Rev. Mat. Iberoam. 30 (2014), no. 4, 1387-1396 © European Mathematical Society
DOI 10.4171/RMI/818 y

Centers of algebras associated
to higher-rank graphs

Jonathan H. Brown and Astrid an Huef

Abstract. The Kumjian-Pask algebras are path algebras associated to
higher-rank graphs, and generalize the Leavitt path algebras. We study the
center of a simple Kumjian—Pask algebra and characterize commutative
Kumjian—Pask algebras.

1. Introduction

Let E be a directed graph and let F be a field. The Leavitt path algebras Ly(E) of E
over F were first introduced in [1] and [2], and have been widely studied since then.
Many of the properties of a Leavitt path algebra can be inferred from properties
of the graph, and for this reason provide a convenient way to construct examples
of algebras with a particular set of attributes. The Leavitt path algebras are the
algebraic analogues of the graph C*-algebras associated to E. In [11], Tomforde
constructed an analogous Leavitt path algebra Lg(E) over a commutative ring R
with 1, and introduced more techniques from the graph C*-algebra setting to
study it.

In [3], Aranda Pino, Clark, an Huef, and Raeburn generalized Tomforde’s con-
struction and associated to a higher-rank graph A a graded algebra KP(A) called
the Kumjian—Pask algebra. Example 7.1 of [3] shows that the class of Kumjian—
Pask algebras over a field is strictly larger than the class of Leavitt path algebras
over that field.

The center of a simple Leavitt path algebra has been studied in [4] and, for
a nonsimple algebra, in [6]. In this paper we initiate the study of the center of
a Kumjian—Pask algebra. In the motivational section (§3) we work over C and
show how the embedding of KP¢(A) in the C*-algebra of A can be used together
with the Dauns—Hofmann theorem to deduce that the center of a simple Kumjian—
Pask algebra is either {0} or isomorphic to C. More generally, it follows from
Theorem 4.7, that the center of a “basically simple” (see page 1394) Kumjian—
Pask algebra KPr(A) is either zero or is isomorphic to the underlying ring R.
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Thus our Theorem 4.7 generalizes the analogous theorem for Leavitt path algebras
over a field (Theorem 4.2 in [4]), but our proof techniques are very different and
more informative. Indeed, the Kumjian—Pask algebra is basically simple if and
only if the graph A is cofinal and aperiodic, and our proofs show explicitly which
of these properties of the graph are needed to infer various properties of elements
in the center.

In Proposition 5.3 we show that a Kumjian—Pask algebra of a k-graph A is
commutative if and only it is a direct sum of rings of Laurent polynomials in k-
indeterminates, and this holds if and only if A is a disjoint union of copies of the
category N¥. This generalizes Proposition 2.7 of [4].

2. Preliminaries

We view N* as a category with one object and the composition given by addition.
We call a countable category A = (A, A,r, s) a k-graph if there exists a functor
d: A — NF, with the unique factorization property: given m,n € N¥ and X\ € A, if
d(\) = m + n then there exist unique u,v € A such that d(u) = m,d(v) = n and
A = uv. The functor d is called the degree functor and d(\) is called the degree
of X\. Using the unique factorization property, we identify the set of objects A°
with the set of morphisms of degree 0, that is, A° = {\ € A : d(\) = 0}. Then, for
n € N¥ we set A" := d~!(n), and call A the paths of shape n in A and A° the
vertices of A. A path X € A is closed if 7(X) = s(A).

For VW C A% weset VA:={AeA:r(\) e V}, AW :={ € A:s(\) e W}
and VAW := VANAW; the sets VA™ A"W and VA"W are defined similarly. For
simplicity we write vA for {v}A.

A k-graph A is row-finite if |[vA™| < oo for all v € A° and n € N* and has no
sources if vA™ # () for all v € A° and n € N*. We assume throughout that A is a
row-finite k-graph with no sources.

Let m,n € NF. We write m < n if m; < n; for all 1 < i < k and write m V n
for the k-tuple with ith entry max{m;,n;}. Following Lemma 3.2 (iv) in [10], we
say that a k-graph A is aperiodic if for every v € A? and m # n € NF there exists
A € vA such that d(\) > m V n and

A(m,m+d(X) — (mVn)) #A(n,n+d(X) — (mVn)).

