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A sharp multiplier theorem for Grushin operators
in arbitrary dimensions

Alessio Martini and Detlef Müller

Abstract. In a recent work by A. Martini and A. Sikora, sharp Lp

spectral multiplier theorems for the Grushin operators acting on R
d1
x′ ×R

d2
x′′

and defined by the formula

L = −
d1∑
j=1

∂2
x′
j
−

( d1∑
j=1

|x′
j |2

) d2∑
k=1

∂2
x′′
k

are obtained in the case d1 ≥ d2. Here we complete the picture by proving
sharp results in the case d1 < d2. Our approach exploits L2 weighted
estimates with “extra weights” depending essentially on the second factor
of Rd1×R

d2 (in contrast to the mentioned work, where the “extra weights”
depend only on the first factor) and gives a new unified proof of the sharp
results without restrictions on the dimensions.

1. Introduction

Let X be Rd1 × Rd2 , endowed with Lebesgue measure, and let L be the Grushin
operator on X, that is,

L = −Δx′ − |x′|2Δx′′ ,

where x′ and x′′ denote the two components of a point x ∈ R
d1 ×R

d2, Δx′ and Δx′′

are the corresponding partial Laplacians, and |x′| is the Euclidean norm of x′.
Since L is an essentially self-adjoint operator on L2(X), a functional calculus for L
can be defined via spectral integration and, for all Borel functions F : R → C, the
operator F (L) is bounded on L2(X) if and only if the function F , which is called
a spectral multiplier, is essentially bounded with respect to the spectral measure.

The aim of this work is to give sufficient conditions for the Lp-boundedness (for
p �= 2) of an operator of the form F (L), in terms of smoothness properties of the
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mean, singular integral operator.



1266 A. Martini and D. Müller

multiplier F . Namely, let W s
2 (R) denote the L2 Sobolev space on R of (fractional)

order s, and define a scale-invariant local Sobolev norm by the formula

‖F‖MW s
2
= sup

t>0
‖η F(t)‖W s

2
,

where F(t)(λ) = F (tλ) and η ∈ C∞
c (]0,∞[) is a nontrivial auxiliary function (dif-

ferent choices of η give rise to equivalent local norms). Our main results then read
as follows.

Theorem 1. Suppose that a function F : R → C satisfies

‖F‖MW s
2
< ∞

for some s > (d1 + d2)/2. Then the operator F (L) is of weak type (1, 1) and is
bounded on Lp(X) for all p ∈ ]1,∞[. In addition,

‖F (L)‖L1→L1,∞ ≤ Cs‖F‖MW s
2

and, for all p ∈ ]1,∞[,

‖F (L)‖Lp→Lp ≤ Cp,s‖F‖MW s
2
.

Theorem 2. Suppose that κ > (d1 + d2 − 1)/2. Then the Bochner–Riesz means
(1− tL)κ+ are bounded on Lp(X) for all p ∈ [1,∞] uniformly in t ∈ [0,∞[.

These results are sharp, in the sense that the thresholds (d1 + d2)/2 on the
order of differentiability s in Theorem 1 and (d1 + d2 − 1)/2 on the order κ of the
Bochner–Riesz means in Theorem 2 cannot be decreased.

In the case d1 ≥ d2, the results above are contained in joint work of the first
named author and Adam Sikora [10], to which we refer for a discussion of the
related literature (see also [5], [11], [1], [6], [13], [7], [14], [2], [4], [12], [15], [8]), and
for a proof of the mentioned sharpness (based on [9]). In fact, [10] contains some
results for the case d1 < d2 too, which however are not sharp. The new approach
presented here differs from that of [10] even in the case d1 ≥ d2, and gives a unified
treatment of the sharp results without any restrictions on the pair (d1, d2).

2. Structure of the proof

Let � be the control distance on X associated to the Grushin operator L, and
denote by B(x, r) the open �-ball of center x and radius r, and by |B(x, r)| its
Lebesgue measure. Moreover denote by KF (L) the integral kernel of the operator
F (L). As shown in [10], Theorems 1 and 2 are consequences of the following L1

weighted estimate (corresponding to Corollary 14 of [10] in the case d1 ≤ d2).

Proposition 3. For all R > 0, α ≥ 0, and β > α + (d1 + d2)/2, and for all
functions F : R → C such that suppF ⊆ [

R2, 4R2
]
,

(2.1) ess sup
y∈X

∥∥(1 +R�(·, y))α KF (L)(·, y)
∥∥
1
≤ Cα,β

∥∥F(R2)

∥∥
Wβ

2
.
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This estimate in turn follows via Hölder’s inequality from an weighted L2 esti-
mate of the form

ess sup
y∈X

∣∣B(y, 1/R)
∣∣1/2∥∥wR(x, y)

γ (1 +R�(·, y))α KF (L)(·, y)
∥∥
2

(2.2)

≤ Cα,β,γ‖F(R2)‖Wβ
2

for suitable weight functions wR : X×X → [0,∞[ and constraints on α, β, γ ∈ [0,∞[.
In [10] the weights wR(x, y) depend only on the first components x′ and y′

of x and y, and the proof of (2.2) is based on a subelliptic estimate satisfied by L.
Such an approach corresponds to the one adopted in [6] for the sublaplacian on a
Heisenberg(-type) group G, where a weight function is used that depends only on
(the projection of the variable on) the first layer of G.

