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Linear multifractional stable motion:

fine path properties

Antoine Ayache and Julien Hamonier

Abstract. For at least a decade, there has been considerable interest in
applied and theoretical issues related to multifractional random models.
Nonetheless, only a few results are known in the framework of heavy-
tailed stable distributions. In this framework, a paradigmatic example is
the linear multifractional stable motion (LMSM) {Y (t) : t ∈ R}. Stoev and
Taqqu [30], [29] introduced LMSM by replacing the constant Hurst param-
eter of classical linear fractional stable motion (LFSM) by a deterministic
function H(·) depending on the time variable t. The main goal of our arti-
cle is to make a comprehensive study of the local and asymptotic behavior
of {Y (t) : t ∈ R}. To this end, one needs to derive fine path properties of
{X(u, v) : (u, v) ∈ R× (1/α, 1)}, the field generating the process (i.e., one
has Y (t) = X(t,H(t)) for all t ∈ R). This leads us to introduce random
wavelet series representations of {X(u, v) : (u, v) ∈ R× (1/α, 1)} as well as
of all its pathwise partial derivatives of any order with respect to v. Then
our strategy consists in using wavelet methods which are reminiscent of
those in [2], [5]. Among other things, we solve a conjecture of Stoev and
Taqqu concerning the existence for LMSM of a version with almost surely
continuous paths; moreover we significantly improve Theorem 4.1 in [29],
which provides some bounds for the local Hölder exponent (in other words,
the uniform pointwise Hölder exponent) of LMSM. Namely, we obtain a
quasi-optimal global modulus of continuity, and also an optimal local one.
It is worth noticing that, even in the quite classical case of LFSM, the opti-
mal local modulus of continuity provides a new result which was previously
not known.

1. Introduction

For at least a decade, there has been considerable interest in applied and theoretical
issues related to multifractional random models (see, for instance, [4], [3], [1], [6],
[9], [8], [7], [11], [17], [16], [14], [15], [18], [19], [21], [20], [22], [25], [30], [29], [28], [32]).

Mathematics Subject Classification (2010): 60G22, 60G52, 60G17.
Keywords: Linear fractional and multifractional stable motions, wavelet series representations,
moduli of continuity, Hölder regularity, laws of the iterated logarithm.
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These fractal nonstationary increments stochastic processes/fields, are natural
extensions of the well-known fractional Brownian motion (FBM). They have richer
path behavior than FBM and they are more widely applicable because their local
properties, typically the index governing self-similarity as well as the degree of
path roughness, can be controlled via a nonconstant functional Hurst parameter
and thus are allowed to change with location. In the Gaussian case, and more
generally when all moments are finite, many results concerning the path behavior
of such random models have been derived in the literature; but much less is known
in the framework of heavy-tailed stable distributions. A paradigmatic example of
a multifractional process in such a setting, is the so-called linear multifractional
stable motion (LMSM), which was introduced by Stoev and Taqqu in [30], [29].
According to these two authors (see page 1086 in [30]): “a LMSM model is a good
candidate to adequately describe some features of traffic traces on telecommunica-
tion networks, typically changes in operating regimes and burstiness (the presence
of rare but extremely busy periods of activity).”

In order to define LMSM precisely, we fix some notation to be used throughout
the article:

• Recall that heaviness of the tail of a stable distribution is governed by a con-
stant parameter belonging to the open interval (0, 2), usually denoted by α;
the smaller α is, the heavier the tail is. In the present article, we always
assume that α ∈ (1, 2), since it has been shown in [30] that this assump-
tion is actually a necessary condition for the paths of LMSM to be, with
probability 1, continuous functions.

• H(·) denotes an arbitrary deterministic continuous function defined on R and
with values in an arbitrary fixed compact interval [H,H] ⊂ (1/α, 1). Similar
to the constant Hurst parameter of FBM, this function will be an essential
parameter for LMSM.

• Zα(ds) is an independently scattered strictly α-stable (StαS) random mea-
sure on R, with Lebesgue measure as its control measure and an arbitrary
Borel function β(·) : R → [−1, 1] as its skewness intensity. Much information
on such random measures and the corresponding stochastic integrals can be
found in the book [27].

LMSMs are generated by the StαS random field X̃ = {X̃(u, v) : (u, v) ∈ R ×
(1/α, 1)}, defined for all (u, v) as the stochastic integral

(1.1) X̃(u, v) =

∫
R

{
(u− s)

v−1/α
+ − (−s)v−1/α

+

}
Zα(ds),

with the convention that, for all real numbers x and κ,

(1.2) (x)κ+ :=

{
xκ, if x ∈ (0,+∞),

0, if x ∈ (−∞, 0].

Actually, Ỹ = {Ỹ (t) : t ∈ R}, the LMSM of functional Hurst parameter H(·), is
defined for every t ∈ R, as

(1.3) Ỹ (t) = X̃(t,H(t)).
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Observe that, if β(·) is assumed to be a constant function, then for each fixed

v ∈ (1/α, 1), the process X̃(·, v) := {X̃(u, v) : (u, v) ∈ R} is the usual linear frac-
tional stable motion (LFSM) of Hurst parameter v; therefore LMSM reduces to
the latter process when one also assumes H(·) to be a constant function. We note
in passing that LFSM and harmonizable fractional stable motion (HFSM) are two
classical self-similar stable processes with stationary increments. They regarded
as the most two natural extensions of FBM to the setting of heavy-tailed distri-
butions. Also, we note that, in contrast with moving average and harmonizable
representations of FBM in the Gaussian framework, the path behavior of LFSM
is considerably more irregular and more complex than that of HFSM. We refer
to [27], [33], [13] for a detailed presentation of these two processes, as well as other
classical examples of stable processes. Before ending this paragraph, let us mention
that a harmonizable multifractional stable process, which extends HFSM and thus
behaves very differently from LMSM, has been introduced quite recently in [11].

The main goal of our paper is to make a comprehensive study of the local
and asymptotic behavior of LMSM, under the quite general condition that its
parameter H(·) is an arbitrary deterministic continuous function with values in an
arbitrary fixed compact interval [H,H ] ⊂ (1/α, 1). This study mainly relies on
wavelet methods which are reminiscent of those in [2], [5]. As we will explain more
precisely soon, among other things, we significantly improve two earlier results
of Stoev and Taqqu [29], concerning continuity and path behavior of LMSM. On
the other hand, even in the quite classical case of LFSM (in other words, in the
particular case where β(·) and H(·) are constant), the determination of the optimal
lower bound for the power of the logarithmic factor in a local modulus of continuity
has so far been an open problem. Corollary 5.6 and Theorem 7.1 in the present
article solve it, in the more general case of LMSM, by showing that 1/α is in fact
this optimal lower bound.

We give now the precise statements of the two results in [29] we have just
mentioned.

1. Theorem 3.2 in [29] (the existence for LMSM of a version whose paths are,
with probability 1, Hölder continuous functions). Let I ′ ⊂ I be arbitrary nonempty
bounded subintervals of R, which are respectively closed and open; suppose that
1/α < H(t) < 1, for each t ∈ I and that, for all t′, t′′ ∈ I,

(1.4)
∣∣H(t′)−H(t′′)

∣∣ ≤ c |t′ − t′′|ρ, with 1/α < ρ,

where the constants c and ρ do not depend on t′ and t′′. Then the LMSM {Ỹ (t) :
t ∈ R} has a version {Y (t) : t ∈ R}, whose paths are, with probability 1, continuous
functions on I. Moreover, they are Hölder functions on I ′, with a uniform Hölder
exponent (see (8.1)) ρunifY

(
I ′
)
satisfying

ρunifY

(
I ′
) ≥ (

ρ ∧min
t∈I′

H(t)
)
− 1/α.

2. Theorem 4.1 in [29] (local Hölder exponent – in other words, uniform
pointwise Hölder exponent – of LMSM). Assume that H(·) is continuous, with
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values in (1/α, 1) and satisfies, ρunifH (t) > 1/α for all t ∈ R, where ρunifH (t) denotes
the local Hölder exponent (see (8.3)) of H(·) at t. Then, ρunifY (t0), the local Hölder
exponent of the LMSM {Y (t) : t ∈ R} at an arbitrary point t0 	= 0, can be almost
surely bounded, in the following way:

(1.5) ρunifH (t0) ∧H(t0)− 1/α ≤ ρunifY (t0) ≤ ρH(t0) ∧H(t0).

Here ρH(t0) denotes the pointwise Hölder exponent at t0 (see, e.g., Definition 4.1
in [29]) of the function H(·).

The first of the two previous theorems and the first inequality in (1.5) have been
derived in [29] by using the strong version of Kolmogorov’s continuity criterion
provided by Theorem 3.3.16 in [31], for instance. On the other hand, the proof
given in [29] for the second inequality in (1.5) relies mainly on the inequality
ρunifY (t0) ≤ ρY (t0) as well as relations (4.11) and (4.12) in [29]. Using a different
strategy, namely wavelet methods which are reminiscent of those in [2], [5], in the
present work, we have been able to improve Theorems 3.2 and 4.1 in [29]. More
precisely:

1. The condition (1.4) seems to be too strong if one is only interested in the ex-
istence of a version of LMSM with almost surely continuous paths. Namely,
in their Remark 1 on page 166 in [29], Stoev and Taqqu have conjectured
that such a version should exist as long as H(·) is a continuous function
with values in (1/α, 1). This conjecture is solved in our article. To solve
it, we construct X = {X(u, v) : (u, v) ∈ R × (1/α, 1)} a version with al-

most surely continuous paths, of the field {X̃(u, v) : (u, v) ∈ R × (1/α, 1)}
which generates LMSMs. In fact {X(u, v) : (u, v) ∈ R × (1/α, 1)} is ob-
tained as a random series of functions, resulting from the decomposition of
the kernel in (1.1) into a Daubechies wavelet basis (see Theorem 2.1). Thus,
denoting by {Y (t) : t ∈ R} the version of LMSM defined for each t ∈ R by
Y (t) := X(t,H(t)), it is clear that the paths of the process {Y (t) : t ∈ R}
are continuous with probability 1, as long as H(·) is a continuous function
on the real line and with values in (1/α, 1). Observe that at this stage, we
do not need to restrict the range of H(·) to the compact interval [H,H ].

2. Theorem 8.1 in the present article shows that, almost surely, for any t0 ∈ R

satisfying ρunifH (t0) > 1/α, one has, ρunifY (t0) = H(t0) − 1/α. Observe that
the exceptional negligible event on which this equality fails to be true does
not depend on t0. Also observe that this equality remains valid even in the
case where t0 = 0.

The rest of the paper is structured in the following way. Section 2 is devoted
to the construction of the version {X(u, v) : (u, v) ∈ R × (1/α, 1)} of the field

{X̃(u, v) : (u, v) ∈ R × (1/α, 1)} which generates LMSMs. As we have already
pointed out, this version is in fact a random series of functions, resulting from the
decomposition of the kernel in (1.1) into a Daubechies wavelet basis. In Section 3,
we show that this series and all its term-by-term pathwise partial derivatives of any
order with respect to v are convergent in a very strong sense: with probability 1,
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in the space Eγ(a, b,M) := C1
(
[a, b], Cγ([−M,M ],R)

)
, where the real numbers

M > 0, 0 < 1/α < a < b < 1 and 0 ≤ γ < a − 1/α are arbitrary and fixed, and
where Cλ(I,B) denotes the space of λ-Hölder functions defined on an interval I and
with values in the Banach space B. Notice that an important consequence of this
result is that, for each q ∈ Z+, a typical path of the field {(∂qvX)(u, v) : (u, v) ∈
R × (1/α, 1)} belongs to Eγ(a, b,M). Thus, not only is such a path a continuous
function but also it has much better properties than continuity. In Section 4, fine
path properties of the field {(∂qvX)(u, v) : (u, v) ∈ R × (1/α, 1)} are derived using
wavelet methods. Namely we determine a global modulus of continuity on the
rectangle [−M,M ]× [a, b]; also we give an upper bound for

∣∣(∂qvX)(u, v)
∣∣, on the

domain (u, v) ∈ R× [a, b]. These two results are used in Section 5, to obtain global
and local moduli of continuity for the LMSM {Y (t) : t ∈ R}. The optimality
of some of these moduli of continuity is discussed in Sections 6 and 7; under
some Hölder conditions on H(·), it turns out that the global modulus is quasi-
optimal (it provides, up to a logarithmic factor, a sharp estimate of the behavior
of {Y (t) : t ∈ R}, on an arbitrary fixed compact interval) and the local modulus is
optimal (it provides, without any logarithmic gap, a sharp estimate of the behavior
of {Y (t) : t ∈ R} on a neighborhood of an arbitrary fixed point). In Section 8, by
making use of the quasi-optimality of the global modulus of continuity of LMSM,
we determine its local Hölder exponent. Finally, some technical lemmas as well as
their proofs are given in Section 9 (the appendix).

2. Wavelet series version of the field generating LMSMs

Let X̃ = {X̃(u, v) : (u, v) ∈ R× (1/α, 1)} be the StαS stochastic field introduced

in (1.1). The goal of this section is to construct a version of X̃ , denoted by X ,
which is defined as a random wavelet series. We note in passing that random
wavelet series version of LFSM and other self-similar stable fields with stationary
increments have been introduced in [12].

First, we fix some notation related to wavelets that will be used extensively
throughout the article:

• The real-valued function ψ defined on the real line, is a 3 times continuously
differentiable compactly supported Daubechies mother wavelet [10], [24], [23].
Observe that ψ has Q ≥ 15 vanishing moments:

(2.1)

∫
R

tmψ(t) dt = 0, for all m = 0, . . . , Q− 1, and

∫
R

tQψ(t) dt 	= 0.

The fact that ψ is a compactly supported function will play a crucial role.
For the sake of convenience, we assume that R is a fixed real number strictly
bigger than 1, such that

(2.2) suppψ ⊆ [−R,R].
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• The real-valued function Ψ is defined for all (x, v) ∈ R× (1/α, 1) as,

(2.3) Ψ(x, v) :=

∫
R

(s)
v−1/α
+ ψ(x− s) ds =

∫
R

(x − s)
v−1/α
+ ψ(s) ds.

Recall that (·)v−1/α
+ is defined in (1.2). Denoting by Γ the usual Gamma

function

Γ(u) :=

∫ +∞

0

tu−1 e−t dt, for all u ∈ (0,+∞),

and denoting, for each fixed v, by Ψ̂(·, v) the Fourier transform of the func-
tion Ψ(·, v),

Ψ̂(ξ, v) :=

∫
R

e−iξx Ψ(x, v) dx, for all ξ ∈ R,

one has

(2.4) Ψ̂(ξ, v) = Γ(v+1−1/α)
e−i sgn(ξ)(v+1−1/α)π

2 ψ̂(ξ)

|ξ|v+1−1/α
, for all ξ ∈ R \ {0}.

This equality can be obtained by using a result in [26] concerning Fourier
transforms of left-sided fractional derivatives.

• {εj,k : (j, k) ∈ Z2} is the sequence of real-valued StαS random variables
defined by

(2.5) εj,k := 2j/α
∫
R

ψ(2js− k)Zα(ds).

Now we are ready to state the main result of this section.

Theorem 2.1. Let Ψ be the function defined in (2.3), let {εj,k : (j, k) ∈ Z2} be
the sequence of real-valued StαS random variables defined in (2.5), and let Ω∗

0 be
the event of probability 1 introduced in Lemma 2.3 below. The following two results
hold.

(i) For all fixed ω ∈ Ω∗
0 and (u, v) ∈ R× (1/α, 1), one has

(2.6)
∑

(j,k)∈Z2

2−jv
∣∣εj,k(ω)∣∣ ∣∣Ψ(2ju− k, v)−Ψ(−k, v)∣∣ <∞.

Therefore, the series

(2.7)
∑

(j,k)∈Z2

2−jvεj,k(ω)
(
Ψ(2ju− k, v)−Ψ(−k, v)),

converges to a finite limit which does not depend on the way the terms of
the series are ordered; this limit is denoted by X(u, v, ω). Moreover for each
ω /∈ Ω∗

0 and every (u, v) ∈ R× (1/α, 1), one sets X(u, v, ω) = 0.
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(ii) The field {X(u, v) : (u, v) ∈ R × (1/α, 1)} is a version of the StαS field

{X̃(u, v) : (u, v) ∈ R× (1/α, 1)} defined in (1.1).

In order to prove Theorem 2.1, we need some preliminary results.

Remark 2.2. (i) The scale parameter ‖εj,k‖α of εj,k does not depend on (j, k),
since standard computations show

(2.8) ‖εj,k‖α = ‖ε0,0‖α =
{∫

R

|ψ(t)|α dt
}1/α

.

(ii) The skewness parameter of εj,k is denoted by βj,k and is given by

βj,k = ‖ε0,0‖−α
α

∫
R

ψ<α>(x)β(2−jx+ 2−jk) dx,

where z<α> := |z|α sgn(z) for all z ∈ R, and where β(·) is the skewness intensity
function of the StαS measure Zα(ds). Notice that, when this function is constant,
then the random variables εj,k are identically distributed, since, in addition to
having the same scale parameter, they have the same skewness parameter.

(iii) Combining Properties 1.2.15 and 1.2.13 on page 16 of [27] with the fact
that ‖εj,k‖α does not vanish and does not depend on (j, k), it follows that there
exist two constants 0 < c′ ≤ c′′, not depending on (j, k), such that one has, for all
real numbers x ≥ 1,

(2.9) c′ x−α ≤ P
(|εj,k| > x

) ≤ c′′ x−α.

(iv) In view of (2.5), (2.2), and the fact that Zα(ds) is independently scattered,
for each fixed integers p > 2R and j ∈ Z, one has that {εj,pq : q ∈ Z} is a sequence
of independent random variables.

The following lemma, which was derived in [2], gives rather sharp estimates of
the asymptotic behavior of the sequence

{|εj,k| : (j, k) ∈ Z2
}
. It can be proved

by showing that for every fixed real number η > 0, one has

E

( ∑
(j,k)∈Z2

1{|εj,k|>(1+|j|)1/α+η(1+|k|)1/α log1/α+η(2+|k|)
}) <∞.

This follows easily from the second inequality in (2.9).

