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Discrete Fourier restriction associated

with Schrödinger equations

Yi Hu and Xiaochun Li

Abstract. We present a novel proof on the discrete Fourier restriction.
The proof recovers Bourgain’s level set result for Strichartz estimates as-
sociated with Schrödinger equations on a torus. Some sharp estimates
on L2(d+2)/d norms of certain exponential sums in higher dimensional cases
are established. As an application, we show that some discrete multilinear
maximal functions are bounded on L2(Z).

1. Introduction

We consider discrete Fourier restriction problems associated with Schrödinger
equations. More precisely, for any given N ∈ N, let Sd,N stand for the set{

(n1, . . . , nd) ∈ Zd : |nj | ≤ N, 1 ≤ j ≤ d
}
.

For p > 1, let Ap,d,N represent the best constant satisfying

(1.1)
∑

n∈Sd,N

∣∣ f̂(n, |n|2)∣∣2 ≤ Ap,d,N ‖f‖2p′ ,

where n = (n1, . . . , nd)∈Sd,N , |n|=√
n2
1 + · · ·+ n2

d, f is any Lp′
-function on Td+1,

f̂ stands for Fourier transform of periodic function f on Td+1, and p′ = p/(p− 1).
A harmonic analysis method was introduced by Bourgain [1] to obtain

(1.2) Ap,d,N ≤ C Nd−2(d+2)/p+ε for p >
2(d+ 4)

d
.

In [1] Bourgain conjectured that

(1.3) Ap,d,N ≤
{
Cp N

d−2(d+2)/p+ε for p ≥ 2(d+ 2)/d,

Cp for 2 ≤ p < 2(d+ 2)/d.
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Understanding of this conjecture is still incomplete. For instance, the desired upper
bounds for A5,1,N , A3,2,N or A2(d+2)/d,d,N for d ≥ 3 have not been obtained. The
most crucial estimate established by Bourgain in [1] is a certain (sharp) level set
estimate. In this paper we give a novel proof of the level set estimate.

These problems arise from the study of periodic nonlinear Schrödinger equa-
tions:

(1.4)
Δxu+ i∂tu+ u|u|p−2 = 0,

u(x, 0) = u0(x).

Here x = (x1, . . . , xd) ∈ Td, and u(x, t) is a function of d + 1 variables which is
periodic in space. The corresponding Strichartz estimate is the inequality yielding
the best constant Kp,d,N satisfying

(1.5)
∥∥∥ ∑

n∈Sd,N

an e2πi(n·x+|n|2t)
∥∥∥
Lp(Td+1)

≤ Kp,d,N

(∑
n

|an|2
)1/2

,

where {an} is a sequence of complex numbers. The restriction estimate (1.1) is
essentially the Strichartz estimate because

(1.6) Kp,d,N ∼ √
Ap,d,N

follows easily by duality.
The Duhamel principle allows us to represent a differential equation as an

integral equation

u(x, t) = eitΔu0(x) + i

∫ t

0

ei(t−τ)Δ
(|u(x, τ)|p−2u(x, τ)

)
dτ .

Applying the Picard iteration and the Strichartz estimate (1.5), Bourgain in [1]
obtained local (global) well-posedness of the Schrödinger equations (1.4). Hence,
the discrete restriction problems are crucial in studying the dispersive equations on
torus. Moreover, they are closely related to the Vinogradov mean value conjecture
on exponential sums, which is very important in additive number theory.

Let us introduce Vinogradov’s mean value in order to see more clearly the
connection between additive number theory and discrete Fourier restriction. For
any given polynomial P (x, α1, . . . , αd) =

∑k
j=1 αj x

j for α1, . . . , αk ∈ T, the mean
value Jk(N, b) is defined by

Jk(N, b) =

∫
Tk

∣∣∣ N∑
n=1

e2πiP (n,α1,...,αk)
∣∣∣2bdα1 · · · dαk .

The Vinogradov mean value conjecture addresses the following question. For pos-
itive integers k and b, is it true that

(1.7) Jk(N, b) ≤ Ck,b,ε

(
N b+ε +N2b−k(k+1)/2+ε

)
?

Vinogradov invented a method (now called the Vinogradov method) to establish
some partial results on the mean value conjecture, and then utilize these partial
results for exponential sums to gain new pointwise estimates, which cannot be done
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via Weyl’s classical squaring method. One of main points in Vinogradov’s method
is that pointwise estimates of the exponential sums follow from a suitable upper
bound of the mean value. Although many brilliant mathematicians have devoted
considerable time and energy to this conjecture, only the k = 2 case is completely
settled. The conjecture is also answered affirmatively for cubic polynomials pro-
vided b > 8 by Hua’s work [2], and for b ≥ k(k + 1) by Wooley’s very recent
work [4].

In the language of discrete restriction, Vinogradov’s mean value conjecture can
be rephrased as asking whether the inequality

(1.8)

N∑
n=1

∣∣f̂(n, . . . , nk)
∣∣2 ≤ C N1−k(k+1)/p+ε ‖f‖2p′

is true for p ≥ k(k + 1). Of course, (1.8) is apparently harder. In fact, (1.8)
implies the conjecture. Moreover, the conjecture only yields some partial results
for (1.8). It would be very interesting if the equivalence of (1.7) and (1.8) could
be established.

Because the difficulty of (1.8), we pose a relatively simple question here. Let
k ≥ 3 be a positive integer. Suppose p ≥ 2(k + 1). Is it true that

(1.9)

N∑
n=1

∣∣f̂(n, nk)
∣∣2 ≤ C N1−2(k+1)/p+ε ‖f‖2p′ ?

This question essential seeks the Strichartz estimates associated with higher order
dispersive equations. Bourgain’s proof of (1.2) is based on three ingredients: Weyl’s
sum estimates, the Hardy–Littlewood circle method, and Tomas–Stein’s restriction
theorem. It is difficult to employ Bourgain’s method for (1.9). Hence we are forced
to seek a method that can be adjusted to handle higher order polynomials like
ax+ bxk. This is our main motivation. In this paper, we present a different proof
of (1.2). This paper is our first paper on discrete restriction. In subsequent papers,
we will modify this method to obtain an affirmative answer to (1.9) for p large
enough and give applications for the corresponding nonlinear dispersive equations.

