−〈w〉p

J

)
.

(2) Case A(x) = x log x. There are positive real constants c and C independent
of the weight w, such that for every interval J

c
(
〈w logw〉

J
− 〈w〉

J
log〈w〉

J

)
� 1

|J |
∑

I∈D(J)

(ΔIw

〈w〉
I

)2

〈w〉
I
|I|(2.13)

� C
(
〈w logw〉

J
− 〈w〉

J
log 〈w〉

J

)
.
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(3) Case A(x) = x−1/(p−1). There is a positive real constant C independent of w
such that, for every interval J ,

(2.14)
1

|J |
∑

I∈D(J)

(ΔIw

〈w〉
I

)2

〈w〉−1/(p−1)

I
|I| ≤ C

(〈
w−1/(p−1)

〉
J
−〈w〉−1/(p−1)

J

)
.

Moreover, if w is a doubling weight, then there exists a constant c that may
depend on the doubling constant of the weight w, such that for every inter-
val J ,

(2.15) c
(〈
w−1/(p−1)

〉
J
− 〈w〉−1/(p−1)

J

)
� 1

|J |
∑

I∈D(J)

(ΔIw

〈w〉
I

)2

〈w〉−1/(p−1)

I
|I|.

(4) Case A(x) = − log x. There is a positive real constant C independent of w,
such that for every interval J ,

(2.16)
1

|J |
∑

I∈D(J)

(ΔIw

〈w〉
I

)2

|I| � C
(
log 〈w〉

J
− 〈logw〉

J

)
.

Theorem 2.6 follows immediately from Lemma 2.2, the remark after it and
Lemma 2.4. We will leave its proof to the reader. Instead, we show how Theo-
rem 2.6 implies Buckley’s theorem in the dyadic and continuous cases and in the
case of weak reverse Hölder classes.

In order to write our results in a more compact way we start by giving another
way of defining reverse Hölder and Muckenhout constants. We call them Buckley’s
constants and denote them by [w]RHd,B

p
and [w]Ad,B

p
. Namely, for p � 1, we define

[w]RHd,B
p

:= inf
{
Q > 1 s.t. ∀J ∈ D 1

|J |
∑

I∈D(J)

(ΔIw

〈w〉
I

)2

〈w〉p
I
|I| � Q 〈w〉p

J

}
,

and similarly we can define continuous Buckley’s reverse Hölder constants

[w]RHB
p
:= inf

{
Q > 1 s.t. ∀J ⊂ R

1

|J |
∑

I∈D(J)

(ΔIw

〈w〉
I

)2

〈w〉p
I
|I| � Q 〈w〉p

J

}
.

Similarly, for 1 < p < ∞, we define dyadic and continuous Buckley’s Muckenhoupt
constants

[w]Ad,B
p

:= inf
{
Q>0: ∀J ∈D,

1

|J |
∑

I∈D(J)

(ΔIw

〈w〉
I

)2

〈w〉−1/(p−1)

I
|I| � Q 〈w〉−1/(p−1)

J

}

and

[w]AB
p
:= inf

{
Q > 0: ∀J⊂R,

1

|J |
∑

I∈D(J)

(ΔIw

〈w〉
I

)2

〈w〉−1/(p−1)

I
|I| � Q 〈w〉−1/(p−1)

J

}
.
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In the A∞ case we have

[w]Ad,B
∞

:= inf
{
Q > 0: ∀J ∈ D,

1

|J |
∑

I∈D(J)

(ΔIw

〈w〉
I

)2

|I| � Q
}

and

[w]AB∞ := inf
{
Q > 0: ∀J ⊂ R,

1

|J |
∑

I∈D(J)

(ΔIw

〈w〉
I

)2

|I| � Q
}
.

Note that in the reverse Hölder case of Buckley’s constants we do not need
to define the RH1 constants separately. We are now ready to state the result
about the comparability of Buckley’s constants and the regular reverse Hölder and
Muckenhoupt constants.

Theorem 2.7 (Comparability of constants in summation conditions).

(1) Suppose 1 < p < ∞. Then there are positive constants C and c such that,
for every weight w,

c
(
[w]p

RHd
p
− 1

)
� [w]RHd,B

p
� C

(
[w]p

RHd
p
− 1

)
and

c
(
[w]pRHp

− 1
)
� [w]RHB

p
� C

(
[w]pRHp

− 1
)
.

(2) In the case p = 1 there are positive constants C and c such that, for every
weight w,

c[w]RHd
1
� [w]RHd,B

1
� C[w]RHd

1

and
c[w]RH1 � [w]RHB

1
� C[w]RH1 .

(3) For any 1 < p < ∞ there is a positive constant C such that, for every
weight w,

[w]Ad,B
p

� C
(
[w]

1/(p−1)

Ad
p

− 1
)

and [w]AB
p
� C

(
[w]

1/(p−1)
Ap

− 1
)
.

(4) In the case p = ∞ there is a positive constant C such that, for every weight w,

[w]Ad,B
∞

� C log [w]Ad∞ and [w]AB∞ � C log [w]A∞ .

Moreover, if w is a doubling weight then:

(5) For any 1 < p < ∞,

cd
(
[w]

1/(p−1)

Ad
p

− 1
)
� [w]Ad,B

p
and c

(
[w]

1/(p−1)
Ap

− 1
)
� [w]AB

p

hold with positive constants cd and c that depend on the (dyadic) doubling
constant of the weight w.
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We now show how Theorem 2.7 follows from Theorem 2.6. Note also that the
pair of constants cd and c above is different in part (5) because one depends on the
dyadic doubling constant of the weight w and the other depends on the continuous
doubling constant of w.

Proof. We prove case (1). The other cases are proved in a similar way with only
minor changes, and are left to the reader.

We will show that the first part of Theorem 2.7 follows from the first part of
Theorem 2.6, from which we know that there are constants c and C such that for
any weight w and interval J ⊂ R

(2.17) c
(
〈wp〉

J
− 〈w〉p

J

)
� 1

|J |
∑

I∈D(J)

(ΔIw

〈w〉
I

)2

〈w〉p
I
|I| � C

(
〈wp〉

J
− 〈w〉p

J

)
.

First, we assume that w ∈ RH
(d)
p (dyadic or continuous), which means, by

Remark 1.5, that for every (dyadic) interval J ⊂ R we have

0 � 〈wp〉
J
− 〈w〉p

J
�

(
[w]p

RH
(d)
p

− 1
)
〈w〉p

J
.

So, by inequality (2.17), we have that

1

|J |
∑

I∈D(J)

(ΔIw

〈w〉
I

)2

〈w〉p
I
|I| � C

(
[w]p

RH
(d)
p

− 1
)
〈w〉p

J
.

Hence [w]
RH

(d),B
p

� C
(
[w]p

RH
(d)
p

− 1
)
.

Second, assume that w ∈ RH
(d),B
p , so for each (dyadic) interval J ⊂ R we have

1

|J |
∑

I∈D(J)

(ΔIw

〈w〉
I

)2

〈w〉p
I
|I| � [w]

RH
(d),B
p

〈w〉p
J
.

Then from (2.17) we deduce that

〈wp〉
J
− 〈w〉p

J
� 1

c
[w]

RH
(d),B
p

〈w〉p
J
,

which means that w ∈ RH
(d)
p and c ([w]p

RH
(d)
p

− 1) � [w]
RH

(d),B
p

.

Parts (2), (3), and (4) of Theorem 2.7 are proved in exactly the same way,
using Remarks 1.6, 1.2 and 1.3 and the corresponding parts of Theorem 2.6. The
doubling assumptions in (3) and (4) also come from Theorem 2.6. �

Theorem 2.7 obviously implies Buckley’s theorem (Theorem 2.1), but our The-
orem 2.6 is even stronger. Since Theorem 2.6 shows comparability of summations
for a given weight with its bumped averages, we can also write summation condi-
tions for the weak reverse Hölder classes in a similar way.
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3. Summation conditions for weak reverse Hölder classes

In this section we discuss the weak reverse Hölder class RHWp, p � 1. We recall
the definition of the RHWp-constant. For simplicity, we drop the superscript d,
that referred to the dyadic case.

All of the above is true in the continuous case as well, when all suprema are
taken over any interval J ⊂ R. We do not repeat all the definitions and refer the
reader to [1].

We also give the definition of the so-called “weak” reverse Hölder class RHW d
p .

Definition 3.1. In the dyadic case let J� stand for the dyadic parent of J ∈ D.
Then a weight w belongs to the dyadic weak reverse Hölder class RHW d

p , p > 1,
if and only if its weak reverse Hölder constant is finite:

(3.1) w ∈ RHW d
p ⇐⇒ [w]RHWd

p
:= sup

J∈D

〈wp〉1/p
J

〈w〉
J�

< ∞.

For p = 1 we define the RHW d
1 class by

(3.2) w ∈ RHW d
1 ⇐⇒ [w]dRHW1

:= sup
J∈D

〈 w

〈w〉J�

log
w

〈w〉
J

〉
J

< ∞.

In the continuous case, for any interval J ⊂ R let 2J stand for the interval of
twice the length of J having the same center as J . Then the weak reverse Hölder
classes RHWp, p > 1 and RHW1 are defined by

(3.3) w ∈ RHWp ⇐⇒ [w]RHWp := sup
J⊂R

〈wp〉1/p
J

〈w〉
2J

< ∞

and

(3.4) w ∈ RHW1 ⇐⇒ [w]dRHW1
:= sup

J⊂R

〈 w

〈w〉
2J

log
w

〈w〉
J

〉
J

< ∞.

We again note that it is important that in the definitions of RHW d
1 and RHW1,

inside the log we divide by the average of w over the interval J , not by the average
over J� or 2J .