Lemma 2.3 ( [2]). There exists an event of probability 1, denoted by Ω∗
0, such that

for every fixed real number η > 0, one has, for all ω ∈ Ω∗
0 and for each (j, k) ∈ Z2,∣∣εj,k(ω)∣∣ ≤ C(ω)

(
1 + |j|)1/α+η (

1 + |k|)1/α log1/α+η
(
2 + |k|)

≤ C′(ω)
(
3 + |j|)1/α+η (

3 + |k|)1/α+η
,(2.10)

where C and C′ are positive and finite random variables depending only on η.
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The following proposition, which shows that the function Ψ and its partial
derivatives of any order, have nice smoothness and localization properties, will
also play an important role throughout this article.

Proposition 2.4. The function Ψ satisfies the following two properties.

(i) For all (p, q) ∈ {0, 1, 2, 3}×Z+ and (x, v) ∈ R×(1/α, 1), the partial derivative
(∂px∂

q
vΨ)(x, v) exists and is given by

(∂px∂
q
vΨ)(x, v) =

∫
R

(s)
v−1/α
+ logq((s)+)ψ

(p)(x− s) ds

=

∫
R

(x − s)
v−1/α
+ logq((x − s)+)ψ

(p)(s) ds,(2.11)

where ψ(p) is the derivative of ψ of order p and 0 logq(0) := 0. Moreover the
function ∂px∂

q
vΨ is continuous on R× (1/α, 1).

(ii) For each (p, q) ∈ {0, 1, 2, 3}×Z+ and for every real numbers a and b satisfying
1 > b > a > 1/α, the function ∂px∂

q
vΨ is well localized in the variable x

uniformly in the variable v ∈ [a, b]; namely one has

(2.12) sup
(x,v)∈R×[a,b]

(3 + |x|)2 ∣∣(∂px∂qvΨ)(x, v)
∣∣ <∞.

Proof. First we show (i). In view of (2.3), the function Ψ can be expressed, for all
(x, v) ∈ R× (1/α, 1), as

Ψ(x, v) =

∫
R

L(x, v, s) ds.

where L(x, v, s) := (s)
v−1/α
+ ψ(x−s). Also observe that for all (p, q)∈{0, . . . , 3} × Z+

and (x, v, s) ∈ R × (1/α, 1) × R, the partial derivative (∂px∂
q
vL)(x, v, s) exists and

is given by

(2.13) (∂px∂
q
vL)(x, v, s) = (s)

v−1/α
+ logq((s)+)ψ

(p)(x− s).

Therefore, to show that the partial derivative (∂px∂
q
vΨ)(x, v) exists and is given

by (2.11), it is sufficient to prove that for all real numbers M , a, and b, satisfying

(2.14) M > 0 and 1/α < a < b < 1,

one has

(2.15)

∫
R

sup
(x,v)∈[−M,M ]×[a,b]

∣∣(∂px∂qvL)(x, v, s)∣∣ ds <∞.

This is true, since (2.13), (2.2), and (2.14) imply that∫
R

sup
(x,v)∈[−M,M ]×[a,b]

∣∣(∂px∂qvL)(x, v, s)∣∣ ds
≤ ‖ψ(p)‖L∞(R)

∫ M+R

−M−R

(
(s)

a−1/α
+ + (s)

b−1/α
+

)∣∣ log((s)+)∣∣q ds <∞.(2.16)
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Finally, observe that it follows from (2.11), (2.13), (2.15), and the dominated
convergence theorem, that for all (p, q) ∈ {0, . . . , 3} × Z+, the function ∂px∂

q
vΨ is

continuous on R× (1/α, 1).

We show part (ii) of the proposition. The relations (2.2) and (2.11) imply that,
for all (p, q) ∈ {0, . . . , 3} × Z+ and for each (x, v) ∈ (−∞,−R)× (1/α, 1), one has

(2.17) (∂px∂
q
vΨ)(x, v) = 0.

Combining (2.17) with the fact ∂px∂
q
vΨ is continuous on the compact set [−R, 2R]×

[a, b], it follows that

sup
(x,v)∈(−∞,2R]×[a,b]

(3 + |x|)2 ∣∣(∂px∂qvΨ)(x, v)
∣∣ <∞.

Therefore, there remains to show

(2.18) sup
(x,v)∈(2R,+∞)×[a,b]

(3 + x)2
∣∣(∂px∂qvΨ)(x, v)

∣∣ <∞.

In view of (2.11) and (2.2), one has, for each (x, v) ∈ (2R,+∞)× [a, b],

(∂px∂
q
vΨ)(x, v) =

∫ R

−R

Kq(x, v, s)ψ
(p)(s) ds,

where
Kq(x, v, s) := (x− s)v−1/α logq(x− s).

For each l ∈ {1, 2, 3} and real number s, one sets

ψ(p−l)(s) =

∫ s

−∞
ψ(p+1−l)(t) dt;

observe that, in view of (2.1) and (2.2), the supports of these three functions are
included in [−R,R]. Thus, integrating three times by parts, one gets that

(2.19) (∂px∂
q
vΨ)(x, v) = −

∫ R

−R

(∂3sKq)(x, v, s)ψ
(p−3)(s) ds.

Next, standard computations show that there is a constant cq,α > 0, depending
only on q and α, such that for all (x, v, s) ∈ (2R,+∞)× [a, b]× [−R,R], one has

(2.20)
∣∣(∂3sKq)(x, v, s)

∣∣ ≤ cq,α (x− s)−2 ≤ 4cq,α x
−2.

Finally, combining (2.19) and (2.20), one obtains (2.18). �

Now we are prepared to prove Theorem 2.1.

Proof of Theorem 2.1, Part (i). Let ω ∈ Ω∗
0 and (u, v) ∈ R× (1/α, 1) be arbitrary

and fixed. Also, we assume that η is an arbitrarily small fixed positive real number.
By using the triangle inequality, (2.12) (in which one takes p = q = 0 and a and b
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such that v ∈ [a, b]), and (2.10), it follows that for all fixed j ∈ N,∑
k∈Z

∣∣εj,k(ω)∣∣∣∣Ψ(2ju− k, v)−Ψ(−k, v)∣∣
≤ C1(ω)

(
3 + j

)1/α+η ∑
k∈Z

( (
3 + |k|)1/α+η(
3 + |2ju− k|)2 +

(
3 + |k|)1/α+η(
3 + |k|)2

)
≤ C2(ω)

(
3 + j

)1/α+η(
3 + 2j|u|)1/α+η

×
∑
k∈Z

( (
3 + |k|)1/α+η(

3 + |2ju− [2ju]− k|)2 +

(
3 + |k|)1/α+η(
3 + |k|)2

)
,(2.21)

where [2ju] denotes the integer part of 2ju and where C1(ω) and C2(ω) are two
finite constants not depending on j and u. Then, noticing that

(2.22) sup
x∈[0,1]

{∑
k∈Z

(
3 + |k|)1/α+η(
3 + |x− k|)2

}
≤

∑
k∈Z

(
3 + |k|)1/α+η(
2 + |k|)2 <∞,

it follows from (2.21) that

(2.23)
∑
j∈N

∑
k∈Z

2−jv
∣∣εj,k(ω)∣∣ ∣∣Ψ(2ju− k, v)−Ψ(−k, v)∣∣ <∞.

We now prove that

(2.24)
∑
j∈Z−

∑
k∈Z

2−jv
∣∣εj,k(ω)∣∣ ∣∣Ψ(2ju− k, v)−Ψ(−k, v)∣∣ <∞.

Applying the mean value theorem, one has for all (j, k) ∈ Z− × Z,

(2.25) Ψ(2ju− k, v)−Ψ(−k, v) = 2ju(∂xΨ)(ν − k, v),

where ν ∈ [−2j|u|, 2j|u|] ⊆ [−|u|, |u|]. Putting together (2.25), (2.10) and (2.12)
(in which one takes p = 1, q = 0, and a and b such that v ∈ [a, b]), one obtains
that,∑

|k|≤|u|

∣∣εj,k(ω)∣∣∣∣Ψ(2ju− k, v)−Ψ(−k, v)∣∣
≤ C3(ω)|u|

(
2|u|+ 1

)(
3 + |u|)1/α+η

(
sup
x∈R

∣∣(∂xΨ)(x, v)
∣∣)2j(3 + |j|)1/α+η

(2.26)

and ∑
|k|>|u|

∣∣εj,k(ω)∣∣∣∣Ψ(2ju− k, v)−Ψ(−k, v)∣∣
≤ C4(ω)|u|

(
3 + |u|)1/α+η

(∑
k∈Z

(
3 + |k|)1/α+η−2

)
2j
(
3 + |j|)1/α+η

,(2.27)

where C3(ω) and C4(ω) are two positive finite constants not depending on j and u.
Next combining (2.26) and (2.27) with the fact that v ∈ (1/α, 1), one gets (2.24).
Finally (2.23) and (2.24) show that (2.6) holds. �
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Proof of Theorem 2.1, Part (ii). For all (j, k) ∈ Z2 and any s ∈ R, we set

(2.28) ψj,k(s) = 2j/α ψ(2js− k),

where ψ is the Daubechies mother wavelet introduced at the very beginning of this
section. Observe that the sequence {ψj,k : (j, k) ∈ Z2} forms an unconditional basis
of Lα(R) and the sequence {2j(1/2−1/α)ψj,k : (j, k) ∈ Z2} is an orthonormal basis of
L2(R) (see [24], [23]). Therefore, noticing that, for any fixed (u, v) ∈ R× (1/α, 1),

the function s �→ (u − s)
v−1/α
+ − (−s)v−1/α

+ belongs to Lα(R) ∩ L2(R), it follows
that

(2.29) (u − s)
v−1/α
+ − (−s)v−1/α

+ =
∑
j∈Z

∑
k∈Z

wj,k(u, v)ψj,k(s),

where

wj,k(u, v) := 2j(1−1/α)

∫
R

{
(u− s)

v−1/α
+ − (−s)v−1/α

+

}
ψ(2js− k) ds

= 2−jv
{
Ψ(2ju− k, v)−Ψ(−k, v)},(2.30)

and where the convergence of the series, as a function of s, holds in Lα(R) as well
as in L2(R). Observe that the limit of the series does not depend on the way its
terms are ordered. Next, using (2.29), (2.30), (1.1), a classical property of the
stochastic integral

∫
R
(·)Zα(ds), (2.28), and (2.5), we get that the random series∑

(j,k)∈Z2

2−jv εj,k
(
Ψ(2ju− k, v)−Ψ(−k, v)),

converges in probability to the random variable X̃(u, v). Observe that the terms of
this series can be ordered in an arbitrary way. Finally, combining this result with
Part (i) of Theorem 2.1, we obtain that the random variables X̃(u, v) and X(u, v)
are equal almost surely. �

3. Convergence of the wavelet series in Hölder spaces

The goal of this section is to show that when the terms of the series in (2.7),
viewed as a random series of functions of the variable (u, v), are ordered in an
appropriate way, then not only does this series converge almost surely for every
fixed (u, v) ∈ R× (1/α, 1), but also it, as well as its term-by-term pathwise partial
derivatives of any order with respect to v, converges almost surely in some Hölder
spaces. First we define these spaces precisely.

Definition 3.1. Let (B, ‖ · ‖) be a Banach space and let K be a subset of R. For
every γ ∈ [0, 1], the Banach space of γ-Hölder functions from K to B is denoted by
Cγ(K,B) and defined by

Cγ(K,B) := {
f : K → B : Nγ(f) <∞}

,
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where

Nγ(f) := sup
x∈K

‖f(x)‖+ sup
x,y∈K

‖f(x)− f(y)‖
|x− y|γ

is the natural norm on this space. In the definition of Nγ(f), we understand that
0/0 = 0. Also notice that C1(K,B) is usually called the space of the Lipschitz
functions from K to B.

Definition 3.2. Let γ, M , a, and b be arbitrary fixed real numbers satisfying
γ ∈ [0, 1], M > 0, and a < b. We denote by Eγ(a, b,M) the Banach space

Eγ(a, b,M) := C1
(
[a, b], Cγ([−M,M ],R)

)
of the Lipschitz functions defined on [a, b] and with values in the Hölder space
Cγ([−M,M ],R). Observe that each function f belonging to Eγ(a, b,M) can be
viewed as a bivariate real-valued function (u, v) �→ f(u, v) :=

(
f(v)

)
(u) on the

rectangle [−M,M ]× [a, b]; moreover, the natural norm on Eγ(a, b,M) is equivalent
to the norm ||| . ||| defined by

|||f ||| := sup
(u,v)∈[−M,M ]×[a,b]

|f(u, v)|(3.1)

+ sup
(u1,u2,v)∈[−M,M ]2×[a,b]

∣∣(Δ1,·
u1−u2

f)(u2, v)
∣∣

|u1 − u2|γ

+ sup
(u,v1,v2)∈[−M,M ]×[a,b]2

∣∣(Δ·,1
v1−v2f)(u, v2)

∣∣
|v1 − v2|

+ sup
(u1,u2,v1,v2)∈[−M,M ]2×[a,b]2

∣∣(Δ1,1
(u1−u2,v1−v2)

f)(u2, v2)
∣∣

|u1 − u2|γ |v1 − v2| ,

where

(Δ1,·
u1−u2

f)(u2, v) := f(u1, v)− f(u2, v),

(Δ·,1
v1−v2f)(u, v2) := f(u, v1)− f(u, v2),(3.2)

(Δ1,1
(u1−u2,v1−v2)

f)(u2, v2) := f(u1, v1)− f(u1, v2)− f(u2, v1) + f(u2, v2).

In (3.1), we understand that 0/0 = 0.

Now we are ready to state the main result of this section.

Theorem 3.3. We use the same notation as in Theorem 2.1. The following two
results hold for all ω ∈ Ω∗

0, the event of probability 1 introduced in Lemma 2.3.

(i) For each fixed u ∈ R, the function X(u, ·, ω) : v �→ X(u, v, ω) is infinitely
differentiable on (1/α, 1); its derivative of order q ∈ Z+ at all v ∈ (1/α, 1) is
given by

(∂qvX)(u, v, ω) =

q∑
p=0

(
q

p

)(− log 2
)p

×
∑

(j,k)∈Z2

jp 2−jv εj,k(ω)
((
∂q−p
v Ψ

)
(2ju− k, v)− (

∂q−p
v Ψ

)
(−k, v)) ,(3.3)
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where 00 := 1, for every fixed (u, v) the series is absolutely convergent (its
terms can therefore be ordered in an arbitrary way), and

(
q
p

)
denotes the

binomial coefficient.

(ii) For each fixed q ∈ Z+ andM,a, b ∈ R satisfyingM > 0 and 1/α < a < b < 1,
the function (∂qvX)(·, ·, ω) : (u, v) �→ (∂qvX)(u, v, ω) belongs to the space
Eγ(a, b,M) for all γ ∈ [0, a− 1/α).

The proof of Theorem 3.3 relies mainly on the following proposition.

Proposition 3.4. Let M be an arbitrary and fixed positive real number. For every
n ∈ Z+, denote by XM,n =

{
XM,n(u, v) : (u, v) ∈ R× (1/α, 1)

}
the StαS random

field defined for every (u, v) ∈ R× (1/α, 1), as the finite sum,

(3.4) XM,n(u, v) =
∑

(j,k)∈DM,n

2−jv εj,k
(
Ψ(2ju− k, v)−Ψ(−k, v)),

where

(3.5) DM,n :=
{
(j, k) ∈ Z2 : |j| ≤ n and |k| ≤M2n+1

}
.

Then, the following three results hold.

(i) For all fixed ω ∈ Ω (the underlying probability space) and u ∈ R, the function
XM,n(u, ·, ω) : v �→ XM,n(u, v, ω) is infinitely differentiable on (1/α, 1); its de-
rivative of order q∈Z+ at a point v∈(1/α, 1) is denoted by (∂qvXM,n)(u, v, ω).

(ii) For all fixed ω ∈ Ω, q, n ∈ Z+, and a, b ∈ R satisfying 1/α < a < b < 1, the
function (∂qvXM,n)(·, ·, ω) belongs to the Banach space E1(a, b,M).

(iii) For each fixed ω ∈ Ω∗
0, q ∈ Z+, and a, b, γ ∈ R satisfying 1/α < a < b < 1

and 0 ≤ γ < a − 1/α,
(
(∂qvXM,n)(·, ·, ω)

)
n∈Z+

is a Cauchy sequence in the

Banach space Eγ(a, b,M).

Proof. Parts (i) and (ii) of Proposition 3.4 are more or less straightforward conse-
quences of Proposition 2.4. In view of Definition 3.2, Part (iii) of Proposition 3.4
results from the following four lemmas. �

Lemma 3.5. Let M , a, and b be real numbers satisfying M > 0 and 1/α < a <
b < 1. For all fixed q ∈ Z+ and ω ∈ Ω∗

0, when n goes to infinity,

(3.6)
∣∣(∂qvXM,n+l

)
(u, v, ω)− (

∂qvXM,n

)
(u, v, ω)

∣∣
converges to 0, uniformly in (u, v) ∈ [−M,M ]× [a, b] and in l ∈ Z+.

Lemma 3.6. Let M , a, b, and γ be real numbers satisfying M > 0, 1/α < a <
b < 1 and γ < a− 1/α. For all fixed q ∈ Z+ and ω ∈ Ω∗

0, when n goes to infinity,

(3.7)

∣∣(Δ1,·
u1−u2

(
∂qvXM,n+l

))
(u2, v, ω)−

(
Δ1,·

u1−u2

(
∂qvXM,n

))
(u2, v, ω)

∣∣
|u1 − u2|γ

converges to 0 uniformly in (u1, u2, v) ∈ [−M,M ]2 × [a, b] and in l ∈ Z+.
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Lemma 3.7. Let M , a, and b be real numbers satisfying M > 0 and 1/α < a <
b < 1. For all fixed q ∈ Z+ and ω ∈ Ω∗

0, when n goes to infinity,

(3.8)

∣∣(Δ·,1
v1−v2

(
∂qvXM,n+l

))
(u, v2, ω)−

(
Δ·,1

v1−v2

(
∂qvXM,n

))
(u, v2, ω)

∣∣
|v1 − v2|

converges to 0 uniformly in (u, v1, v2) ∈ [−M,M ]× [a, b]2 and in l ∈ Z+.