On the other hand, other work in the setting of Heisenberg groups [13], [14]
exploits weight functions depending on both layers.

The approach presented below differs from all previous ones, since we use weight
functions wR depending only on the second components x′′ and y′′ of the variables x
and y (except for a rescaling factor due to the dependence of the volume of a ball
of fixed radius on the center). In place of the subelliptic estimate used in [10],
here we make a careful analysis based on properties of Hermite functions; in this
sense, we are closer to the spirit of [13], [14], where instead identities for Laguerre
functions are exploited.

We remark that the L2 estimate (2.2) without the weights wR (that is, when
γ = 0) holds true if β > α, and this implies the L1 estimate (2.1) when β > α+Q/2,
where Q is the homogeneous dimension d1 + 2d2 of the doubling metric-measure
space X with distance � and Lebesgue measure [3], [15]. The purpose of the “extra
weights” wR is to pass from the homogeneous dimension Q to the topological
dimension d1 + d2. Since these two quantities differ by the dimension d2 of the
second factor of Rd1 × Rd2 , it appears necessary, when d2 is larger than d1, to
employ weights wR(x, y) that do not depend only on the first components x′, y′.
In fact the technique presented here, in contrast to the one in [10], does not put
any constraint on the dimensions.

3. Weighted estimates and discrete differentiation

Given a point x = (x′, x′′) ∈ X, we denote by x′
j and x′′

k the jth component of x′

and the kth component of x′′. For all j ∈ {1, . . . , d1} and k ∈ {1, . . . , d2}, let Lj

and Tk be the differential operators on X given by

Lj = (−i∂x′
j
)2 + (x′

j)
2

d2∑
l=1

(−i∂x′′
l
)2, Tk = −i∂x′′

k
.

If (Dr)r>0 is the family of dilations on X defined by

Dr(x
′, x′′) = (rx′, r2x′′),

then
Lj(f ◦Dr) = r2(Ljf) ◦Dr, Tk(f ◦Dr) = r2(Tkf) ◦Dr.
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The Grushin operator L on X is the sum L1 + · · ·+ Ld1.
As shown in [10], the operators L1, . . . , Ld1 , T1, . . . , Td2 have a joint functional

calculus; moreover, if L and T denote the vectors of operators (L1, . . . , Ld1) and
(T1, . . . , Td2), one can obtain a quite explicit formula for the integral kernelKG(L,T)

of an operator G(L,T) in the functional calculus in terms of Hermite functions.
Namely, for all 
 ∈ N, let h� denote the 
th Hermite function, that is,

h�(t) = (−1)� (
! 2�
√
π)−1/2 et

2/2
( d

dt

)�

e−t2 ,

and set, for all n ∈ Nd1 , u ∈ Rd1 , and ξ ∈ Rd2 ,

h̃n(u, ξ) = |ξ|d1/4hn1(|ξ|1/2u1) · · ·hnd1
(|ξ|1/2ud1).

Finally, denote by e1, . . . , ed1 the standard basis vectors of Rd1 , and by 1̃ the
element (1, . . . , 1) = e1 + · · ·+ ed1 of Nd1 .

Proposition 4. For all bounded Borel functions G : Rd1 × Rd2 → C compactly
supported in Rd1 × (Rd2 \ {0}), if

(3.1) m(n, ξ) =

{
G(|ξ|(2n+ 1̃), ξ) when n ∈ Nd1 ,

0 when n ∈ Zd1 \ Nd1 ,

then

(3.2) KG(L,T)(x, y) = (2π)−d2

∫
Rd2

∑
n∈Nd1

m(n, ξ) h̃n(y
′, ξ) h̃n(x

′, ξ) ei〈ξ,x
′′−y′′〉 dξ

for almost all x, y ∈ X.

Proof. See Proposition 5 in [10]. �

The relation (3.2) between the kernelKG(L,T) and the multiplier G, or rather its
reparametrization m, involves a partial Fourier transform. This suggests that ap-
plying a suitable multiplication operator to the kernel may correspond to applying
a differential operator to the multiplier. The presence of the Hermite expansion,
however, makes things more complicated, and leads one to consider discrete differ-
ence operators as well as continuous derivatives on the spectral side. In order to
make these observations precise, we introduce some notation.

For all 
 ∈ Z, set a� =
√

(
− 1) if 
 > 0 and a� = 0 otherwise. For all

j ∈ {1, . . . , d1}, k ∈ {1, . . . , d2}, ρ ∈ Z and s ∈ N, define the following operators
on functions f : Zd1 × Rd2 → C:

τjf(n, ξ) = f(n+ 2ej, ξ),

δjf(n, ξ) = f(n, ξ)− f(n− 2ej, ξ),

Nj,ρ,sf(n, ξ) =

{
anj+2ρf(n, ξ) if s = 0,

Nj,ρ,s−1f(n, ξ)−Nj,ρ−1,s−1f(n, ξ) if s > 0,

∂kf(n, ξ) =
∂

∂ξk
f(n, ξ).
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Note that τj is invertible, and δjf = f − τ−1
j f . We will also use the multi-index

notation as follows:

τα = τα1
1 · · · ταd1

d1
, δα = δα1

1 · · · δαd1

d1
, ∂β = ∂β1

1 · · · ∂βd2

d2
,

for all α ∈ N
d1 and β ∈ N

d2 ; in fact, τα is defined for all α ∈ Z
d1 . Inequali-

ties between multi-indices, such as α ≤ α′, are to be understood componentwise.
Moreover | · |1 will denote the 1-norm, that is, for all t ∈ Rd, |t|1 = |t1|+ · · ·+ |td|.