Remark 3.2. We now explain why the definition (3.2) of the weak reverse Hölder
constant makes sense. In fact, in the spirit of the formula above, we can define
this constant as

[w]RHWd′′
1

:= sup
I∈D

‖w‖L logL,I

‖w‖L,I�

.
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Remark 3.3. Also note that as in the strong case we can rewrite (3.1), (3.2), (3.3)
and (3.4) as:

w∈RHW d
p ⇐⇒ 0 � 〈wp〉

J
� [w]p

RHWd
p
〈w〉p

J�
, ∀J ∈ D,(3.5)

w∈RHW d
1 ⇐⇒ 0�〈w logw〉

J
−〈w〉

J
log 〈w〉

J
� [w]RHWd

1
〈w〉

J�
, ∀J ∈ D,(3.6)

w∈RHWp ⇐⇒ 0 � 〈wp〉
J
� [w]pRHWp

〈w〉p
2J

, ∀J ⊂ R,(3.7)

w∈RHW d
1 ⇐⇒ 0�〈w logw〉

J
−〈w〉

J
log 〈w〉

J
� [w]RHWd

1
〈w〉

2J
, ∀J ⊂ R.(3.8)

We are ready to define dyadic and continuous weak Buckley reverse Hölder
constants now in the most natural way.

Definition 3.4. For any p � 1 let

[w]RHWd,B
p

:= inf
{
Q > 0: ∀J ∈ D 1

|J |
∑

I∈D(J)

(ΔIw

〈w〉
I

)2

〈w〉p
I
|I| � Q 〈w〉p

J�

}

and

[w]RHWB
p

:= inf
{
Q > 0: ∀J ⊂ R

1

|J |
∑

I∈D(J)

(ΔIw

〈w〉
I

)2

〈w〉p
I
|I| � Q 〈w〉p

J�

}
.

Now we are ready to state the following theorem, which is also a consequence
of Theorem 2.16.

Theorem 3.5. A weight w belongs to RHW d
p if and only if the weak Buckley

constant [w]RHWd,B
p

is finite. Moreover, there exists a positive constant C1 that

does not depend on w and p and a positive constant C2 that may depend on p, such
that for any p > 1

[w]RHWd,B
p

� C1[w]
p
RHWd

p
and [w]RHWd

p
� C2

(
[w]RHWd,B

p
+ 1

)1/p
and, similarly, in the continuous case

[w]RHWB
p

� C1[w]
p
RHWp

and [w]RHWp � C2

(
[w]RHWB

p
+ 1

)1/p
.

In the case p = 1 there are positive constants C and c such that

c [w]RHd,B
1

� [w]RHd
1
� C [w]RHd,B

1

and

c [w]RH1 � [w]RHB
1
� C [w]RH1 .

Proof. The proofs for the continuous and dyadic cases are identical, so we treat
both cases simultaneously.
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For p > 1, by part (1) of Theorem 2.6 we know that for any weight w and any
interval J there holds

(3.9) c
(
〈wp〉

J
− 〈w〉p

J

)
� 1

|J |
∑

I∈D(J)

(ΔI w

〈w〉
I

)2

〈w〉p
I
|I| � C

(
〈wp〉

J
− 〈w〉p

J

)
.

Note that 〈w〉J is nonnegative, so, if w belongs to the (dyadic or continuous) class
RHW d

p , by (3.5) or (3.7) we have that, for every (dyadic) interval J ⊂ R,

1

|J |
∑

I∈D(J)

(ΔIw

〈w〉
I

)2

〈w〉p
I
|I| � C 〈wp〉

J
� C [w]p

RHW
(d)
p

〈w〉p
F (J)

,

where F (J) is either the dyadic parent of J or 2J . So

[w]
RHW

(d),B
p

� C[w]p
RHW

(d)
p

.

To prove the reverse inequality we assume that w is in (dyadic or continuous)

RHW
(d),B
p . Then

c
(
〈wp〉

J
− 〈w〉p

J

)
� 1

|J |
∑

I∈D(J)

(ΔIw

〈w〉
I

)2

〈w〉p
I
|I| � [w]

RHW
(d),B
p

〈w〉p
F (J)

,

from which we conclude that

〈wp〉
J
� 1

c
[w]

RHW
(d),B
p

〈w〉p
F (J)

+ 〈w〉p
J
.

Note that 〈w〉
J
� 2 〈w〉

F (J)
, so

〈wp〉
J
�

(1
c
[w]

RHW
(d),B
p

+ 2p
)
〈w〉p

F (J)
,

which implies that [w]
RHW

(d)
p

�
(
1
c [w]RHW

(d),B
p

+ 2p
)1/p

and completes the proof

of the theorem for p > 1.
For p = 1 we use the comparability (part (2) of Theorem 2.6)

c
(
〈w logw〉

J
− 〈w〉

J
log 〈w〉

J

)
� 1

|J |
∑

I∈D(J)

(ΔI w

〈w〉
I

)2

〈w〉
I
|I|

� C
(
〈w logw〉

J
− 〈w〉

J
log 〈w〉

J

)
together with the definitions (3.6) and (3.8) of the dyadic and continuous RHW

(d)
1 .

This proof is similar to the continuous case and is left to the reader. �

Remark 3.6. Observe that we have proved the theorem for any pairs (J, F (J)),
that satisfy the following two conditions:

(1) J ⊂ F (J), and

(2) |J | � c |F (J)|.
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4. Bellman function proofs

4.1. Some history

We now present the Bellman-type proofs. Before we do this, we give a historical
overview.

The Bellman function, related to investigation of weights on their own (i.e., not
related to linear operators in weighted spaces), has been exploited in various pa-
pers. Topics such as reverse Hölder, Lp estimates, and distribution functions of Ap

weights were investigated in [5], [17], [21]. In all these articles the Bellman function
was found for continuous Ap. We enthusiastically refer the curious reader to these
papers, since the search for a Bellman function and extremal examples are given
there in details.

Aside from these three papers, the theory of BMO weights was developed in [18].
In this paper, together with the continuous BMO, the authors considered the
dyadic case. The dyadic problem appeared to be much more delicate in some
sense, and required a lot of additional calculations. In what follows, we use several
parts of the dyadic proof from [18]. It appears that in our case the same steps give
the proof. However, some parts of our proof are more delicate.

We now point out two difficulties that we have. First, the functions in [18] were
explicit. In our case, as the reader will see, many ingredients are given implicitly,
which makes things a little more complicated.

The main difficulty, though, is not the fact that we have implicit functions.
In [18] the authors noticed that the domain of their Bellman function has the
following property: it can be enlarged, with a good estimate of this “enlargement”,
such that if the endpoints and center of some interval are in the smaller domain,
then the whole interval is in the enlarged domain. This immediately implies that,
if we do not care about sharp constants, we can get some nice estimates in the
dyadic case directly from the continuous case.

In Remark 4.11 we prove that the domain of our Bellman function does not
have this property. Therefore, without additional work, we can not make any
dyadic statements. This means that we are “forced” to care about best constants
and develop a variant of the proof from [18].

We also refer the reader to another paper, [23], treating a dyadic problem.
There the authors obtained the exact Bellman function as well. However, the
domain of their function was convex, and, therefore, obviously had the above
property.

In [1], the authors introduced a particular function of two variables, that enables
the proof of the continuous case of the inequality.

We sketch the definition and application of this function and discuss the main
difficulty in the dyadic problem.

We will start with the Bellman function proofs of the summation conditions
(inequalities (2.4)–(2.1)) since they are simpler then the proof of Theorem 1.7,
which is much harder.
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4.2. Technical proposition

Proposition 4.1. 1) Suppose ε > 0. For any monotone nonnegative function
f(x) the following inequality holds for some absolute constant C:∫ 1

−1

(1− |t|) f(x+ εt) dt � Cf(x).

2) If A(x) satisfies ∫ 1

−1

(1− |t|)A′′(x+ εt)dt � qA′′(x)

then for some α > 0

A(x)− A(x− t) +A(x+ t)

2
+ α t2A′′(x) � 0.

3) If A(x) = xp, p > 1, then for some β > 0

A(x)− A(x− t) +A(x+ t)

2
+ β t2A′′(x) � 0

4) Let C > 1 and A(x) = x−1/(p−1). Then there exists a number β, depending
only on p and C, such that the following inequality holds for any t, 0 < t < C−1

C x:

A(x) − A(x+ t) +A(x− t)

2
+ β t2A′′(x) � 0.

Moreover, one can take

β =
p− 1

p′

(( C

C − 1

)2

·
(2C−1

C )
−1/(p−1)

+ ( 1
C )

−1/(p−1)

2
−
( C

C − 1

)2)
.

We prove Proposition 4.1 in Section 5.

4.3. Bellman function proof of Lemma 2.2

Recall that A(x) be a convex twice differentiable function on (0,∞) such that for
every x ∈ (0,∞) the second derivative of A satisfies the inequality

(4.1)

∫ 1

−1

(1− |t|)A′′(x+ ε t)dt � QA′′(x)

with some positive constant Q uniformly on x ∈ (0,∞) and ε.
Then for every weight w and any interval J ,

(4.2)
1

|J |
∑

I∈D(J)

(
〈w〉

I+
− 〈w〉

I−

)2
A′′( 〈w〉

I
)|I| � 8

1

Q

(
〈A(w)〉

J
−A( 〈w〉

J
)
)
.
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Proof. Take a function of two variables B(u, v) = v − A(u). Then, as we have
proved,

B(u, v)− B(u− t, v − s) +B(u+ t, v + s)

2
= −

(
A(u)− A(u− t) +A(u+ t)

2

)
� α t2A′′(u),

whenever B is defined at the points (u, v) and (u± t, v ± s).
Now we take a weight w. Then 〈w〉

I+
+〈w〉

I−
= 2 〈w〉

I
and so 〈w〉

I±
= 〈w〉

I
±t.

