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Centers of algebras associated

to higher-rank graphs

Jonathan H. Brown and Astrid an Huef

Abstract. The Kumjian–Pask algebras are path algebras associated to
higher-rank graphs, and generalize the Leavitt path algebras. We study the
center of a simple Kumjian–Pask algebra and characterize commutative
Kumjian–Pask algebras.

1. Introduction

Let E be a directed graph and let F be a field. The Leavitt path algebrasLF(E) ofE
over F were first introduced in [1] and [2], and have been widely studied since then.
Many of the properties of a Leavitt path algebra can be inferred from properties
of the graph, and for this reason provide a convenient way to construct examples
of algebras with a particular set of attributes. The Leavitt path algebras are the
algebraic analogues of the graph C∗-algebras associated to E. In [11], Tomforde
constructed an analogous Leavitt path algebra LR(E) over a commutative ring R
with 1, and introduced more techniques from the graph C∗-algebra setting to
study it.

In [3], Aranda Pino, Clark, an Huef, and Raeburn generalized Tomforde’s con-
struction and associated to a higher-rank graph Λ a graded algebra KPR(Λ) called
the Kumjian–Pask algebra. Example 7.1 of [3] shows that the class of Kumjian–
Pask algebras over a field is strictly larger than the class of Leavitt path algebras
over that field.

The center of a simple Leavitt path algebra has been studied in [4] and, for
a nonsimple algebra, in [6]. In this paper we initiate the study of the center of
a Kumjian–Pask algebra. In the motivational section (§3) we work over C and
show how the embedding of KPC(Λ) in the C∗-algebra of Λ can be used together
with the Dauns–Hofmann theorem to deduce that the center of a simple Kumjian–
Pask algebra is either {0} or isomorphic to C. More generally, it follows from
Theorem 4.7, that the center of a “basically simple” (see page 1394) Kumjian–
Pask algebra KPR(Λ) is either zero or is isomorphic to the underlying ring R.
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Thus our Theorem 4.7 generalizes the analogous theorem for Leavitt path algebras
over a field (Theorem 4.2 in [4]), but our proof techniques are very different and
more informative. Indeed, the Kumjian–Pask algebra is basically simple if and
only if the graph Λ is cofinal and aperiodic, and our proofs show explicitly which
of these properties of the graph are needed to infer various properties of elements
in the center.

In Proposition 5.3 we show that a Kumjian–Pask algebra of a k-graph Λ is
commutative if and only it is a direct sum of rings of Laurent polynomials in k-
indeterminates, and this holds if and only if Λ is a disjoint union of copies of the
category N

k. This generalizes Proposition 2.7 of [4].

2. Preliminaries

We view Nk as a category with one object and the composition given by addition.
We call a countable category Λ = (Λ0,Λ, r, s) a k-graph if there exists a functor
d : Λ → Nk, with the unique factorization property: given m,n ∈ Nk and λ ∈ Λ, if
d(λ) = m+ n then there exist unique μ, ν ∈ Λ such that d(μ) = m, d(ν) = n and
λ = μν. The functor d is called the degree functor and d(λ) is called the degree
of λ. Using the unique factorization property, we identify the set of objects Λ0

with the set of morphisms of degree 0, that is, Λ0 = {λ ∈ Λ : d(λ) = 0}. Then, for
n ∈ N

k, we set Λn := d−1(n), and call Λn the paths of shape n in Λ and Λ0 the
vertices of Λ. A path λ ∈ Λ is closed if r(λ) = s(λ).

For V,W ⊂ Λ0, we set V Λ := {λ ∈ Λ : r(λ) ∈ V }, ΛW := {λ ∈ Λ : s(λ) ∈ W}
and V ΛW := V Λ∩ΛW ; the sets V Λn,ΛnW and V ΛnW are defined similarly. For
simplicity we write vΛ for {v}Λ.