For convenience, set h� = 0 for all 
 < 0, and extend the definition of h̃n to all
n ∈ Zd1 ; hence h̃n = 0 for all n ∈ Zd1 \ Nd1 .

Proposition 5. Let G : Rd1 × Rd2 → C be smooth and compactly supported in
R

d1 × (Rd2 \ {0}), and let m(n, ξ) be defined by (3.1). For all β ∈ N
d2 , we have

(x′′ − y′′)β KG(L,T)(x, y)

=

∫
Rd2

∑
n∈Zd1

∑
ι∈Iβ

Θι(ξ) ∂
βιNι τ

α̃ι

δα
ι

m(n, ξ) h̃n+2rι(y
′, ξ) h̃n(x

′, ξ) ei〈ξ,x
′′−y′′〉 dξ

for almost all x, y ∈ X, where Iβ is a finite set and, for all ι ∈ Iβ,

i) βι ∈ Nd2 and βι ≤ β;

ii) αι, α̃ι ∈ Nd1 and |αι|1 + |βι|1 ≤ |β|1;
iii) if |β|1 > 0 then |αι|1 + |βι|1 > 0;

iv) rι ∈ Zd1 and |rι|1 ≤ |β|1;
v) Θι is a smooth function on Rd2 \ {0}, homogeneous of degree |βι|1 − |β|1;
vi) Nι is a composition product of the form

(3.3) N1,ρ1
1,s

1
1
· · ·N1,ρ1

u1
,s1u1

· · ·N
d1,ρ

d1
1 ,s

d1
1

· · ·N
d1,ρ

d1
ud1

,s
d1
ud1

with u1 + · · ·+ ud1 ≤ |β|1 − |βι|1 and

sj1 + · · ·+ sjuj
= uj − αι

j , sjl − |β|1 ≤ ρjl ≤ |β|1,
max{0, 1− ρj1, . . . , 1− ρjuj

} ≥ αι
j − α̃ι

j

for all j ∈ {1, . . . , d1} and l ∈ {1, . . . , uj}.
Proof. Because of (3.2), we are reduced to proving that( ∂

∂ξ

)β ∑
n∈Zd1

m(n, ξ) h̃n(y
′, ξ) h̃n(x

′, ξ)

=
∑
ι∈Iβ

∑
n∈Zd1

Θι(ξ) ∂
βιNι τ

α̃ι

δα
ι

m(n, ξ) h̃n+2rι(y
′, ξ) h̃n(x

′, ξ) ,(3.4)

where Iβ , β
ι, αι, α̃ι, rι, Θι, and Nι are as in the statement of Proposition 5.
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This formula can be proved by induction on |β|1. For |β|1 = 0 it is trivial.
For the inductive step, from well-known properties of the Hermite functions (see
page 2 of [16]), we deduce

2th′
�(t) = a�h�−2(t)− a�+2h�+2(t)− h�(t)

for all 
 ∈ Z and t ∈ R. Correspondingly, for all n, r ∈ Zd1 , x′, y′ ∈ Rd1 and
ξ ∈ Rd2 \ {0},

∂

∂ξk

[
h̃n+2r(y

′, ξ) h̃n(x
′, ξ)

]
=

ξk
4|ξ|2

d1∑
j=1

[
anj+2rj h̃n+2(r−ej)(y

′, ξ) h̃n(x
′, ξ)

− anj+2(rj+1)h̃n+2(r+ej)(y
′, ξ) h̃n(x

′, ξ)

+ anj h̃n+2r(y
′, ξ) h̃n−2ej (x

′, ξ)

− anj+2h̃n+2r(y
′, ξ) h̃n+2ej (x

′, ξ)
]
.

Hence, for all smooth f : Zd1 ×R
d2 → C compactly supported in Z

d1 × (Rd2 \{0}),

(3.5)

∂

∂ξk

∑
n∈Zd1

f(n, ξ) h̃n+2r(y
′, ξ) h̃n(x

′, ξ) =
∑

n∈Zd1

[
∂kf(n, ξ) h̃n+2r(y

′, ξ)

+
ξk

4|ξ|2
d1∑
j=1

Nj,1,0 τj δj f(n, ξ) h̃n+2(r+ej)(y
′, ξ)

− ξk
4|ξ|2

d1∑
j=1

εrj

(rj)+∑
ρ=1−(rj)−

Nj,ρ+1,1f(n, ξ) h̃n+2(r+ej)(y
′, ξ)

+
ξk

4|ξ|2
d1∑
j=1

εrj

(rj)+∑
ρ=1−(rj)−

Nj,ρ,1f(n, ξ) h̃n+2(r−ej)(y
′, ξ)

+
ξk

4|ξ|2
d1∑
j=1

Nj,0,0 δj f(n, ξ) h̃n+2(r−ej)(y
′, ξ)

]
h̃n(x

′, ξ),

where, for all 
 ∈ Z,

ε� =

{
+1 if 
 ≥ 0,

−1 if 
 < 0
and (
)± = max{±
, 0}.