Therefore,

B
(
〈w〉

J
, 〈A(w)〉

J

)
� 1

2

(
B
(
〈w〉

J+

, 〈A(w)〉
J+

)
+B

(
〈w〉

J−
, 〈A(w)〉

J−

))
+ α (ΔJw)

2
A′′( 〈w〉

J
).

We rewrite this inequality in the following form:

|J |B
(
〈w〉

J
, 〈A(w)〉

J

)
� |J+|B

(
〈w〉

J+

, 〈A(w)〉
J+

)
+ |J−|B

(
〈w〉

J−
, 〈A(w)〉

J−

)
+ α(ΔJ |, w)2A′′( 〈w〉

J
)|J |.

Now we repeat this estimate down to the nth descendants of J . We denote this
family by Dn(J). We get

|J |B
(
〈w〉

J
, 〈A(w)〉

J

)
�

∑
I∈Dn(J)

|I|B
(
〈w〉

I
, 〈A(w)〉

I

)
+ α

∑
k�n

∑
I∈Dk(J)

(ΔIw)
2
A′′( 〈w〉

I
) |I|.

Using that B � 0 whenever v � A(u), which in our case is just Jensen’s inequality,
we get

|J |B
(
〈w〉

J
, 〈A(w)〉

J

)
� α

∑
k�n

∑
I∈Dk(J)

(ΔI w)
2A′′( 〈w〉

I
) |I|.

Since the last estimate is true for any n, we pass to the limit and get

|J |B
(
〈w〉

J
, 〈A(w)〉

J

)
� α

∑
I∈D(J)

(ΔI w)
2
A′′( 〈w〉

I
) |I|.

This is exactly what we want. Our proof is finished. �

4.4. Proof of the “inverse” Lemma 2.4

Proof. We follow the scheme of the proof of Lemma 2.2. Take a function

B(u, v) = α v +A(u).
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Then B satisfies the following inequality:

B(x)−
B
(
x+ t, y + s− t2A′′(x)

)
+B

(
x− s, y − s− t2A′′(x)

)
2

= A(x)− A(x− t) +A(x+ t)

2
+ α t2A′′(x) � 0.

The last inequality is true for A(x) = xp or A(x) = x log x without additional
assumptions, or for A(x) = x−1/(p−1), if t < C−1

C x.

Now we take a weight w. If w is doubling (which we need only for the second
part), then there exists a constant D(w), such that for any dyadic interval J there
holds

〈w〉
J
� D(w) 〈w〉

J±
.

If now 〈w〉
J±

= 〈w〉
J
± t = x± t, then

x � D(w) (x− t),

which implies

t � C − 1

C
x

for C = D(w).
Now we define

uI = 〈w〉
I

and vI =
1

|I|
∑

R∈D(I)

(ΔR(w))
2
A′′( 〈w〉

R
)|R|.

We notice that if uI± = uI ± t then

vI −
vI+ + vI−

2
= (ΔI(w))

2
A′′( 〈w〉

I
) = t2A′′( 〈w〉

I
) = t2A′′(uJ).

So, vI± = vI ± s− t2A′′( 〈w〉
I
). Therefore, by our inequality for B, we get

B(uJ , vJ)−
B(uJ+) +B(uJ−)

2
� 0.

By the Bellman iteration procedure, we get

|J |B(uJ , vJ) �
∑

I∈Dn(J)

|I|B(uI , vI).

We now introduce a sequence of step functions. For a fixed n we take the family
{I : I ∈ Dn(J)}, and

un(t) = uI , t ∈ I, vn(t) = vI , t ∈ I.

Then the last inequality is the same as

|J |B(uJ , vJ ) �
∫
J

B
(
un(t), vn(t)

)
dt.
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We now notice that B(u, v) = αv +A(u) � A(u), so

|J |B(uJ , vJ ) �
∫
J

A(un(t)) dt.

We want to use the Fatou lemma. It is true for nonnegative functions, but it is
clearly true as well for functions bounded from below (if the measure is finite).
Indeed, our xp and x−1/(p−1) are nonnegative, and x log x is bounded by −1/e.
We also recall that in the “inverse” lemma we assume that A is bounded from
below. Thus by Fatou’s lemma,

|J |B(uJ , vJ ) � lim inf
n

∫
J

A(un(t)) dt �
∫
J

lim inf
n

A(un(t)) dt =

∫
J

A(w(t)) dt.

The last equality is true since for almost every t, by the Lebesgue differentiation
theorem, we have un(t) → w(t), and because A is a continuous function.

Dividing by |J |, we finally get αvJ + A(uJ) � 〈A(w)〉
J
, which finishes our

proof. �

4.5. Proof of main Theorem 1.7

4.5.1. Notation and definition of the function B. For a point z = (x, y) ∈
R

2 we let [z] = xe−y. For any number Q > 1, we define the domain ΩQ by:

ΩQ =
{
z = (x, y) : 1 � [z] � Q

}
.

The boundaries of ΩQ are

Γ = {z : [z] = 1} and ΓQ = {z : [z] = Q}.

With any point z ∈ ΩQ we associate the two numbers v and a. We take our point z
and consider the line �(z), tangent to ΓQ, that “kisses” ΓQ on the right-hand side
from z, and such that z ∈ �(z). The point �(z) ∩ ΓQ is denoted by (a, log(a/Q)).
Now we extend �(z) to the left until it intersects Γ. The point of intersection is
denoted by (v, log (v)). Notice that v � x � a.

More carefully, let γ = γ(Q), γ � 1, be the smaller solution of equation

γ − log (γ)− 1 = log (Q).

Then the line �(z) is given by a formula

y =
γ · x
v

+ log (v)− γ.

This equation defines a unique v such that v � x. Moreover, a is given by v = γ ·a.
We are ready to introduce the Bellman Function. We give an explicit formula:

BQ(z) = BQ(x, y) = x · log (v) + x− v

γ
.
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Remark 4.2. The equation for t, t − log (t) = log (u) is famous and well devel-
oped. In the mathematical program Maple this solution can be obtained using the
command

−LambertW
(
− 1

u

)
.

Several of the inequalities in subsequent sections can be checked by graphing related
functions. The second author wants to emphasize his gratitude to the developers
of Maple.

4.5.2. Main theorems and discussion. The following theorem was proved
in [1].

Theorem 4.3. The function BQ(z) has following properties:

1. BQ(v, log (v)) = v log (v).

2. B is smooth in ΩQ, and locally concave in ΩQ. Namely, if z1, z2 ∈ ΩQ,
z = sz1 + (1− s)z2 for some s ∈ [0, 1], and {tz1 + (1− t)z2} ⊂ ΩQ then

B(z) � sB(z1) + (1− s)B(z2).

3. For every point z = (x, y) ∈ ΩQ there exists a function w, [w]Ad∞ � Q, such
that 〈w〉 = x, 〈log (w)〉 = y, and 〈w log (w)〉 = B(x, y).

This theorem implies the following (see [1]).

Theorem 4.4. The following equality holds:

(4.3) BQ(x, y) = sup
{
〈w logw〉 : 〈w〉 = x, 〈logw〉 = y, [w]Ad∞ � Q

}
.

We sketch the proof of this theorem. We warn the reader that we skip some
details. We emphasize those parts of the proof that fail in the dyadic setting and
that need more careful treatment.

Proof. The third property of B implies that BQ(x, y) is not strictly bigger than the
right-hand side of (4.3). For the other direction, we take a point z = (x, y) ∈ ΩQ

and a function w, such that 〈w〉 = x, 〈log (w)〉 = y, and [w]Ad∞ � Q. Now we take
two intervals I±, such that I+ ∪ I− = I, I+ ∩ I− = right end of I−. We take

(4.4) z± = (x±, y±) =
(
〈w〉

I±
, 〈log (w)〉

I±

)
∈ ΩQ.

Assuming that the interval [z−, z+] lies in ΩQ, we write

B(z) � |I−|
|I| B(z−) +

|I+|
|I| B(z+).

Repeating this procedure, we split I± in two intervals, etc. On the nth step we
obtain N = 2n intervals, which we denote by In. Using the concavity of B, we
write

B(z) �
N∑

n=1

|In|
|I| B(zn),
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where zn =
(
〈w〉

In
, 〈log (w)〉

In

)
. We now introduce a pair of step functions. Let

uN (t) =
N∑

n=1

〈w〉
In

χIn(t) and vN (t) =
N∑

n=1

〈
log (w)

〉
In
χIn(t).

Then we have

B(z) �
∫
I

B
(
uN (t), vN (t)

)
dt.

If w is separated from 0 and ∞ then, by the Lebesgue differentiation theorem, we
get that

uN (t) → w(t) a.e. and vN (t) → log (w(t)) a.e.

Therefore,

B(z) �
∫
I

B
(
w(t), log (w(t))

)
dt =

∫
I

w(t) log (w(t)) dt =
〈
w log (w)

〉
.

In the chain above we used that B is bounded on compact sets, so we can apply
the Lebesgue dominated convergence theorem, and the second property of the
function B. The proof is finished. �

Remark 4.5. A careful reader can see two gaps in the proof above. First, we
never introduced a proper procedure for choosing the intervals I±. Second, we
focused on bounded and separated from 0 functions w without saying anything
about the general case. We refer to the paper [1], where all details are given.

Remark 4.6. We explain the main difficulty in the dyadic case. In the proof above
we had a formula (4.4). We claimed that z± = (x±, y±) =

(
〈w〉I± , 〈log(w)〉I±

)
∈

ΩQ. It was true for any intervals I±, thus we had a lot of freedom in choosing
these intervals I±. This was used in [1]. In the dyadic case we are forced to take I±
to be dyadic intervals! Therefore, we do not have any procedure for choosing I±
except for splitting I in two halves, etc. The main problem now is that we can
never be sure that the segment [z−, z+] lies entirely in the domain ΩQ.