A k-graph Λ is row-finite if |vΛn| < ∞ for all v ∈ Λ0 and n ∈ Nk and has no
sources if vΛn �= ∅ for all v ∈ Λ0 and n ∈ Nk. We assume throughout that Λ is a
row-finite k-graph with no sources.

Let m,n ∈ N
k. We write m ≤ n if mi ≤ ni for all 1 ≤ i ≤ k and write m ∨ n

for the k-tuple with ith entry max{mi, ni}. Following Lemma 3.2 (iv) in [10], we
say that a k-graph Λ is aperiodic if for every v ∈ Λ0 and m �= n ∈ Nk there exists
λ ∈ vΛ such that d(λ) ≥ m ∨ n and

λ
(
m,m+ d(λ) − (m ∨ n)

) �= λ
(
n, n+ d(λ) − (m ∨ n)

)
.

This formulation of aperiodicity is equivalent to the original one from Definition 4.3
in [8] when Λ is a row-finite graph with no sources, but is often more convenient
since it only involves finite paths.

Let Ωk := {(m,n) ∈ Nk : m ≤ n}. As in Definition 2.1 of [8], we define an
infinite path in Λ to be a degree-preserving functor x : Ωk → Λ, and denote the set
of infinite paths by Λ∞. As in Definition 4.1 of [8], we say Λ is cofinal if for every
infinite path x and every vertex v there exists m ∈ Nk such that vΛx(m) �= ∅.

For each λ ∈ Λ we introduce a ghost path λ∗; for v ∈ Λ0 we take v∗ = v. We
write G(Λ) for the set of ghost paths and G(Λ �=0) if we exclude the vertices.



Centers of algebras associated to higher-rank graphs 1389

Let R be a commutative ring with 1. Following Definition 3.1 of [3], a Kumjian–
Pask Λ-family (P, S) in an R-algebra A consists of functions P : Λ0 → A and
S : Λ �=0 ∪G(Λ �=0) → A such that

(KP1) {Pv : v ∈ Λ0} is a set of mutually orthogonal idempotents;

(KP2) for λ, μ ∈ Λ �=0 with r(μ) = s(λ),

SλSμ = Sλμ, Pr(λ)Sλ = Sλ = SλPs(λ),

Sμ∗Sλ∗ = S(λμ)∗ , Ps(λ)Sλ∗ = Sλ∗ = Sλ∗Pr(λ);

(KP3) for all λ, μ ∈ Λ �=0 with d(λ) = d(μ), we have Sλ∗Sμ = δλ,μPs(λ);

(KP4) for all v ∈ Λ0 and n ∈ Nk \ {0}, we have Pv =
∑

λ∈vΛn SλSλ∗ .

By Theorem 3.4 of [3] there exists an R-algebra KPR(Λ), generated by a
nonzero Kumjian–Pask Λ-family (p, s), with the following universal property: when-
ever (Q, T ) is a Kumjian–Pask Λ-family in an R-algebra A, then there is a unique
R-algebra homomorphism πQ,T : KPR(Λ) → A such that

πQ,T (pv) = Qv, πQ,T (sλ) = Tλ and πQ,T (sμ∗) = Tμ∗ for v ∈ Λ0 and λ, μ ∈ Λ �=0.

Also by Theorem 3.4 of [3], the subgroups

KPR(Λ)n := spanR
{
sλsμ∗ : λ, μ ∈ Λ and d(λ) − d(μ) = n

}
(n ∈ Z

k)

give a Zk-grading of KPR(Λ). Let S be a Zk-graded ring; then by the graded-
uniqueness theorem ([3], Theorem 4.1), a graded homomorphism π : KPR(Λ) → S
such that π(rpv) �= 0 for nonzero r ∈ R is injective.

We will often write elements a ∈ KPR(Λ)\{0} in the normal form of Lemma 4.2
in [3]: there existsm∈Nk and a finite F ⊂ Λ×Λm such that a =

∑
(α,β)∈F rα,βsαsβ∗

where rα,β ∈ R \ {0} and s(α) = s(β).