Our first theorem is about weighted restriction estimates, which deal with the
large p cases of (1.1). Moreover, there is no ε required in the upper bound that
we obtain.

Theorem 1.1. For any σ > 0, any d ∈ N, and any p > 4(d+ 2)/d, there exists a
constant C independent of N such that

(1.10)
∑
n∈Zd

e−σ|n|2/N2∣∣f̂(n , |n|2)∣∣2 ≤ C Nd−2(d+2)/p ‖f‖2p′ ,

for all f ∈ Lp′
(Td+1).

Theorem 1.1 yields (1.2) for large p immediately. The proof of Theorem 1.1
presented in Section 2 is very straightforward. The tool we use is the Hardy–
Littlewood circle method. The decay factor e−σ|n|2/N2

makes it possible to calcu-
late the Lp norm of the kernel restricted to major arcs or minor arcs.
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For the small p cases, we need a new level set estimate, which implies Bourgain’s
level set estimate (see Corollary 1.3). Its proof relies on a decomposition of the
kernel, which is a sum of a L∞ function and a function with bounded Fourier
transform (see Proposition 3.2).

Theorem 1.2. Suppose that F is a periodic function on Td+1 given by

(1.11) F (x, t) =
∑

n∈Sd,N

an e2πin·x e2πi|n|
2t ,

where {an} is a sequence with
∑

n |an|2 = 1 and (x, t) ∈ Td × T. For any λ > 0,
let

Eλ =
{
(x, t) ∈ Td+1 : |F (x, t)| > λ

}
.

Then for any positive number Q satisfying Q ≥ N ,

(1.12) λ2 |Eλ|2 ≤ C1 Q
d/2 |Eλ|2 + C2 N

ε

Q
|Eλ|

holds for all λ. Here C1 and C2 are constants not depending on N and Q.

Applying Theorem 1.2, we can easily obtain the following corollaries, which
were proved by Bourgain in [1] in a different way. The details appear in Section 3.

Corollary 1.3. If λ ≥ CNd/4 for some suitably large constant C, then the level
set defined in Theorem 1.2 satisfies

|Eλ| ≤ C1 N
ε λ−2(d+2)/d .

Corollary 1.4.

(1.13) Kp,d,N ≤ Cε N
d/2−(d+2)/p+ε if p >

2(d+ 4)

d
.

Remark 1.5. Corollary 1.4 clearly yields (1.2) because Kp,d,N ∼ √
Ap,d,N . More-

over, the tiny positive number ε in (1.13) can be removed. Clearly from Theo-
rem 1.1, we see immediately that the ε is superfluous for large p. For 2(d+ 4)/d <
p ≤ 4(d+ 2)/d, Bourgain in [1] succeeded in removing the ε via a delicate inter-
polation argument.

Moreover, Theorem 1.2 implies the following recurrence relation for Kp,d,N in
the sense of inequality.

Corollary 1.6. For p > 2, we have

(1.14) Kp
p,d,N ≤ C NdKp−2

p−2,d,N + C Ndp/2−d−2+ε .

Here C is independent of N .

These three corollaries will be proved in Section 3. Developing the idea used
in the proof of Theorem 1.2, we can get the following theorem.
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Theorem 1.7. Let N1, . . . , Nd ∈ N and let SN1,...,Nd
be defined by

(1.15) SN1,...,Nd
(x, t) =

∑
n∈S(N1,...,Nd)

e2πin·x e2πi|n|
2t .

where S(N1, . . . , Nd) is given by

(1.16) S(N1, . . . , Nd)=
{
n = (n1, . . . , nd)∈Zd : |nj | ≤ Nj for all j∈{1, . . . , d}}.

For any ε > 0, there exists a constant C not depending on N1, . . . , Nd such that

(1.17)
∥∥SN1,...,Nd

∥∥
2(d+2)/d

≤ C
(
N1 · · ·Nd

) d
2(d+2) max

{
N1, . . . , Nd

} d
d+2+ε

.

Observe that if N1 = · · · = Nd = N , (1.17) implies that

(1.18)
∥∥∥ ∑

n∈Sd,N

e2πin·x e2πi|n|
2t
∥∥∥
2(d+2)/d

≤ Nd/2+ε ,

that is,

(1.19)
∥∥∥ ∑

n∈Sd,N

an e2πin·x e2πi|n|
2t
∥∥∥
2(d+2)/d

≤ Nε
(∑

n

|an|2
)1/2

,

provided an = 1 for all n. If the conditions an = 1 for all n could be removed,
then the Bourgain conjecture would be solved for all p not less than the critical
index 2(d+ 2)/d.

Theorem 1.7 has a direct application to some multilinear maximal functions,
related to the maximal ergodic theorem, for instance, to the pointwise convergence
of the unconventional bilinear average

N−1
N∑

n=1

f1(T
n) f2(T

n2

) ,

where T is a measure-preserving transformation on a probability space (X,A, μ).
This application is given in Section 5.

2. Large p cases

In this section we prove Theorem 1.1. All we need to employ is the Hardy–
Littlewood circle method. Observe that for large p, Ap,d,N ≤ CNd−2(d+2)/p follows
immediately upon noticing∑
n∈Sd,N

∣∣ f̂(n, |n|2)∣∣2 ≤ eσd
∑

n∈Sd,N

e−
σ|n|2
N2

∣∣ f̂(n, |n|2)∣∣2 ≤ eσd
∑
n∈Zd

e−
σ|n|2
N2

∣∣ f̂(n, |n|2)∣∣2.
Thus Theorem 1.1 yields the desired upper bounds of Ap,d,N for large p cases. Here

the decay factor e−σ|n|2/N2

will make our calculation much easier. The key idea
is to decompose the circle into arcs (called major arcs and minor arcs) and then
estimate the Lp norm of the corresponding kernel over each arcs.
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First we present some technical lemmas. In order to introduce the major arcs,
we should state the Dirichlet principle.