Now we state the main theorem, that works in the dyadic setting. Let BQ be
the function, described above, defined in the domain ΩQ. For any Q0 > Q we
define ΩQ0 = Ω0, γQ0 = γ0, vQ0 = v0, aQ0 = a0, and BQ0(z) = B0(z), as we did
for Q.

Theorem 4.7. There exists a constant C, which does not depend on Q, and a
number Q0, such that 1 < Q < Q0 < CQ, and such that the function B0 has the
following additional property: whenever z, z+, z− ∈ ΩQ, and z = (z+ + z−)/2, the
following inequality holds:

2B0(z) � B0(z+) +B0(z−).

If r =
√
1− 1/Q then Q0 is given by equation

(1− r) log (γ0) +
1− r

γ0
− (1− r) − (1− r) log (1− r) − (1 + r) log (1 + r) = 0.

Remark 4.8. Notice that this equation defines γ0, which immediately defines Q0.
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Remark 4.9. We claim that we can take a larger domain and a function BQ0 ,
which is bigger than BQ, and which has the property: if the three points z, z±,
described above, lie in the small domain ΩQ, then 2B0(z) � B0(z+)+B0(z−), even
though the interval [z−, z+] does not lie even in ΩQ0 .

The fact that the solution Q0 of the equation above can be bounded by CQ
will be proved later. To emphasize the difficulty of the problem we prove a lemma,
that shows the difference of our problem from the problem solved in [18].

Lemma 4.10. For any constant C > 0, there exists a number Q > 1, and three
points z, z+, z− ∈ ΩQ, such that 2z = z+ + z− and such that for some value of
t ∈ (0, 1) we have [

t z+ + (1− t)z−
]
� C Q.

Remark 4.11. Lemma 4.10 shows that for any given Q0 = CQ there can be three
points in ΩQ, such that the interval [z−, z+] does not lie entirely in ΩQ0 .

We note that in [18] there existed a constant C, such that

z±, z =
z+ + z−

2
∈ ΩQ =⇒ [z−, z+] ⊂ ΩCQ.

This did not simplify the search for the best constant, but would immediately
give us linear dependence on [w]Ad∞ . If this were the case, we would simply take
Q0 = CQ, and since z±, z ∈ ΩQ implies [z−, z+] ∈ ΩQ0 , where BQ0 is locally
concave, we would get 2BQ0(z) � BQ0(z+) +BQ0(z−).

Since such a C does not exist, we are forced to continue our investigation.

Proof. This is an easy calculation. In fact, these points are z− = (1 − r, log 1−r
Q ),

z = (1, log 1
Q ), and z+ = (1 + r, log (1 + r)). �

As a consequence of Theorem 4.7 we get the following.

Theorem 4.12. For every point z = (x, y) ∈ ΩQ the following inequality holds:

B0(z) � sup
{
〈w log (w)〉 : 〈w〉 = x, 〈log (w)〉 = y, [w]Ad∞ � Q

}
.

Proof. We take a point z, 1 � [z] � Q, and a function w, such that 〈w〉 = x,
〈log (w)〉 = y, and [w]Ad∞ � Q.

Case 1: w is bounded away from 0 and ∞. We take I0 = I, and we take I11,2 to
be the left and right halves of I. Then I21,2,3,4 are quarters of I, etc. For every k and

n we have zkn
(
〈w〉Ik

n
, 〈log (w)〉Ik

n

)
∈ ΩQ, and every zkn is the center of an interval

that corresponds to a “child” of Ikn. Therefore, for a fixed k,

B0(z) �
∑
n

|Ikn |
|I| B0(z

k
n) =

∫
I

B0

(
uk(t), vk(t)

)
dt,

where

uk(t) =
∑
n

〈w〉Ik
n
χIk

n
(t), and vk(t) =

∑
n

〈log (w)〉Ik
n
χIk

n
(t).
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Since w is separated from 0 and ∞, we get

uk(t) → w(t), a.e. and vk(t) → log (w(t)), a.e.

Since we have countably many intervals {Ikn}n,k, the set Z = {zkn} is compact, and
thus the function B0 is bounded on Z. Therefore, by the Lebesgue Dominated
Convergence Theorem,

B0(z) �
〈
w log (w)

〉
.

Case 2 : arbitrary w. Here we sketch the proof, as it is the same as in [1]. We
take

wn(t) =

⎧⎪⎨
⎪⎩
n, w(t) � n

w(t), 1 � w(t) � n

1, w(t) � 1.

Then, as follows from [16], [wn]Ad∞ � Q. By the case 1 we get

B0(z) �
〈
wn log (wn)

〉
=

∫
{t : w(t)�1}

wn log (wn).

On the set {t : w(t) � 1} the sequence wn(t) log (wn)(t) increases to w(t) log (w(t)),
and passing to the limit, we get

B0(z) �
∫
{t : w(t)�1}

w(t) log (w(t)) dt �
∫
I

w(t) log (w(t)) dt =
〈
w log (w)

〉
.

The last inequality holds simply because on the set w(t) < 1 we have

w(t) log (w(t)) � 0. �

The rest of this section is devoted to the proof of the Theorem 4.7. The
impatient reader can skip this proof since it does not involve any weight theory.

4.5.3. Proof of the Theorem 4.7: reminder. First we would like to recall
some notation. We fix a number Q, Q > 1. In what follows the number Q0 is
always bigger than Q.

For every point z = (x, y) such that xe−y ∈ [1, Q] we write [z] = xe−y. More-
over, numbers γ0, v = v0, and a = a0 are defined implicitly by

γ0 − log (γ0) = 1 + log (Q0), y =
γ0 · x
v

+ log (v)− γ0, and a =
v

γ0
.

In what follows points the z± are such that 2z = z+ + z−, and v± and a± are
defined as above for these points. Our “larger” function is defined by

B0(x, y) = x · log (v) + x− v

γ0
.

Furthermore,

ΓQ = {z : [z] = Q}, ΓQ0 = {z : [z] = Q0}, and Γ = Γ1 = {z : [z] = 1}.

We sometimes refer to ΓQ as a Q-boundary and to ΓQ0 as a Q0-boundary.
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We start with the following easy lemma.

Lemma 4.13. Suppose

F
(
x, y, x+, y+, x−, y−

)
= 2B0(x, y)−B0(x−, y−)−B0(x+, y+).

If F (x, y, x+, y+, x−, y−) � 0, then for every number C > 0, there holds

F
(
Cx, y + log (C), Cx+, y+ + log (C), Cx−, y− + log (C)

)
� 0.

Proof. This follows immediately from the homogeneity of B0, namely, B0(Cx, y+
log(C)) = Cx log(C) + CB0(x, y). �

Lemma 4.13 allows us to choose C = 1/x and always think that x = 1.
We first start with positions of z and z± that are “worst” in some sense. Later

we shall see that in fact the next section is not needed at all. However, for the
sake of completeness we keep it.

4.5.3.1. Remark about notation. Abusing notation, we always denote by Δ
the expression

Δ = 2B0(z)−B0(z+)−B0(z−).

However, in different sections the same letter Δ will depend on (and be differenti-
ated in) different variables. We will always specify on which variables it depends.

4.5.4. Proof of Theorem 4.7. First step. We start our investigation with
the case when z± and z are on the boundary of ΩQ. Since z and z± are fixed, Δ
depends only on Q0.

Our first case is when two of these points are on ΓQ and the third is on Γ. Our
second case is when two of them are on Γ and the third is on ΓQ. Moreover z ∈ ΓQ

always.
We remind the reader that in 4.5.4.1, 4.5.4.2 and 4.5.4.3 we will have different

Δ(Q). The reason is that we are going to fix different points z± and z.

4.5.4.1. z− ∈ ΓQ and z+ ∈ Γ. We have z = (1, log(1/Q)).

We define z+ = (1+r, log (1+r)) and z− = (1−r, log((1 − r)/Q)), r � 0. Then,
since 2y = y+ + y−, we obtain 2 log(1/Q) = log((1− r2)/Q), so r2 = 1− 1/Q, and
thus r =

√
1− 1/Q. Then we have:

z− =
(
1− r, log

1− r

Q

)
, z =

(
1, log

1

Q

)
, z+ =

(
1 + r, log (1 + r)

)
.

Theorem 4.14. Take Q0 = Q. Then we get γ0 = γ, B0 = B, and v, associated
with Q. Define

Δ = Δ(Q) = 2B(z)−B(z−)−B(z+).

Then Δ � 0.
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We notice that now Δ depends on Q, and the variable Q is not smaller than 1.
Theorem 4.14, together with next lemma, gives us what we want.

Lemma 4.15. For fixed points z, z± ∈ ΩQ, Δ(Q0) = 2B0(z)− B0(z−)−B0(z+)
is an increasing function with respect to Q0 on the set {Q0 : Q0 � Q}.

Lemma 4.15 shows that if our initial B was “concave” enough, then the “en-
larged” B0 is also “concave” enough.

Proof of Lemma 4.15. By definition,

z− =
(
1− r, log

1− r

Q

)
, z =

(
1, log

1

Q

)
, z+ =

(
1 + r, log (1 + r)

)
.

We have points v, v± ∈ Γ, associated with z, z± and calculated in the enlarged
domain. Namely,

γ0 − log (γ0) = 1 + log (Q0)(4.5)

log
1

Q
=

γ0
v

+ log (v)− γ0(4.6)

log
1− r

Q
=

γ0(1− r)

v−
+ log (v−)− γ0,(4.7)

v+ = 1 + r.(4.8)

In particular we see that v− = (1− r)v. Since

B0(z) = x log (v) +
x− v

γ0
,

and since 2x− x+ − x− = 0, one gets

Δ(Q0) = 2 log v − (1− r) log (v−)− (1 + r) log (v+)−
1

γ0

(
2v − v− − v+

)
= 2 log v − (1− r) log (v)− (1− r) log (1− r)− (1 + r) log (1 + r)

− 1

γ0

(
2v − (1− r)v − (1 + r)

)
= (1 + r)

(
log (v)− v − 1

γ0

)
− (1− r) log (1− r)− (1 + r) log (1 + r).