Lemma 3.8. Let M , a, b, and γ be real numbers satisfying M > 0, 1/α < a <
b < 1 and γ < a− 1/α. For all fixed q ∈ Z+ and ω ∈ Ω∗

0, when n goes to infinity,
(3.9)∣∣(Δ1,1

(u1−u2,v1−v2)

(
∂qvXM,n+l

))
(u2, v2, ω)−

(
Δ1,1

(u1−u2,v1−v2)

(
∂qvXM,n

))
(u2, v2, ω)

∣∣
|u1 − u2|γ |v1 − v2|

converges to 0 uniformly in (u1, u2, v1, v2) ∈ [−M,M ]2 × [a, b]2 and in l ∈ Z+.

The proofs of the previous four lemmas are quite similar, so we will only give
that of Lemma 3.8.

Proof. In view of the convention that 0/0 = 0, it is no restriction to assume that
u1 	= u2 and v1 	= v2. By using (3.4), (3.2), and the Leibniz formula, one can
rewrite (3.9) as
(3.10)∣∣∑q

p=0

(
q
p

)(− log 2
)p ∑

(j,k)∈DM,n+l\DM,n
jpεj,k(ω)

(
Δ1,1

(u1−u2,v1−v2)
Θq−p

j,k

)
(u2, v2)

∣∣
|u1 − u2|γ |v1 − v2| ,

where for all (u, v) ∈ R× (1/α, 1),

(3.11) Θq−p
j,k (u, v) = 2−jv

(
∂q−p
v Ψ

)
(2ju− k, v).

In the sequel, we denote by Dc
M,n the set defined as Dc

M,n = {(j, k) ∈ Z2 : (j, k) /∈
DM,n}; recall that DM,n has been introduced in (3.5). Using (3.10), the Taylor
formula with respect to the variable v, (3.2), and the triangle inequality, one obtains
that∣∣(Δ1,1

(u1−u2,v1−v2)

(
∂qvXn+l

))
(u2, v2, ω)−

(
Δ1,1

(u1−u2,v1−v2)

(
∂qvXn

))
(u2, v2, ω)

∣∣
|u1 − u2|γ |v1 − v2|

≤ G1,q
M,n(u1, u2, v2, ω) + |v1 − v2|G2,q

M,n(u1, u2, v1, v2, ω),

where

G1,q
M,n(u1, u2, v2, ω)

:=

q∑
p=0

(
q

p

)
(log 2)p

∑
(j,k)∈Dc

M,n

|j|p |εj,k(ω)|
∣∣(Δ1,·

u1−u2

(
∂vΘ

q−p
j,k

))
(u2, v2)

∣∣
|u1 − u2|γ(3.12)
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and

G2,q
M,n(u1, u2, v1, v2, ω) :=

q∑
p=0

(
q

p

)
(log 2)p

×
∑

(j,k)∈Dc
M,n

|j|p|εj,k(ω)|

∣∣∣ ∫ 1

0
(1− s)

(
Δ1,·

u1−u2

(
∂2vΘ

q−p
j,k

))
(u2, v2 + s(v1−v2)) ds

∣∣∣
|u1 − u2|γ .(3.13)

Thus, to prove the lemma, it suffices to show that

G1,q
M,n(u1, u2, v2, ω) and G2,q

M,n(u1, u2, v1, v2, ω)

converge to 0, when n→ +∞, uniformly in (u1, u2, v1, v2) ∈ [−M,M ]2 × [a, b]2.

First, we study G1,q
M,n(u1, u2, v2, ω). It follows from (3.11) that

(∂vΘ
q−p
j,k )(u, v)

= 2−jv
(
∂q+1−p
v Ψ

)
(2ju− k, v)− (log 2) j 2−jv

(
∂q−p
v Ψ

)
(2ju− k, v).(3.14)

Next, using (3.14), (3.2), the triangle inequality, Lemma 2.3, (9.1) and (9.2), one
has

∑
(j,k)∈Dc

M,n

|j|p|εj,k(ω)|
∣∣(Δ1,·

u1−u2

(
∂vΘ

q−p
j,k

))
(u2, v2)

∣∣
|u1 − u2|γ

≤
∑

(j,k)∈Dc
M,n

2−jv2 |j|p|εj,k(ω)|
∣∣(∂q+1−p

v Ψ
)
(2ju1 − k, v2)−

(
∂q+1−p
v Ψ

)
(2ju2 − k, v2)

∣∣
|u1 − u2|γ

+ (log 2)
∑

(j,k)∈Dc
M,n

2−jv2 |j|p+1|εj,k(ω)|
∣∣(∂q−p

v Ψ
)
(2ju1−k, v2)−

(
∂q−p
v Ψ

)
(2ju2−k, v2)

∣∣
|u1 − u2|γ

≤ C1(ω)
(
An

(
u1, u2, v2;M,γ, η, p, ∂q+1−p

v Ψ
)
+Bn

(
u1, u2, v2;M,γ, η, p, ∂q+1−p

v Ψ
))

+ C1(ω)(log 2)
(
An

(
u1, u2, v2;M,γ, η, p+1, ∂q−p

v Ψ
)

+Bn

(
u1, u2, v2;M,γ, η, p+1, ∂q−p

v Ψ
))
,

where C1 denotes the random variable C′ introduced in Lemma 2.3. Lemma 9.1
and (3.12) imply that, when n→ +∞, G1,q

M,n(u1, u2, v2, ω) converges to 0, uniformly

in (u1, u2, v1, v2) ∈ [−M,M ]2 × [a, b]2.

Now we study G2,q
M,n(u1, u2, v1, v2, ω). It follows from (3.14) that

(∂2vΘ
q−p
j,k )(u, v) = 2−jv

(
∂q+2−p
v Ψ

)
(2ju−k, v)− 2(log 2)j 2−jv

(
∂q+1−p
v Ψ

)
(2ju−k, v)

+ (log 2)2 j2 2−jv
(
∂q−p
v Ψ

)
(2ju− k, v).(3.15)
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Next, using (3.15), (3.2), the triangle inequality, Lemma 2.3, (9.1) and (9.2),
one has

∑
(j,k)∈Dc

M,n

|j|p|εj,k(ω)|

∣∣∣ ∫ 1

0 (1 − s)
(
Δ1,·

u1−u2

(
∂2vΘ

q−p
j,k

))
(u2, v2 + s(v1 − v2)) ds

∣∣∣
|u1 − u2|γ

≤ C1(ω)

∫ 1

0

(
An

(
u1, u2, v2 + s(v1 − v2);M,γ, η, p, ∂q+2−p

v Ψ
)
+

Bn

(
u1, u2, v2 + s(v1 − v2);M,γ, η, p, ∂q+2−p

v Ψ
))
ds

+ C2(ω)

∫ 1

0

(
An

(
u1, u2, v2 + s(v1 − v2);M,γ, η, p+ 1, ∂q+1−p

v Ψ
)
+

Bn

(
u1, u2, v2 + s(v1 − v2);M,γ, η, p+ 1, ∂q+1−p

v

))
ds

+ C2(ω)

∫ 1

0

(
An

(
u1, u2, v2 + s(v1 − v2);M,γ, η, p+ 2, ∂q−p

v Ψ
)
+

Bn

(
u1, u2, v2 + s(v1 − v2);M,γ, η, p+ 2, ∂q−p

v Ψ
))
ds,

where C2(ω) = (2 log 2)C1(ω). Then Lemma 9.1 and (3.13) imply that, when
n → +∞, G2,q

M,n(u1, u2, v1, v2, ω) converges to 0, uniformly in (u1, u2, v1, v2) ∈
[−M,M ]2 × [a, b]2. �

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. Let ω ∈ Ω∗
0 be arbitrary and fixed. First we show that

part (i) of the theorem holds. By using Lemma 2.3, Proposition 2.4, and a method
similar to the one used to derive (2.6), we can prove that, for all fixed q ∈ N and
(u, v) ∈ R× (1/α, 1), one has

q∑
p=0

(
q

p

)(
log 2

)p
×

∑
(j,k)∈Z2

|j|p 2−jv
∣∣εj,k(ω)∣∣ ∣∣(∂q−p

v Ψ
)
(2ju− k, v)− (

∂q−p
v Ψ

)
(−k, v)∣∣ <∞.

Therefore, the series

q∑
p=0

(
q

p

)(− log 2
)p ∑

(j,k)∈Z2

jp 2−jvεj,k(ω)
((
∂q−p
v Ψ

)
(2ju− k, v)− (

∂q−p
v Ψ

)
(−k, v))

is convergent, and its finite limit, denoted by X̌(q)(u, v, ω), does not depend on the
way the terms of the series are ordered. Now we assume that u ∈ R is arbitrary and
fixed and that the variable v belongs to an arbitrary fixed compact interval [a, b]
contained in (1/α, 1). We denote byM an arbitrary fixed positive real number such
that u ∈ [−M,M ]. In view of part (i) of Theorem 2.1, part (iii) of Proposition 3.4,
and (3.1), when n goes to infinity, the following two results are satisfied:
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• the function v �→ XM,n(u, v, ω) converges to the function v �→ X(u, v, ω),
uniformly in v ∈ [a, b];

• for each fixed q ∈ N, the function v �→ (∂qvXM,n)(u, v, ω) converges to the
function v �→ X̌(q)(u, v, ω), uniformly in v ∈ [a, b].

The latter two results imply that v �→ X(u, v, ω) is infinitely differentiable on [a, b]
and one has, for all q ∈ N and v ∈ [a, b],

(3.16) (∂qvX)(u, v, ω) = lim
n→+∞(∂qvXM,n)(u, v, ω) = X̌(q)(u, v, ω);

these equalities mean that (3.3) is satisfied. Thus, it remains to show that part (ii)
of the theorem holds. In fact, the equality X(u, v, ω) = limn→+∞XM,n(u, v, ω),
(3.16), and part (iii) of Proposition 3.4 imply that this is indeed the case. �

Before ending this section, we stress that for each fixed ω ∈ Ω∗
0, q ∈ Z+,

and M,a, b ∈ R satisfying M > 0 and 1/α < a < b < 1, a global modulus of
continuity for the function u �→ (∂qvX)(u, v, ω) on the interval [−M,M ], uniformly
in v ∈ [a, b], can be derived using part (ii) of Theorem 3.3; similarly there can be
derived a global modulus of continuity for the function v �→ (∂qvX)(u, v, ω) on the
interval [a, b], uniformly in u ∈ [−M,M ]. More precisely, in view of Definition 3.2,
a straightforward consequence of part (ii) of Theorem 3.3 is the following:

Corollary 3.9. For each fixed ω ∈ Ω∗
0, q ∈ Z+, and M,a, b, η ∈ R satisfying

M > 0, 1/α < a < b < 1, and η > 0, one has

(3.17) sup
(u1,u2,v)∈[−M,M ]2×[a,b]

{∣∣(∂qvX)
(u1, v, ω)−

(
∂qvX

)
(u2, v, ω)

∣∣
|u1 − u2|a−1/α−η

}
<∞,

and

(3.18) sup
(u,v1,v2)∈[−M,M ]×[a,b]2

{∣∣(∂qvX)
(u, v1, ω)−

(
∂qvX

)
(u, v2, ω)

∣∣
|v1 − v2|

}
<∞.

4. Fine path properties of the field generating LMSMs

The main two goals of this section are the following:

• to give an improved version of the global modulus of continuity (3.17);

• to derive an upper bound for
∣∣(∂qvX)

(u, v, ω)
∣∣, for all ω ∈ Ω∗

0, q ∈ Z+,
v ∈ [a, b] ⊂ (1/α, 1), and u ∈ R.

More precisely, we will show the following two results.
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Proposition 4.1. For each fixed ω ∈ Ω∗
0, q ∈ Z+, and M,a, b, η ∈ R satisfying

M > 0, 1/α < a < b < 1, and η > 0, one has

sup
(u1,u2,v)∈[−M,M ]2×[a,b]

{ ∣∣(∂qvX)
(u1, v, ω)−

(
∂qvX

)
(u2, v, ω)

∣∣
|u1 − u2|v−1/α

(
1 +

∣∣ log |u1 − u2|
∣∣)q+2/α+η

}

≤ sup
(u1,u2,v)∈[−M,M ]2×[a,b]

{ q∑
p=0

(
q

p

)(
log 2

)p
×

∑
(j,k)∈Z2 |j|p2−jv

∣∣εj,k(ω)∣∣ ∣∣(∂q−p
v Ψ

)
(2ju1−k, v)−

(
∂q−p
v Ψ

)
(2ju2−k, v)

∣∣
|u1 − u2|v−1/α

(
1 +

∣∣ log |u1 − u2|
∣∣)q+2/α+η

}
<∞.(4.1)

Proposition 4.2. For each fixed ω ∈ Ω∗
0, q ∈ Z+, and a, b, η ∈ R satisfying

1/α < a < b < 1, and η > 0, one has

sup
(u,v)∈R×[a,b]

{ ∣∣(∂qvX)
(u, v, ω)

∣∣
|u|v(1 + ∣∣ log |u|∣∣)q+1/α+η

}

≤ sup
(u,v)∈R×[a,b]

{
q∑

p=0

(
q

p

)(
log 2

)p
×
{∑

(j,k)∈Z2 |j|p2−jv
∣∣εj,k(ω)∣∣ ∣∣(∂q−p

v Ψ
)
(2ju−k, v)−(

∂q−p
v Ψ

)
(−k, v)∣∣

|u|v(1 + ∣∣ log |u|∣∣)q+1/α+η

}
<∞.(4.2)

The proofs of Propositions 4.1 and 4.2 are, to a certain extent, inspired by that
of Theorem 1 in [2].

Proof of Proposition 4.1. Let (u1, u2, v) ∈ [−M,M ]2× [a, b] be arbitrary and fixed;
in the sequel we assume that u1 	= u2. Observe that, in view of (2.12), there is a
constant c1 > 0, not depending on (u1, u2, v), such that for all p ∈ {0, . . . , q} and
(j, k) ∈ Z2, one has∣∣(∂q−p

v Ψ
)
(2ju1 − k, v)− (

∂q−p
v Ψ

)
(2ju2 − k, v)

∣∣
≤ c1

((
3 + |2ju1 − k|)−2

+
(
3 + |2ju2 − k|)−2)

.(4.3)

Also notice that ∣∣(∂q−p
v Ψ

)
(2ju1 − k, v)− (

∂q−p
v Ψ

)
(2ju2 − k, v)

∣∣
can be bounded more sharply when the condition

(4.4) 2j |u1 − u2| ≤ 1
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holds, namely using the mean value theorem and (2.12), one has∣∣(∂q−p
v Ψ

)
(2ju1 − k, v)− (

∂q−p
v Ψ

)
(2ju2 − k, v)

∣∣
≤ 2j|u1 − u2| sup

(u,v)∈[u1∧u2,u1∨u2]×[a,b]

∣∣(∂x∂q−p
v Ψ

)
(2ju− k, v)

∣∣
≤ c1 2

j|u1 − u2| sup
u∈[u1∧u2,u1∨u2]

(
3 + |2ju− k|)−2

≤ c1 2
j|u1 − u2|

(
2 + |2ju1 − k|)−2

,(4.5)

where the last inequality results from the triangle inequality and (4.4). Denote by
j0 > − log2(4M) the unique integer satisfying

(4.6) 2−1 < 2j0 |u1 − u2| ≤ 1.

Then, the first inequality in (2.10), (4.3), and (4.5), entail that, for all η > 0 and
ω ∈ Ω∗

0, ∑
(j,k)∈Z2

|j|p2−jv
∣∣εj,k(ω)∣∣ ∣∣(∂q−p

v Ψ
)
(2ju1 − k, v)− (

∂q−p
v Ψ

)
(u2 − k, v)

∣∣
≤ C(ω)

∑
(j,k)∈Z2

2−jv(1 + |j|)p+1/α+η(1 + |k|)1/α log1/α+η(2 + |k|)

× ∣∣(∂q−p
v Ψ

)
(2ju1 − k, v)− (

∂q−p
v Ψ

)
(2ju2 − k, v)

∣∣
≤ C(ω) c1

(
Ǎj0(u1, v)|u1 − u2|+ B̌j0(u1, u2, v)

)
,(4.7)

where the random variable C was introduced in Lemma 2.3 and where for each
J ∈ Z, (y1, y2) ∈ R2, and v ∈ [a, b],

ǍJ (y1, v) :=
∑
j≤J

∑
k∈Z

2j(1−v)(1 + |j|)p+1/α+η(1 + |k|)1/α log1/α+η(2 + |k|)

× (
2 + |2jy1 − k|)−2

(4.8)

and

B̌J(y1, y2, v) :=
∑
j>J

∑
k∈Z

2−jv(1 + |j|)p+1/α+η(1 + |k|)1/α log1/α+η(2 + |k|)

× ((
3 + |2jy1 − k|)−2

+
(
3 + |2jy2 − k|)−2)

.(4.9)

Now we give an appropriate upper bound for Ǎj0(u1, v). Assume that j ≤ j0;
using Lemma 9.4 (in which one takes θ = 1/α, ζ = 1/α + η, and u = 2ju1) and
the inequality |u1| ≤M , one obtains that

∑
k∈Z

(1 + |k|)1/α log1/α+η (2 + |k|)(
2 + |2j u1 − k|)2 ≤ c2 2

j0/α (1 + |j0|)1/α+η,

where c2 is a constant depending only on M , α, and η.
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Next, it follows from this inequality, (4.8), and Lemma 9.3 (in which one takes
θ = 1− v, θ0 = 1− b, λ = p+ 1/α+ η, n0 = −∞, and n1 = j0) that

Ǎj0 (u1, v) ≤ c2 2
j0/α (1 + |j0|)1/α+η

∑
j≤j0

2j(1−v)(1 + |j|)p+1/α+η

≤ c3 2
j0(1−v+1/α) (1 + |j0|)p+2/α+2η

≤ c4 |u1 − u2|v−1/α−1
(
1 +

∣∣ log |u1 − u2|
∣∣)p+2/α+2η

,(4.10)

where the last inequality results from (4.6), and where c3 and c4 are two constants
not depending on (u1, u2, v). Now we give an upper bound for B̌j0(u1, u2, v). In
view of (4.9), this quantity can be expressed as,

(4.11) B̌j0(u1, u2, v) = Tj0(u1, v) + Tj0(u2, v),

where, for each J ∈ Z, y ∈ R, and v ∈ [a, b],

(4.12) TJ(y, v) :=
∑
j>J

∑
k∈Z

2−jv (1 + |j|)p+1/α+η(1 + |k|)1/α log1/α+η(2 + |k|)(
3 + |2jy − k|)2 .