Lemma 2.1 (Dirichlet principle). For any given N ∈ N and any t ∈ (0, 1], there
exist a, q ∈ N, 1 ≤ q ≤ N , 1 ≤ a ≤ q, and (a, q) = 1, such that

∣∣ t−a/q
∣∣ ≤ 1/(Nq).

This principle can be proved by utilizing the pigeonhole principle or by the
Farey dissection of order N . For any integer q, define Pq by

Pq =
{
a ∈ Z : 1 ≤ a ≤ q, (a, q) = 1

}
,

and for any a ∈ Pq, define the interval Ja/q by Ja/q =
(
a
q − 1

Nq ,
a
q + 1

Nq

)
. If

q < N/10, the interval Ja/q is called a major arc, otherwise it is called a minor arc.
Clearly we can partition (0, 1] into a union of major arcs and minor arcs, that is,

(0, 1] =
⋃

1≤q≤N,a∈Pq

Ja/q = M1 ∪M2 .

Here M1 is the union of all major arcs and M2 is the union of all minor arcs.

Lemma 2.2. Let 1A denote the indicator function of a measurable set A. Then

(2.1)
∥∥∥ ∑

J∈M1

1J

∥∥∥
∞

+
∥∥∥ ∑

J∈M2

1J

∥∥∥
∞

≤ 100 .

Proof. It is easy to see that all major arcs are disjoint. Thus it suffices to prove
that ∥∥∥ ∑

J∈M2

1J

∥∥∥
∞

≤ 80 .

For any given minor arc Ja0/q0 , let Q denote the collection of all rational num-
bers a/q such that each Ja/q is a minor arc and there is a point common to Ja0/q0

and all Ja/q’s. We prove that the cardinality of Q is less than 40. Notice that for
any a/q ∈ Q, ∣∣∣a0

q0
− a

q

∣∣∣ < 1

Nq0
+

1

Nq
.

This implies that |a0q − aq0| < 2. Since a0q − aq0 ∈ Z, we conclude that either
a0q−aq0 = −1 or a0q−aq0 = 1 if a/q �= a0/q0. Hence if a/q �= a0/q0, a/q ∈ Qmust
satisfy the diophantine equation a0x − q0y = −1 or a0x − q0y = 1 with |x| ≤ N .
The general solution of the diophantine equation is x = x0 + q0k and y = y0 + a0k
for all k ∈ Z and any given particular solution (x0, y0). Then |kq0| ≤ 2N . By
q0 ≥ N/10, we have |k| ≤ 20. Thus the number of solutions of either diophantine
equation is no more than 40. This completes the proof. �

Remark 2.3. Lemma 2.2 is the finite overlap property of minor arcs. The reason
why we use this lemma is that we try to only calculate the Lp norm of the kernel
restricted to each arc. Of course, this is not necessarily needed. An alternative
way, which is very classic, is to obtain the L∞ norm for the kernel restricted to the
union of minor arcs, and then to find the Lp norm of the kernel on each major arc.
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Let Kσ be the kernel defined by

(2.2) Kσ(x, t) =
∑
n∈Zd

e−
σ|n|2
N2 e2πi|n|

2t e2πin·x .

We set Ka/q to be

(2.3) Ka/q(x, t) = Kσ(x, t)1Ja/q
(t) .

The following lemma gives an upper bound for the Lp norm of Ka/q.

Lemma 2.4. For any integers 1 ≤ q ≤ N , a ∈ Pq, and any p > 2(d+ 1)/d,

(2.4)
∥∥Ka/q

∥∥
p
≤ C Nd−(d+2)/p

qd/2−d/p
.

Proof. For any given t ∈ Ja/q, let β = t − a/q and write n = kq + l. Here

l ∈ Zd
q = {(l1, . . . , ld) : lj ∈ Zq}. Then we have

Kσ(x, t) =
∑
k∈Zd

∑
l∈Zd

q

e−
σ|kq+l|2

N2 e2πi(kq+l)·x e2πi|kq+l|2(a/q+β) .

Interchanging the sums, we represent the kernel as

Kσ(x, t) =
∑
l∈Zd

q

e2πi|l|
2a/q

∑
k∈Zd

e−|kq+l|2(σ/N2−2πiβ) e2πi(kq+l)·x .

Applying the Poisson summation formula to the inner sum, we have∑
k∈Zd

e−|kq+l|2( σ
N2 −2πiβ) e2πi(kq+l)·x =

∑
k∈Zd

( √
π

q
√
σ/N2 − 2πiβ

)d

e2πi
l·k
q e

− π2|x−k/q|2
σ/N2−2πiβ .

Henceforth, the kernel can be written as

(2.5) Kσ(x, t) =
( √

π

q
√
σ/N2 − 2πiβ

)d ∑
k∈Zd

e
− π2|x−k/q|2

σ/N2−2πiβ

∑
l∈Zd

q

e2πi|l|
2a/q e2πi l·k/q .

The upper bound of the Gauss sum implies that∣∣∣ ∑
l∈Zd

q

e2πi|l|
2a/q e2πi l·k/q

∣∣∣ ≤ (2q)d/2 .

Thus by inserting the absolute value, the kernel can be majorized by

∣∣Kσ(x, t)
∣∣ ≤ (2π)d/2

qd/2 (σ2/N4 + 4π2β2)
d/4

∑
k∈Zd

e
−π2|x−k/q|2σ/N2

σ2/N4+4π2β2 .
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Integrating |Kσ|p on each arc Ja/q, we obtain that

∥∥Ka/q

∥∥p
p
≤

∫
|β|≤ 1

Nq

∫
Td

(2π)dp/2

qdp/2
(
σ2/N4 + 4π2β2

)dp/4 ∣∣∣ ∑
k∈Zd

e
−π2|x−k/q|2σ/N2

σ2/N4+4π2β2

∣∣∣p dx dβ

=

∫
|β|≤ 1

Nq

(2π)dp/2

qdp/2
(
σ2/N4 + 4π2β2

)dp/4 ( ∫ 1

0

∣∣∣∑
k∈Z

e
−π2|x−k/q|2σ/N2

σ2/N4+4π2β2

∣∣∣p dx)d

dβ .