The last two terms do not depend on Q0 at all, so we consider only

f(Q0) = log (v)− v − 1

γ0
.

We clearly have

γ′
0 −

γ′
0

γ0
=

1

Q0
,
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so

γ′
0 =

γ0
(γ0 − 1)Q0

.

Differentiating the equality

log
1

Q
=

γ0
v

+ log (v)− γ0

with respect to Q0, we get

0 =
γ′
0

v
− γ0

v2
v′ +

v′

v
− γ′

0,

so

0 =
v′

v

(
1− γ0

v

)
− γ′

0

(
1− 1

v

)
,

v′

v

v − γ0
v

=
v − 1

v

γ0
(γ0 − 1)Q0

,

v′

v
=

1− v

v − γ0

1

1− γ0

γ0
Q0

.

Now we differentiate f(Q0). We recall that

f(Q0) = log (v)− v − 1

γ0
= log (v) +

1− v

γ0
,

so

f ′(Q0) =
v′

v
+

−v′γ0 − γ′
0(1− v)

γ2
0

=
1− v

v − γ0

1

1− γ0

γ0
Q0

− v′

γ0
− γ0(1− v)

(γ0 − 1)Q0

1

γ2
0

=
1− v

v − γ0

1

1− γ0

γ0
Q0

− 1− v

v − γ0

1

1− γ0

v

Q0
+

1− v

1− γ0

1

Q0γ0

=
1− v

(1− γ0)Q0

( γ0
v − γ0

− v

v − γ0
+

1

γ0

)
=

1− v

(1− γ0)Q0

( 1

γ0
− 1

)
� 0,

since v < 1 and γ0 < 1. This finishes the proof. �

Proof of Theorem 4.14. We return to Q, γ, B, and v, calculated for γ. We recall
that in the statement of the theorem, Q0 = Q.

Recall that

z− =
(
1− r, log

1− r

Q

)
, z =

(
1, log

1

Q

)
, z+ =

(
1 + r, log (1 + r)

)
.

Our v and v± can be written explicitly in terms of γ. Indeed,

v− = γ (1− r) v = γ and v+ = 1+ r.
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Then

Δ = 2B(z)−B(z−)−B(z+)

= 2
(
log (γ) +

1− γ

γ

)
−
(
(1− r) log (γ(1− r)) +

1− r − (1− r)γ

γ

)
− (1 + r) log (1 + r)

= 2 log (γ) +
2

γ
− 2− (1−r) log (γ)− (1−r) log (1−r)− 1−r

γ
+ (1−r)

− (1 + r) log (1 + r)

= (1 + r) log (γ) +
1 + r

γ
− (1+r) − (1−r) log (1−r)− (1+r) log (1+r).

We notice that 1− r2 = 1/Q, so log (1 + r) = log 1
Q − log (1− r). Therefore,

Δ = (1 + r)
(
log (γ) +

1

γ
− 1− log

1

Q

)
− (1− r) log (1− r) + (1 + r) log (1− r)

= (1 + r)
(
log (γ) + log (Q) +

1

γ
− 1

)
+ 2r log (1− r)

= (1 + r)
(
γ +

1

γ
− 2

)
+ 2r log (1− r).

We would like to know that Δ � 0. Surprisingly, we can show it. Here is the
chain of awful estimates. We define

f(Q) = Δ.

Notice that

γ′(Q) =
γ

Q(γ − 1)
and r′(Q) =

1

2r Q2
.

The second equality is true since r2 − 1 = −1/Q.
We notice that if Q = 1 then r = 0 and γ = 1, so f(1) = 0. We claim that

f ′(Q) � 0, which will give the desired result.
We have

f ′(Q) =
(
γ+

1

γ
−2

) 1

2r Q2
+(1+r)

(
1− 1

γ2

) γ

Q(γ − 1)
+
(
2 log (1−r)− 2r

1− r

) 1

2r Q2
.

We notice that γ + 1/γ − 2 � 0 and we discard it. Therefore,

f ′(Q) � (1 + r)
(
1− 1

γ2

) γ

Q(γ − 1)
+
(
2 log (1− r)− 2r

1− r

) 1

2r Q2

=
1 + r

Q

γ + 1

γ
+

log (1− r)

r Q2
− 1

Q2

1

1− r
.

We now use that
1

1− r
=

1 + r

1− r2
= Q(1 + r),
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thus

f ′(Q) � 1

Q

[
1 + r +

1 + r

γ
+

log (1− r)

r Q
− Q(1 + r)

Q

]
=

1

Q

[
1 + r +

1

Qγ(1− r)
+

log (1− r)

r Q
− (1 + r)

]

=
1

Q2 r

[ r

γ(1− r)
+ log (1− r)

]
.

Finally, 0 � 1− r < 1, so r/(γ(1− r)) > r/γ, and therefore

f ′(Q) � 1

Qr2

[ r
γ
+ log (1− r)

]
.

We now define
g(Q) =

r

γ
+ log (1− r).

Again, g(1) = 0. We are going to prove that g′(Q) � 0. Indeed,

g′(Q) =
1

γ

1

2r Q2
− r

γ2

γ

Q(γ − 1)
− 1

1− r

1

2r Q2
=

1

2r Q2

[ 1
γ
− 1

1− r
− 2r2Q

γ(γ − 1)

]
.

But r2Q = (1− 1/Q)Q = Q− 1, which implies

g′(Q) =
1

2r Q2

[ 1
γ
− 1

1− r
− (Q− 1)

2

γ(γ − 1)

]
=

1

2r Q2

[ 1
γ
− 1

1− r
− 2(Q− 1)

( 1

γ − 1
− 1

γ

)]
=

1

2r Q2

[ 1
γ
− 1

1− r
− 2

Q− 1

γ − 1
+

2Q

γ
− 2

γ

]
Again 1/(1− r) = Q(1 + r), so

2r Q2 ·g′(Q) = − 1

γ
+2

Q − 1

1− γ
+

2Q

γ
−Q(1+ r) =

Q− 1

γ
+2

Q− 1

1− γ
+Q

(1
γ
− r−1

)
.

The first two terms are clearly nonnegative. To check that the last one is nonneg-
ative we do the following. The number γ satisfies the equation ϕ(t)− log (Q) = 1,
where ϕ(t) = t − log (t). The function ϕ is a decreasing function if t ∈ (0, 1]. So
if we prove that ϕ(1/(1 + r))− log (Q) � 1 then we get that 1/(1 + r) � γ, which
means that 1/γ � 1 + r. Thus,

ϕ
( 1

1 + r

)
− log (Q) =

1

1 + r
+ log (1 + r) − log (Q);

the derivative of this expression with respect to Q is( 1

1 + r
− 1

(1 + r)
2

) 1

2r Q2
− 1

Q
=

1

Q

[ r

(1 + r)
2

1

2r Q2
− 1

]
=

1

Q

[ 1

2Q2(1 + r)
2 − 1

]
.
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Since Q > 1 and r > 0, we have 2Q2(1+ r)
2
> 2, so the derivative is negative, and

therefore

ϕ
( 1

1 + r

)
− log (Q) � ϕ(1) = 1.

This completes the proof. �

4.5.4.2. z− ∈ Γ, z+ ∈ ΓQ. In this case we still have r =
√
1− 1/Q, but

z− =
(
1− r, log (1− r)

)
, z =

(
1, log

1

Q

)
, z+ =

(
1 + r, log

1 + r

Q

)
,

and

v− = 1− r, v = γ, v+ = γ(1 + r).

So,

Δ(Q) = 2 log (γ) +
2

γ
− 2− (1− r) log (1− r)

−
(
(1 + r) log (γ(1 + r)) +

1 + r − (1 + r)γ

γ

)
= 2 log (γ) +

2

γ
− 2− (1− r) log (1− r) − (1 + r) log (γ)

− (1 + r) log (1 + r) − 1 + r

γ
+ (1 + r)

= (1− r) log (γ) +
1− r

γ
− (1− r) − (1− r) log (1− r) − (1 + r) log (1 + r).

Unfortunately, this expression is negative. To prove it one can take Q very large
and calculate the asymptotics of the last expression. We have no intention to do
it. However, the interested reader can draw the graph of Δ(Q) in, say, Maple, and
see that the function is negative. We now fix our choice of Q0.

Definition 4.16. We define Q0 as the solution of Δ(Q0) = 0 such that Q0 � Q.

We notice that this choice of Q0 is as in Theorem 4.7.
This definition leaves two questions: whether such a Q0 exists and, more com-

plicated, whether there is a uniform estimate Q0 � C ·Q, where C does not depend
on Q. Fortunately the answers to both questions are affirmative.

Lemma 4.17. If z and z± are as above, then for every point (u, v) ∈ [z−, z+] the
following holds: u e−v � CQ, where C is some uniform constant.

This lemma shows that if we takeQ0 = CQ then the functionBQ0 will be locally
concave in the domain ΩQ0 , and the line segment [z−, z+] lies in this domain. Since
Δ(Q) � 0 and Δ(CQ) � 0, we immediately get that between Q and CQ there is
some Q0 for which Δ(Q0) = 0. We prove Lemma 4.17 in Section 5.
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4.5.4.3. z± ∈ Γ. In this case we change our choice of r. We have z± = (1± r,
log (1± r)) and z = (1, log(1/Q)). Since log (1− r2) = 2 log(1/Q), we get 1− r2 =
1/Q2, or r =

√
1− 1/Q2.

As in the first case, we prove two propositions.