Assume that j > j0 and that x ∈ {u1, u2}; using Lemma 9.4 (in which one takes
θ = 1/α, ζ = 1/α+ η, and u = 2jx) and the inequality |x| ≤M , one gets that∑

k∈Z

(1 + |k|)1/α log1/α+η(2 + |k|)(
2 + |2jx− k|)2 ≤ c2 2

j/α (1 + |j|)1/α+η.

Next, in view of (4.12), it follows from this inequality and Lemma 9.3 (in which
one takes θ = v− 1/α, θ0 = a− 1/α, λ = p+2/α+2η, n0 = j0+1, and n1 = +∞)
that

Tj0(x, v) ≤ c2
∑
j>j0

2−j(v−1/α)(1 + |j|)p+2/α+2η ≤ c5 2
−j0(v−1/α)(1 + |j0|)p+2/α+2η

≤ c6 |u1 − u2|v−1/α
(
1 +

∣∣ log |u1 − u2|
∣∣)p+2/α+2η

,(4.13)

where the last inequality results from (4.6), and where c5 and c6 are two constants
not depending on (x, v). Next, (4.13) and (4.11) imply that

(4.14) B̌j0(u1, u2, v) ≤ 2c6 |u1 − u2|v−1/α
(
1 +

∣∣ log |u1 − u2|
∣∣)p+2/α+2η

.

Next, combining (4.10), (4.14), and (4.7), one obtains that, for all η > 0 and
ω ∈ Ω∗

0, ∑
(j,k)∈Z2

|j|p 2−jv
∣∣εj,k(ω)∣∣ ∣∣(∂q−p

v Ψ
)
(2ju1 − k, v)− (

∂q−p
v Ψ

)
(u2 − k, v)

∣∣
≤ C(ω) c7 |u1 − u2|v−1/α

(
1 +

∣∣ log |u1 − u2|
∣∣)p+2/α+2η

,(4.15)

where c7 is a constant not depending on (u1, u2, v). Finally, (3.3), the triangle
inequality, and (4.15) entail that (4.1) holds. �
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Proof of Proposition 4.2. Let (u, v) ∈ R × [a, b] be arbitrary and fixed. In all the
sequel we assume that u 	= 0.

Observe that, in view of (2.12), there is a constant c1 > 0, not depending on
(u, v), such that for all p ∈ {0, . . . , q} and (j, k) ∈ Z2, one has,

(4.16)
∣∣(∂q−p

v Ψ
)
(2ju−k, v)−(

∂q−p
v Ψ

)
(−k, v)∣∣ ≤ c1

((
3+|2ju−k|)−2

+
(
3+|k|)−2)

.

Also notice that |(∂q−p
v Ψ)(2ju − k, v) − (∂q−p

v Ψ)(−k, v)| can be bounded more
sharply when the condition

(4.17) 2j|u| ≤ 1

holds, namely, using the mean value theorem and (2.12), one has∣∣( ∂q−p
v Ψ

)
(2ju− k, v)− (

∂q−p
v Ψ

)
(−k, v)∣∣

≤ 2j |u| sup
y∈[u∧0,u∨0]

∣∣(∂x∂q−p
v Ψ

)
(2jy − k, v)

∣∣
≤ c1 2

j |u| sup
y∈[u∧0,u∨0]

(
3 + |2jy − k|)−2 ≤ c12

j|u|(2 + |k|)−2
,(4.18)

where the last inequality results from the triangle inequality and (4.17). Denote
by j1 ∈ Z the unique integer satisfying

(4.19) 2−1 < 2j1 |u| ≤ 1.

The first inequality in (2.10), (4.16), and (4.18) entail that, for all η>0 and ω∈Ω∗
0,∑

(j,k)∈Z2

|j|p 2−jv
∣∣εj,k(ω)∣∣ ∣∣(∂q−p

v Ψ
)
(2ju− k, v)− (

∂q−p
v Ψ

)
(−k, v)∣∣

≤ C(ω)
∑

(j,k)∈Z2

2−jv
(
1 + |j|)p+1/α+η(

1 + |k|)1/α log1/α+η
(
2 + |k|)

× ∣∣(∂q−p
v Ψ

)
(2ju− k, v)− (

∂q−p
v Ψ

)
(−k, v)∣∣

≤ C(ω) c1
(|u|Ǎj1(0, v) + B̌j1(u, 0, v)

)
,(4.20)

where the random variable C was introduced in Lemma 2.3, and where Ǎj1 (0, v)
and B̌j1(u, 0, v) are defined respectively by (4.8) and (4.9).

Now we give an upper bound for Ǎj1(0, v). Observe that

c2 :=
∑
k∈Z

(
1 + |k|)1/α log1/α+η

(
2 + |k|)(

2 + |k|)2 <∞.

Thus, (4.8) and Lemma 9.3 (in which one takes θ = 1−v, θ0 = 1−b, λ = p+1/α+η,
n0 = −∞, and n1 = j1) imply that

Ǎj1 (0, v) = c2
∑
j≤j1

2j(1−v)
(
1 + |j|)p+1/α+η ≤ c3 2

j1(1−v)
(
1 + |j1|

)p+1/α+η

≤ c4 |u|v−1
(
1 +

∣∣ log |u|∣∣)p+1/α+η
,(4.21)

where the last inequality results from (4.19) and where c3 and c4 are two constants
not depending on (u, v).
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Now we give an upper bound for B̌j1(u, 0, v). In view of (4.9), this quantity
can be expressed as

(4.22) B̌j1(u, 0, v) := Tj1(u, v) + Tj1(0, v),

where Tj1(u, v) and Tj1(0, v) are defined by (4.12).
Assume that j > j1 and that x ∈ {u, 0}; it follows from Lemma 9.4, in which

one takes θ = 1/α and ζ = 1/α+ η, that

∑
k∈Z

(
1 + |k|)1/α log1/α+η

(
2 + |k|)(

3 + |2jx− k|)2 ≤ c5
(
1 + 2j|x|)1/α log1/α+η

(
2 + 2j |x|)

≤ c6 2
(j−j1)/α (1 + j − j1)

1/α+η,

where the last inequality results from (4.19) and where c5 and c6 are two constants
not depending on x, v, j, and j1. Therefore, in view of (4.12), one obtains that

(4.23) Tj1(x, v) ≤ c6
∑
j>j1

2−jv2(j−j1)/α
(
1 + |j|)p+1/α+η(

1 + j − j1
)1/α+η

.

Next, taking l = j − j1 on the right-hand side of (4.23), it follows that

Tj1(x, v) ≤ c6

+∞∑
l=1

2−j1v2−l(v−1/α)(1 + l)1/α+η
(
1 + |l + j1|

)p+1/α+η

≤ c7 2
−j1v

+∞∑
l=1

2−l(v−1/α)(1 + l)1/α+η
((
1 + l

)p+1/α+η
+
(
1 + |j1|

)p+1/α+η)
≤ c7 2

−j1v
+∞∑
l=1

2−l(a−1/α)(1 + l)1/α+η
((
1 + l

)p+1/α+η
+
(
1 + |j1|

)p+1/α+η)
≤ c8 2

−j1v
(
1 + |j1|

)p+1/α+η ≤ c9 |u|v
(
1 +

∣∣ log |u|∣∣)p+1/α+η
,(4.24)

where the last inequality results from (4.19) and where the constants c7, c8, and
c9 do not depend on x, v, and j1. Next, (4.22) and (4.24) imply that

(4.25) B̌j1(u, 0, v) ≤ 2c9 |u|v
(
1 +

∣∣ log |u|∣∣)p+1/α+η
.

Next, combining (4.20), (4.21), and (4.25), one gets that∑
(j,k)∈Z2

|j|p 2−jv
∣∣εj,k(ω)∣∣ ∣∣(∂q−p

v Ψ
)
(2ju− k, v)− (

∂q−p
v Ψ

)
(−k, v)∣∣

≤ C(ω) c10 |u|v
(
1 +

∣∣ log |u|∣∣)p+1/α+η
,(4.26)

where c10 is a constant not depending on (u, v). Finally, (3.3), the triangle in-
equality and (4.26) entail that (4.2) holds. �

Before ending this section, we stress that, thanks to (3.18) and (4.1), for each
fixed ω ∈ Ω∗

0, q ∈ Z+, and M,a, b ∈ R satisfying M > 0 and 1/α < a < b < 1, one
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can derive a global modulus of continuity for the function (u, v) �→ (∂qvX)(u, v, ω)
on the rectangle [−M,M ]× [a, b]. More precisely, the following result holds.

Corollary 4.3. For each fixed ω ∈ Ω∗
0, q ∈ Z+, and M,a, b, η ∈ R satisfying

M > 0, 1/α < a < b < 1, and η > 0, one has

sup
(u1,u2,v1,v2)∈[−M,M ]2×[a,b]2

{ ∣∣(∂qvX)
(u1, v1, ω)−

(
∂qvX

)
(u2, v2, ω)

∣∣
|u1−u2|v1∨v2−1/α

(
1+

∣∣ log |u1−u2|∣∣)q+2/α+η
+ |v1−v2|

}
(4.27) <∞.

Proof. For each (u1, u2, v1, v2) ∈ [−M,M ]2 × [a, b]2, one sets,

f(u1, u2, v1, v2) :=

∣∣(∂qvX)
(u1, v1, ω)−

(
∂qvX

)
(u2, v2, ω)

∣∣
|u1 − u2|v1∨v2−1/α

(
1 +

∣∣ log |u1 − u2|
∣∣)q+2/α+η

+ |v1 − v2|
,

with the convention 0/0 = 0. Using the fact that f(u1, u2, v1, v2) = f(u2, u1, v2, v1),
it follows that
(4.28)

sup
(u1,u2,v1,v2)∈[−M,M ]2×[a,b]2

{ ∣∣(∂qvX)
(u1, v1, ω)−

(
∂qvX

)
(u2, v2, ω)

∣∣
|u1−u2|v1∨v2−1/α

(
1+

∣∣ log |u1−u2|∣∣)q+2/α+η
+ |v1−v2|

}

= sup
(u1,u2,v1,v2)∈[−M,M ]2×[a,b]2

{ ∣∣(∂qvX)
(u1, v1 ∨ v2, ω)−

(
∂qvX

)
(u2, v1 ∧ v2, ω)

∣∣
|u1−u2|v1∨v2−1/α

(
1+

∣∣ log |u1−u2|∣∣)q+2/α+η
+ |v1−v2|

}
.

Moreover, using the triangle inequality, and the inequality, for all (u1, u2, v1, v2) ∈
[−M,M ]2 × [a, b]2,

max
{|u1 − u2|v1∨v2−1/α

(
1 +

∣∣ log |u1 − u2|
∣∣)q+2/α+η

, |v1 − v2|
}

≤ |u1 − u2|v1∨v2−1/α
(
1 +

∣∣ log |u1 − u2|
∣∣)q+2/α+η

+ |v1 − v2|,
one gets that

sup
(u1,u2,v1,v2)∈[−M,M ]2×[a,b]2

{ ∣∣(∂qvX)
(u1, v1 ∨ v2, ω)−

(
∂qvX

)
(u2, v1 ∧ v2, ω)

∣∣
|u1−u2|v1∨v2−1/α

(
1+

∣∣ log |u1−u2|∣∣)q+2/α+η
+ |v1−v2|

}

≤ sup
(u1,u2,v1,v2)∈[−M,M ]2×[a,b]2

{ ∣∣(∂qvX)
(u1, v1 ∨ v2, ω)−

(
∂qvX

)
(u2, v1 ∨ v2, ω)

∣∣
|u1−u2|v1∨v2−1/α

(
1+

∣∣ log |u1−u2|∣∣)q+2/α+η
+ |v1−v2|

}

+ sup
(u1,u2,v1,v2)∈[−M,M ]2×[a,b]2

{ ∣∣(∂qvX)
(u2, v1 ∨ v2, ω)−

(
∂qvX

)
(u2, v1 ∧ v2, ω)

∣∣
|u1−u2|v1∨v2−1/α

(
1+

∣∣ log |u1−u2|∣∣)q+2/α+η
+ |v1−v2|

}

≤ sup
(u1,u2,v)∈[−M,M ]2×[a,b]

{ ∣∣(∂qvX)
(u1, v, ω)−

(
∂qvX

)
(u2, v, ω)

∣∣
|u1 − u2|v−1/α

(
1 +

∣∣ log |u1 − u2|
∣∣)q+2/α+η

}

(4.29) + sup
(u,v1,v2)∈[−M,M ]×[a,b]2

{∣∣(∂qvX)
(u, v1, ω)−

(
∂qvX

)
(u, v2, ω)

∣∣
|v1 − v2|

}
.

Finally, combining (4.28), (4.29), (3.18), and (4.1), one obtains (4.27). �
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5. Global and local moduli of continuity for LMSM

From now until the end of the article, LMSM is identified with its version {Y (t) :
t ∈ R}, defined for all t ∈ R, by,

(5.1) Y (t) = X(t,H(t)),

where {X(u, v) : (u, v) ∈ R×(1/α, 1)} is the StαS field introduced in Theorem 2.1.
Recall that H(·) denotes an arbitrary continuous function defined on the real line
and with values in a compact interval [H,H] ⊂ (1/α, 1).

First we determine a global modulus of continuity for {Y (t) : t ∈ R} on an ar-
bitrary nonempty compact interval; it is no restriction to assume that this interval
has the form [−M,M ], where M is an arbitrary positive real number.

Theorem 5.1. Let Ω∗
0 be the event of probability 1 introduced in Lemma 2.3. Then

for each ω ∈ Ω∗
0 and for all positive real numbers M and η, one has

(5.2)

sup
(t,s)∈[−M,M ]2

{ ∣∣(Y (t, ω)− Y (s, ω)
∣∣

|t− s|H(t)∨H(s)−1/α
(
1 +

∣∣ log |t− s|∣∣)2/α+η
+
∣∣H(t)−H(s)

∣∣
}
<∞.

Proof. The claim follows easily from (5.1) and Corollary 4.3, in which one takes
q = 0, a = minx∈[−M,M ]H(x), and b = maxx∈[−M,M ]H(x). �

Remark 5.2. (i) Theorem 5.1 remains valid under the weaker condition that H(·)
is a continuous function on the real line with values in the open interval (1/α, 1);
indeed, even in this case, H

(
[−M,M ]

)
is a compact interval contained in (1/α, 1).

(ii) A straightforward consequence of Theorem 5.1 is that LMSM has a version
with almost surely continuous paths, as soon as its functional Hurst parameter
H(·) is a continuous function with values in (1/α, 1). This proves the conjecture
made by Stoev and Taqqu in Remark 1 on page 166 of [29].

The following corollary follows easily from Theorem 5.1.

Corollary 5.3. (i) Assume that for some real numbers M1 < M2, one has, for
each η > 0,

(5.3) sup
(t,s)∈[M1,M2]2

∣∣H(t)−H(s)
∣∣

|t− s|H(t)∨H(s)−1/α
(
1 +

∣∣ log |t− s|∣∣)2/α+η
<∞.

Then it follows that, for all ω ∈ Ω∗
0 and η > 0,

(5.4) sup
(t,s)∈[M1,M2]2

{ ∣∣Y (t, ω)− Y (s, ω)
∣∣

|t− s|H(t)∨H(s)−1/α
(
1 +

∣∣ log |t− s|∣∣)2/α+η

}
<∞.

(ii) Assume that for some real numbers M1 < M2, one has, for each η > 0,

(5.5) sup
(t,s)∈[M1,M2]2

∣∣H(t)−H(s)
∣∣

|t− s|minx∈[M1,M2] H(x)−1/α
(
1 +

∣∣ log |t− s|∣∣)2/α+η
<∞.
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Then it follows that, for all ω ∈ Ω∗
0 and η > 0,

(5.6) sup
(t,s)∈[M1,M2]2

{ ∣∣Y (t, ω)− Y (s, ω)
∣∣

|t− s|minx∈[M1,M2] H(x)−1/α
(
1 +

∣∣ log |t− s|∣∣)2/α+η

}
<∞.

Remark 5.4. (i) Condition (5.3) is satisfied if

H(·) ∈ Cmaxx∈[M1,M2] H(x)−1/α
(
[M1,M2],R

)
.

(ii) Condition (5.5) is satisfied if

H(·) ∈ Cminx∈[M1,M2] H(x)−1/α
(
[M1,M2],R

)
.

Now we determine a local modulus of continuity for {Y (t) : t ∈ R}.
Theorem 5.5. Assume that the skewness intensity function β(·) of the StαS
measure Zα(ds) is constant. Let t0 ∈ R be arbitrary and fixed. Then, one has,
almost surely, for all positive real numbers M and η,

(5.7) sup
t∈[−M,M ]

{ ∣∣Y (t)− Y (t0)
∣∣

|t− t0|H(t0)
(
1 +

∣∣ log |t− t0|
∣∣)1/α+η

+
∣∣H(t)−H(t0)

∣∣
}
<∞.

Proof. First observe that for any fixed t0 ∈ R, the process
{
X(t,H(t0)) : t ∈ R

}
has stationary increments since it is a LFSM with Hurst parameter H(t0). Hence,
the processes

{
X(t,H(t0))−X(t0, H(t0)) : t ∈ R

}
and

{
X(t− t0, H(t0)) : t ∈ R

}
have the same finite-dimensional distributions. Therefore, using their path conti-
nuity, and the fact that the set of dyadic numbers in [−M,M ] is dense in [−M,M ],
it follows that the random variables

sup
t∈[−M,M ]

{ ∣∣X(t,H(t0))−X(t0, H(t0))
∣∣

|t− t0|H(t0)
(
1 +

∣∣ log |t− t0|
∣∣)1/α+η

}
and

sup
t∈[−M,M ]

{ ∣∣X(t− t0, H(t0))
∣∣

|t− t0|H(t0)
(
1 +

∣∣ log |t− t0|
∣∣)1/α+η

}
are equal in law. Thus, taking q = 0 and a, b such that H(t0) ∈ [a, b] in Proposi-
tion 4.2, one gets that, almost surely,

(5.8) sup
t∈[−M,M ]

{ ∣∣X(t,H(t0))−X(t0, H(t0))
∣∣

|t− t0|H(t0)
(
1 +

∣∣ log |t− t0|
∣∣)1/α+η

}
<∞.