By taking the derivative ∂/∂ξk of both sides of (3.4), applying (3.5) to each sum-
mand on the right-hand side, and exploiting the commutation relations

τj Nl,ρ,s =

{
Nl,ρ+1,s τj if j = l,

Nl,ρ,s τj if j �= l,
δj Nl,ρ,s =

{
Nl,ρ,s+1 +Nl,ρ−1,s δj , if j = l,

Nl,ρ,s δj , if j �= l,

we obtain the analogue of (3.4) where β is increased by 1 in the kth component. �

Plancherel’s formula, together with the orthonormality of Hermite functions
and the finiteness of the index set Iβ , then yields the following estimate.
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Corollary 6. Under the hypotheses of Proposition 5, for all β ∈ Nd2 and almost
all y ∈ X,∫

X

∣∣(x′′ − y′′)β KG(L,T)(x, y)
∣∣2 dx

≤ Cβ

∫
Rd2

∑
n∈Nd1

∑
ι∈Iβ

|ξ|2|βι|1−2|β|1 ∣∣Nιτ
α̃ι

δα
ι

∂βι

m(n, ξ)
∣∣2 h̃2

n+2rι(y
′, ξ) dξ.(3.6)

4. From discrete to continuous

The next few lemmas will be of use in clarifying the meaning of the various terms
appearing in the right-hand side of (3.6).

Note that, for all ξ ∈ Rd2 , τjf(·, ξ), δjf(·, ξ), and Nj,ρ,sf(·, ξ) depend only on
f(·, ξ). In other words, the operators τj , δj , Nj,ρ,s, and their compositions can be
considered as operators on functions Zd1 → C.

Lemma 7. Let f : Zd1 → C have a smooth extension f̃ : Rd1 → C, and let α ∈ Nd1

and α̃ ∈ Zd1 ; then

τ α̃δαf(n) = 2|α|1
∫
Jα,α̃

∂αf̃(n− s) dνα,α̃(s)

for all n ∈ Zd1 , where Jα,α̃ =
∏d1

j=1 [−2α̃j, 2αj − 2α̃j ] and να,α̃ is a Borel proba-
bility measure on Jα,α̃. In particular

|τ α̃δαf(n)|2 ≤ 22|α|1
∫
Jα,α̃

|∂αf̃(n− s)|2 dνα,α̃(s)

and, for all n ∈ Zd1 ,

|τ α̃δαf(n)| ≤ 2|α|1 sup
s∈Jα,α̃

|∂αf̃(n− s)|

Proof. Iterated application of the fundamental theorem of integral calculus gives

δαf(n) = 2|α|1
∫
[0,1]α1

· · ·
∫
[0,1]

αd1

∂αf̃
(
n1 − 2|s1|1, . . . , nd1 − 2|sd1 |1

)
ds1 . . . dsd1

and the conclusion follows by taking as να,α̃ the push-forward of the uniform

distribution on
∏d1

j=1 [0, 1]
αj via the map (s1, . . . , sd1) �→ (2|s1|1−2α̃1, . . . , 2|sd1 |1−

2α̃d1), and by Hölder’s inequality. �

Lemma 8. Let N be the product (3.3), and let f : Zd1 → C. Then

1) Nf(n) = 0 for all n ∈ Zd1 such that nj < 2max{−∞, 1 − ρj1, . . . , 1 − ρjuj
}

for at least one j ∈ {1, . . . , d1}, and

2) |Nf(n)| ≤ CN |f(n)|∏d1

j=1(2|nj|+ 1)
uj−(sj1+···+sjuj

)
for all n ∈ Z

d1 .
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Proof. It is sufficient to prove the conclusion in the case where the product N
contains a single factor Nj,ρ,s.

Note that Nj,ρ,s is a multiplication operator, with multiplier τρj δsj wj , where
wj(n) = anj . Since a� = 0 when 
 < 2, inductively we obtain τρj δsj wj(n) =
δsj w(n + 2ρ ej) = 0 when nj < 2(1− ρ), and part (1) follows.

The function wj : Z
d1 → C can be extended to a smooth function w̃j : R

d1 → C

such that w̃j(t) =
√
tj(tj − 1) if tj > 3/2, say, and w̃(t) = 0 if tj ≤ 1. By Leibniz’s

rule, if tj > 3/2, then

∂s
j w̃(t) =

s∑
v=0

cs,v t
1/2−v
j (tj − 1)1/2−(s−v)

for some constants cs,v ∈ R, and in particular |∂s
j w̃(t)| ≤ Cst

1−s
j if tj > 3/2.

Lemma 7 then gives that

|τρj δsj wj(n)| ≤ Cs sup
2ρ−2s≤θ≤2ρ

(nj + θ)1−s ≤ Cρ,s(2|nj |+ 1)1−s

for all n with nj ≥ 2(1 − ρ + s). With a possible increase of the constant, the
inequality |τρj δsj w(n)| ≤ Cρ,s(2|nj | + 1)1−s extends to all n ∈ Zd1 , and part 2)
follows. �

For all d ∈ N \ {0}, 
 ∈ N, and u ∈ Rd, set

Hd,�(u) =
∑
n∈N

d

|n|1=�

h2
n1
(u1) · · ·h2

nd
(ud).

For the reader’s convenience, we rewrite here the known bounds for the functions
Hd,� that will be used in the following (see Lemma 8 of [10] and references therein).

Lemma 9. Let d ∈ N \ {0} and set [
] = 2
+ d. If d = 1 then, for all 
 ∈ N,

(4.1) H1,�(u) ≤
{
C([
]1/3 + |u2 − [
]|)−1/2 for all u ∈ R,

C exp(−cu2) when u2 ≥ 2[
].