3. Motivation

When A is a simple C∗-algebra (over C, of course), it follows from the Dauns–
Hofmann theorem (see, for example, Theorem A.34 in [9]) that the center Z(A)
of A is isomorphic to C if A has an identity and is {0} otherwise. Let Λ be a
row-finite k-graph without sources. In this short section we deduce that the center
of a simple Kumjian–Pask algebra KPC(Λ) is either isomorphic to C or is {0}.
Lemma 3.1. Suppose A is a simple C∗-algebra. If A has an identity, then z 
→ z1A
is an isomorphism of C onto the center Z(A) of A. If A has no identity, then
Z(A) = {0}.
Proof. Since A is simple, the primitive ideal space PrimA of A is a singleton {�},
and f 
→ f(�) is an isomorphism of the algebra Cb(PrimA) of continuous bounded
functions from PrimA onto C. By the Dauns–Hofmann theorem, Cb(PrimA) is
isomorphic to the center Z(M(A)) of the multiplier algebraM(A) ofA. Putting the
two isomorphisms together gives an isomorphism z 
→ z1M(A) of C onto Z(M(A)).
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Now suppose that A has an identity. Then M(A) = A, and it follows from the
first paragraph that Z(A) is isomorphic to C.

Next suppose that A does not have an identity. Let a ∈ Z(A), and let {uλ}
be an approximate identity in A and let m ∈ M(A). Then ma = lim(muλ)a =
a lim(muλ) = am. Thus Z(A) ⊂ Z(M(A)). Now Z(A) ⊂ Z(M(A)) ∩ A =
{z1M(A) : z ∈ C} ∩ A = {0}. �

Lemma 3.2. Let D be a dense subalgebra of a C∗-algebra A. Then Z(A) ∩D =
Z(D).

Proof. Trivially, Z(A)∩D ⊂ Z(D). To see the reverse inclusion, let a ∈ Z(D). Let
b ∈ A and choose {dλ} ⊂ D such that dλ → b. Then ba = limλ dλa = limλ adλ =
ab. Now a ∈ Z(A) ∩ Z(D) ⊂ Z(A) ∩D, and hence Z(A) ∩D = Z(D). �

By Theorem 6.1 of [3], KPC(Λ) is simple if and only if Λ is cofinal and aperiodic,
so in the next corollary KPC(Λ) is simple. Also, KPC(Λ) has an identity if and
only if Λ0 is finite (see Lemma 4.6 below).

Corollary 3.3. Suppose that Λ is a row-finite, cofinal, aperiodic k-graph with no
sources. If Λ0 is finite, then z 
→ z1KPC(Λ) is an isomorphism of C onto the center
Z(KPC(Λ)) of KPC(Λ). If Λ0 is infinite, then KPC(Λ) = {0}.
Proof. Let (p, s) be a generating Kumjian–Pask Λ-family for KPC(Λ) and (q, t) a
generating Cuntz–Krieger Λ-family for C∗(Λ). Then (q, t) is a Kumjian–Pask Λ-
family in C∗(Λ), and the universal property of KPC(Λ) gives a ∗-homomorphism
πq,t : KPC(Λ) → C∗(Λ) which takes sμsν∗ to tμt

∗
ν . It follows from the graded-

uniqueness theorem that πq,t is a ∗-isomorphism onto a dense ∗-subalgebra of
C∗(Λ) (see Proposition 7.3 of [3]). Since Λ is aperiodic and cofinal, C∗(Λ) is
simple by Theorem 3.1 of [10].

Now suppose that Λ0 is finite. Then KPC(Λ) has identity 1KPC(Λ) =
∑

v∈Λ0 pv
and C∗(Λ) has identity 1C∗(Λ) =

∑
v∈Λ0 qv, and πq,t is unital. By Lemma 3.1,

Z(C∗(Λ)) = {z1C∗(Λ) : z ∈ C}. By Lemma 3.2,

Z
(
πq,t(KPC(Λ))

)
= Z

(
C∗(Λ)

) ∩ πq,t

(
KPC(Λ)

)
= {z1C∗(Λ) : z ∈ C

}
.