On the other hand, taking q = 0, a = H := infx∈RH(x), and b = H :=
supx∈RH(x) in (3.18), one obtains that

(5.9) sup
t∈[−M,M ]

{∣∣X(t,H(t))−X(t,H(t0))
∣∣∣∣H(t)−H(t0)

∣∣
}
<∞.

Finally, combining (5.1), (5.8), and (5.9), it follows that (5.7) holds. �
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The following result is a straightforward consequence of Theorem 5.5.

Corollary 5.6. Assume that the skewness intensity function β(·) of the StαS
measure Zα(ds) is constant. Also assume that t0 ∈ R is such that, for each η > 0,
one has, for all t ∈ R,

(5.10)
∣∣H(t)−H(t0)

∣∣ ≤ c |t− t0|H(t0)
(
1 +

∣∣ log |t− t0|
∣∣)1/α+η

,

where c > 0 is a constant depending only on t0 and η. Then, one has, almost
surely, for each positive real numbers M and η,

(5.11) sup
t∈[−M,M ]

{ ∣∣Y (t)− Y (t0)
∣∣

|t− t0|H(t0)
(
1 +

∣∣ log |t− t0|
∣∣)1/α+η

}
<∞.

6. Quasi-optimality of the global modulus of continuity for
LMSM

The goal of this section is to show that, under some conditions a bit stronger
than (5.5), the global modulus of continuity given in (5.6) is quasi-optimal. More
precisely:

Theorem 6.1. Assume that M1 < M2 are two arbitrary fixed real numbers such
that the condition

(A) : H(·) belongs to the Hölder space Cγ∗
(
[M1,M2],R

)
for some

γ∗ ∈
(

min
x∈[M1,M2]

H(x)− 1/α, 1
]
,

is satisfied. Set

ρ := sup
{
θ ∈ R+ : ∃ t0 ∈ [M1,M2] s.t. H(t0) = min

x∈[M1,M2]
H(x) and

sup
t∈[M1,M2]

|H(t)−H(t0)|/|t− t0|θ <∞
}

(6.1)

and

(6.2) τ :=
1 + 2α−1

αρ− 1
,

with the convention that τ := 0 when ρ = +∞. Assume that

(6.3) αρ > 1.

Then τ is a well-defined nonnegative real number, and one has, almost surely, for
all η > 0,

(6.4) sup
(t,s)∈[M1,M2]2

{ |Y (t)− Y (s)|
|t− s|minx∈[M1,M2] H(x)−1/α

(
1 +

∣∣ log |t− s|∣∣)−τ−η

}
= ∞.
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Remark 6.2. Notice that the conditions (A) and (6.3) are satisfied when H(·)
belongs to the Hölder space Cγ

(
[M1,M2],R

)
, for some γ > 1/α.

In order to prove Theorem 6.1, we need some preliminary results. First we in-
troduce Ψ̃ the real-valued deterministic continuous function defined, for all (x, v) ∈
R× (1/α, 1), by

(6.5) Ψ̃(x, v) :=
1

Γ(v + 1− 1/α) Γ(1/α− v + 1)

∫
R

(s− x)
1/α−v
+ ψ(2)(s) ds,

where ψ(2) is the second derivative of the Daubechies mother wavelet ψ defined
at the very beginning of Section 2, and where Γ is the usual Gamma function.

Also, recall the definition of (·)1/α−v
+ given in (1.2). By using a result in [26]

concerning Fourier transforms of right-sided fractional derivatives, one has for each
(ξ, v) ∈ R× (1/α, 1),

(6.6)
̂̃
Ψ(ξ, v) =

1

Γ(v + 1− 1/α)
|ξ|v+1−1/α e−i sgn(ξ) (v+1−1/α)π/2 ψ̂(ξ),

where
̂̃
Ψ(·, v) denotes the Fourier transform of the function Ψ̃(·, v). We now give

some useful properties of the function Ψ̃.

Proposition 6.3. The function Ψ̃ has the following three properties.

(i) For all real numbers a and b such that 1 > b > a > 1/α, the function Ψ̃ is
well-localized in the variable x, uniformly in the variable v ∈ [a, b]. Namely,
one has

(6.7) sup
(x,v)∈R×[a,b]

(3 + |x|)2 ∣∣Ψ̃(x, v)
∣∣ <∞.

(ii) For any fixed v ∈ (
1/α, 1

)
, the first moment of the function Ψ̃(·, v) vanishes,

which means that

(6.8)

∫
R

Ψ̃(x, v) dx = 0.

(iii) Let Ψ be the function defined in (2.3). Then, for each fixed v ∈ (
1/α, 1

)
, the

system of functions
{
2j/2Ψ(2j · −k, v) : (j, k) ∈ Z2

}
and

{
2j/2Ψ̃(2j · −k, v) :

(j, k) ∈ Z2
}
is biorthogonal. This means that, for any j ∈ Z, j′ ∈ Z, k ∈ Z,

and k′ ∈ Z, one has,

(6.9) 2(j+j′)/2
∫
R

Ψ(2jt− k, v) Ψ̃(2j
′
t− k′, v) dt = δ(j,k;j′,k′),

where δ(j,k;j′,k′) = 1 if (j, k) = (j′, k′) and equals 0 otherwise.
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Proof. Part (i) can be obtained by using the fact that

sup
v∈[a,b]

{ 1

Γ(v + 1− 1/α) Γ(1/α− v + 1)

}
<∞

and a method similar to the one used in the proof of part (ii) of Proposition 2.4.
In view of the definition of a Fourier transform, taking ξ = 0 in (6.6) one gets (ii).
Now we prove (iii). Using the Parseval formula, (2.4), and (6.6), one obtains, for
all (j, k) ∈ Z2,

∫
R

2j/2Ψ(2jt− k, v)2j
′/2Ψ̃(2j

′
t− k′, v) dt

= 2−(j+j′)/2(2π)−1

∫
R

e−iξ(k/2j−k′/2j
′
)Ψ̂(2−jξ, v)

̂̃
Ψ(2−j′ξ, v)dξ

= 2−(j+j′)/2+(j−j′)(v+1−1/α)(2π)−1

∫
R

e−iξ(k/2j−k′/2j
′
)ψ̂(2−jξ)ψ̂(2−j′ξ)dξ

= 2(j−j′)(v+1−1/α)

∫
R

2j/2ψ(2jt− k)2j
′/2ψ(2j

′
t− k′) dt = δ(j,k;j′,k′),

where the last equality results from the fact that
{
2j/2ψ(2j · −k) : (j, k) ∈ Z2

}
is

an orthonormal basis of L2(R). �

In the rest of this section, M1 < M2 denote two arbitrary real numbers such
that the conditions (A) and (6.3) hold. For the sake of simplicity, we set

(6.10) H∗ := min
x∈[M1,M2]

H(x).

Lemma 6.4. Let Ω∗
0 be the event of probability 1 defined in Lemma 2.3 and let{

gj,k : (j, k) ∈ N× Z
}
be the sequence of the random variables defined on Ω∗

0 by

(6.11) gj,k = 2j(1+H∗)
∫
R

Y (t) Ψ̃(2jt− k,H∗) dt.

Assume that there exists ω0 ∈ Ω∗
0, τ0 > τ , and η0 > 0 such that

(6.12) sup
(t,s)∈[M1,M2]2

∣∣Y (t, ω0)− Y (s, ω0)
∣∣

|t− s|H∗−1/α
(
1 +

∣∣ log |t− s|∣∣)−τ0−η0
<∞.

Then one has

lim sup
j→+∞

jτ02−j/α max
{∣∣gj,k(ω0)

∣∣ : k∈Z and M1+2−j/(2α) ≤ k/2j ≤M2−2−j/(2α)
}

(6.13) = 0.

Remark 6.5. Notice that (6.7) (in which one takes a and b such that H∗ ∈ [a, b]),
Proposition 4.2 (in which one takes q = 0, a = H := infx∈RH(x), b = H :=
supx∈RH(x), and η an arbitrary positive real number) and the relation (5.1) imply
that the random variables gj,k are well-defined and finite on Ω∗

0.
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Proof. In all that follows, we assume that j ∈ N and k ∈ Z are arbitrary and
satisfy

(6.14) M1 + 2−j/(2α) ≤ k

2j
≤M2 − 2−j/(2α).

It follows from (6.11) and (6.8), in which one takes v = H∗, that

(6.15) gj,k(ω0) = 2j(1+H∗)
∫
R

(
Y (t, ω0)− Y (k2−j , ω0)

)
Ψ̃(2jt− k,H∗) dt.

In order to bound conveniently
∣∣gj,k(ω0)

∣∣, we split R into the three disjoint subdo-
mains

(6.16) B1 := [M1,M2], B2 := [−2M0, 2M0]\[M1,M2] and B3 := R\[−2M0, 2M0],

where M0 := |M1|+ |M2|. Therefore (6.15) implies that

(6.17)
∣∣gj,k(ω0)

∣∣ ≤ 3∑
l=1

Al
j,k(ω0),

where, for each l ∈ {1, 2, 3}, one has set,

(6.18) Al
j,k(ω0) = 2j(1+H∗)

∫
Bl

∣∣Y (t, ω0)− Y (k2−j , ω0)
∣∣ ∣∣Ψ̃(2jt− k,H∗)

∣∣ dt.
First, we show that (6.13) holds when |gj,k(ω0)| is replaced by A1

j,k(ω0). The

relation (6.12) and the change of variable u = 2jt− k, yield

A1
j,k(ω0) ≤ C1(ω0) 2

j(1+H∗)
∫
B1

|t− k2−j|H∗−1/α
(
1 +

∣∣ log |t− k2−j|∣∣)−τ0−η0×

|Ψ̃(2jt− k,H∗)| dt
≤ C1(ω0) 2

j(1+H∗)
∫
R

|t− k2−j |H∗−1/α
(
1 +

∣∣ log |t− k2−j|∣∣)−τ0−η0×

|Ψ̃(2jt− k,H∗)| dt
= C1(ω0) 2

j/α

∫
R

|u|H∗−1/α
(
1 +

∣∣ log |2−ju|∣∣)−τ0−η0 |Ψ̃(u,H∗)| du

= C1(ω0) j
−τ0−η02j/α

∫
R

|u|H∗−1/α
(1
j
+
∣∣∣ log(2)− log |u|

j

∣∣∣)−τ0−η0 |Ψ̃(u,H∗)| du,
(6.19)

where

C1(ω0) := sup
(t,s)∈B2

1

∣∣Y (t, ω0)− Y (s, ω0)
∣∣

|t− s|H∗−1/α
(
1 +

∣∣ log |t− s|∣∣)−τ0−η0
<∞.
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Now we show that

(6.20) sup
j≥1

∫
R

|u|H∗−1/α
(1
j
+
∣∣∣ log(2)− log |u|

j

∣∣∣)−τ0−η0 |Ψ̃(u,H∗)| du <∞.

In view of (6.7) and the inequality(1
j
+
∣∣∣ log(2)− log |u|

j

∣∣∣)−τ0−η0 ≤
( log 2

2

)−τ0−η0

,

which holds for all real number u satisfying |u| ≤ 2j/2, one gets, for some constants
c2, . . . , c5 and all integers j ≥ 1, that∫

R

|u|H∗−1/α
(1
j
+
∣∣∣ log(2)− log |u|

j

∣∣∣)−τ0−η0 |Ψ̃(u,H∗)| du

≤ c2 j
τ0+η0

∫
|u|>2j/2

|u|H∗−1/α

(3 + |u|)2 du+ c2

( log 2
2

)−τ0−η0
∫
|u|≤2j/2

|u|H∗−1/α

(3 + |u|)2 du

≤ 2c2 j
τ0+η0

∫
u>2j/2

uH∗−1/α

(3 + u)2
du+ c3

∫
R

|u|H∗−1/α

(3 + |u|)2 du

≤ c4 j
τ0+η0

2−j/2(1+1/α−H∗)

1 + 1/α−H∗
+ c5,

which shows that (6.20) is satisfied. Next, (6.19) and (6.20) entail that
(6.21)

lim sup
j→+∞

jτ02−j/α max
{
A1

j,k(ω0) : k ∈ Z and M1+2−
j
2α ≤ k/2j ≤M2−2−

j
2α

}
= 0.

Next, we prove that (6.13) holds when
∣∣gj,k(ω0)

∣∣ is replaced by A2
j,k(ω0). Set

(6.22) C6(ω0) := sup
t∈[−2M0,2M0]

∣∣Y (t, ω0)
∣∣ <∞.

Observe that C6(ω0) is finite, since the function t �→ Y (t, ω0) is continuous on the
compact interval [−2M0, 2M0]. Also, observe that, in view of (6.14) and (6.16),
one has that, for all t ∈ B2,

|2jt− k| > 2j(1−1/(2α)).

Therefore, it follows from (6.7), that, for each t ∈ B2,

(6.23) |Ψ̃(2jt− k,H∗)| ≤ c7 2
−j(2−1/α),

where c7 is a constant not depending on t, j, and k. Combining (6.18), (6.22),
and (6.23), one gets that

A2
j,k(ω0) ≤ C8(ω0) 2

−j(1−H∗−1/α),
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where C8(ω0) is a constant not depending on j and k. This last inequality and the
inequality H∗ < 1, imply that
(6.24)

lim sup
j→+∞

jτ02−j/α max
{
A2

j,k(ω0) : k ∈ Z and M1+2−
j
2α ≤ k/2j ≤M2−2−

j
2α

}
= 0.

Next, we prove that (6.13) holds when
∣∣gj,k(ω0)

∣∣ is replaced by A3
j,k(ω0). Observe

that, by using the triangle inequality, (6.14), and (6.16), one has, for each t ∈ B3,

|2jt− k| = 2j
∣∣∣t− k

2j

∣∣∣ ≥ 2j
(
|t| − |k|

2j

)
> 2j (|t| −M0) > 2j−1|t|.

Therefore, it follows from (6.7), that, for each t ∈ B3,

(6.25) |Ψ̃(2jt− k,H∗)| ≤ c9 2
−2j |t|−2,

where c9 is a constant not depending on t, j, and k. On the other hand, using (5.1)
and Proposition 4.2, in the case where q = 0, a = H := infx∈RH(x), and b = H :=
supx∈RH(x), one obtains that, for any fixed η > 0, and for each t ∈ B3,

|Y (t, ω0)| ≤ C10(ω0) |t|H
(
1 +

∣∣ log |t|∣∣)1/α+η
,

where C10(ω0) is a positive finite constant not depending on t. Next, combining
the last inequality with (6.14) and (6.22), one gets that, for all j ∈ N and k ∈ Z

satisfying (6.14), and for each t ∈ B3, one has,

(6.26) |Y (t, ω0)− Y (k2−j, ω0)| ≤ C11(ω0) |t|H
(
1 +

∣∣ log |t|∣∣)1/α+η
,

where C11(ω0) is a constant not depending on j, k, and t. Next, (6.18), (6.25),
and (6.26), yield

A3
j,k(ω0) ≤ C12(ω0) 2

−(1−H∗)j ,

where C12(ω0) is a constant not depending on j and k. Moreover, this last inequal-
ity implies that
(6.27)

lim sup
j→+∞

jτ02−j/α max
{
A3

j,k(ω0) : k ∈ Z and M1+2−
j
2α ≤ k/2j ≤M2−2−

j
2α

}
= 0.

Finally, combining (6.17), (6.21), (6.24), and (6.27), it follows that (6.13) holds. �

Lemma 6.6. Let Ω∗
0 be the event of probability 1 defined in Lemma 2.3 and let

{g̃j,k : (j, k) ∈ N× Z} be the sequence of random variables defined on Ω∗
0 by

(6.28) g̃j,k = 2j(1+H∗)
∫
R

X(t,H(k2−j)) Ψ̃(2jt− k,H∗) dt.

Assume that H(·) satisfies condition (A). Then one has

lim sup
j→+∞

2j(θ−1/α) max
{∣∣gj,k(ω)− g̃j,k(ω)

∣∣ : k ∈ Z

and M1 + 2−j/(2α) ≤ k/2j ≤M2 − 2−j/(2α)
}
= 0,(6.29)

for each ω ∈ Ω∗
0 and all θ ∈ [0,min{γ∗ + 1/α−H∗, 1−H∗}).
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Remark 6.7. Notice that (6.7) (in which one takes a and b such that H∗ ∈ [a, b])
and Proposition 4.2 (in which one takes q = 0, a = H , b = H , and η to be
an arbitrary positive real number) imply that the random variables g̃j,k are well-
defined and finite on Ω∗

0.

Proof. In what follows, we assume that j ∈ N and k ∈ Z are arbitrary and sat-
isfy (6.14). Using (5.1), (6.11), and (6.28), one has

(6.30) |gj,k(ω)− g̃j,k(ω)| ≤
3∑

l=1

Ll
j,k(ω),

where for all l ∈ {1, 2, 3},

(6.31) Ll
j,k(ω) = 2j(1+H∗)

∫
Bl

|X(t,H(t), ω)−X(t,H(k2−j), ω)| |Ψ̃(2jt−k,H∗)| dt;

the sets B1, B2, and B3 were defined in (6.16). Now we prove that (6.29) holds when∣∣gj,k(ω)− g̃j,k(ω)∣∣ is replaced by L1
j,k(ω). It follows from the definition of B1, (3.18)

(in which one takes q = 0, M = M0, a = H , and b = H), (6.14), condition (A),
and the change of variable u = 2jt− k, that

L1
j,k(ω) ≤ C1(ω) 2

j(1+H∗)
∫
B1

|H(t)−H(k2−j)| |Ψ̃(2jt− k,H∗)| dt

≤ C2(ω) 2
j(1+H∗)

∫
B1

|t− k2−j|γ∗ |Ψ̃(2jt− k,H∗)| dt

≤ C2(ω) 2
j(1+H∗)

∫
R

|t− k2−j |γ∗ |Ψ̃(2jt− k,H∗)| dt

= C2(ω) 2
jH∗

∫
R

|2−ju|γ∗ |Ψ̃(u,H∗)| du ≤ C3(ω) 2
j(H∗−γ∗),(6.32)

where the positive and finite constants C1(ω), C2(ω), and C3(ω) do not depend
on j and k. Then, using (6.32) and the inequality θ < γ∗ + 1/α−H∗, one gets
(6.33)

lim sup
j→+∞

2j(θ−1/α) max
{
L1
j,k(ω) : k ∈ Z and M1+2−

j
2α ≤ k/2j ≤M2− 2−

j
2α

}
= 0.