Lemma 4.18. Δ(Q) � 0 and for every Q0 � Q we have Δ(Q0) � Δ(Q).

Proof. We start with the second fact. We always have v± = 1± r, and so

Δ(Q0) = 2 log v + 2
1− v

γ0
− (1− r) log (1− r) − (1 + r) log (1 + r).

We have already seen that the sum of first two terms increases when Q0 increases,
and last two terms do not depend on Q0.

For the first part, notice that when Q0 = Q we have v = γ, and so

Δ(Q) = 2 log (γ) + 2
1− γ

γ
− (1− r) log (1− r) − (1 + r) log (1 + r).

We have

γ′ =
γ

Q(γ − 1)
, r′ =

1

r Q3
.

The second equality is new because r is different from what it was in cases 1 and 2.
So,

Δ′ =
2

Qγ
+

1

rQ3
log

1− r

1 + r
=

2

γQ

1

rQ3
log

(1− r)
2

1− r2
=

2

Q

[ 1
γ
+

log (Q −
√
Q2 − 1)

Q
√
Q2 − 1

]
.

We leave the proof that this expression is positive as an easy exercise. We note
that for large values of Q the second term in brackets is negative, and so the first
term “pulls” the whole expression above zero. Finally, we get Δ(Q) � Δ(1) = 0,
and we are done. �

4.5.5. Proof of Theorem 4.7: change of variables.

4.5.5.1. Discussion. We remind the reader that in the general case we basically
have four variables: x± and y±. Then the center point z = (1, y) is given by
2 = x+ + x− and 2y = y++ y−. The first equation lets us get rid of x−, and so we
have three variables: x+, y−, and y+. These variables have rather a complicated
domain. Here are the inequalities that define this domain:

x+ e−y+ ∈ [1, Q], (2− x+) e
−y− ∈ [1, Q] and e−(y++y−)/2 ∈ [1, Q].

This domain is somewhat inconvenient for us. The explanation is the following.
We want to minimize some function on this domain. In the interior we will be able
to do it, but then we should switch to the boundary, that is “curved”.

It would be more convenient to introduce different variables, for example,
x+e

−y+ and x−e−y− . Their domain is [1, Q]× [1, Q], which looks better. However,
these variables are still not good enough. Now we introduce the “best” variables.
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4.5.5.2. New variables. We define

α = y − log
1

Q0
= y + log (Q0), α+ = y+ − log

x+

Q0
, α− = y− − log

2− x+

Q0
.

In fact, α and α± are the vertical distances from the points z and z± to ΓQ0 . For
a fixed α we have three variables: x+, α+ and α−. They are related by equation

(4.9) 2α = α+ + α− + log (x+) + log (2− x+).

So α± and x+ are on some manifold, and to minimize a function of these three
variables we should use Lagrange multipliers.

4.5.5.3. New domain. Fix α ∈ [log(Q0/Q), log (Q0)]. We have following in-
equalities for α± and x+:

α± ∈
[
log(Q0/Q), log (Q0)

]
, x+ ∈ [1, 2), and α+ + α− � 2α.

The last inequality follows from the fact that log (x+) + log (2− x+) � 0.
We also notice that in fact x+ can not assume all values in [1, 2). We ignore

this fact, because from the (4.9), x+ can be calculated in terms of α±. During the
proof the reader will see what we mean.

So for any fixed α we pay attention only to the domain of α±. We investigate
how the domain looks. We notice that, since α � log(Q0/Q), the line α++α− = 2α
intersects the square [ log(Q0/Q), log (Q0)]×[ log(Q0/Q), log (Q0)] (in the (α−, α+)
plane).

We notice that domain will look different when α � log (Q0) − 1
2 log (Q) and

when α is smaller than this number. The reason is that the vertex α− = log (Q0),
α+ = log(Q0/Q) may lie below the line α+ + α− = 2α.

Therefore, the domain of α− and α+ looks as follows.

α+

α−

log Q0

Q

log(Q0)

α+ + α− = 2α

α+

α−

log Q0

Q

log(Q0)

α+ + α− = 2α

We are going to study these two cases together. We shall prove that if the
global minimum of 2B0(z)−B0(z+)−B0(z−) is strictly negative then it is obtained
neither in the interior, nor in the interiors of the edges. Then we will investigate the
vertices. As the reader can see, edges and vertices where α++α− = 2α correspond
to vertical segments [z−, z+] and therefore are trivial.

Thus, the second case yields one interesting case α+ = α− = log (Q0), and the
first case will give the same vertex and α+ = log(Q0/Q), α− = log (Q0).

After this summary, we give all details of searching for possible global minima.
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4.5.5.4. Old variables and new variables. We now need to recalculate the
old variables in terms of the new ones. In particular, we need to relate v and v±
with α and α± respectively. We will show in a moment that this is possible. The
reason is that α is closely related to the number a, the first coordinate of a point,
where the tangent line to ΓQ0 , �(z), “kisses” ΓQ0 .

Take any point z = (x, y) in ΩQ. We for some time forget that x = 1, and do
calculations for arbitrary x. We do this because then the same calculations will
serve for z±.

We say one more time that now v and a correspond to Q0, so we should write
v0 and a0, but to keep the notation simple we do not do this.

We write the equation of the line �(z), tangent to ΓQ0as

y =
γ0 x

v
+ log (v)− γ,

so
α = y − log

x

Q0
=

γ0 x

v
+ log (v)− log (x) + log (Q0)− γ0.

Using the definition of γ0, we obtain

α =
γ0 x

v
+ log (v)− log (x)− 1− log (γ0) =

γ0 x

v
− log

γ0 x

v
− 1.

We now introduce the function

f(t) = t− log (t)− 1, t > 0.

This function has already appeared in the definition of γ0. The function f is
decreasing from +∞ to 0 when t ∈ (0, 1] and therefore has an inverse

g(t) = f−1(t), g : [0,∞) → (0, 1].

We now have an equation

α = f
(γ0
x

v
)
.

We notice that x � a, so γ0 x � γ0 a = v, and so g(f(γ0 x/v)) = γ0 x/v. Therefore,
we write

γ0 x

v
= g(α),
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or
v =

γ0 x

g(α)
.

In particular we notice that g(α) = x/a. Basically this is the geometric meaning
of α.

The above equation with the particular points z = (1, y) and z± gives

v =
γ0
g(α)

, v+ =
γ0 x+

g(α+)
, and v− =

γ0 x−
g(α−)

.

We are now ready to introduce the function that we want to minimize.

4.5.5.5. The function Δ in the new variables. We remind the reader that
we fix α and have three variables x+, α+, and α− on the manifold

2α = α+ + α− + log (x+) + log (2− x+).

We also remind the reader that x− = 2−x+ and x = 1. Therefore, our function Δ
will be

Δ(x+, α+, α−) = 2B0(z)−B0(z+)−B0(z−)

= 2
(
log (v) +

1− v

γ0

)
−
(
x+ log (v+) +

x+ − v+
γ0

)
−
(
(2− x+) log (v−) +

2− x+ − v+
γ0

)
.

We now want to rewrite the last expression in terms of α± and x+. We get

Δ =
(
2x log v − x+ log v+ − x− log v−

)
− 1

γ0
(2v − v+ − v−)

= 2 log
1

g(α)
− x+ log

x+

g(α+)
− (2− x+) log

2− x+

g(α−)
− 2

g(α)

+
x+

g(α+)
+

2− x+

g(α−)
.

Due to the importance of this function, we write the final result separately:

Δ(x+, α+, α−) = 2 log
1

g(α)
− x+ log

x+

g(α+)
− (2− x+) log

2− x+

g(α−)

− 2

g(α)
+

x+

g(α+)
+

2− x+

g(α−)
.

Now we will to minimize it.

Theorem 4.19. 1) For a fixed α � log (Q0)− 1
2 log (Q) there holds

(4.10) minΔ(x+, α+, α−)

= min
[
0,Δ

(
x̂+, log (Q0), log (Q0)

)
,Δ

(
x̃+, log

Q0

Q
, log (Q0)

)]
,

where x̂+ is a solution of 2α = 2 log (Q0)+ log (x+)+ log (2− x+) x+ � 1, and x̃+

is a solution of 2α = log (Q0) + log(Q0/Q) + log (x+) + log (2− x+), x+ � 1.
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2) For a fixed α > log (Q0)− 1
2 log (Q) the following holds:

minΔ
(
x+, α+, α−

)
= min

[
0,Δ

(
x̂+, log (Q0), log (Q0)

)]
.

Remark 4.20. We notice that a nonzero minimum may be attained only on the
vertices.

4.5.5.6. Derivatives of Δ. Before we form the Lagrangian, we calculate the
derivatives of Δ with respect to α+, α− and x+. First of all,

g′(t) =
1

f ′(g(t))
=

g(t)

g(t)− 1
.

So,
∂Δ

∂α+
=

x+

g(α+)

g(α+)

g(α+)− 1
− x+

g(α+)
2

g(α+)

g(α+)− 1
=

x+

g(α+)
.

Similarly,
∂Δ

∂α−
=

2− x+

g(α−)
.

Finally, we take the derivative with respect to x+.

∂Δ

∂x+
= − log

x+

g(α+)
− 1 + log

2− x+

g(α−)
+ 1 +

1

g(α+)
− 1

g(α−)

= − log
x+

g(α+)
+ log

2− x+

g(α−)
+

1

g(α+)
− 1

g(α−)
.

4.5.5.7. Step 1: interior of the domain. Suppose we are in the interior of
domain of α+ and α−. We define a Lagrangian:

L
(
x+, α+, α−, λ

)
= Δ

(
x+, α+, α−

)
− λ ·

(
α+ +α− + log (x+) + log (2− x+)− 2α

)
.

Differentiating L with respect to α±, we obtain

x+

g(α+)
=

2− x+

g(α−)
= λ.