Since πq,t is unital, Z(KPC(Λ)) is isomorphic to C as claimed.
Next suppose that Λ0 is infinite. Then Z(C∗(Λ)) = {0} and Z

(
πq,t(KPC(Λ))

)
=

Z(C∗(Λ)) ∩ πq,t (KPC(Λ)) = {0}, giving KPC(Λ) = {0}. �

4. The center of a Kumjian–Pask algebra

Our goal is to extend Corollary 3.3 to Kumjian–Pask algebras over arbitrary com-
mutative rings. Throughout R is a commutative ring with 1 and Λ is a row-finite
k-graph with no sources.

We will need Lemma 4.1 several times. For notational convenience, for v ∈ Λ0,
sv or sv∗ means pv. In particular, taking m = 0 in Lemma 4.1 below shows the
set {sα : α ∈ Λ} is linearly independent.
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Lemma 4.1. Let m ∈ Nk. Then {sαsβ∗ : s(α) = s(β) and d(β) = m} is a linearly
independent subset of KPR(Λ).

Proof. Let F be a finite subset of {(α, β) ∈ Λ × Λm : s(α) = s(β)}, and suppose
that

∑
(α,β)∈F rα,βsαsβ∗ = 0. Fix (σ, τ) ∈ F . Since all the β have degree m,

using (KP3) twice we obtain

0 = sσ∗
( ∑

(α,β)∈F

rα,βsαsβ∗
)
sτ = rσ,τps(σ) +

∑
(α,β)∈F\{(σ,τ)}

rα,τsσ∗sαsβ∗sτ

= rσ,τps(σ) +
∑

(α,τ)∈F
α�=σ

rα,τsσ∗sα.(4.1)

If d(σ) = d(α) and σ �= α, then sσ∗sα = 0 by (KP3). If d(σ) �= d(α) then, by
Lemma 3.1 of [3], sσ∗sα is a linear combination of sμsν∗ where d(μ) − d(ν) =
d(α) − d(σ). It follows that the 0-graded component of (4.1) is rσ,τps(σ). Thus
0 = rσ,τps(σ). But ps(σ) �= 0, by Theorem 3.4 of [3]. Hence rσ,τ = 0. Since
(σ, τ) ∈ F was arbitrary, it follows that {sαsβ∗ : s(α) = s(β) and d(β) = m} is
linearly independent. �

The next lemma describes properties of elements in the center of KPR(Λ).

Lemma 4.2. Let a ∈ Z(KPR(Λ)) \ {0} be in normal form
∑

(α,β)∈F rα,βsαsβ∗.

1. If (σ, τ) ∈ F , then r(σ) = r(τ).

2. Let W = {v ∈ Λ0 : ∃(α, β) ∈ F with v = r(β)}. If μ ∈ ΛW , then r(μ) ∈ W .

3. If (σ, τ) ∈F , then there exists (α, β) ∈F such that r(α) = r(β) = s(σ) = s(τ).

4. There exists l ∈ N \ {0} and {(αi, βi)}li=1 ⊂ F such that β1 · · ·βl is a closed
path in Λ.

Proof. 1) Let (σ, τ) ∈ F . By Lemma 2.3 of [5], we have 0 �= sσ∗asτ . Since
a ∈ Z(KPR(Λ)),

0 �= sσ∗pr(σ)apr(τ)sτ = sσ∗apr(σ)pr(τ)sτ = δr(σ),r(τ)sσ∗asτ .

Hence r(σ) = r(τ).

2) Aiming at a contradiction, assume there exists μ ∈ ΛW such that r(μ) /∈ W .
Then pvpr(μ) = 0 for all v ∈ W . Thus

apr(μ) =
∑

(α,β)∈F

rα,βsαsβ∗pr(β)pr(μ) = 0.