If d ≥ 2 then, for all 
 ∈ N,

(4.2) Hd,�(u) ≤
{
Cd[
]

d/2−1 for all u ∈ R
d,

Cd exp(−cd|u|2∞) when |u|2∞ ≥ 2[
],

where |u|∞ = max{|u1|, . . . , |ud|}.
The following lemma is a refined version of Lemma 9 in [10].

Lemma 10. Let d ∈ N \ {0} and set [
] = 2
 + d. Let (b�)�∈N be a sequence in
]0,∞[ such that, for some κ ∈ [1,∞[,

κ−1 ≤ b�/[
] ≤ κ

for all 
 ∈ N. In the case d = 1, suppose further that, for all 
 ∈ N,

|b� − [
]| ≤ κ[
]2/3
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Then, for all x ∈ ]0,∞[ and u ∈ Rd,

(4.3)
∑
�∈N

[�]≤x

Hd,�(b
−1/2
� u) ≤ Cd,κ

{
xd/2 in any case,

exp(−|u|2/(cd,κ x)) if |u| ≥ cd,κ x,

for some cd,κ ∈ [1,∞[.

Proof. We can assume that x ≥ 1, otherwise the left-hand side of (4.3) vanishes.
In order to exploit the bounds (4.1) and (4.2), we consider several cases.

First, in the case |u|∞ ≥ x
√
2κ, if [
] ≤ x, then b� ≤ κx, hence

|b−1/2
� u|2∞ ≥ |u|2∞/(κx) ≥ 2x ≥ 2[
],

and therefore

(4.4)

∑
[�]≤x

Hd,�(b
−1/2
� u) ≤ Cdx exp

(− cd|u|2∞/(κx)
)

≤ Cd exp
(− cd|u|2∞/(2κx)

)
sup
t≥1

(
t exp(−cdt)

)
.

Thus the second inequality in (4.3) is proved (by a suitable choice of cd,κ).

In the case d > 1, the first inequality in (4.3) is immediate because∑
[�]≤x

Hd,�(b
−1/2
� u) ≤ Cd

∑
[�]≤x

[
]d/2−1 ≤ Cd x
d/2.

In the case d = 1, we need instead to split the sum in (4.3) in several parts:∑
[�]≤x

H1,�(b
−1/2
� u) =

∑
[�]≤x

[�]≤|u|/√2κ

+
∑
[�]≤x

|u|/√2κ<[�]<|u|√2κ

+
∑
[�]≤x

[�]≥|u|√2κ

.

The first and the last part are the easiest to control. In fact, the part where
[
] ≤ |u|/√2κ is controlled by a constant because of (4.4). Moreover, in the part
where |u|√2κ ≤ [
] ≤ x, we have u2/b� ≤ [
]/2, hence∑

|u|√2κ≤[�]≤x

H1,�(b
−1/2
� u) ≤ C

∑
[�]≤x

[
]−1/2 ≤ C x1/2.

The middle part instead requires a further splitting:∑
[�]≤x

|u|/√2κ<[�]<|u|√2κ

=
∑
[�]≤x

|u|/√2κ<[�]

[�]≤|u|−κ[�]2/3

+
∑
[�]≤x

|u|/√2κ<[�]<|u|√2κ

|u|−κ[�]2/3<[�]<|u|+κ[�]2/3

+
∑
[�]≤x

|u|+κ[�]2/3≤[�]

[�]<|u|√2κ

.

In the part where |u|/√2κ < [
] ≤ |u| − κ[
]2/3, we have |u| ≥ 1 + κ and

[
] ≤ |u| − 1, b� ≤ |u|, 1/
√
2κ ≤ [
]/|u| < 1,

hence ∣∣∣u2

b�
− [
]

∣∣∣ ≥ |u|
(
1− [
]

|u|
)
,
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so this part of the sum is bounded from above by

Cκ
x1/2

|u|
∑

|u|/√2κ<[�]≤|u|−κ[�]2/3

(
1− [
]

|u|
)−1/2

≤ Cκ x
1/2

∫ 1

1/
√
2κ

(1 − t)−1/2 dt,

and the last integral is finite.
In the part where |u|+ κ[
]2/3 ≤ [
] < |u|√2κ, we have |u| ≥ 1/

√
2κ and

[
] ≥ |u|+ 1, b� ≥ |u|, 1 < [
]/|u| ≤ √
2κ,

hence ∣∣∣u2

b�
− [
]

∣∣∣ ≥ |u|
( [
]

|u| − 1
)
,

so this part of the sum is bounded from above by

C
x1/2

|u|
∑

|u|+κ[�]2/3≤[�]<|u|√2κ

( [
]

|u| − 1
)−1/2

≤ C x1/2

∫ √
2κ

1

(t− 1)−1/2 dt,

and the last integral is finite.
In the part where |u|/√2κ < [
] < |u|√2κ and |u| − κ[
]2/3 < [
] < |u|+ κ[
]2/3

there are at most κ(2κ)1/3|u|2/3 summands, and moreover |u| ≤ x
√
2κ, hence this

part of the sum is bounded from above by

Cκ|u|2/3|u|−1/6 ≤ Cκ x
1/2,

and we are done. �

We can now give a more explicit form for the right-hand side of (3.6), in terms
of a Sobolev norm of the multiplier, in the case where we restrict to the functional
calculus for the Grushin operator L alone. In order to avoid divergent series,
however, it is convenient to truncate at first the multiplier along the spectrum ofT.