This formulation of aperiodicity is equivalent to the original one from Definition 4.3
in [8] when A is a row-finite graph with no sources, but is often more convenient
since it only involves finite paths.

Let Q := {(m,n) € N* : m < n}. As in Definition 2.1 of [8], we define an
infinite path in A to be a degree-preserving functor x : 0 — A, and denote the set
of infinite paths by A>°. As in Definition 4.1 of [8], we say A is cofinal if for every
infinite path z and every vertex v there exists m € N* such that vAx(m) # 0.

For each A € A we introduce a ghost path \*; for v € AY we take v* = v. We
write G(A) for the set of ghost paths and G(A7°) if we exclude the vertices.
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Let R be a commutative ring with 1. Following Definition 3.1 of [3], a Kumjian—
Pask A-family (P,S) in an R-algebra A consists of functions P : A — A and
S : A7OU G(A7Y) — A such that

(KP1) {P, : v € A} is a set of mutually orthogonal idempotents;
(KP2) for A\, € A70 with r(u) = s(\),

SxSu = Sxu, PronySx = Sx = Sx Py,
S Sx- = S« Py Sas = Sx= = Sx=Pr(ays

(KP3) for all A, u € A7® with d(X) = d(u), we have Sx«S,, = 6, Ps(0);

(KP4) for all v € A” and n € N¥\ {0}, we have P, = >, o an SaSx-.

By Theorem 3.4 of [3] there exists an R-algebra KPg(A), generated by a
nonzero Kumjian—Pask A-family (p, s), with the following universal property: when-
ever (Q,T) is a Kumjian—Pask A-family in an R-algebra A, then there is a unique
R-algebra homomorphism 7o 7 : KPr(A) — A such that

70.7(P0) = Qu, To1(sx) =T\ and 7g 7(s,+) = T~ for v € A and A\, p € A7,
Also by Theorem 3.4 of [3], the subgroups
KPR(A), :=spang {sxsu~ : A, u € A and d(X) — =n} (neZzk)

give a ZF-grading of KPr(A). Let S be a Zk—graded ring; then by the graded-
uniqueness theorem ([3], Theorem 4.1), a graded homomorphism 7: KPr(A) — S
such that m(rp,) # 0 for nonzero r € R is injective.

We will often write elements a € KPr(A)\{0} in the normal form of Lemma 4.2
n [3]: there exists m € N¥ and a finite F' C AxA™ such that a = > (a,B)eF TaB5aSp"
where r g € R\ {0} and s(a) = s(f).

3. Motivation

When A is a simple C*-algebra (over C, of course), it follows from the Dauns—
Hofmann theorem (see, for example, Theorem A.34 in [9]) that the center Z(A)
of A is isomorphic to C if A has an identity and is {0} otherwise. Let A be a
row-finite k-graph without sources. In this short section we deduce that the center
of a simple Kumjian—Pask algebra KP¢(A) is either isomorphic to C or is {0}.

Lemma 3.1. Suppose A is a simple C*-algebra. If A has an identity, then z — z14
is an isomorphism of C onto the center Z(A) of A. If A has no identity, then

Z(A) = {0}.

Proof. Since A is simple, the primitive ideal space Prim A of A is a singleton {*},
and f +— f(x) is an isomorphism of the algebra C,(Prim A) of continuous bounded
functions from Prim A onto C. By the Dauns-Hofmann theorem, Cp(Prim A) is
isomorphic to the center Z (M (A)) of the multiplier algebra M (A) of A. Putting the
two isomorphisms together gives an isomorphism z +— z1,7(4) of C onto Z(M(A)).
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Now suppose that A has an identity. Then M (A) = A, and it follows from the
first paragraph that Z(A) is isomorphic to C.

Next suppose that A does not have an identity. Let a € Z(A), and let {uy}
be an approximate identity in A and let m € M(A). Then ma = lim(muy)a =
alim(muy) = am. Thus Z(A) C Z(M(A)). Now Z(A) C Z(M(A)NA =
{le(A):ZE(C}OA:{O}. d

Lemma 3.2. Let D be a dense subalgebra of a C*-algebra A. Then Z(A)N D =
Z(D).