Since a ∈ Z(KPR(Λ)) we get sμa = asμ = apr(μ)sμ = 0. Since s(μ) ∈ W ,
there exists (α′, β′) ∈ F with r(β′) = s(μ). Then r(α′) = s(μ) also by 1). Thus
S := {(α, β) ∈ F : s(μ) = r(α)} is nonempty, and

0 = sμa =
∑

(α,β)∈S

rα,βsμαsβ∗ .
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But {sμαsβ∗ : (α, β) ∈ S} is linearly independent, by Lemma 4.1, and hence
rα,β = 0 for all (α, β) ∈ S. This contradicts the given normal form for a.

3) Let (σ, τ) ∈ F . Then s(σ) = s(τ) by definition of normal form. By
Lemma 2.3 in [5] we have sσ∗asτ �= 0. Since a ∈ Z(KPR(Λ)),

(4.2) 0 �= sσ∗asτ = asσ∗sτ =
∑

(α,β)∈F

rα,βsαsβ∗sσ∗sτ =
∑

(α,β)∈F
r(β)=s(σ)

rα,βsαs(σβ)∗sτ .

In particular, the set {(α, β) ∈ F : r(β) = s(σ)} is nonempty. So there exists
(α′, β′) ∈ F such that r(β′) = s(σ). Since r(α′) = r(β′) from 1), we are done.

4) Let M = |F | + 1. Using (3) there exists a path β1 . . . βM such that, for
1 ≤ i ≤ M , there exists αi ∈ Λ with (αi, βi) ∈ F . Since M > |F |, there exists
i < j ∈ {1, . . . ,M} such that βi = βj. Then βi . . . βj−1 is a closed path. �

The next corollary follows from Lemma 4.2 (4).

Corollary 4.3. Let Λ be a row-finite k-graph with no sources and R a commutative
ring with 1. If Λ has no closed paths then the center Z(KPR(Λ)) = {0}.

The next lemma describes the elements of the center of KPR(Λ) when Λ is
cofinal.

Lemma 4.4. Suppose that Λ is cofinal. Let a ∈ Z(KPR(Λ)) \ {0} be in normal
form

∑
(α,β)∈F rα,βsαsβ∗. Then {v ∈ Λ0 : ∃(α, β) ∈ F with v = r(β)} = Λ0.

Proof. Write W := {v ∈ Λ0 : ∃(α, β) ∈ F with v = r(β)}. By definition of
normal form, there exists m ∈ Nk such that F ⊂ Λ×Λm. Let n = m∨ (1, 1, . . . , 1).
By (KP4), for each (α, β) ∈ F , we have sαsβ∗ =

∑
μ∈s(α)Λn−m s(αμ)s(βμ)∗ . By

“reshaping” each pair of paths in F in this way, collecting like terms, and dropping
those with zero coefficients, we see that there exist G ⊂ Λ×Λn and r′γ,η ∈ R \ {0}
such that a =

∑
(γ,η)∈G r′γ,ηsγsη∗ is also in normal form. By construction, W ′ =

{v ∈ Λ0 : ∃(γ, η) ∈ G with v = r(η)} ⊂ W .

Let v ∈ Λ0. Using Lemma 4.2 (4), there exists {(γi, ηi)}li=1 ⊂ G such that
η1 · · · ηl is a closed path. Since d(ηi) ≥ (1, . . . , 1) for all i, x := η1 · · · ηlη1 · · · ηlη1 · · ·
is an infinite path. By cofinality, there exist q ∈ Nk and ν ∈ vΛx(q). By the
definition of x, there exist q′ ≥ q and j such that x(q′) = r(ηj). Let λ = x(q, q′).
Then νλ ∈ vΛW ′. By Lemma 4.2 (2), v = r(νλ) ∈ W ′ as well. Thus W ′ = Λ0,
and since W ′ ⊂ W we have W = Λ0. �

The next lemma describes the elements of the center of KPR(Λ) when Λ is
aperiodic.