Lemma 11. Let χ ∈ C∞
c (]0,∞[) be such that suppχ ⊆ [1/2, 2]. Let F : R → C

be smooth and such that supp f ⊆ K for some compact set K ⊆ ]0,∞[. For all
r ∈ [0,∞[ and M ∈ [1,∞[, if FM : R× Rd2 → C is defined by

FM (λ, ξ) = F (λ)χ(λ/(M |ξ|)),

then, for almost all y ∈ X,∫
X

∣∣∣|x′′ − y′′|r KFM (L,T)(x, y)
∣∣∣2 dx

≤ Cχ,K,rM
2r−d2

(
χ[0,cK,r](|y′|/M) + e−|y′|

)
‖F‖2W r

2

Proof. Without loss of generality, we can restrict to the case r ∈ N, since the
remaining values of r can be treated by interpolation.
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It is then sufficient to prove∫
X

∣∣∣(x′′ − y′′)β KFM (L,T)(x, y)
∣∣∣2 dx

≤ Cχ,K,βM
2|β|1−d2

(
χ[0,cK,β ](|y′|/M) + e−|y′|

)
‖F‖2

W
|β|1
2

for all β ∈ Nd2 and almost all y ∈ X.

Set 〈t〉 = |2t + 1̃|1 = 2|t|1 + d1 for all t ∈ R
d1 . An estimate for the left-

hand side of the previous inequality is given by Corollary 6, by taking m(n, ξ) =
F (|ξ|〈n〉)χ(〈n〉/M) for n ∈ Nd1 and m(n, ξ) = 0 for n ∈ Zd1 \ Nd1 . This estimate,
combined with Lemma 8, gives∫

X

∣∣∣(x′′ − y′′)β KFM (L,T)(x, y)
∣∣∣2 dx ≤ Cβ

∑
ι∈Iβ

∫
Rd2

∑
n≥γι

|ξ|2|βι|1−2|β|1

× (2n1 + 1)2α
ι
1 · · · (2nd1 + 1)2α

ι
d1

∣∣∣ τ α̃ι

δα
ι

∂βι

m(n, ξ)
∣∣∣2 h̃2

n+2rι(y
′, ξ) dξ,

where γι := (γι
1, . . . , γ

ι
d1
) and γι

j := 2max{0, 1− ρj1, . . . , 1 − ρjuj
} ≥ 2(αι

j − α̃ι
j) for

all j ∈ {1, . . . , d1}.
If m̃ is a smooth extension of m, then Lemma 7 gives∫
X

∣∣(x′′ − y′′)β KFM (L,T)(x, y)
∣∣2 dx ≤ Cβ

∑
ι∈Iβ

∫
Jι

∫
Rd2

∑
n≥γ̃ι

|ξ|2|βι|1−2|β|1

× 〈n〉2|αι|1∣∣ ∂αι

t ∂βι

ξ m̃(n− s, ξ)
∣∣2 h̃2

n(y
′, ξ) dξ dνι(s),

where γ̃ι := (γ̃ι
1, . . . , γ̃

ι
d1
), γ̃ι

j := max{0, γι
j + 2rιj} ≥ 2(rιj − α̃ι

j + αι
j) for all

j ∈ {1, . . . , d1}, Jι =
∏d1

j=1

[
2(rιj − α̃ι

j), 2(r
ι
j − α̃ι

j + αι
j)
]
, and νι is a probability

measure on Jι. Note that the components of the first argument n− s of m̃ on the
right-hand side of the previous inequality are always nonnegative, since n ≥ γ̃ι and
s ∈ Jι.

A smooth extension m̃ of m is given by

m̃(t, ξ) = F
(|ξ|(2t1 + · · ·+ 2td1 + d1)

)
χ
(
(2t1 + · · ·+ 2td1 + d1)/M

)
for ξ ∈ R

d2 \ {0} and t ∈ ]−1/2,∞[
d1 . An inductive argument then shows that

∂βι

ξ ∂αι

t m̃(t, ξ) =
∑

0≤a≤|αι|1
0≤b≤|βι|1

Ma−|αι|1χ(|αι|1−a)(〈t〉/M)Ψβι,a,b(ξ) 〈t〉bF (a+b)(|ξ|〈t〉)

for all t ∈ [0,∞[
d1 , where the Ψβι,a,b : Rd \ {0} → C are smooth functions,

homogeneous of degree a+ b− |βι|1. Hence

|∂βι

ξ ∂αι

t m̃(t, ξ)|2 ≤ Cχ,ι

|αι|1+|βι|1∑
v=0

|ξ|2v−2|βι|1 M2v−2|αι|1∣∣F (v)(|ξ|〈t〉)∣∣2 χ̃(〈t〉/M)

for all t ∈ [0,∞[
d1 , where χ̃ is the characteristic function of [1/2, 2].
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Therefore, since |αι|1 + |βι|1 ≤ |β|1 for all ι ∈ Iβ , we have∫
X