Notice that for |β| ≤ 1/(Nq) and q ≤ N ,

σ
q2N2

σ2

N4 + 4π2β2
≥ Cσ .

This yields that ∑
k∈Z

e
−π2|x−k/q|2σ/N2

σ2/N4+4π2β2 ≤ Cσ .

For p > 2(d+ 1)/d, we estimate the Lp norm of Ka/q by

∥∥Ka/q

∥∥p
p
≤

∫
|β|≤ 1

Nq

(2π)dp/2

qdp/2
(
σ2/N4 + 4π2β2

)dp/4 (∫ 1

0

∑
k∈Z

e
−π2|x−k/q|2σ/N2

σ2/N4+4π2β2 dx
)d

dβ ,

which can be bounded by∫
|β|≤ 1

Nq

C (2π)dp/2Nd

qdp/2 − d

( σ2

N4
+ 4π2β2

)dp/4−d/2
dβ ≤ CNdp−d−2

qdp/2−d
.

Therefore, the proof is finished. �

Lemma 2.5. For p > 2(d+ 2)/d,

(2.6) ‖Kσ‖p ≤ Cp,σN
d−(d+2)/p .

Proof. By Lemmas 2.2 and 2.4, we have that

‖Kσ‖pp ≤ C

N∑
q=1

∑
a∈Pq

∥∥Ka/q

∥∥p
p
≤ C

N∑
q=1

∑
a∈Pq

Ndp−d−2

qdp/2−d
≤ CNdp−d−2 ,

which yields Lemma 2.5. �

We now return to the proof of Theorem 1.1. Indeed, observe that∑
n∈Zd

e−σ|n|2/N2∣∣ f̂(n , |n|2)∣∣2 =
〈
Kσ ∗ f, f〉 .

Applying Hölder’s inequality and then the Hausdorff–Young convolution inequality,
we get 〈

Kσ ∗ f, f〉 ≤ ‖Kσ‖p/2‖f‖2p′ .

Since p > 4(d+ 2)/d, we can use Lemma 2.5 to conclude Theorem 1.1.
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3. Level set estimates

In this section, we prove Theorem 1.2. Theorem 1.2 can be utilized for handling
the small p cases. First, we state an arithmetic result.

Lemma 3.1. For any integer Q ≥ 1, any integer n �= 0, and any ε > 0,∑
Q≤q<2Q

∣∣∣ ∑
a∈Pq

e2πi
a
q n

∣∣∣ ≤ Cε d(n,Q)Q1+ε .

Here d(n,Q) denotes the number of divisors of n less than Q and Cε is a constant
depending on neither Q nor n.

Lemma 3.1 can be proved by observing that the arithmetic function defined
by f(q) =

∑
a∈Pq

e2πi
a
q n is multiplicative, and then using the prime factorization

for q to conclude the proof. The details can be found in [1].
The next proposition is crucial to our proof.

Proposition 3.2. For any given positive number Q with N ≤ Q ≤ N2, the kernel
Kσ given by (2.2) can be decomposed as K1,Q +K2,Q where

‖K1,Q‖∞ ≤ C1 Q
d/2(3.1) ∥∥K̂2,Q

∥∥
∞ ≤ C2 N

ε

Q
.(3.2)

Here the constants C1 and C2 do not depend on Q and N .

Proof. We can assume that Q is an integer, since otherwise we can take the integer
part of Q. For a standard bump function ϕ supported in [1/200, 1/100], we set

(3.3) Φ(t) =
∑

Q≤q<2Q

∑
a∈Pq

ϕ
( t− a/q

1/q2

)
.

Clearly Φ is supported in [0, 1]. We can extend Φ periodically to other intervals
to obtain a periodic function on T. We continue to denote this extended periodic
function by Φ. Then it is easy to see that

(3.4) Φ̂(0) =
∑
q∼Q

∑
a∈Pq

FRϕ(0)

q2
=

∑
q∼Q

φ(q)

q2
FR ϕ(0)

is a constant independent of Q. Here φ is Euler’s totient function, and FR denotes
the Fourier transform of a function on R. Also we have

(3.5) Φ̂(k) =
∑
q∼Q

∑
a∈Pq

1

q2
e−2πiaq k FR ϕ(k/q2) .

We define

K1,Q(x, t) =
1

Φ̂(0)
Kσ(x, t)Φ(t), and K2,Q = Kσ −K1,Q .
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We prove (3.2) first. Write Φ as its Fourier series to get

K2,Q(x, t) = − 1

Φ̂(0)

∑
k �=0

Φ̂(k) e2πikt Kσ(x, t) .

Thus its Fourier coefficient is

K̂2,Q(n, nd+1) = −e−σ|n|2/N2

Φ̂(0)

∑
k �=0

Φ̂(k)1{nd+1=|n|2+k}(k) .

Here n ∈ Zd and nd+1 ∈ Z. This implies that K̂2,Q(n, nd+1) = 0 if nd+1 = |n|2,
and if nd+1 �= |n|2,

K̂2,Q(n, nd+1) = −e−σ|n|2/N2

Φ̂(0)
Φ̂
(
nd+1 − |n|2) .

Applying (3.5) and Lemma 3.1, we estimate K̂2,Q(n, nd+1) by∣∣ K̂2,Q(n, nd+1)
∣∣ ≤ CNε

Q
,

since N ≤ Q ≤ N2. Hence we obtain (3.2).
We now prove (3.1). Observe that the intervals [aq+

1
200q2 ,

a
q+

1
100q2 ] are pairwise

disjoint. Thus we can fix q ∼ Q and a ∈ Pq and try to obtain the upper bound of
K1,Q restricted to [aq +

1
200q2 ,

a
q + 1

100q2 ]. Let β = t− a
q . Hence we have |β| ∼ 1/q2

for t ∈ [aq + 1
200q2 ,

a
q + 1

100q2 ]. As we did in the previous section, by the Poisson
summation formula, we have

Kσ(x, t) =
( √

π

q
√
σ/N2 − 2πiβ

)d ∑
k∈Zd

e
− π2|x−k/q|2

σ/N2−2πiβ

∑
l∈Zd

q

e2πi|l|
2a/q e2πi l·k/q .