Proof. Trivially, Z(A)ND C Z(D). To see the reverse inclusion, let a € Z(D). Let
b € A and choose {dy} C D such that dy — b. Then ba = limy dya = lim) ad) =
ab. Now a € Z(A)NZ(D) C Z(A)N D, and hence Z(A) N D = Z(D). O

By Theorem 6.1 of [3], KP¢(A) is simple if and only if A is cofinal and aperiodic,
so in the next corollary KP¢(A) is simple. Also, KPc(A) has an identity if and
only if A is finite (see Lemma 4.6 below).

Corollary 3.3. Suppose that A is a row-finite, cofinal, aperiodic k-graph with no
sources. If A° is finite, then z — z1gpe(a) 8 an isomorphism of C onto the center
Z(KPc(A)) of KPc(A). If A° is infinite, then KPc(A) = {0}.

Proof. Let (p, s) be a generating Kumjian—Pask A-family for KP¢(A) and (g,t) a
generating Cuntz—Krieger A-family for C*(A). Then (g¢,t) is a Kumjian—Pask A-
family in C*(A), and the universal property of KP¢(A) gives a s-homomorphism
gt KPc(A) — C*(A) which takes s,s,+ to t,t5. It follows from the graded-
uniqueness theorem that m,; is a #-isomorphism onto a dense *-subalgebra of
C*(A) (see Proposition 7.3 of [3]). Since A is aperiodic and cofinal, C*(A) is
simple by Theorem 3.1 of [10].

Now suppose that A is finite. Then KP¢(A) has identity LKPe(A) = D peno Po
and C*(A) has identity 1o«a) = > ,cp0 v, and mg; is unital. By Lemma 3.1,
Z(C*(A)) = {z1¢=(a) : z € C}. By Lemma 3.2,

Z (71 (KPc(A))) = Z(C*(A)) N mgy (KPe(A)) = {21lc-(a) : 2 € C}.

Since 7y is unital, Z(KPc(A)) is isomorphic to C as claimed.
Next suppose that A? is infinite. Then Z(C*(A)) = {0} and Z (74,¢(KP¢(A))) =
Z(C*(A)) N mge (KPc(A)) = {0}, giving KPc(A) = {0} O

4. The center of a Kumjian—Pask algebra

Our goal is to extend Corollary 3.3 to Kumjian—Pask algebras over arbitrary com-
mutative rings. Throughout R is a commutative ring with 1 and A is a row-finite
k-graph with no sources.

We will need Lemma 4.1 several times. For notational convenience, for v € A,
Sy Or Sy« means p,. In particular, taking m = 0 in Lemma 4.1 below shows the
set {sq : @ € A} is linearly independent.
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Lemma 4.1. Let m € N¥. Then {s,sp~ : s(a) = s(8) and d(B) = m} is a linearly
independent subset of KPr(A).

Proof. Let F be a finite subset of {(o,8) € A x A™ : s(a) = s(B)}, and suppose
that Z(a,ﬁ)eF ra.8Sasp> = 0. Fix (o,7) € F. Since all the § have degree m,
using (KP3) twice we obtain

0= sa*( Z Ta’58a8ﬁ*>87 = T'o,rPs(o) T Z Ta,rSo*SaSB*Sr
(a,p)er (a.8)eF\{(e,7)}

(41) = To,mPs(o) + Z Ta,780*Sa-

(a,7)EF
aFo

If d(o) = d(a) and o # «, then s,«sq = 0 by (KP3). If d(0) # d(«) then, by
Lemma 3.1 of [3], s;+Sa is a linear combination of s,s,+ where d(p) — d(v) =
d(a) — d(o). It follows that the O-graded component of (4.1) is 7o ps(s). Thus
0 = T4rPs(s)- But pyoy # 0, by Theorem 3.4 of [3]. Hence 75, = 0. Since
(0,7) € F was arbitrary, it follows that {s.sg-: s(a) = s(8) and d(8) = m} is
linearly independent. O

The next lemma describes properties of elements in the center of KPg(A).
Lemma 4.2. Let a € Z(KPr(A)) \ {0} be in normal form -, 5)cpTa.5a58+

1. If (o,7) € F, then (o) = r(7).

2. Let W ={veA:3(a,B) € F withv=r(B)}. If u € AW, then r(u) € W.

3. If (0,7) €F, then there exists (o, ) € F such that r(a) = r(5) = s(o) = s(7).

4. There exists | € N\ {0} and {(c,B3;)}._; C F such that 31 --- B is a closed
path in A.

Proof. 1) Let (o,7) € F. By Lemma 2.3 of [5], we have 0 # sy«as,. Since
a € Z(KPr(A)),

0 7é So*Pr(o)APr(r)ST = So* APr(a)Pr(r)ST = 67"(0),7’(7)50* aSr.