Next, we prove that (6.29) holds when
∣∣gj,k(ω) − g̃j,k(ω)

∣∣ is replaced by L2
j,k(ω).

Set

(6.34) C4(ω) := sup
(u,v)∈[−2M0,2M0]×[H,H]

∣∣X(u, v, ω)
∣∣ <∞.

Observe that C4(ω) is finite, since the function (u, v) �→ X(u, v, ω) is continuous on
the compact rectangle [−2M0, 2M0]×[H,H ]. Combining (6.31), (6.34), and (6.23),
one obtains that

(6.35) L2
j,k(ω) ≤ C5(ω) 2

−j(1−H∗−1/α),
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where C5(ω) is a constant not depending on j and k. Then, using (6.35) and the
inequality θ < 1−H∗, it follows that
(6.36)

lim sup
j→+∞

2j(θ−1/α) max
{
L2
j,k(ω) : k ∈ Z and M1+2−

j
2α ≤ k/2j ≤M2− 2−

j
2α

}
= 0.

Next, we prove that (6.29) holds, when
∣∣gj,k(ω) − g̃j,k(ω)

∣∣ is replaced by L3
j,k(ω).

Setting q = 0, a = H, and b = H in Proposition 4.2, one gets that, for any fixed
η > 0 and for each t ∈ B3,

|X(t,H(t), ω)−X(t,H(k2−j), ω)| ≤ C6(ω) |t|H
(
1 +

∣∣ log |t|∣∣)1/α+η
,

where C6(ω) is a constant not depending on t and (j, k). Next, combining this last
inequality with (6.31) and (6.25), it follows that

(6.37) L3
j,k(ω) ≤ C7(ω) 2

−(1−H∗)j ,

where C7(ω) is a constant not depending on j and k. Then, using (6.37) and the
inequality θ < 1−H∗, it follows that
(6.38)

lim sup
j→+∞

2j(θ−1/α) max
{
L3
j,k(ω) : k ∈ Z and M1+2−

j
2α ≤ k/2j ≤M2− 2−

j
2α

}
= 0.

Finally, combining (6.30), (6.33), (6.36), and (6.38), it follows that (6.29) holds. �

Proposition 6.8. Let Ω∗
0 be the event of probability 1 defined in Lemma 2.3. Then

for all ω ∈ Ω∗
0, v ∈ (1/α, 1) and (j, k) ∈ Z2, one has

(6.39) 2j(1+v)

∫
R

X(t, v, ω)Ψ̃(2jt− k, v) dt = εj,k(ω),

where εj,k is the random variable defined in (2.5).

Proof. First observe that, by using (6.7) and (4.2) in which one takes q = 0 and a
and b such that v ∈ [a, b], it follows that, for all ω ∈ Ω∗

0 and (j, k) ∈ Z2,

2j(1+v)

( ∑
(j′,k′)∈Z2

2−j′v|εj′,k′(ω)|∣∣Ψ(2j
′ · −k′, v)−Ψ(−k′, v)∣∣)
× ∣∣Ψ̃(2j · −k, v)∣∣ ∈ L1

t (R).

Therefore we can apply the dominated convergence theorem, and we obtain, in
view of part (i) of Theorem 2.1 that

2j(1+v)

∫
R

X(t, v, ω)Ψ̃(2jt− k, v) dt

= 2j(1+v)
∑

(j′,k′)∈Z2

2−j′vεj′,k′(ω)

∫
R

(
Ψ(2j

′
t− k′, v)−Ψ(−k′, v))Ψ̃(2jt− k, v) dt.

Finally, combining this equality with (ii) and (iii) of Proposition 6.3, one gets (6.39).
�
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Remark 6.9. Let τ and ρ be as in Theorem 6.1. Also suppose that (6.3) holds.
We denote by τ0 an arbitrary real number such that τ0 > τ ≥ 0.

(i) One has

(6.40)
1 + 2α−1 + τ0

ρ
< ατ0.

(ii) Denote by d(τ0) and e(τ0) the positive real numbers defined by

d(τ0) :=
2

3

(1 + 2α−1 + τ0
ρ

)
+

1

3
(ατ0) and e(τ0)

:=
1

3

(1 + 2α−1 + τ0
ρ

)
+

2

3
(ατ0).(6.41)

Then,

(6.42)
1 + 2α−1 + τ0

ρ
< d(τ0) < e(τ0) < ατ0.

(iii) For any fixed t0 ∈ [M1,M2] and j ∈ N, denote by Dj(t0, τ0) the set of
indices, defined by

(6.43) Dj(t0, τ0) :=
{
k ∈ Z : k2−j ∈ [M1,M2] and j

−e(τ0) ≤ |t0−k2−j| ≤ j−d(τ0)
}
.

Then, for all large enough j, the set Dj(t0, τ0) is nonempty and satisfies

(6.44) Dj(t0, τ0) ⊆
{
k ∈ Z :M1 + 2−j/(2α) ≤ k/2j ≤M2 − 2−j/(2α)

}
.

Proof. Observe that, in view of (6.2), one has

1 + 2α−1 + τ

ρ
= ατ ;

therefore, (6.3) implies that (i) holds. Part (ii) follows easily from (6.40) and (6.41).
Now we prove (iii). For the sake of simplicity, we set d = d(τ0) and e = e(τ0).
Observe that, since limj→+∞ 2j(j−d − j−e) = +∞, the set Dj(t0, τ0) is nonempty
for all large enough j. Let j ≥ 1 and k be arbitrary integers such that j is large
enough and k ∈ Dj(t0, τ0).

In order to show that these integers satisfy (6.14), we study three cases: t0 ∈
(M1,M2), t0 =M1, and t0 =M2.

First suppose that M1 < t0 < M2, i.e., min{t0 −M1,M2 − t0} > 0. Then,
in view of the fact that j is large enough, one can assume that j−d + 2−j/(2α) ≤
min{t0 −M1,M2 − t0}; this inequality and the inequality |t0 − k2−j | ≤ j−d imply
that (6.14) holds.

Now assume that t0 =M1. It follows from the equality |t0−k2−j| = k2−j−M1

and the inequalities j−e ≤ |t0 − k2−j| ≤ j−d, that M1 + j−e ≤ k2−j ≤M1 + j−d.
Moreover, in view of the fact that j is large enough, one can assume M1 + j−e ≥
M1 + 2−j/(2α) and M1 + j−d ≤M2 − 2−j/(2α); thus (6.14) holds. Finally, the case
where t0 =M2, can be treated in a manner similar to the case t0 =M1. �
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Lemma 6.10. Let τ be as in Theorem 6.1. Also suppose that (6.3) holds. We
denote by τ0 an arbitrary fixed real number such that τ0 > τ ≥ 0. Then, for all t0 ∈
[M1,M2], there exists Ω∗

1,τ0(t0) an event of probability 1 (which a priori depends
on τ0 and t0) contained in Ω∗

0 (recall that this event was defined in Lemma 2.3),
such that, for each ω ∈ Ω∗

1,τ0(t0), one has

(6.45) lim inf
j→+∞

jτ0 2−j/α max
{∣∣εj,k(ω)∣∣ : k ∈ Dj(t0, τ0)

}
> 0,

where the εj,k are the random variables defined in (2.5) and where Dj(t0, τ0) is the
set defined in (6.43).

Proof. Let p be a fixed integer such that p > 2R (see (2.2) for the definition of R).
We assume that j is sufficiently large that

Dj(t0, τ0) :=
{
q ∈ Z : pq ∈ Dj(t0, τ0)

}
=

{
q ∈ Z : pq/2j ∈ [M1,M2] and j

−e(τ0) ≤ |pq 2−j − t0| ≤ j−d(τ0)
}
.(6.46)

is nonempty. From now on, for the sake of simplicity, d(τ0) and e(τ0) are denoted
by d and e. Notice that, since j is large enough, the cardinality of Dj(t0, τ0)
satisfies

(6.47) c1 j
−d 2j ≤ card

(
Dj(t0, τ0)

) ≤ c2 j
−d 2j ,

where c1 and c2 are positive constants not depending on j. We denote by Γj the
event defined by

(6.48) Γj :=
{
ω ∈ Ω∗

0 : max
{∣∣εj,k(ω)∣∣ : k ∈ Dj(t0, τ0)

} ≤ j−τ0 2j/α
}
.

Now we give an upper bound for the probability P
(
Γj

)
. Since j is large

enough, it is no restriction to suppose that j−τ02j/α ≥ 1 and that c3j
ατ02−j < 1,

where c3 is the positive constant c′ in (2.9). Next, using (6.48), (6.46), (iv) of
Remark 2.2, (2.9), and the first inequality in (6.47), one obtains that

P
(
Γj

) ≤ P

( ⋂
q∈Dj(t0,τ0)

{∣∣εj,pq∣∣ ≤ j−τ02j/α
})

=
∏

q∈Dj(t0,τ0)

P
(∣∣εj,pq∣∣ ≤ j−τ0 2j/α

)
=

∏
q∈Dj(t0,τ0)

(
1− P

(|εj,pq| > j−τ0 2j/α
)) ≤ (

1− c3 j
ατ0 2−j

)c1 j−d 2j

.(6.49)

Moreover, the inequality log(1− x) ≤ −x for all x ∈ [0, 1), allows us to prove that(
1− c3 j

ατ0 2−j
)c1j−d2j

:= exp
(
c1 j

−d 2j log(1 − c3 j
ατ0 2−j)

)
≤ exp

(− c1 c3 j
ατ0−d

)
.(6.50)

Finally, combining (6.42), (6.49), and (6.50), one gets that∑
j∈N

P
(
Γj

)
<∞.

Thus, the Borel–Cantelli lemma implies that (6.45) holds. �
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Lemma 6.11. Let τ be as in Theorem 6.1. Also suppose that (6.3) holds. We
denote by τ0 an arbitrary fixed real number such that τ0 > τ ≥ 0. Then there exists
t0 ∈ [M1,M2] (a priori t0 depends on τ0) such that, for all ω ∈ Ω∗

0 (the event of
probability 1 defined in Lemma 2.3), one has

(6.51) lim sup
j→+∞

jτ02−j/α max
{∣∣g̃j,k(ω)− εj,k(ω)

∣∣ : k ∈ Dj(t0, τ0)
}
= 0.

Recall that the random variables g̃j,k and εj,k were defined in (6.28) and (2.5).
Also recall that the set Dj(t0, τ0) was defined in (6.43).

Proof. Let ρ be as in (6.1). Assume that ρ0 ∈ (1/α, ρ) is arbitrary and such that

(6.52)
1 + 2α−1 + τ0

ρ
<

1 + 2α−1 + τ0
ρ0

< d(τ0) < e(τ0) < ατ0,

where d(τ0) and e(τ0) are defined in (6.41). Then, in view of (6.1) and (6.10), there
exists t0 ∈ [M1,M2], that satisfies

(6.53)

{
H(t0) = H∗

supt∈[M1,M2]
|H(t)−H(t0)|

|t−t0|ρ0 <∞.

In what follows, we suppose that j is a sufficiently large integer. Thus the set
Dj(t0, τ0) is nonempty and (6.44) holds. Also we suppose that k ∈ Dj(t0, τ0) is
arbitrary. Using (6.39), in which one takes v = H∗, (6.28), and the equality, for
each fixed t ∈ R,

X(t,H(k2−j), ω)−X(t,H∗, ω)

=
(
H(k2−j)−H∗

) ∫ 1

0

(
∂vX

)(
t,H∗ + θ(H(k2−j)−H∗), ω

)
dθ,

one gets that

g̃j,k(ω)− εj,k(ω) = 2j(1+H∗)
∫
R

(
X(t,H(k2−j), ω)−X(t,H∗, ω)

)
Ψ̃(2jt− k,H∗) dt

= 2j(1+H∗)
(
H(k2−j)−H∗

) ∫
R

∫ 1

0

(
∂vX

)(
t,H∗ + θ(H(k2−j)−H∗), ω

)
× Ψ̃(2jt− k,H∗) dθ dt.

Therefore, it follows from (6.8), in which one takes v = H∗, that

(6.54) |εj,k(ω)− g̃j,k(ω)| ≤ |H(k2−j)−H∗|
3∑

l=1

F l
j,k(ω),

where, for each l ∈ {1, 2, 3},

F l
j,k(ω) = 2j(1+H∗)

∫
Bl

∫ 1

0

|Ψ̃(2jt− k,H∗)|
∣∣(∂vX)(

t,H∗ + θ(H(k2−j)−H∗), ω
)

− (
∂vX

)(
k2−j , H∗ + θ(H(k2−j)−H∗), ω

)∣∣ dθ dt.(6.55)
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The sets Bl were defined in (6.16). Observe that, in view of (6.53) and (6.43), one
has

(6.56) |H(k2−j)−H∗| ≤ c1 j
−d(τ0)ρ0 ,

where c1 is a constant not depending on j and k. Also observe that, in view
of (6.52), there exists η1, an arbitrarily small positive real number, such that

(6.57)
1 + 2α−1 + τ0 + η1

ρ0
< d(τ0).

Now we prove that (6.51) holds when
∣∣g̃j,k(ω)− εj,k(ω)

∣∣ is replaced by |H(k2−j)−
H∗|F 1

j,k(ω). Using Proposition 4.1 (in which one takes q = 1, M = M0, a = H ,

b = H , and η = η1), the inequality H(k2−j) ≥ H∗, and the fact that k2−j ∈ B1 ⊂
[−M0,M0], one gets that

F 1
j,k(ω) ≤ C2(ω) 2

j(1+H∗)
∫
B1

∫ 1

0

|Ψ̃(2jt− k,H∗)|

× |t− k2−j|H∗−1/α+θ(H(k2−j)−H∗)
(
1 +

∣∣ log |t− k2−j |∣∣)1+2/α+η1
dθ dt

≤ C2(ω) 2
j(1+H∗)

∫
B1

|Ψ̃(2jt− k,H∗)||t− k2−j|H∗−1/α

× (
1 +

∣∣ log |t− k2−j|∣∣)1+2/α+η1
{∫ 1

0

|t− k2−j|θ(H(k2−j)−H∗)dθ
}
dt

≤ C3(ω) 2
j(1+H∗)

∫
R

|t− k2−j|H∗−1/α
(
1 +

∣∣ log |t− k2−j |∣∣)1+2/α+η1

× |Ψ̃(2jt− k,H∗)| dt,

where C2(ω) is a constant not depending on j and k and where

C3(ω) =
(
1 + 2M0

)H−H∗
C2(ω).

Then, setting u = 2jt− k in the last integral, one obtains that

F 1
j,k(ω) ≤ C3(ω) 2

j/α

∫
R

|u|H∗−1/α
(
1 +

∣∣ log |2−ju|∣∣)1+2/α+η1 |Ψ̃(u,H∗)| du

≤ C4(ω)2
j/α

∫
R

|u|H∗−1/α
(
j1+2/α+η1+

(
1+

∣∣ log |u|∣∣)1+2/α+η1
)|Ψ̃(u,H∗)| du

≤ C5(ω) j
1+2/α+η1 2j/α,(6.58)

where C4(ω) and C5(ω) are constants not depending on j and k. Combining (6.56),
(6.57), and (6.58), it follows that

(6.59) lim sup
j→+∞

jτ0 2−j/α max
{|H(k2−j)−H∗|F 1

j,k(ω) : k ∈ Dj(t0, τ0)
}
= 0.
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Now we prove that (6.51) holds when
∣∣g̃j,k(ω)− εj,k(ω)

∣∣ is replaced by |H(k2−j)−
H∗|F 2

j,k(ω). We set

(6.60) C6(ω) := sup
(u,v)∈[−2M0,2M0]×[H,H]

∣∣(∂vX)(u, v, ω)
∣∣ <∞.

Observe that C6(ω) is finite, since the function (u, v) �→ (∂vX)(u, v, ω) is contin-
uous on the compact rectangle [−2M0, 2M0] × [H,H ]. Combining (6.55), (6.60),
(6.44), and (6.23), one obtains that

(6.61) F 2
j,k(ω) ≤ C7(ω) 2

−j(1−H∗−1/α),

where C7(ω) is a constant not depending on j and k. Then, using (6.61), the fact
that H(·) is a bounded function, and the inequality 0 < 1−H∗, it follows that

(6.62) lim sup
j→+∞

jτ0 2−j/α max
{|H(k2−j)−H∗|F 2

j,k(ω) : k ∈ Dj(t0, τ0)
}
= 0.

Now we prove that (6.51) holds when
∣∣g̃j,k(ω)− εj,k(ω)

∣∣ is replaced by |H(k2−j)−
H∗|F 3

j,k(ω). Setting q = 1, a = H , and b = H in Proposition 4.2, one gets , in view
of (6.60), that, for any fixed η > 0, for each t ∈ B3, and for all θ ∈ [0, 1],∣∣(∂vX)(

t,H∗ + θ(H(k2−j)−H∗), ω
)− (

∂vX
)(
k2−j, H∗ + θ(H(k2−j)−H∗), ω

)∣∣
≤ C8(ω) |t|H

(
1 +

∣∣ log |t|∣∣)1+1/α+η
,

where C8(ω) is a constant not depending on t, θ, and (j, k). Next, combining this
last inequality with (6.55) and (6.25), it follows that,

(6.63) F 3
j,k(ω0) ≤ C9(ω) 2

−(1−H∗)j ,

where C9(ω) is a constant not depending on j and k. Then, using (6.63), the fact
that H(·) is a bounded function, and the inequality 0 < 1−H∗, it follows that

(6.64) lim sup
j→+∞

jτ0 2−j/α max
{|H(k2−j)−H∗|F 3

j,k(ω) : k ∈ Dj(t0, τ0)
}
= 0.

Finally, combining (6.54), (6.59), (6.62), and (6.64), it follows that (6.51) holds. �

Lemma 6.12. Let τ be as in Theorem 6.1. Also suppose that the conditions (A)
and (6.3) hold. Let τ0 be an arbitrary fixed real number such that τ0 > τ ≥ 0.
Then there exists Ω∗

2,τ0 an event of probability 1 (which a priori depends on τ0)
contained in Ω∗

0 (recall that this event was defined in Lemma 2.3), such that, for
each ω ∈ Ω∗

2,τ0 , one has
(6.65)

lim inf
j→+∞

jτ02−j/α max
{∣∣gj,k(ω)∣∣ : k ∈ Z and M1+2−

j
2α ≤ k/2j ≤M2−2−

j
2α

}
> 0,

where the gj,k are the random variables defined in (6.11).