These equalities mean that

g(α+) =
x+

λ
, g(α−) =

2− x+

λ
.

Applying f to both sides, and recalling that f(g(t)) = t, we get

α+ = f
(x+

λ

)
=

x+

λ
− log (x+) + log (λ)− 1,

α− = f
(2− x+

λ

)
=

2− x+

λ
− log (2− x+) + log (λ)− 1.

We substitute these equalities into

α+ + α− − 2α+ log (x+) + log (2− x+) = 0.
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By direct calculation,

α =
1

λ
+ log (λ) − 1 = f

(1
λ

)
.

We notice that 1/λ = g(α+)/x+ � g(α+) � 1, and so g(f(1/λ)) = 1/λ.
Notice that this would not be true if λ was less than 1.
So, g(α) = 1/λ (in fact, from this equation we find λ). Now we can calculate Δ

at our point:

Δ = 2 log (λ)− x+ log (λ)− (2− x+) log (λ) − 2λ+ λ+ λ = 0.

4.5.5.8. Conclusion. From the calculation above we conclude the following:
either the global minimum of Δ is zero, or the global minimum is attained on the
boundary.

4.5.5.9. Step 2: reduction to the case α− � α+. We now prove a technical
but very useful lemma. It will show that it is sufficient to minimize Δ only on half
of our domain, when α− � α+. This will show that we do not need to consider
the edges α+ = log (Q0) and α− = log(Q0/Q), except for vertices.

Lemma 4.21. Fix x+ and let

Δ(α+, α−) = Δ(x+, α+, α−) = 2 log
1

g(α)
− x+ log

x+

g(α+)
− (2− x+) log

2− x+

g(α−)

− 2

g(α)
+

x+

g(α+)
+

2− x+

g(α−)
.

If u > v then Δ(u, v) � Δ(v, u).

Remark 4.22. Hence, if α+ > α− then Δ(α+, α−) � Δ(α−, α+), and so if the
global minimum is attained on the boundary, it is necessarily attained on the part
where α+ � α−.

Remark 4.23. Notice that this lemma is natural. As we have seen from the
investigation of the cases where z and z± are on the boundary, the worst case
happens when z− ∈ Γ and z+ ∈ ΓQ. This corresponds to α− = log (Q0) and
α+ = log(Q0/Q), which is smaller than α−.

Proof of Lemma 4.21. First, since u > v we have g(u) < g(v) � 1. We define
t = g(u) and s = g(v), so t < s � 1. We have

Δ(u, v)−Δ(v, u) = x+ log (t) + (2− x+) log (s) +
x+

t
+

2− x+

s

−
(
x+ log (s) + (2− x+) log (t) +

x+

s
+

2− x+

t

)
= (2x+ − 2) log (t) +

2x+ − 2

t
+ (2− 2x+) log (s) +

2− 2x+

s

= (2x+ − 2)
(1
t
+ log (t)− 1

s
− log (s)

)
.
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Define ϕ(x) = 1/x + log (x). Then ϕ′(x) = 1/x − 1/x2 = (x− 1)/x2 < 0 when
x � 1. Since t < s � 1, we get

Δ(u, v)−Δ(v, u) � 0. �

4.5.5.10. Step 3: α+ + α− = 2α. In this case x+ = 1, and so 2−x+ = 1, and
we have a vertical line segment [z−, z+]. It lies entirely in ΩQ, where the function
B0 is locally concave. Therefore, Δ � 0.

4.5.5.11. Step 4: α− = log (Q0). In this case our manifold is

2α = α+ + log (Q0) + log (x+) + log (2− x+).

Keeping in mind that α− is fixed and we cannot differentiate with respect to it,
we write the same Lagrangian as before, and take derivatives with respect to α+

and x+. We have

L
(
x+, α+, α−, λ

)
= Δ

(
x+, α+, α−

)
− λ ·

(
α+ +α− + log (x+) + log (2− x+)− 2α

)
,

and so
x+

g(α+)
= λ.

In particular, we again get that λ � 1. We now differentiate with respect to x+,
getting

− log
x+

g(α+)
+ log

2− x+

g(α−)
+

1

g(α+)
− 1

g(α−)
− λ

( 1

x+
− 1

2− x+

)
= 0.

Using the equality x+/g(α+) = λ, we obtain

− log (λ) + log
2− x+

g(α−)
− 1

g(α−)
+

λ

2− x+
= 0,

and thus

f
( λ

2− x+

)
= f

( 1

g(α−)

)
.

We notice that 2 − x+ � 1 and λ � 1, so λ/(2− x+) � 1. Since f(t) increases
when t � 1, we obtain

λ

2− x+
=

1

g(α−)
.

The same equation we had when we were investigating the interior. As we have
seen, this equation implies Δ = 0.

4.5.5.12. Step 5: α+ = log(Q0/Q). This edge is more delicate. Here we
differentiate with respect to α− and x+:

2− x+

g(α−)
=λ, − log

x+

g(α+)
+log

2− x+

g(α−)
+

1

g(α+)
− 1

g(α−)
−λ

( 1

x+
− 1

2− x+

)
= 0.
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Substituting the first equality into the second, we get

− log
x+

g(α+)
+ log (λ) +

1

g(α+)
− λ

x+
= 0.

Similar to the previous step, we get f(λ/x+) = f(1/g(α+)). However now we
cannot say that λ/x+ � 1, and so we cannot conclude that λ/x+ = 1/g(α+). We
show how to finish the proof without this conclusion. We also warn the reader
that this proof would not work in the previous step because it is tied to the fact
that x+ is on the Q-boundary of ΩQ.

We now proceed as follows:
x+

g(α+)
− x+ log

x+

g(α+)
= λ− x+ log (λ).

Substituting this in Δ, we get

Δ = 2 log
1

g(α)
+ λ− x+ log (λ)− 2 log (λ)− 2

g(α)
+ λ = 2

(
f(λ)− f

( 1

g(α)

))
= 2

(
f
(2− x+

g(α−)

)
− f

( 1

g(α)

))
.

Notice that if (2− x+)/g(α−) � 1/g(α) � 1 then, due to the monotonicity of f(t),
we get that Δ � 0. Therefore, we should prove that Δ is nonnegative when
(2− x+)/g(α−) < 1/g(α). The following lemma proves this fact.

Lemma 4.24. If (2 − x+)/g(α−) < 1/g(α) then the line segment [z−, z+] lies
entirely in ΩQ0 and, consequently, 2B0(z)−B0(z+)−B0(z−) � 0.

Before proving this lemma we need an observation related to the geometry
of ΩQ.

Take the point z+, which in our case lies on ΓQ, and take the tangent to ΓQ

at this point. Since we assume that x+ > x− and y+ > y−, we get the following:
if the segment [z−, z+] passes above this tangent line, then it lies entirely in ΩQ,
and the fact stated in the lemma is true. Hence the only interesting case is when
[z−, z+] passes below this tangent. This means that it leaves ΩQ near z+, and then
returns before it “hits” the point z. Therefore, the segment [z−, z] lies in ΩQ, so
the only problem can occur between z and z+.

z+

z−

z
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Lemma 4.24 is a consequence of the following one.

Lemma 4.25. Suppose p � a � 1, α = 1/a − log(1/a) − 1, and α+ = p/a −
log(p/a)− 1. If the line segment [z−, z+] does not lie entirely in ΩQ0 then x+ � p.

Proof. Such a and p exist, because for every u > 0 the equation t− log (t)− 1 = u
has two solutions, one of which is less than 1, and the other of which is larger
than 1.

We take our point (1, y) and draw the tangent to ΓQ0 that goes to the right.
Since the only possibility for [z−, z+] to be outside of ΓQ is that part of [z, z+]
is outside, we do not care about z−. If [z, z+] goes above this tangent, then it is
in ΩQ0 , and so the only “bad” case is when [z, z+] goes below the tangent. Suppose
that the tangent “kisses” ΓQ0 at point (a, log(a/Q0)). Then the equation (in the
(x1, x2) plane) is

x2 − y =
1

a
(x1 − 1).

Since a satisfies the equation, and since α = y + log (Q0), we get

1

a
− log

1

a
− 1 = α.

Now take the point (p, log(p/Q)) – the point where the tangent intersects ΓQ for
the second time. This is the first time when the segment [z, z+] can return to ΩQ

(if it ever left). Since z+ is on the right-hand side of the reentry point, we have
x+ > p. Let us find p.

z
(a, log a

Q0
)

(p, log p
Q
)

z+

We have

log
p

Q
− y =

p

a
− 1

a
,

and so, since α+ = log(Q0/Q), we get

α+ =
p

a
− log

p

a
− 1.

Hence both a and p are as in the statement of the lemma, which finishes the
proof. �
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Now we prove the Lemma 4.24.

Proof. Suppose that [z−, z+] does not lie in ΩQ0 . Then x+ � p, which implies
x+/a � p/a > 1, so f(x+/a) � α+. Next, we have

2α = α++α−+log (x+)+log (2−x+) �
x+

a
−log

x+

a
−1+α−+log (x+)+log (2−x+).

Recall that 1/a− log(1/a)− 1 = α, so

2α � x+ − 1

a
+

1

a
− log

1

a
− 1 + α− + log (2− x+),

thus

α � x+ − 1

a
+ α− + log (2− x+).

Using the equation for a and α again, we get

2− x+

a
− log

2− x+

a
− 1 � α−,

so

f
(2− x+

a

)
� α−.

We apply g to both sides. We see that 2−x+ = x−, while a > 1, so g(f((2− x+)/a))
= (2− x+)/a, therefore

2− x+

a
� g(α−),

and so
2− x+

g(α−)
� a.

We know that α = f(1/a) and a > 1, so g(α) = 1/a implies

2− x+

g(α−)
� 1

g(α)
.