Hence r(o) = r(7).
2) Aiming at a contradiction, assume there exists p € AW such that r(u) ¢ W.
Then pyp;(,) = 0 for all v € W. Thus

Wru) = D, Ta85a85Pr(s)Pr(y) = 0-
(aB)eF

Since a € Z(KPr(A)) we get s,a = as, = appuys, = 0. Since s(u) € W,
there exists (o/, ") € F with r(5") = s(u). Then (o) = s(u) also by 1). Thus
S :={(a, ) € F:s(u) =r(a)} is nonempty, and

0=s,a= Z Ta,3SuaSp* -
(a,8)€S
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But {suasg<: (o,8) € S} is linearly independent, by Lemma 4.1, and hence
rq,p = 0 for all (o, B) € S. This contradicts the given normal form for a.
)

3) Let (o,7) € F. Then s(oc) = s(7) by definition of normal form. By
Lemma 2.3 in [5] we have so-as; # 0. Since a € Z(KPgr(A)),

4.2) 0 +# So+QS; = ASg*Sr = To.B8SaSB* So* S = Ta.3SaS(c8)* St-
B B B (oB)
(a,B)eF (a,B)EF
r(B)=s(o)

In particular, the set {(o,3) € F : r(8) = s(0)} is nonempty. So there exists
(o, ") € F such that r(8') = s(o). Since () = r(f') from 1), we are done.

4) Let M = |F| + 1. Using (3) there exists a path f;...08a such that, for
1 < i < M, there exists o; € A with (a;, ;) € F. Since M > |F|, there exists
it <jed{l,...,M} such that 8; = B;. Then B;...5;_1 is a closed path. O

The next corollary follows from Lemma 4.2 (4).

Corollary 4.3. Let A be a row-finite k-graph with no sources and R a commutative
ring with 1. If A has no closed paths then the center Z(KPr(A)) = {0}.

The next lemma describes the elements of the center of KPr(A) when A is
cofinal.

Lemma 4.4. Suppose that A is cofinal. Let a € Z(KPgr(A)) \ {0} be in normal
form 3= gyer Ta,pSasp . Then {v € A% : (e, B) € F with v=r(8)} = A°.

Proof. Write W := {v € A : 3(a,8) € F with v = r(8)}. By definition of
normal form, there exists m € N¥ such that F C A x A™. Let n =mV(1,1,...,1).
By (KP4), for each (o, 3) € F, we have sqsp+ = ZHGS(Q)AW'_W S(ap)5(8u)+- BY
“reshaping” each pair of paths in F' in this way, collecting like terms, and dropping
those with zero coefficients, we see that there exist G C A x A™ and 7/, , € R\ {0}
such that a = Z(v,n)eG 77, S~Sy+ is also in normal form. By construction, W' =

{veA:3(y,n) € G with v=r(n}CcW.

Let v € A%, Using Lemma 4.2 (4), there exists {(v;,m:)}}_; C G such that
n - -+ m is a closed path. Since d(n;) > (1,...,1) forallé,x:=mny -y - -mny - -
is an infinite path. By cofinality, there exist ¢ € N¥ and v € vAz(g). By the
definition of x, there exist ¢' > ¢ and j such that x(¢’) = r(n;). Let A = z(q,¢').
Then vA € vAW’. By Lemma 4.2(2), v = r(v\) € W' as well. Thus W' = A,
and since W/ C W we have W = A, O

The next lemma describes the elements of the center of KPr(A) when A is
aperiodic.