For |β| ∼ 1/q2, we estimate∣∣Kσ(x, t)
∣∣ ≤ C

qd/2
(
(σ/N2)2 + β2

)d/4 ∑
k∈Zd

e
−π2 |k/q−x|2

(σ/N2)2+β2
σ

N2 ,

which is bounded by

CNd

qd/2

∑
k∈Zd

e−π2 N2

σ |k/q−x|2 ≤ Cσ q
d/2 ≤ Cσ Q

d/2 .

This implies (3.1). Therefore we complete the proof. �

We now start to prove Theorem 1.2. For the function F and the level set Eλ

given in Theorem 1.2, we define f by

f(x, t) =
F (x, t)

|F (x, t)| 1Eλ
(x, t) .
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Clearly

λ |Eλ| ≤
∫
Td+1

F (x, t) f(x, t) dx dt .

By the definition of F , we get

λ |Eλ| ≤
∑

n∈Sd,N

an f̂(n, |n|2) .

Using the Cauchy–Schwarz inequality, we have

λ2 |Eλ|2 ≤
∑

n∈Sd,N

∣∣f̂(n, |n|2)∣∣2 .
The right hand side is bounded by

eσd
∑
n

e−σ|n|2/N2 ∣∣ f̂(n, |n|2)∣∣2 = eσd
〈
Kσ ∗ f, f〉 .

For any Q with N ≤ Q ≤ N2, we employ Proposition 3.2 to decompose the
kernel Kσ. Then we have

λ2 |Eλ|2 ≤ Cσ

∣∣〈K1,Q ∗ f, f〉∣∣+ Cσ

∣∣〈K2,Q ∗ f, f〉∣∣ .
From (3.1) and (3.2), we then obtain

λ2|Eλ|2 ≤ C1 Q
d/2 ‖f‖21 +

C2 N
ε

Q
‖f‖22 ≤ C1 Q

d/2 |Eλ|2 + C2 N
ε

Q
|Eλ| .

The case Q ≥ N2 is trivial since the level set Eλ is empty if λ > CNd/2. This
completes the proof of Theorem 1.2.

We now start to prove Corollary 1.3 by using Theorem 1.2. We should take
Qd/2 = 1

2C1
λ2, where C1 is the constant in (1.12). Since Q ≥ N , we need to restrict

to λ >
√
2C1 N

d/4. Then |Eλ| ≤ CNελ−2(d+2)/d follows immediately from (1.12).
This completes the proof of Corollary 1.3.

To prove Corollary 1.4, write

‖F‖pp = Cp

∫ ∞

0

λp−1|Eλ| dλ ,

which equals

Cp

∫ CNd/4

0

λp−1 |Eλ| dλ+ Cp

∫ ∞

CNd/4

λp−1 |Eλ| dλ .

Using the trivial estimate |Eλ| ≤ Cλ−2 for the first term and employing Corol-
lary 1.3 for the second term, we then obtain, for p > 2(d+ 4)/d,

‖F‖pp ≤ C Ndp/2−(d+2)+ε

as desired. The proof of Corollary 1.4 is completed.
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We now prove Corollary 1.6. Multiply (1.12) by λp−3 to get, for N ≤ Q,

(3.6) λp−1 |Eλ| ≤ C1 Q
d/2 λp−3 |Eλ|+ C2 N

ε

Q
λp−3 .

Integrating (3.6) over λ from 0 to CNd/2, we obtain that

(3.7) ‖F‖pp ≤ C1 Q
d/2 ‖F‖p−2

p−2 + C2
Ndp/2−d+ε

Q
.

Taking Q = N2, we then have

(3.8) ‖F‖pp ≤ C1 N
dKp−2

p−2,d,N + C2 N
dp/2−d−2+ε .

This finishes the proof of Corollary 1.6.

4. Proof of Theorem 1.7

In this section, we prove Theorem 1.7 by developing an idea similar to that used
in Section 3. We introduce a level set Gλ for any λ > 0 by setting

(4.1) Gλ =
{
(x, t) ∈ Td × T : |SN1,...,Nd

(x, t)| > λ
}
.

As in Section 3, let f = 1Gλ
SN1,...,Nd

/|SN1,...,Nd
|. We then have

(4.2) λ |Gλ| ≤
∑

n∈S(N1,...,Nd)

f̂(n,n2) =
〈
fN1,...,Nd

, SN1,...,Nd

〉
,

where fN1,...,Nd
is a rectangular Fourier partial sum defined by

(4.3) fN1,...,Nd
(x, t) =

∑
n∈S(N1,...,Nd)

|nd+1|≤dmax{N1,...,Nd}2

f̂(n, nd+1) e
2πn·x e2πind+1t .

Here, unlike what we did in Section 3, we do not use the Cauchy–Schwarz inequality
to estimate the right-hand side of (4.2). We actually need to get a decomposition
of SN1,...,Nd

. Before we state this decomposition, we include a famous result on
Weyl’s sums.

Lemma 4.1. Suppose t is a real number satisfying∣∣∣ t− a

q

∣∣∣ ≤ 1

q2
.

Here a and q are relatively prime integers. Then

(4.4)
∣∣∣ N∑
n=1

e2πi(tn
2+xn)

∣∣∣ ≤ Cmax
{ N√

q
,
√
N log q,

√
q log q

}
.

The proof can be accomplished by Weyl’s squaring method. See [2] or [3] for
details.
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Lemma 4.2. For any real number Q with max1≤j≤d Nj ≤ Q ≤ max1≤j≤d N
2
j ,

the function SN1,...,Nd
defined in (1.15) can be written as a sum of S1,Q and S2,Q,

where S1,Q satisfies

(4.5) ‖S1,Q‖∞ ≤ C Qd/2 (logQ)d/2

and S2,Q satisfies

(4.6)
∥∥Ŝ2,Q

∥∥
∞ ≤ C max{N1, . . . , Nd}ε

Q
.