∣∣(x′′ − y′′)β KFM (L,T)(x, y)
∣∣2 dx ≤ Cχ,β

|β|1∑
v=0

M2v
∑
ι∈Iβ

×
∑
n≥γ̃ι

c−1
ι ≤〈n〉/M≤cι

∫
Jι

∫
Rd2

|ξ|2v−2|β|1 ∣∣F (v)(|ξ|〈n− s〉)∣∣2 h̃2
n(y

′, ξ) dξ dνι(s),

where cι ∈ [2,∞] is chosen so that 2/cι ≤ 〈n〉/〈n− s〉 ≤ cι/2 for all n ≥ γ̃ι, s ∈ Jι.
If kι := γ̃ι

1 + · · ·+ γ̃ι
d1
, J̃ι is the interval in R which is the image of Jι via the

map (s1, . . . , sd1) �→ s1 + · · · + sd, and ν̃ι is the corresponding push-forward of νι
on J̃ι, then kι ≥ max J̃ι and∫

X

∣∣(x′′ − y′′)β KFM (L,T)(x, y)
∣∣2 dx ≤ Cχ,β

|β|1∑
v=0

∑
ι∈Iβ

∑
�≥kι

c−1
ι ≤[�]/M≤cι

M2v

×
∫
J̃ι

∫
Rd2

|ξ|2v−2|β|1∣∣F (v)
(|ξ|[
− s]

)∣∣2 ∑
n : |n|1=�

h̃2
n(y

′, ξ) dξ dν̃ι(s),

where [
] = 2
 + d1. Note that
∑

n : |n|1=� h̃
2
n(y

′, ξ) = |ξ|d1/2Hd1,�(|ξ|1/2y′), and
that the integrand in ξ ∈ R

d2 depends only on |ξ|. Hence∫
X

∣∣(x′′ − y′′)β KFM (L,T)(x, y)
∣∣2 dx ≤ Cχ,β

|β|1∑
v=0

∑
ι∈Iβ

∑
�≥kι

c−1
ι ≤[�]/M≤cι

M2v

×
∫
J̃ι

∫ ∞

0

λ2v−2|β|1+d1/2+d2
∣∣F (v)

(
λ[
− s]

)∣∣2Hd1,�

(
λ1/2y′

) dλ
λ

dν̃ι(s).

Note that [
 − s] ∼ [
] ∼ M in the domains of summation and integration on the
right-hand side; rescaling the integral in λ, together with the fact that suppF ⊆ K
and K ⊆ ]0,∞[ is compact, then gives∫

X

∣∣(x′′ − y′′)β KFM (L,T)(x, y)
∣∣2 dx ≤ Cχ,K,β

|β|1∑
v=0

∑
ι∈Iβ

∫ ∞

0

|F (v)(λ)|2

×M2|β|1−d2−d1/2

∫
J̃ι

∑
�≥kι

c−1
ι ≤[�]/M≤cι

Hd1,�

( λ1/2y′

[
− s]1/2

)
dν̃ι(s) dλ.

On the other hand, from Lemma 10 we easily obtain

M−d1/2
∑
�≥kι

c−1
ι ≤[�]/M≤cι

Hd1,�

( λ1/2y′

[
 − s]1/2

)
≤ CK,β

(
χ[0,cK,β ](|y′|/M) + e−|y′|),

uniformly in ι ∈ Iβ , s ∈ J̃ι, and λ ∈ K, by choosing cK,β sufficiently large, and we
are done. �
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Define the weight w : X×X → [1,∞[ by

w(x, y) = 1 +
|x′′ − y′′|
1 + |y′| .

Proposition 12. Let F : R → C be smooth and such that suppF ⊆ K for some
compact K ⊆ ]0,∞[. For all r ∈ [0, d2/2[, we have

ess sup
y∈X

|B(y, 1)|
∫
X

∣∣w(x, y)r KF (L)(x, y)
∣∣2 dx ≤ CK,r‖F‖2W r

2
.

Proof. Take χ ∈ C∞
c (]0,∞[) such that suppχ ⊆ [1/2, 2] and

∑
k∈Z

χ(2−kt) = 1 for
all t ∈ ]0,∞[. If FM is defined for all M ∈ [1,∞[ as in Lemma 11, then

F (L) =
∑
k∈N

F2k(L,T)

(with convergence in the strong sense). Hence an estimate for KF (L) can be ob-
tained, via Minkowski’s inequality, by summing the corresponding estimates for
KF

2k
(L,T) given by Lemma 11.

On the other hand, since |B(y, 1)| ∼ max{1, |y′|}d2 (see Proposition 3 in [10]),
it is easily checked that∑

k∈N

2k(r−d2/2)
(
χ[0,cK,r](2

−k|y′|) + e−|y′|/2
)
≤ CK,r max{1, |y′|}r−d2/2

≤ CK,r
(1 + |y′|)r
|B(y, 1)|1/2

when r ∈ [0, d2/2[. Therefore from Lemma 11 we obtain that

|B(y, 1)|
∫
X

∣∣∣( |x′′ − y′′|
1 + |y′|

)r

KF (L)(x, y)
∣∣∣2 dx ≤ CK,r‖F‖2W r

2
.

The conclusion follows by combining the last inequality with the corresponding
one for r = 0. �

5. The multiplier theorems

Now we need some properties of the weight w.

Lemma 13. For all x, y ∈ X,

w(x, y) ≤ C
(
1 + �(x, y)

)2
.