Lemma 4.5. Suppose that A is aperiodic and a € Z(KPr(A)) \ {0}. Then there
exist n € N* and G C A" such that a = ZaeG TaSaSax 18 in normal form.
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Proof. Suppose a € Z(KPgr(A)) \ {0} with a = 3, 5crTa,gSasss in normal
form. By definition there exists n € N¥ such that I C A x A". Let (o0,7) € F.
From Lemma 2.3 in [5] we know that s;~as, # 0. Let m = V(4 gjer(d(a) V d(B)).
Since A is aperiodic, by Lemma 6.2 of [7] there exists A € s(o)A with d(\) > m
such that

w 8 € Aa(e), d(e) 4 <

and aA(0,d(\)) = A0, d(A ))} = a=4

The same argument as in Proposition 4.9 of [3] now shows that sy+ss-as,sx # 0.
Since a € Z(KPR(A)), 0 # 5x«55+a5:5\ = Sx= S5+ 5751 = AS(57)=5rA. Thus

0 # S(oA)*STA = SaA(d(N),d(N)+d(a))*SaA(0,d(N))* STA(0,d(N)STA(d(N),d(N\)+d(T))
= 50,730/\(d(/\),d(k)+d(o))* SEA(A(N),d(N)+d(T))

using (4.3). Thus o = 7.

Since (o, 7) € F was arbitrary we have a = f3 for all (o, 3) € F. Let G = {a €
A: (o, ) € F} and write ro for 74,4. Note G C A™ because F' C A x A™. Thus
a= ZaeG TaSaSq+ in normal form as desired. O

Our main theorem (Theorem 4.7) has two cases: A° finite and infinite.
Lemma 4.6. KPr(A) has an identity if and only if A° is finite.

Proof. If A" is finite, then Y 10 py is an identity for KPr(A). Conversely, assume
that KPr(A) has an identity 1xp,(s). Aiming at a contradiction, suppose that A
is infinite. Write 1xp () in normal form }_ , 5 cp7a,gSasg+. Since F'is finite, so
is W:={veA:3(a,p) € F with v=r(8)}. Thus there exists w € A°\ W.
Now py = lgp,a)Pw = Z(aﬁ)eF Ta,35a53+*Pw = 0 because w # r(f8) for any of
the . This contradiction shows that A? must be finite. O

Theorem 4.7. Let A be a row-finite k-graph with no sources and let R be a
commutative ring with 1.
1. Suppose A is aperiodic and cofinal, and that A° is finite. Then Z(KPg(A)) =
RIKPR(A)~

2. Suppose that A is cofinal and A° is infinite. Then Z(KPgr(A)) = {0}.

Proof. 1) Suppose A is aperiodic and cofinal, and that A° is finite. Let a €
Z(KPgr(A)) \ {0}. Since A is aperiodic, by Lemma 4.5 there exist n € N* and
G C A" such that a = ) .nTaSaSq is in normal form. Since A is row-finite
and AY is finite, A" is finite.

We claim that G = A™. Aiming at a contradiction, suppose that G # A", and
let A € A"\ G. Then asy = 0 by (KP3). Since a € Z(KPg(A)),

0=asy =sya= E TaSxaSa* -

acG
r(a)=s(\)
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Since A is cofinal, {r(a) : a € G} = A by Lemma 4.4. Thus S = {a € G : r(a) =
s(A)} # 0. But {srxaSa+ : a € S} is linearly independent by Lemma 4.1. Thus
rq = 0 for a € S, contradicting our choice of {r,}. It follows that G = A™ as
claimed, and that

a= Z TaSaSa*-

acA™
Next we claim that r, =7, for all u,v € A”. Let p,v € A”. Let x € s(u)A>.
Since A is cofinal, there exist m € N¥ and v € s(v)As(z(m)). Set n = z(0,m).
Now

TuSuyS(un)* = TuSuySny*Spx = Sy Sp» E TuSusSaSax
aeAn

= Sy Sy Spx E TaSaSar = SuyS(un)+a
aeAn

= ASuyS(un)* = § : TaSaSa*SvSyS(un)* = TvSvyS(un)*-
OCEA"

Since $yy8(uy)+ 7 0 this implies r, = r,. Let r =r,. Now

a= Z rSaSax = Z Z TSaSax =T Z Po = T1kpPg(a)

aEAn veEA? a€vA™ vEAL

as desired.
2) Suppose there exists a € Z(KPr(A))\{0}. Write a = 3_, 5/ Ta,85a5s+ in

normal form. Then Lemma 4.4 gives that {ve A%: 3(a, ) € F with v = r(B)} =A°,
contradicting that F' is finite. O

The simplicity of C*(A) played an important role in §3. To reconcile this with
Theorem 4.7, recall from [11] that an ideal I € KPr(A) is basic if rp, € I for
r € R\ {0} then p, € I, and that KPr(A) is basically simple if its only basic ideals
are {0} and KPr(A). By Theorem 5.14 of [3], KPr(A) is basically simple if and
only if A is cofinal and aperiodic (and by Theorem 6.1 of [3], KPr(A) is simple if
and only if R is a field and A is cofinal and aperiodic). Thus Theorem 4.7 is in the
spirit of Corollary 3.3.