Here the constant C is independent of N1, . . . , Nd and Q.

Proof. Let Φ be the function defined in (3.3). We then obtain

(4.7) SN1,...,Nd
= S1,Q + S2,Q ,

where S1,Q is given by

(4.8) S1,Q(x, t) =
1

Φ̂(0)
SN1,...,Nd

(x, t)Φ(t)

and S2,Q is

(4.9) S2,Q = SN1,...,Nd
− S1,Q .

(4.5) follows immediately from (4.4). Notice that

S2,Q(x, t) = − 1

Φ̂(0)

∑
k �=0

Φ̂(k) e2πiktSN1,...,Nd
(x, t) .

The inequality (4.6) follows by using Lemma 3.1, as in the proof of (3.2). �

We now return to the proof of Theorem 1.7. From (4.2) and Lemma 4.2, the
level set Gλ satisfies

(4.10) λ |Gλ| ≤
∣∣〈fN1,...,Nd

, S1,Q

〉∣∣+ ∣∣〈fN1,...,Nd
, S2,Q

〉∣∣ ,
which can be bounded by

C
(
Qd/2(logQ)d/2

∥∥fN1,...,Nd

∥∥
1
+

∑
n∈S(N1,...,Nd)

|nd+1|≤dmax{N1,...,Nd}2

∣∣∣ Ŝ2,Q(n, nd+1) f̂(n, nd+1)
∣∣∣ ).

Thus from the fact that the L1 norm of Dirichlet kernel DN is comparable to
logN , (4.6), and Cauchy–Schwarz inequality, we have
(4.11)

λ |Gλ| ≤ C Qd/2 (logQ)2d|Gλ|+ C(N1 · · ·Nd)
1/2 max{N1, . . . , Nd}1+ε

Q
|Gλ|1/2 .
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For λ ≥ Cmax{N1, . . . , Nd}d/2+ε, take Q to be a number satisfying

Qd/2 max{N1, . . . , Nd}ε = λ,

and then Lemma 4.2 yields

(4.12) |Gλ| ≤ C N1 · · ·Ndmax{N1, . . . , Nd}2+ε

λ2(d+2)/d
.

Notice that

(4.13)
∥∥SN1,...,Nd

∥∥
2
∼ (

N1 · · ·Nd

)1/2
.

Thus, for λ < Cmax{N1, . . . , Nd}d/2+ε, we have

(4.14) |Gλ| ≤ C N1 · · ·Nd

λ2
≤ C N1 · · ·Ndmax{N1, . . . , Nd}2+ε

λ2(d+2)/d
.

Hence (4.12) holds for all λ > 0.
We now estimate the L2(d+2)/d norm of SN1,...,Nd

by∥∥SN1,...,Nd

∥∥2(d+2)/d

2(d+2)/d

≤ C

∫ 2dN1···Nd

1

λ2(d+2)/d−1 |Gλ| dλ+ C

∫ 1

0

λ2(d+2)/d−1 |Gλ| dλ .(4.15)

Since (4.12) holds for all λ > 0, the first term on the right-hand side of (4.15)
can be bounded by C N1 · · ·Ndmax{N1, . . . , Nd}2+ε. The second term is clearly
bounded by C because Gλ is a set with finite measure. Putting both estimates
together, we get

(4.16)
∥∥SN1,...,Nd

∥∥2(d+2)/d

2(d+2)/d
≤ C N1 · · ·Nd max{N1, . . . , Nd}2+ε ,

as desired. Therefore the proof is complete.

5. Estimates of multilinear maximal functions

In this section, we provide an application of Theorem 1.7.

Definition 5.1. Let d ∈ N and K ∈ {1, . . . , d}. A subset S of Nd is called
K-admissible if for every element (n1, . . . , nd) ∈ S, there exist ni1 , . . . , niK such
that

• i1 < i2 < · · · < iK and i1, . . . , iK ∈ {1, . . . , d};
• max{n1, . . . , nd} ≤ Cmin{ni1 , . . . , niK}.

Here the constant C is independent of (n1, . . . , nd).
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Theorem 5.2. Let d,M1, . . . ,Md ∈ N, let K ∈ {1, . . . , d}, and let AM1,...,Md
be

the multilinear operator defined by setting AM1,...,Md
(f1, . . . , fd+1)(n) to be

(5.1)
1

M1 · · ·Md

M1∑
m1=1

· · ·
Md∑

md=1

f1(n−m1) · · · fd(n−md) fd+1

(
n−(m2

1+· · ·+m2
d)
)
.

Here n ∈ Z. Suppose T ∗ is the maximal function given by

(5.2) T ∗(f1, . . . , fd+1)(n) = sup
(M1,...,Md)∈SK

∣∣AM1,...,Md
(f1, . . . , fd+1)(n)

∣∣ .
Here SK is any K-admissible subset of Nd. Then, if K satisfies

(5.3) K >
2d

d+ 4
,

we have

(5.4)
∥∥T ∗(f1, . . . , fd+1)

∥∥
L2(Z)

≤ C

d+1∏
j=1

‖fj‖L2(Z) .

Here L2(Z) stands for the L2 norm associated with counting measure on Z, and C
is independent of the fj but may depend on K and d.

Remark 5.3. Notice that 2d/(d+ 4) < 1 for d = 1, 2, 3. Thus the condition (5.3)
is superfluous in Theorem 5.2 for d = 1, 2, 3. Thus for d = 1, 2, 3, the set SK

in Theorem 5.2 can be replaced by Nd because Nd is 1-admissible according to
Definition 5.1. It is very possible that, for d ≥ 4, the condition (5.3) on K is
redundant too. A delicate analysis involving the circle method should be utilized
in order to remove (5.3) for the d ≥ 4 cases. We do not discuss this in this paper.