Moreover, if α, r ∈ [0,∞[ satisfy r < d2/2 and α+2r > (d1 +2d2)/2, then, for all
y ∈ X, ∫

X

w(x, y)−2r
(
1 + �(x, y)

)−2α
dx ≤ Cα,r|B(y, 1)|.
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Proof. Recall that �(x, y) ∼ min{�1(x, y), �2(x, y)}, where

(5.1) �1(x, y) = |x′ − y′|+ |x′′ − y′′|1/2, �2(x, y) = |x′ − y′|+ |x′′ − y′′|
|x′|+ |y′| ,

while |B(y, 1)| ∼ max{1, |y′|}d2 (see Proposition 3 in [10]).

The conclusion will then follow by proving that, for i = 1, 2,

w(x, y) ≤ C
(
1 + �i(x, y)

)2
,(5.2) ∫

X

w(x, y)−2r
(
1 + �i(x, y)

)−2α
dx ≤ Cα,r(1 + |y′|)d2 .(5.3)

As for (5.2), when i = 1,

w(x, y) ≤ (
1 + |x′′ − y′′|1/2)2 ≤ (

1 + �1(x, y)
)2
,

whereas, when i = 2,

w(x, y) = 1 +
|x′′ − y′′|
|x′|+ |y′|

|x′|+ |y′|
1 + |y′| ≤ 1 + �2(x, y)

(
2 + |x′ − y′|) ≤ (

1 + �2(x, y)
)2
.

To show (5.3), in the case i = 1, since α > d1/2+ (d2 − 2r), we can decompose
α = α′ + α′′ so that α′ > d1/2 > 0 and α′′ > d2 − 2r > 0, and therefore∫

X

w(x, y)−2r
(
1 + �1(x, y)

)−2α
dx

≤
∫
X

(
1 +

|x′′|
1 + |y′|

)−2r

(1 + |x′|)−2α′
(1 + |x′′|)−α′′

dx

≤ (1 + |y′|)2r
∫
X

(1 + |x′|)−2α′
(1 + |x′′|)−2r−α′′

dx;

the last integral is finite since 2α′ > d1 and 2r + α′′ > d2, and moreover 2r < d2.

In the case i = 2, instead, since α− d1/2 > d2 − 2r, we can choose α′′ so that
2α′′ ∈ ]d2 − 2r, α− d1/2[; in particular 0 < α′′ < α/2, hence α′ = α− α′′ > α/2 > 0.
Then∫

X

w(x, y)−2r (1 + �2(x, y))
−2α dx

≤ Cα,r

∫
X

(
1 +

|x′′|
1 + |y′|

)−2r

(1 + |x′|)−2α′ (
1 +

|x′′|
1 + |x′|+ |y′|

)−2α′′

dx

≤ Cα,r

∫
X

(
1 +

|x′|
1 + |y′|

)2α′′(
1 +

|x′′|
1 + |y′|

)−2r−2α′′

(1 + |x′|)−2α′
dx.

Since 2α′′ + 2r > d2, the integral in x′′ converges, and moreover 2α′′ > 0, hence
the denominator 1 + |y′| in the first factor can be discarded, and we obtain∫

X

w(x, y)−2r
(
1+�2(x, y)

)−2α
dx ≤ Cα,r(1+|y′|)d2

∫
Rd1

(1+|x′|)−2α′+2α′′
dx′.

Since 2α′ − 2α′′ = 2(α − 2α′′) > d1, the integral in x′ converges too, and we are
done. �
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Via interpolation, we are now able to give a strengthened version of the standard
weighted L2 estimate that follows from the Gaussian heat kernel bounds for L (see
Proposition 11 in [10] and references therein).

Proposition 14. Let α, β, r ∈ [0,∞[ be such that r < d2/2 and β > α + r. Let
K ⊆ ]0,∞[ be compact. For all smooth F : R → C with suppF ⊆ K, we have

ess sup
y∈X

|B(y, 1)|1/2∥∥w(·, y)r (1 + �(·, y))α KF (L)(·, y)
∥∥
2
dx ≤ CK,r,α,β‖F‖Wβ

2
.

Proof. For α = 0 and β ≥ r, the inequality is given by Proposition 12.
On the other hand, for arbitrary α, if β > α + 2r + 1/2, then the inequality

follows from Lemma 13 and Proposition 11 in [10].
The full range β > α + r is then recovered by interpolation (see Lemma 1.2

in [11] and Proposition 13 in [10]). �

We are finally able to prove the fundamental estimate, and consequently our
theorems.

Proof of Proposition 3. Since the operator L and the distance � are homogeneous
with respect to the dilations Dr, it is not restrictive to assume that R = 1.

Let r, α′ ∈ [0,∞[. For all y ∈ X, Hölder’s inequality gives

∥∥(1 + �(·, y))α KF (L)(·, y)
∥∥
1
≤

(∫
X

w(x, y)−2r
(
1 + �(x, y)

)−2α′
dx

)1/2

× ∥∥w(·, y)r (1 + �(·, y))α+α′
KF (L)(·, y)

∥∥
2
.

The first factor on the right-hand side can be controlled by Lemma 13 if r <
d2/2 and α′ + 2r > (d1 + 2d2)/2,, while the second factor can be controlled by
Proposition 14 if moreover β > α+ α′ + r.

Under our hypotheses, ε := β − α − (d1 + d2)/2 > 0; therefore, if we choose
r ∈ ]d2/2− ε, d2/2[ and α′ ∈ ]d1/2 + d2 − 2r, β − α− r[, then the above conditions
are satisfied, and we are done. �
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