5. Commutative Kumjian—Pask algebras

We view N as a category with one object x and composition given by addition,
and use {e;}*_, to denote the standard basis of N¥.

Example 5.1. Let d : N¥ — N* be the identity map. Then (N* d) is a k-
graph. By Example 7.1 in [3], KPr(NF) is commutative with identity p,, and
KP r(NF) is isomorphic to the ring of Laurent polynomials Rz, 27", ..., zx, .Z‘,Zl]
in k commuting indeterminates.
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Lemma 5.2. Suppose A = Aq| Az is a disjoint union of two k-graphs. Then
KPr(A) = KPgr(A1) @ KPgr(As).

Proof. For each i € {1,2}, let (¢*,t") be the generating Kumjian—Pask A;-family
of KPr(A;), and let (p, s) be the generating Kumjian—Pask A-family of KPg(A).
Restricting (p, s) to A; gives a A;-family in KPr(A), and hence the universal prop-
erty for KPg(A;) gives a homomorphism 7/ . : KPr(A;) — KPg(A) such that
m oo (q',t") = (p,s). Bach 7}, is graded, and the graded uniqueness theorem
(Theorem 4.1 in [3]) implies that 7,  is injective.

We now identify KPgr(A;) with its image in KPr(A). If 4 € Ay and A € Ag,
then s, sx = $.Ps()Pr(x)Sx = 0. Similarly sxs,, 8+ Sxx, Sx«Spu+; SASu*, S SX, SA* Sy,
and s,sx- are all zero. Thus KPr(A1) KPr(A2) = 0 = KPr(A2) KPr(A41), and
the internal direct sum KPr(A1) ® KPg(As2) is a subalgebra of KPg(A). Finally,
KPgr(A1) @ KPr(A2) is all of KPr(A) since the former contains all the generators
of the latter. This gives the result. O

Proposition 5.3. Let A be a row-finite k-graph with no sources and R a commu-
tative Ting with 1. Then the following conditions are equivalent:

1. KPg(A) is commutative;

2. r=s5 on A and r|an is injective;

3.0 A=, cp0 N7

4. KPRr(A) =2 Pcpo Rlz1, 27t 2p, 2 ).

Proof. 1) = 2) Suppose that KPg(A) is commutative. Aiming at a contradiction,
suppose there exists A € A such that s(\) # r(X). Then sy«sy = sysx«, and

Ps(x) = Pg(A) = Ps(N)SA*SX = Ds(A)SASA* = Ps(\)Pr(n)SASx= = 0.

But p, # 0 for all v € A° by Theorem 3.4 of [3]. This contradiction gives r = s.

Next, suppose A, € A” with A # . Aiming at a contradiction, suppose that
r(A) = r(p). Since r = s, we have r(\) = s(A) = s(pr) = r(p). Then

SX = Dr(A)SA = Ps(A)SA = Ds(u)SA = SurSuSx = Sp=Sasy =0
by (KP3). Now py(n) = 0, contradicting that p, # 0 for all v € A% by Theorem 3.4

of [3]. Thus r is injective on A™.

2) = 3) Assume that r = s on A and that r|s» is injective. Since r = s, the set
{vAv},ep0 is a partition of A. Since r is injective on A%, the subgraph vA® v has
a single vertex v and a single edge f”. Thus f + e; defines a graph isomorphism
vAv — N*¥. Hence A = |_|1)€A0 vAv = |_|1)€A0 N,

3) = 4) Assume that A | |, _,o N*. By Lemma 5.2, KPg(A) is isomorphic to
@ KPr(NF), and by Example 5.1 each KP(N¥) is isomorphic to

Rlzy, 27", ... ,xk,xlzl].

4) = 1) This follows since € R[z1, xfl, vy Ths m;l] is commutative. O
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