Proof. Combining (6.44) and Lemmas 6.11, 6.10, and 6.6 one gets the lemma. �
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Now, we are ready to prove Theorem 6.1.

Proof of Theorem 6.1. Denote by Ω∗
3 the event of probability 1 defined by

Ω∗
3 :=

⋂
τ0∈Q and τ0>τ

Ω∗
2,τ0 .

The events Ω∗
2,τ0 were defined in Lemma 6.12. It is clear that (6.65) holds for all

ω ∈ Ω∗
3 and for all real τ0 > τ ≥ 0. Therefore, it follows from Lemma 6.4, that for

each ω ∈ Ω∗
3, τ0 > τ , and η0 > 0,

sup
(t,s)∈[M1,M2]2

∣∣Y (t, ω)− Y (s, ω)
∣∣

|t− s|H∗−1/α
(
1 +

∣∣ log |t− s|∣∣)−τ0−η0
= ∞.

Then, in view of (6.10), one gets the theorem. �

7. Optimality of the local modulus of continuity for LMSM

The goal of this section is to show that under a condition a bit stronger than (5.10),
the local modulus of continuity given in (5.11) is optimal. More precisely:

Theorem 7.1. Let M be a positive real number. Assume that t0 ∈ (−M,M)
satisfies

(7.1)
∣∣H(t)−H(t0)

∣∣ ≤ c |t− t0|H(t0)
(
1 +

∣∣ log |t− t0|
∣∣)1/α

for some constant c > 0 and all t ∈ R. Then one has, almost surely,

(7.2) sup
t∈[−M,M ]

{ ∣∣Y (t)− Y (t0)
∣∣

|t− t0|H(t0)
(
1 +

∣∣ log |t− t0|
∣∣)1/α

}
= ∞.

Remark 7.2. We mention that, even in the quite classical case of LFSM (in
other words, in the particular case where the functional parameter H(·) of LMSM
is constant), the determination of the optimal lower bound for the power of the
logarithmic factor in a local modulus of continuity has so far been an open problem.
Corollary 5.6 and Theorem 7.1 in the present article solve it, in the more general
case of LMSM, by showing that 1/α is in fact this optimal lower bound.

The proof of Theorem 7.1 relies on (3.18), in which one takes q = 0. Also, more
importantly, it relies on the following proposition.

Proposition 7.3. Let M be a positive real number. For all t0 ∈ (−M,M), one
has, almost surely,

(7.3) sup
t∈[−M,M ]

{ ∣∣X(t,H(t0))−X(t0, H(t0))
∣∣

|t− t0|H(t0)
(
1 +

∣∣ log |t− t0|
∣∣)1/α

}
= ∞.
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In order to show that Proposition 7.3 holds, we need to introduce some addi-
tional notation. Also we need to derive some preliminary results. Let m0 be the
positive integer defined by

(7.4) m0 :=
[
log2(3R+ 2)

]
+ 1.

Recall that R is a fixed real number strictly bigger than 1, such that (2.2) holds.
For all j ∈ N, one sets

(7.5) r(j,m0) := jm0 and l(j,m0) :=
[
2r(j,m0)t0 +R+ 2

]
.

Observe that the inequalities

(7.6) (R + 1)2−r(j,m0) < l(j,m0)2
−r(j,m0) − t0 < (R+ 1)21−r(j,m0) < 4/5

hold. One denotes by ε̌j the StαS random variable

(7.7) ε̌j := εr(j,m0),l(j,m0).

In other words, ε̌j is defined through (2.5) in which j and k are replaced, respec-
tively, by r(j,m0) and l(j,m0).

Lemma 7.4. The StαS random variables ε̌j, j ∈ N, are independent and they all
have the same scale parameter. Namely, for each j ∈ N,

(7.8) ‖ε̌j‖α =
{∫

R

|ψ(t)|α dt
}1/α

.

Proof. First, observe that (7.8) is a straightforward consequence of (7.7) and (2.8).
Now we prove that the random variables ε̌j, for j ∈ N, are independent. Notice
that (2.2) entails that

suppψ
(
2r(j,m0) · −l(j,m0)

)
⊆ [

l(j,m0)2
−r(j,m0) −R 2−r(j,m0), l(j,m0) 2

−r(j,m0) +R 2−r(j,m0)
]
.

Therefore, in view of (2.5) and the fact that the StαS random measure Zα(ds) is
independently scattered, it suffices to show that the intervals[

l(j,m0)2
−r(j,m0) −R2−r(j,m0), l(j,m0)2

−r(j,m0) +R2−r(j,m0)
]
, j ∈ N,

are disjoint. This can be obtained by proving that the inequality

(7.9) R2−r(j,m0) +R2−r(j+p,m0) <
∣∣l(j,m0)2

−r(j,m0) − l(j + p,m0)2
−r(j+p,m0)

∣∣
holds for all (j, p) ∈ N2. By using the triangle inequality, (7.6), and the first
equality in (7.5), one has∣∣l(j,m0) 2

−r(j,m0) − l(j + p,m0) 2
−r(j+p,m0)

∣∣
≥ ∣∣l(j,m0) 2

−r(j,m0) − t0
∣∣− ∣∣l(j + p,m0) 2

−r(j+p,m0) − t0
∣∣

> (R+ 1) 2−r(j,m0) − (R+ 1) 21−r(j+p,m0) = (R+ 1) 2−jm0
(
1− 21−pm0

)
≥ (R+ 1) 2−jm0

(
1− 21−m0

)
.(7.10)
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On the other hand, the first equality in (7.5) implies that

(7.11) R 2−r(j,m0) +R 2−r(j+p,m0) = R 2−jm0
(
1 + 2−pm0

) ≤ R 2−jm0
(
1 + 2−m0

)
.

Next, notice that (7.4) implies that 2−m0 < (3R+ 2)−1 and consequently that

(7.12) R
(
1 + 2−m0

)
<

3R(R+ 1)

3R+ 2
< (R+ 1)

(
1− 21−m0

)
.

Finally, combining (7.10), (7.11), and (7.12), one gets (7.9) �

Lemma 7.5. One has, almost surely,

(7.13) lim sup
j→+∞

|ε̌j |
j1/α log1/α(j)

≥ 1.

Proof. Notice that, in view of Lemma 7.4, the events {|ε̌j | > j1/α log1/α(j)}, j ∈ N,
are independent. Moreover, (7.7) and the first inequality in (2.9) imply that

+∞∑
j=2

P
(|ε̌j | > j1/α log1/α(j)

) ≥ c′
+∞∑
j=2

j−1 log−1(j) = +∞.

Thus, applying the second Borel–Cantelli lemma, one gets (7.13). �

Lemma 7.6. Let Ω∗
0 be the event of probability 1 defined in Lemma 2.3. Assume

that, for some t0 ∈ (−M,M) and ω0 ∈ Ω∗
0, one has

(7.14) sup
t∈[−M,M ]

{∣∣X(t,H(t0), ω0)−X(t0, H(t0), ω0)
∣∣

|t− t0|H(t0)
(
1 +

∣∣ log |t− t0|
∣∣)1/α

}
<∞.

Then, it follows that

(7.15) lim sup
j→+∞

|ε̌j(ω0)|
j1/α

<∞.

Proof. First notice that (7.7), (6.39) (in which one takes v = H(t0)), (6.8), and
the change of variable x = t− lj2

−rj , imply that

(7.16) ε̌j(ω0)

= 2rj(1+H(t0))

∫
R

(
X(t,H(t0), ω0)−X(t0, H(t0), ω0)

)
Ψ̃(2rj t− lj , H(t0)) dt

= 2rj(1+H(t0))

∫
R

(
X
(
x+ lj2

−rj , H(t0), ω0

)−X
(
t0, H(t0), ω0

))
Ψ̃(2rjx,H(t0)) dx,

where, for the sake of simplicity, we have set rj = r(j,m0) and lj = l(j,m0). Let
s∗ := |t0|+ 2. Observe that, in view of (7.6), one has

(7.17) ∀x ∈ R, |x| ≥ s∗ =⇒ ∣∣x+ lj2
−rj

∣∣ ≥ 1.
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Also, observe that (7.16) entails that

(7.18)
∣∣ε̌j(ω0)

∣∣ ≤ Sj + Zj ,

where

Sj = 2rj(1+H(t0))

×
∫
|x|<s∗

∣∣∣X(
x+ lj2

−rj , H(t0), ω0

)−X
(
t0, H(t0), ω0

)∣∣∣∣∣Ψ̃(2rjx,H(t0))
∣∣ dx(7.19)

and

Zj = 2rj(1+H(t0))

×
∫
|x|≥s∗

∣∣∣X(
x+ lj2

−rj , H(t0), ω0

)−X
(
t0, H(t0), ω0

)∣∣∣∣∣Ψ̃(2rjx,H(t0))
∣∣ dx.(7.20)

Now we bound Sj from above. Notice that the fact that t �→ X(t,H(t0), ω0)
is a continuous function on R entails that (7.14) remains valid when [−M,M ]
is replaced by any other compact interval. Also notice that, in view of (7.6)
when |x| < s∗,

x+ lj2
−rj belongs to the compact interval

[− s∗ − |t0| − 4/5, s∗ + |t0|+ 4/5
]
.

Thus, using (7.14), in which M is replaced by s∗ + |t0|+ 4/5, one gets that,

Sj ≤ C1(ω0)2
rj(1+H(t0))

∫
|x|<s∗

|νj + x|H(t0)
(
1 +

∣∣ log |νj + x|∣∣)1/α
× ∣∣Ψ̃(2rjx,H(t0))

∣∣ dx
≤ C1(ω0)2

rj(1+H(t0))

∫
R

|νj+x|H(t0)
(
1+

∣∣ log |νj+x|∣∣)1/α∣∣Ψ̃(2rjx,H(t0))
∣∣ dx,(7.21)

where, C1(ω0) is a constant not depending on j, and

(7.22) νj := lj 2
−rj − t0.

Observe that (7.6) implies that

(7.23) R+ 1 < 2rj νj < 2R+ 2.

For the sake of convenience, we set

(7.24) c2 := sup
y∈R

(3 + |y|)2 ∣∣Ψ̃(y,H(t0))
∣∣ <∞.

Observe that the inequality in (7.24) results from (6.7). Next, making the change of
variable u = x/νj in (7.21), and using the triangle inequality, (7.23), (7.24), (7.22),
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the last two inequalities in (7.6), and the the first equality in (7.5), it follows that

Sj ≤ C1(ω0) 2
rj(1+H(t0))νj

∫
R

|νj + νju|H(t0)
(
1 +

∣∣ log |νj + νju|
∣∣)1/α

× ∣∣Ψ̃(2rjνju,H(t0))
∣∣du

= C1(ω0) 2
rj(1+H(t0))ν

1+H(t0)
j

∫
R

|1+u|H(t0)
(
1 +

∣∣ log(νj) + log |1+u|∣∣)1/α
× ∣∣Ψ̃(2rjνju,H(t0))

∣∣du
≤ C3(ω0)

(
2rjνj

)1+H(t0) ∣∣ log(νj)∣∣1/α ≤ C4(ω0) j
1/α(7.25)

where

C3(ω0) := c2
(
log(5/4)

)−1/α
C1(ω0)

∫
R

∣∣2 + | log |1 + u||∣∣1/α
(3 + |u|)2−H(t0)

du <∞,

and C4(ω0) = C3(ω0)
(
2R + 2

)1+H(t0)
m

1/α
0 . Now we find an upper bound for Zj .

Using (7.20), (7.24), and the triangle inequality, one obtains that
(7.26)

Zj ≤ c22
−rj(1−H(t0))

∫
|x|≥s∗

∣∣X(
x+ lj2

−rj , H(t0), ω0

)∣∣x−2 dx+C5(ω0)2
−rj(1−H(t0)),

where

C5(ω0) := c2
∣∣X(

t0, H(t0), ω0

)∣∣ ∫
|x|≥s∗

x−2 dx <∞.

Next, observe that (7.17) and (7.6) imply that, for all real x that satisfies |x| ≥ s∗,
and for each j ∈ N, one has

1 ≤ |x+ lj 2
−rj | ≤ |x|+ |t0|+ 1.

Thus, taking q = 0 in (4.2), a and b such that H(t0) ∈ [a, b], and η an arbitrary
fixed positive real number, it follows that
(7.27)∣∣X(

x+ lj2
−rj , H(t0), ω0

)∣∣ ≤ C6(ω0)
(|x|+ |t0|+1)H(t0)

(
1+log

(|x|+ |t0|+1
))1/α+η

,

where the finite constant C6(ω0) does not depend on x and j. Next, combin-
ing (7.26) with (7.27), one gets that

(7.28) Zj ≤ C7(ω0) 2
−rj(1−H(t0)),

where

C7(ω0) := C5(ω0)+c2

∫
|x|≥s∗

(|x|+ |t0|+1)H(t0)
(
1+log

(|x|+ |t0|+1
))1/α+η

x−2 dx

is a finite constant. Finally, combining (7.18), (7.25), (7.28), and the first equality
in (7.5), one obtains (7.15). �
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Now, we are ready to prove Proposition 7.3 and Theorem 7.1.

Proof of Proposition 7.3. The proposition is a straightforward consequence of Lem-
mas 7.5 and 7.6. �

Proof of Theorem 7.1. Using (5.1) and the triangle inequality, one has, for all t ∈
[−M,M ],∣∣X(t,H(t0))−X(t0, H(t0))

∣∣ ≤ ∣∣Y (t)− Y (t0)
∣∣+ ∣∣X(t,H(t))−X(t,H(t0))

∣∣,
and, as a consequence,

sup
t∈[−M,M ]

{ ∣∣X(t,H(t0))−X(t0, H(t0))
∣∣

|t− t0|H(t0)
(
1 +

∣∣ log |t− t0|
∣∣)1/α

}

≤ sup
t∈[−M,M ]

{ ∣∣Y (t)− Y (t0)
∣∣

|t− t0|H(t0)
(
1 +

∣∣ log |t− t0|
∣∣)1/α

}

+ sup
t∈[−M,M ]

{ ∣∣X(t,H(t))−X(t,H(t0))
∣∣

|t− t0|H(t0)
(
1 +

∣∣ log |t− t0|
∣∣)1/α

}
.

Thus, in view of (7.3), in order to show that (7.2) holds, it is suffices to prove that

(7.29) sup
t∈[−M,M ]

{ ∣∣X(t,H(t))−X(t,H(t0))
∣∣

|t− t0|H(t0)
(
1 +

∣∣ log |t− t0|
∣∣)1/α

}
<∞.

Taking q = 0 in (3.18) , a = H := infx∈RH(x), and b := H := supx∈RH(x), one
gets that

(7.30) sup
t∈[−M,M ]

{∣∣X(t,H(t))−X(t,H(t0))
∣∣

|H(t)−H(t0)|
}
<∞.

Finally, combining (7.1) with (7.30), it follows that (7.29) holds. �

8. Local Hölder exponent of LMSM

The goal of this section is to determine the local Hölder exponent of a typical path
of LMSM. First we recall, in a general framework, the definition of this exponent.

Let f be an arbitrary deterministic real-valued continuous function defined on
the real line. The critical global Hölder regularity of f , over an arbitrary nonempty
compact interval [M1,M2], can be measured through

(8.1) ρuniff

(
[M1,M2]

)
:= sup

{
ρ ≥ 0 : sup

s′,s′′∈[M1,M2]

|f(s′)− f(s′′)|
|s′ − s′′|ρ <∞

}
,

the uniform (or global) Hölder exponent of f over [M1,M2]. Observe that one has

(8.2) ρuniff

(
[M ′

1,M
′
2]
) ≥ ρuniff

(
[M1,M2]

)
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when [M ′
1,M

′
2] ⊆ [M1,M2]. The local Hölder regularity of f in a neighborhood of

some point t0 ∈ R can be measured through

(8.3) ρuniff (t0) := sup
{
ρuniff

(
[M1,M2]

)
:M1 ∈ R, M2 ∈ R and M1 < t0 < M2

}
,

the local Hölder exponent of f at t0. Notice that this exponent is sometimes called
the uniform pointwise Hölder exponent of f at t0 (see [29]).

Let t �→ Y (t, ω) be a continuous path of the LMSM {Y (t) : t ∈ R}. The uniform
Hölder exponent of t �→ Y (t, ω) over [M1,M2] is denoted by ρunifY

(
[M1,M2], ω

)
.

The local Hölder exponent of t �→ Y (t, ω) at t0 is denoted by ρunifY (t0, ω).

Thanks to (ii) of Corollary 5.3 and Theorem 6.1, under some Hölder condition
on H(·), one can, almost surely for t0 ∈ R, completely determine ρunifY (t0, ω). More
precisely:

Theorem 8.1. There is an event Ω∗
4 of probability 1 (not depending on t0) such

that, for all ω ∈ Ω∗
4 and for each t0 ∈ R satisfying

(8.4) ρunifH (t0) > 1/α,

one has

(8.5) ρunifY (t0, ω) = H(t0)− 1

α
.

Notice that Theorem 8.1 is more precise than Theorem 4.1 in [29].

Proof. The theorem does not make sense if there is no t0 ∈ R which satisfies (8.4),
so, in what follows, we assume that (8.4) is satisfied for some t0 ∈ R. In view
of (8.2) and (8.3), this assumption implies that the set

Λ :=
{
(μ1, μ2) ∈ Q2 : μ1 < μ2 and ρunifH

(
[μ1, μ2]

)
> 1/α

}
,

is nonempty. Next, observe that, (8.1), (ii) of Corollary 5.3, Theorem 6.1, and
Remark 6.2, imply that, for all (μ1, μ2) ∈ Λ, one has, almost surely,

(8.6) ρunifY

(
[μ1, μ2]

)
= min

x∈[μ1,μ2]
H(x)− 1

α
.

Moreover, the fact that Λ is countable entails that (8.6) holds on Ω∗
4, an event

of probability 1 which does not depend on (μ1, μ2). Also, observe that, for each
t0 ∈ R which satisfies (8.4), one has, for all ω ∈ Ω∗

4,

(8.7) ρunifY (t0, ω) = sup
{
ρunifY

(
[μ1, μ2]

)
: (μ1, μ2) ∈ Λ and μ1 < t0 < μ2

}
.