Remark 5.4. It is natural to ask whether the inequality

(5.5)
∥∥T ∗(f1, . . . , fd+1)

∥∥
L

2
d+1 (Z)

≤ C

d+1∏
j=1

‖fj‖L2(Z)

holds. This seems to be difficult but also interesting. So far we are only able to
establish the boundedness of T ∗ from L2 × · · · × L2 to Lp for p > 2/(d+ 1) by an
interpolation argument and Theorem 5.2.

To prove Theorem 5.2, we first introduce a simple multilinear estimate.

Lemma 5.5. Let M ∈ N and let F1, . . . , FM+1 be periodic functions on T. Let
T (F1, . . . , FM+1) be the multilinear operator given by

(5.6) T (F1, . . . , FM+1)(x1, . . . , xM ) = F1(x1) · · ·FM (xM )FM+1(x1 + · · ·+ xM ) ,

for (x1, . . . , xM ) ∈ TM . If 1 ≤ p ≤ 2M/(M + 1),

(5.7)
∥∥T (F1, . . . FM+1)

∥∥
Lp(TM )

≤
M+1∏
j=1

‖Fj‖L2(T) .
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Proof. We only need to prove the case when p = 2M/(M + 1), since the other
cases follow easily by the Hölder inequality. By a change of variables, we get

(5.8)
∥∥T (F1, . . . FM+1)

∥∥
Lp(TM )

≤ ‖Fi‖∞
∏
j �=i

j∈{1,...,M+1}

‖Fj‖p ,

for any i ∈ {1, . . . ,M + 1}. Now define α1, . . . , αM+1 ∈ QM+1 by

α1 =
(
0,

1

p
, . . . ,

1

p

)
, α2 =

(1
p
, 0,

1

p
, . . . ,

1

p

)
, . . . , αM+1 =

(1
p
, . . . ,

1

p
, 0
)
.

Clearly for p = 2M/(M + 1), we have

(5.9)
(1
2
, . . . ,

1

2

)
=

1

M + 1

(
α1 + · · ·+ αM+1

)
.

Thus (1/2, . . . , 1/2) is in the convex hull of α1, . . . , αM+1. The inequality (5.7)
follows immediately by interpolation. �

To finish the proof of Theorem 5.2, we need the following proposition.

Proposition 5.6. Let d ∈ N, 1 ≤ K ≤ d, and MK+1, . . . ,Md ∈ N. Define
AM,MK+1,...,Md

by setting AM,MK+1,...,Md
(f1, . . . , fd+1)(n) to be

1

MKMK+1 · · ·Md

( K∏
j=1

M∑
mj=1

fj(n−mj)
)

×
( d∏

j=K+1

Mj∑
mj=1

fj(n−mj)
)
fd+1

(
n− (m2

1 + · · ·+m2
d)
)
.(5.10)

Suppose that M ≥ C max{MK+1, . . . ,Md}. Then we have

(5.11)

∥∥AM,MK+1,...,Md
(f1, . . . , fd+1)

∥∥
L2(Z)

≤ C (MK+1 · · ·Md)
− d+4

2(d+2) M
−(d+4)K+2d

2(d+2) +ε
d+1∏
j=1

‖fj‖L2(Z) .

Proof. By duality, it is sufficient to prove that, for any fd+2 ∈ L2(Z),

(5.12)

∑
n

AM,MK+1,...,Md
(n)fd+2(n)

≤ C
(
MK+1 · · ·Md

)− d+4
2(d+2)M

−(d+4)K+2d
2(d+2)

+ε
d+2∏
j=1

‖fj‖L2(Z) .

Now define Fj for any j ∈ {1, . . . , d+ 2} by

(5.13) Fj(x) =
∑
n

fj(n) e
2πinx .
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Then the left-hand side of (5.12) can be represented by

(5.14)

1

MKMK+1 · · ·Md

∫
Td+1

d+1∏
j=1

Fj(xj)Fd+2(x1 + · · ·+ xd+1)

× S(x1, . . . , xd+1) dx1 · · · dxd+1 .

Here S(x1, . . . , xd+1) is given by

S(x1, . . . , xd+1)

=
M∑

m1=1

· · ·
M∑

mK=1

MK+1∑
mK+1=1

· · ·
Md∑

md=1

e2πi(m1x1+···+mdxd) e2πi(m
2
1+···+m2

d)xd+1 .(5.15)

Utilizing Theorem 1.7, we have∥∥S∥∥
2(d+2)/d

≤ C (MK+1 · · ·Md)
d

2(d+2) M
dK

2(d+2)
+ d

d+2
+ε .

Then the Hölder inequality yields that

(5.14) ≤ C
∥∥T (F1, . . . , Fd+2)

∥∥
2(d+2)
d+4

(MK+1 · · ·Md)
− d+4

2(d+2) M
dK

2(d+2)
+ d

d+2−K+ε .

Since 2(d+ 2)/(d+ 4) ≤ 2(d+ 1)/(d+ 2), we can apply Lemma 5.5 to obtain

(5.16) (5.14) ≤ C (MK+1 · · ·Md)
− d+4

2(d+2) M
−(d+4)K+2d

2(d+2)
+ε

d+2∏
j=1

∥∥Fj

∥∥
L2(T)

.

�

We now prove Theorem 5.2. Since SK is K-admissible, without loss of gene-
rality, we assume that M1 = · · · = MK = M and M ≥ C max{MK+1, . . . ,Md}.
Moreover, we may also assume that M is dyadic. Hence we only need to consider
T̃ ∗(f1, . . . , fd+1) given by

(5.17) T̃ ∗(f1, . . . , fd+1) = sup
M,MK+1,...,Md

∣∣AM,MK+1,...,Md
(f1, . . . , fd+1)

∣∣ .
Clearly we have∣∣ T̃ ∗(f1, . . . , fd+1)

∣∣ ≤ ( ∑
M,MK+1,...,Md

∣∣AM,MK+1,...,Md
(f1, . . . , fd+1)

∣∣2)1/2

.