This contradicts the assumption of our lemma. �

We claim that Theorem 4.19 is proved. Indeed, the global minimum is either 0
or attained on the boundary. On the boundary it is either again 0 or is attained
on vertices. However, the vertices where α+ + α− = 2α give a nonnegative result,
so the minimum can be attained only at the vertices indicated in the statement of
the theorem.

4.5.5.13. Step 6: Vertex α+ = α− = log (Q0). In this case,

α = log (Q0) +
1

2
log

(
x+(2− x+)

)
.
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We obtain bounds for x+. Clearly, x+ � 1, and this bound is accessible when
x+ = x− = 1. Since α � log(Q0/Q), we get x+(2 − x+) � 1/Q2, which means
that x+ � 1+

√
1− 1/Q2. As we know from Section 4.5.4.3, this is also accessible

when x ∈ ΓQ. Hence, x+ ∈ [1, 1 + r], where r =
√
1− 1/Q2.

We now treat α+ as a function of x+ and, therefore, our Δ becomes a function
of x+. We have

Δ(x+) = 2 log
1

g(α)
− 2

g(α)
−x+ log (x+)−(2−x+) log (2−x+)−2 log

1

g(α+)
+

2

g(α+)
.

Again from Section 4.5.4.3 we have that Δ(1 + r) � 0. We intend to prove that
Δ′ � 0. Then we will be done with this case. We first notice that

∂α

∂x+
=

1

2

( 1

x+
− 1

2− x+

)
.

Therefore,

Δ′(x+) =
2

g(α)
· 1
2

( 1

x+
− 1

2− x+

)
− log (x+) + log (2− x+)

=
1

g(α)x+
− log (x+)−

1

g(α)(2− x+)
+ log (2− x+)

=
1

g(α)x+
+ log

1

g(α)x+
−
( 1

g(α)(2− x+)
+ log

1

g(α)(2− x+)

)
.

The last equality is obtained by adding and subtracting log(1/g(α)). We notice
that the function s �→ 1/s+ log(1/s) is decreasing, and g(α)x+ � g(α)(2 − x+).
Therefore, Δ′(x+) � 0, which finishes the proof in this case.

4.5.5.14. The vertex α+ = log(Q0/Q), α− = log (Q0). Now we set α+ =
log(Q0/Q) and α− = log (Q0), so

α = log (Q0)−
1

2
log (Q) +

1

2
log

(
x+(2− x+)

)
.

The bounds for x+ in this case are 1 � x+ � 1 + r, where r =
√
1− 1/Q. We

know from Section 4.5.4.2 that they are accessible, and that Δ(1 + r) = 0, as this
how Q0 was chosen, and this is the first and the only time when we use this. Again
we would like to prove that Δ is decreasing. The difficulty is that now α+ �= α−,
and so Δ does not have nice cancelations. We have

Δ(x+) = 2 log
1

g(α)
− 2

g(α)
− x+ log (x+)− (2− x+) log (2− x+)

+ x+ log (g(α+)) + (2− x+) log (g(α−)) +
x+

g(α+)
+

2− x+

g(α−)
,

and so

Δ′(x+) =
1

g(α)

( 1

x+
− 1

2− x+

)
− log (x+) + log (2− x+)

+
1

g(α+)
− log

1

g(α+)
− 1

g(α−)
+ log

1

g(α−)
.
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From the investigation of the previous vertex we know that

1

g(α)

( 1

x+
− 1

2− x+

)
− log (x+) + log (2− x+) � 0.

This did not depend on the choice of α±. Finally, α+ < α−, so g(α+) > g(α−),
thus 1/g(α−) > 1/g(α+) � 1, and

f
( 1

g(α−)

)
> f

( 1

g(α+)

)
.

This means exactly that

1

g(α+)
− log

1

g(α+)
− 1

g(α−)
+ log

1

g(α−)
< 0.

Thus the proof is finished.

5. Proofs of the Proposition 4.1 and Lemma 4.17

In this section we give detailed (and rather technical) proofs of Proposition 4.1 and
Lemma 4.17.

Proof of the Proposition 4.1. (1) Suppose f is increasing. Then∫ 1

−1

(1− |t|) f(x+ ε t) dt �
∫ 1

0

(1− |t|) f(x+ ε t) dt � f(x)

∫ 1

0

(1− |t|) dt.

If f is decreasing then we consider the integral over ( − 1, 0), which finishes the
proof of the first part.

(2) Let x(s) = x+ st, and a(s) = A(x(s)). We want to estimate the quantity

a(0)− a(1) + a(− 1)

2
= −1

2

∫ 1

−1

(1− |s|) a′′(s) ds

= −1

2
· (t)2

∫ 1

−1

(1− |s|)A′′(x(s))ds = −1

2
· t2

∫ 1

−1

(1− |s|)A′′(x+ st) ds.

Thus,

A(x)− A(x− t) +A(x+ t)

2
� −c · t2A′′(x),

which is exactly what we want.

(3) Due to the homogeneity, this inequality is equivalent to

f(u) := up − (u+ 1)
p
+ (u− 1)

p

2
+ βup−2 � 0, u > 1

We notice that f is continuous, and limu→∞ f(u)/up−2 is finite. Therefore, such
a β exists.
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(4) Again using homogeneity, we reduce our problem to the following: the
function

f0(u) = u−1/(p−1) − 1

2
(u− 1)

−1/(p−1) − (u+ 1)
−1/(p−1)

+ γ u−2−1/(p−1)

should be nonnegative when u � C/(C − 1). Here γ = αp′/(p− 1).

We multiply by u2+1/(p−1) and, letting v = u−1, we need

f1(v) =
1

v2
− (1− v)−1/(p−1) + (1 + v)−1/(p−1)

2v2
+ γ � 0,

or the function

f(v) =
1

v2
− (1− v)−1/(p−1) + (1 + v)−1/(p−1)

2v2

should be bounded from below whenever 0 < v < (C − 1)/C.
We prove the following:

Lemma 5.1 (Sublemma). f(v) is decreasing.

If we prove the sublemma, we get

f(v) � f
(C − 1

C

)
,

and, therefore,

γ = −f
(C − 1

C

)
. �

Proof of the sublemma. We prove this proposition by straightforward differentia-
tion. First,

v2f(v) = 1− (1− v)
−1/(p−1)

+ (1 + v)
−1/(p−1)

2
,

and so

2vf(v) + v2f ′(v) =
1

p− 1

(1 + v)
−1−1/(p−1) − (1− v)

−1−1/(p−1)

2
.

Thus

v2f ′(v) =
1

p− 1

(1 + v)
−1−1/(p−1) − (1− v)

−1−1/(p−1)

2
− 2

v

+
(1− v)

−1/(p−1)
+ (1 + v)

−1/(p−1)

v
.

We want to prove that f ′(v) < 0 or, equivalently, that the right-hand side is
negative. We multiply by v to get (after simple algebra)

v3f ′(v) = (1+v)
1−p′ p′+1

2
+ (1−v)

1−p′ p′+1

2
−
(
(1+v)

−p′
+ (1−v)

−p′) 1

2(p−1)
− 2

=: ψ(v).
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Clearly, ψ(0) = 0. Next,

ψ′(v) =
(1− p′)(p′ + 1)

2
(1 + v)

−p′
− (1− p′)(p′ + 1)

2
(1− v)

−p′

+
p′

2(p− 1)

(
(1 + v)

−1−p′
− (1− v)

−1−p′)
,

ψ′′(v) =
p′(p′ + 1)

2(p− 1)
· v ·

(
(1 + v)

−2−p′
− (1− v)

−2−p′)
.

Thus, ψ′′(v) � 0, so ψ′(v) � ψ′(0) = 0, and therefore ψ(v) � ψ(0) = 0, which is
what we want. �

Proof of Lemma 4.17. The segment [z−, z+] has the parametrization

u(t) = t x+(1− t)x−, v(t) = t y+ + (1− t) y−.

Then

ϕ(t) = u(t) exp (− v(t)) =
(
t(x+ − x−) + x−

)
exp

(
− t(y+ − y−)− y−

)
.

We would like to prove that there exists a constant C that does not depend on Q,
and such that ϕ(t) � CQ, t ∈ [0, 1]. First we have ϕ(0) = 1 and ϕ(1) = Q, so we
need to check the local extrema.

ϕ′(t) = (x+ − x−), exp ( . . . )− (y+ − y−)
(
t (x+ − x−) + x−

)
exp ( . . . ).

If
ϕ′(t∗) = 0

then
x+ − x−
y+ − y−

= x− + t∗(x+ − x−),

so

t∗ =
1

y+ − y−
− x−

(x+ − x−)
,

or
t∗(y+ − y−) = 1− (y+ − y−)

x−
x+ − x−

.

Therefore,

ϕ(t∗) =
x+ − x−
y+ − y−

exp
(
(y+ − y−)

x−
x+ − x−

− 1− y−
)
.

We now plug in x± and y±. First

x± = 1± r,

so x+ − x− = 2r. Also y+ − y− = log 1+r
Q − log (1 − r) = log 1+r

Q(1−r) . We notice

that

Q(1− r) = Q
(
1−

√
1− 1

Q

)
= Q−

√
Q2 −Q =

Q

Q+
√
Q2 −Q

� 1.
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Hence y+ − y− � 1. As this proof involves no deep ideas, we finish it briefly.
First, we are interested in large Q, because for bounded Q we can always find a
uniform C. Hence,

r =

√
1− 1

Q
∼ 1− 1

2Q
∼ 1,

and x− = 1− r ∼ 1/(2Q), y− ∼ log(1/(2Q)). Consequently,

ϕ(t∗) � 2
(
1− 1

2Q

)
exp

(
C · 1

2Q

1

2
− 1− log

1

2Q

)
� 2 exp ( log (2Q)) � Q.

This finishes the proof. �
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