The equality (8.7) can be obtained by using (8.2), (8.3), and the density of the
rational numbers in the real numbers. Finally, since H(·) is a continuous function,
combining (8.6) with (8.7), one gets (8.5). �
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9. Appendix

The following technical lemma plays a crucial role in the proof of (iii) of Proposi-
tion 3.4 as well as in the proofs of other important results in our article.

Lemma 9.1. Let (p, q) ∈ {0, 1, 2}×Z+. Set φ := ∂px∂
q
vΨ, where Ψ is the function

defined in (2.3). Let M , ν, a, b, and κ be real numbers satisfying M > 0, 1 > b >
a > 1/α, a − 1/α > κ, and a − 1/α − κ > ν ≥ 0. Finally, let i be a nonnegative
integer. For all n ∈ Z+ and (t, s, v) ∈ R2 × (1/α, 1) we set

An(t, s, v;M,κ, ν, i, φ) :=∑
|j|≤n

∑
|k|>M2n+1

2−jv

∣∣φ(2jt−k, v)−φ(2js−k, v)∣∣
|t− s|κ (3+|j|)i+1/α+ν (3 + |k|)1/α+ν(9.1)

and

Bn(t, s, v;M,κ, ν, i, φ) :=∑
|j|≥n+1

∑
k∈Z

2−jv

∣∣φ(2jt−k, v)−φ(2js−k, v)∣∣
|t− s|κ (3 + |j|)i+1/α+ν(3 + |k|)1/α+ν ,(9.2)

with the convention that An(t, t, v;M,κ, ν, i, φ) = Bn(t, t, v;M,κ, ν, i, φ) = 0 for
any t ∈ R. Then An(t, s, v;M,κ, ν, i, φ) and Bn(t, s, v;M,κ, ν, i, φ) converge to 0,
when n goes to +∞, uniformly in (t, s, v) ∈ [−M,M ]2 × [a, b].

In order to prove Lemma 9.1, we need some preliminary results.

Lemma 9.2. For all real numbers ξ > 0 and M > 0, there exists a constant c > 0
such that, for each integer n ≥ 0,∑

k>M2n+1

(1 + k)−1−ξ ≤ c 2−nξ.

Proof. Clearly, one has, for any integer k ≥ 1,

(1 + k)−1−ξ ≤
∫ k

k−1

(1 + x)−1−ξ dx.

Therefore,∑
k>M2n+1

(1 + k)−1−ξ ≤
∫ +∞

M2n+1−1

(1 + x)−1−ξ dx = ξ−1M−ξ 2−(n+1)ξ.

�

Lemma 9.3. Fix λ ∈ R and θ0 > 0. Set

c :=

+∞∑
m=0

2−mθ0(1 +m)|λ| < +∞.
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Then for any real number θ such that |θ| ≥ θ0 and each n0, n1 ∈ {0,±1, . . . ,±∞}
satisfying n0 < n1, one has

(9.3)

n1∑
n=n0

2nθ(1 + |n|)λ ≤ c

{
2n0θ (1 + |n0|)λ if θ < 0

2n1θ (1 + |n1|)λ if θ > 0,

with the conventions 2−∞(1 +∞)λ = 0 and 2+∞(1 +∞)λ = +∞.

Proof. First, notice that the lemma clearly holds in the following three cases:

• n0 = −∞ and n1 = +∞;

• n0 = −∞ and θ < 0;

• n1 = +∞ and θ > 0.

Indeed, in these three cases (9.3) becomes +∞ ≤ +∞.

We study the case where θ < 0 and −∞ < n0 < n1 ≤ +∞. The case where
θ > 0 and −∞ ≤ n0 < n1 < +∞ can be treated similarly. One has

n1∑
n=n0

2nθ(1 + |n|)λ ≤
+∞∑
m=0

2(m+n0)θ(1 + |m+ n0|)λ

= 2n0θ (1 + |n0|)λ
+∞∑
m=0

2mθ
(1 + |m+ n0|

1 + |n0|
)λ

≤ 2n0θ (1 + |n0|)λ
+∞∑
m=0

2−mθ0
(1 + |m+ n0|

1 + |n0|
)λ

.

There remains to show

(9.4)

+∞∑
m=0

2−mθ0
(1 + |m+ n0|

1 + |n0|
)λ

≤ c :=

+∞∑
m=0

2−mθ0 (1 +m)|λ|.

In fact, (9.4) can be obtained by proving that for every integer m ≥ 0, one has

(9.5)
1

1 +m
≤ 1 + |m+ n0|

1 + |n0| ≤ 1 +m.

Clearly the second inequality in (9.5) is satisfied. We divide the proof of the first
into three cases:

• if n0 ≥ 0, one gets 1+|m+n0|
1+|n0| = 1+m+n0

1+n0
= 1+ m

1+n0
≥ 1 ≥ 1

1+m ;

• if n0 < 0 and m ≥ −n0 = |n0|, then 1+|m+n0|
1+|n0| ≥ 1

1+|n0| ≥ 1
1+m ;

• if n0 < 0 and m < −n0 = |n0|, then
1 + |m+ n0|

1 + |n0| =
1−m+ |n0|

1 + |n0| = 1− m

1 + |n0| ≥ 1− m

1 +m
=

1

1 +m
.

�
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The following lemma is a more or less classical result. We refer for instance
to [2] for its proof.

Lemma 9.4 ( [2]). For all fixed real numbers θ ∈ [0, 1) and ζ ≥ 0, there exists a
constant c > 0 such that for any u ∈ R, one has∑

k∈Z

(1 + |k|)θ logζ(2 + |k|)
(2 + |u− k|)2 ≤ c (1 + |u|)θ logζ(2 + |u|).

Now, we are prepared to prove Lemma 9.1.

Proof of Lemma 9.1. Let t, s ∈ [−M,M ]. It is no restriction to assume that s 	= t.
We denote by j0 > − log2(2M)− 1 the unique integer such that

(9.6) 2−j0−1 < |t− s| ≤ 2−j0 .

From now on, for the sake of simplicity we set

An(t, s, v) := An(t, s, v;M,κ, ν, i, φ) and Bn(t, s, v) := Bn(t, s, v;M,κ, ν, i, φ).

First we prove that, when n → +∞, An(t, s, v) converges to 0, uniformly in
(t, s, v) ∈ [−M,M ]2 × [a, b]. In what follows, we assume that j is an arbitrary
integer satisfying |j| ≤ n. We need a suitable upper bound on the quantity

(9.7) Aj
n(t, s, v) :=

∑
|k|>M2n+1

∣∣φ(2jt− k, v)− φ(2js− k, v)
∣∣

|t− s|κ (3 + |k|)1/α+ν .

To this end, we consider the cases j ≤ j0 and j ≥ j0 + 1 separately. First, we
suppose that

(9.8) j ≤ j0.

Using the mean value theorem, (2.12), (9.6), and (9.8), one obtains that∣∣φ(2jt− k, v)− φ(2js− k, v)
∣∣ ≤ c1 2

j |t− s| sup
u∈I

(3 + |u|)−2

≤ c1 2
j |t− s| (2 + |2jt− k|)−2,(9.9)

where I denotes the compact interval with endpoints 2jt− k and 2js− k. Notice
that, in view of (9.6) and (9.8), the length of I is at most 1; this is why the last
inequality holds. Next, (9.9) and (9.7) entail that

(9.10) Aj
n(t, s, v) ≤ c1 2

j |t− s|1−κ
∑

|k|>M2n+1

(3 + |k|)1/α+ν (2 + |2jt− k|)−2.

Moreover, using the inequalities |t| ≤M, |j| ≤ n and |k| > M2n+1, one gets

(3 + |k|)1/α+ν (2 + |2jt− k|)−2 ≤ (3 + |k|)1/α+ν (2 + |k| − 2jM)−2

≤ c2 (1 + |k|)−(2−1/α−ν).(9.11)
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Combining (9.10) and (9.11), one obtains that

Aj
n(t, s, v) ≤ c3 2

j |t− s|1−κ
∑

|k|>M2n+1

(1 + |k|)−(2−1/α−ν).

Then Lemma 9.2 (in which one takes ξ = 1− 1/α− ν) and the relation (9.6) imply
that

(9.12) Aj
n(t, s, v) ≤ c4 2

j0(κ−1)+j−n(1−1/α−ν).

Now we study the second case where

(9.13) j0 + 1 ≤ j.

It follows from (9.7), (9.6), and (9.13) that

(9.14) Aj
n(t, s, v) ≤ 2jκ

∑
|k|>M2n+1

{∣∣φ(2jt− k, v)
∣∣+ ∣∣φ(2js− k, v)

∣∣} (3 + |k|)1/α+ν .

Moreover, using (2.12) and the fact that |j| ≤ n, one has, for all (u, v) ∈ [−M,M ]×
[a, b] and k ∈ Z satisfying |k| > M2n+1,∣∣φ(2ju− k, v)

∣∣ ≤ c5 (3 + |2ju− k|)−2 ≤ c5 (3 + |k| − 2j|u|)−2

≤ c5 (3 + |k| − 2nM)−2 ≤ c6 (3 + |k|)−2.(9.15)

Combining (9.15) with (9.14) one gets that

Aj
n(t, s, v) ≤ c6 2

jκ+1
∑

|k|>M2n+1

(3 + |k|)−(2−1/α−ν).

Thus, it follows from Lemma 9.2 (in which one takes ξ = 1− 1/α− ν) that

(9.16) Aj
n(t, s, v) ≤ c7 2

jκ−n(1−1/α−ν).

Combining (9.1), (9.7), (9.12), and (9.16) one obtains that

An(t, s, v) ≤ c8 2
−n(1−1/α−ν)

×
(
2j0(κ−1)

j0∑
j=−∞

2j(1−v)(3 + |j|)i+1/α+ν +

+∞∑
j=j0+1

2j(κ−v)(3 + |j|)i+1/α+ν
)
.(9.17)

Next, using Lemma 9.3 with n0 = −∞, n1 = j0, θ = 1 − v > 0, θ0 = 1 − b, and
λ = i+ 1/α+ ν one gets that

(9.18)

j0∑
j=−∞

2j(1−v) (3 + |j|)i+1/α+ν ≤ c9 2
j0(1−v) (1 + |j0|)i+1/α+ν ,
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and, using again the same lemma with n0 = j0 + 1, n1 = +∞, θ = κ − v < 0,
θ0 = 1/α, and λ = i+ 1/α+ ν, one obtains that

(9.19)

+∞∑
j=j0+1

2j(κ−v) (3 + |j|)i+1/α+ν ≤ c10 2
j0(κ−v) (1 + |j0|)i+1/α+ν .

Combining (9.17), (9.18), (9.19), the inequality v − κ ≥ 1/α and the inequality
j0 > − log2(2M)− 1, one obtains that

(9.20) An(s, t, v) ≤ c112
−j0(v−κ)(1+|j0|)i+1/α+ν2−n(1−1/α−ν) ≤ c122

−n(1−1/α−ν),

where

c12 := c11 sup
{
2−j/α(1 + |j|)i+1/α+ν : j ∈ Z and j > − log2(2M)− 1

}
< +∞.

The last inequality in (9.20) implies that, when n → +∞, An(t, s, v) converges
to 0, uniformly in (t, s, v) ∈ [−M,M ]2 × [a, b].

Henceforth our goal is to prove that Bn(t, s, v) converges to 0 uniformly in t, s,
and v, when n goes to infinity. In what follows j is an arbitrary integer satisfying
|j| ≥ n+ 1. First we derive a suitable upper bound for the quantity

(9.21) Bj(t, s, v) :=
∑
k∈Z

∣∣φ(2jt− k, v)− φ(2js− k, v)
∣∣

|t− s|κ (3 + |k|)1/α+ν .

As above, we distinguish two cases: j ≤ j0 and j ≥ j0 + 1. First, we suppose
that (9.8) is satisfied. Similarly to (9.10), one has that

Bj(t, s, v) ≤ c13 2
j |t− s|1−κ

∑
k∈Z

(3 + |k|)1/α+ν (2 + |2jt− k|)−2.

Then, using (9.6), Lemma 9.4 (in which we take θ = 1/α+ ν and ζ = 0), and the
fact that |t| ≤M, one obtains that

(9.22) Bj(t, s, v) ≤ c14 2
j+j0(κ−1)(1 + 2j)1/α+ν .

Now suppose that (9.13) is satisfied. By using this relation, (9.6), the triangle
inequality, (2.12), Lemma 9.4 (in which one takes θ = 1/α+ ν and ζ = 0), and the
fact that t, s ∈ [−M,M ], one gets that

Bj(t, s, v) ≤ 2jκ
∑
k∈Z

(3 + |k|)1/α+ν
{∣∣φ(2jt− k, v)

∣∣+ ∣∣φ(2js− k, v)
∣∣}

≤ c15 2
jκ

∑
k∈Z

(1 + |k|)1/α+ν
{
(2 + |2jt− k|)−2 + (2 + |2js− k|)−2

}
≤ c16 2

jκ
{
(1 + 2j|t|)1/α+ν + (1 + 2j |s|)1/α+ν

} ≤ c17 2
j(κ+1/α+ν).(9.23)
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It is no restriction to assume that n ≥ log2(M)+2. Then, in view of the inequality
j0 > − log2(M)− 2, one has that −n− 1 < j0 and thus (9.22) entails that

−n−1∑
j=−∞

2−jv (3 + |j|)i+1/α+νBj(t, s, v)

≤ c14

−n−1∑
j=−∞

2j(1−v)+j0(κ−1) (1 + 2j)1/α+ν (3 + |j|)i+1/α+ν

≤ c18 2
j0(κ−1)

−n−1∑
j=−∞

2j(1−v) (3 + |j|)i+1/α+ν .(9.24)

Next, using Lemma 9.3 (in which one takes n0 = −∞, n1 = −n − 1, θ = 1 − v,
θ0 = 1 − b, and λ = i + 1/α + ν), the inequality 2j0(κ−1) < (4M)1−κ, and the
inequality v ≤ b, one gets that

(9.25)
−n−1∑
j=−∞

2−jv (3 + |j|)i+1/α+ν Bj(t, s, v) ≤ c19 2
−n(1−b)(4 + n)i+1/α+ν .

Now we find a suitable upper bound for
∑

j≥n+1 2
−jv(3 + |j|)i+1/α+νBj(t, s, v).

First we assume that j0 ≥ n+ 1. Then, using (9.22), one has that

j0∑
j=n+1

2−jv (3 + |j|)i+1/α+νBj(t, s, v)

≤ c14 2
j0(κ−1)

j0∑
j=−∞

2j(1−v)(3 + |j|)i+1/α+ν(1 + 2j)1/α+ν

≤ c20 2
j0(κ−1+1/α+ν)

j0∑
j=−∞

2j(1−v)(3 + |j|)i+1/α+ν

≤ c212
−j0(a−1/α−κ−ν)(3+|j0|)i+1/α+ν ≤ c222

−n(a−1/α−κ−ν)(3+n)i+1/α+ν .(9.26)

Observe that the third inequality in (9.26) follows from Lemma 9.3 (in which we
take n0 = −∞, n1 = j0, θ = 1 − v, θ0 = 1 − b, and λ = i + 1/α + ν) as well as
from the inequality v ≥ a. Also observe that the last inequality in (9.26) results
from the fact that the function x �→ 2−x(a−1/α−κ−ν)(3 + x)i+1/α+ν is continuous
on R+ and decreasing for large enough x.

On the other hand, by making use of (9.23), one has that

+∞∑
j=j0+1

2−jv(3 + |j|)i+1/α+νBj(t, s, v) ≤ c17

+∞∑
j=j0+1

2j(κ+1/α+ν−v) (3 + |j|)i+1/α+ν

≤ c23 2
−j0(a−1/α−κ−ν) (3 + |j0|)i+1/α+ν

≤ c24 2
−n(a−1/α−κ−ν) (3 + n)i+1/α+ν .(9.27)
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Observe that the second inequality in (9.27) follows from Lemma 9.3 (in which we
take n0 = j0 + 1, n1 = +∞, θ = κ+ 1/α+ ν − v, θ0 = a− 1/α− κ− ν, and λ =
i+1/α+ν) as well as from the inequality v ≥ a. Also observe that the last inequality
in (9.27) results from the fact that the function x �→ 2−x(a−1/α−κ−ν)(3+x)i+1/α+ν

is continuous on R+ and decreasing for large enough x.
Combining (9.26) with (9.27), it follows that, in the case where j0 ≥ n+ 1,

(9.28)

+∞∑
j=n+1

2−jv(3 + |j|)i+1/α+νBj(t, s, v) ≤ c25 2
−n(a−1/α−κ−ν)(3 + n)i+1/α+ν .

Now we assume that j0 < n+ 1. Then, by making use of (9.23), one has that

+∞∑
j=n+1

2−jv(3 + |j|)i+1/α+νBj(t, s, v) ≤ c17

+∞∑
j=n+1

2j(κ+1/α+ν−v)(3 + |j|)i+1/α+ν

≤ c26 2
−n(a−1/α−κ−ν) (3 + n)i+1/α+ν ,(9.29)

where the last inequality follows from Lemma 9.3 (in which we take n0 = n + 1,
n1 = +∞, θ = κ+1/α+ ν − v, θ0 = a− 1/α− κ− ν, and λ = i+1/α+ ν) as well
as from the inequality v ≥ a.

Finally, (9.2), (9.21), (9.25), (9.28), and (9.29) imply that

(9.30) Bn(t, s, v) ≤ c27
(
2−n(1−b) + 2−n(a−1/α−κ−ν)

)
(4 + n)i+1/α+ν

for all n ≥ log2(M) + 2. This, in turn, entails that, when n → +∞, Bn(t, s, v)
converges to 0, uniformly in (t, s, v) ∈ [−M,M ]2 × [a, b]. �

Acknowlegment. We would like to thank Professor Yves Meyer for his interest
in our results. His valuable advice greatly improved the introduction of the article.

References

[1] Ayache, A., Shieh, N.R. and Xiao, Y.: Multiparameter multifractional Brownian
motion: local nondeterminism and joint continuity of the local times. Ann. Inst.
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à accroissements stationnaires. C.R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 1,
45–48.

[13] Embrechts, P. and Maejima, M.: Selfsimilar processes. Princeton Series in Ap-
plied Mathematics, Princetion University Press, Princeton, NJ, 2002.
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