Taking the L2 norm of both sides, we then get
(5.18)∥∥ T̃ ∗(f1, . . . , fd+1)

∥∥
L2(Z)

≤
( ∑
M,MK+1,...,Md

∥∥AM,MK+1,...,Md
(f1, . . . , fd+1)

∥∥2
L2(Z)

)1/2

.

Employing Proposition 5.6, we estimate ‖T̃ ∗(f1, . . . , fd+1)‖L2(Z) by

(5.19)
( ∑

M,MK+1,...,Md

C (MK+1 · · ·Md)
− d+4

(d+2) M
−(d+4)K+2d

(d+2)
+ε

)1/2 d+1∏
j=1

‖fj‖L2(Z) ,
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which is bounded by

C

d+1∏
j=1

‖fj‖L2(Z) ,

since K > 2d/(d+ 4) implies ((d + 4)K − 2d)/(d+ 2) > 0. This completes the
proof of Theorem 5.2.

Also we are able to obtain an L2 estimate for the corresponding bilinear Hilbert
transform.

Theorem 5.7. Let K be a function on Z satisfying

(5.20) |K(n)| ≤ C

|n|

for n �= 0. Let T (f1, f2) be defined by

(5.21) T (f1, f2)(n) =
∑
m �=0

K(m) f1(n−m) f2(n−m2) ,

for Schwartz functions f1, f2 : R �→ C. Then we have

(5.22)
∥∥T (f1, f2)∥∥L2(Z)

≤ C
∥∥f1∥∥L2(Z)

∥∥f2∥∥L2(Z)
.

Proof. For any dyadic number M ≥ 1, define TM (f1, f2) by

(5.23) TM (f1, f2)(n) =
1

M

∑
m∼M

∣∣ f1(n−m)f2(n−m2)
∣∣ .

Apply Proposition 5.6 to get

(5.24)
∥∥TM (f1, f2)

∥∥
L2(Z)

≤ M−1/2+ε
∥∥ f1∥∥L2(Z)

∥∥ f2∥∥L2(Z)
.

Then (5.22) follows from (5.24). �

Remark 5.8. If the kernel K in Theorem 5.7 has some cancellation condition,
then T (f1, f2) could be a bounded operator from L2 × L2 to L1. This problem is
still open and seems to be challenging.

6. Estimate for Kp,d,N when p is even

In this section, we give a bound on Kp,d,N when p is even. The idea is not new, and
it is used often in the field of number theory. For the sake of self-containedness,
we include it here. By using it and an arithmetic argument, one can get sharp
estimates, up to a factor of Nε, for K6,1,N , K4,2,N , etc. See [1] for details.
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Proposition 6.1. If p > 0 is an even integer, then we have

(6.1) Kp
p,d,N ≤ sup

(l,m)∈Sd,pN/2×{1,...,pN2/2}
e2πεm FTd×T

(
F p/2(·, ·+ iε)

)
(l,m) .

Here FTd×T is the Fourier transform of functions on Td × T, ε is any positive
number, and F is given by

(6.2) F (x, z) =
∑
n∈Zd

e2πiz|n|
2+2πix·n .

Proof. Let k = p/2. A direct calculation yields
(6.3)∫

Td+1

∣∣∣ ∑
n∈Sd,N

an e
2πi(n·x+|n|2t)

∣∣∣2k dx dt =
∑

(n1,...,nk,m1,...,mk)∈Sd,N,k

an1 . . . ank
am1 . . . amk

.

Here Sd,N,k is given by

Sd,N,k=
{(

n1, . . . ,nk,m1, . . . ,mk

)∈Sp
d,N :

k∑
j=1

nj =

k∑
j=1

mj ,

k∑
j=1

|nj |2 =

k∑
j=1

|mj|2
}
.

For any l ∈ Sd,kN and any positive integer m ≤ kN2, we set

Sk(l,m) =
{(

n1, . . . ,nk

) ∈ Sk
d,N :

k∑
j=1

nj = l,

k∑
j=1

|nj |2 = m
}
.

Now we can estimate (6.3) by

(6.4)
∑

l∈Sd,kN

kN2∑
m=1

∣∣∣ ∑
(n1,··· ,nk)∈Sk(l,m)

an1 · · · ank

∣∣∣2.
Utilizing the Cauchy–Schwarz inequality and the fact that {Sk(l,m)} forms a par-
tition of Sk

d,N , we dominate (6.4) by

(6.5) max
l∈Sd,kN ,1≤m≤kN2

∣∣Sk(l,m)
∣∣ (∑

n

|an|2
)k

,

where |Sk(l,m)| denotes the cardinality of Sk(l,m).

Employing the elementary fact that
∫ 1

0
e2πinθdθ = 0 if n �= 0 and

∫ 1

0
e2πinθdθ =

1 if n = 0, for any l ∈ Sd,kN and any positive integer m ≤ kN2 we can estimate
|Sk(l,m)| by

(6.6)
∑

(n1,...,nk)∈Sk
d,N

∫ 1

0

e2πit(
∑k

j=1 |nj|2−m) dt

∫
Td

e2πi
∑k

j=1 x·nje−2πix·l dx ,
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which equals
(6.7) ∑
(n1,...,nk)∈Sk

d,N

e2πεm
∫ 1

0

e2πi(t+iε)
∑k

j=1 |nj |2 e−2πimtdt

∫
Td

e2πi
∑k

j=1 x·nj e−2πix·l dx ,

for any real number ε. This term can also be written as

(6.8) e2πεm
∫
Td×T

( ∑
n∈Sd,N

e2πi(t+iε)|n|2 e2πix·n
)k

e−2πix·l e−2πimt dx dt .

Notice that we may replace Sd,N by Zd in (6.6), (6.7), and (6.8) to make the upper
bounds larger. Thus, by the definition of F in (6.2), we dominate |Sk(l,m)| by

(6.9) e2πεm
∫
Td×T

(
F (x, t+ iε)

)k
e−2πix·l e−2πimt dx dt .

This finishes the proof of Proposition 6.1. �
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