Lemma 4.5. Suppose that Λ is aperiodic and a ∈ Z(KPR(Λ)) \ {0}. Then there
exist n ∈ Nk and G ⊂ Λn such that a =

∑
α∈G rαsαsα∗ is in normal form.
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Proof. Suppose a ∈ Z(KPR(Λ)) \ {0} with a =
∑

(α,β)∈F rα,βsαsβ∗ in normal

form. By definition there exists n ∈ Nk such that F ⊂ Λ × Λn. Let (σ, τ) ∈ F.
From Lemma 2.3 in [5] we know that sσ∗asτ �= 0. Let m = ∨(α,β)∈F (d(α) ∨ d(β)).
Since Λ is aperiodic, by Lemma 6.2 of [7] there exists λ ∈ s(σ)Λ with d(λ) ≥ m
such that

(4.3)
α, β ∈ Λs(σ), d(α), d(β) ≤ m

and αλ(0, d(λ)) = βλ(0, d(λ))

}
=⇒ α = β.

The same argument as in Proposition 4.9 of [3] now shows that sλ∗sσ∗asτsλ �= 0.
Since a ∈ Z(KPR(Λ)), 0 �= sλ∗sσ∗asτsλ = asλ∗sσ∗sτsλ = as(σλ)∗sτλ. Thus

0 �= s(σλ)∗sτλ = sσλ(d(λ),d(λ)+d(σ))∗sσλ(0,d(λ))∗sτλ(0,d(λ))sτλ(d(λ),d(λ)+d(τ))

= δσ,τsσλ(d(λ),d(λ)+d(σ))∗sτλ(d(λ),d(λ)+d(τ))

using (4.3). Thus σ = τ .
Since (σ, τ) ∈ F was arbitrary we have α = β for all (α, β) ∈ F . Let G = {α ∈

Λ: (α, α) ∈ F} and write rα for rα,α. Note G ⊂ Λn because F ⊂ Λ × Λn. Thus
a =

∑
α∈G rαsαsα∗ in normal form as desired. �

Our main theorem (Theorem 4.7) has two cases: Λ0 finite and infinite.

Lemma 4.6. KPR(Λ) has an identity if and only if Λ0 is finite.

Proof. If Λ0 is finite, then
∑

v∈Λ0 pv is an identity for KPR(Λ). Conversely, assume
that KPR(Λ) has an identity 1KPR(Λ). Aiming at a contradiction, suppose that Λ0

is infinite. Write 1KPR(Λ) in normal form
∑

(α,β)∈F rα,βsαsβ∗ . Since F is finite, so

is W := {v ∈ Λ0 : ∃(α, β) ∈ F with v = r(β)}. Thus there exists w ∈ Λ0 \W .
Now pw = 1KPR(Λ)pw =

∑
(α,β)∈F rα,βsαsβ∗pw = 0 because w �= r(β) for any of

the β. This contradiction shows that Λ0 must be finite. �

Theorem 4.7. Let Λ be a row-finite k-graph with no sources and let R be a
commutative ring with 1.

1. Suppose Λ is aperiodic and cofinal, and that Λ0 is finite. Then Z(KPR(Λ)) =
R1KPR(Λ).

2. Suppose that Λ is cofinal and Λ0 is infinite. Then Z(KPR(Λ)) = {0}.
Proof. 1) Suppose Λ is aperiodic and cofinal, and that Λ0 is finite. Let a ∈
Z(KPR(Λ)) \ {0}. Since Λ is aperiodic, by Lemma 4.5 there exist n ∈ Nk and
G ⊂ Λn such that a =

∑
α∈G rαsαsα∗ is in normal form. Since Λ is row-finite

and Λ0 is finite, Λn is finite.
We claim that G = Λn. Aiming at a contradiction, suppose that G �= Λn, and

let λ ∈ Λn \G. Then asλ = 0 by (KP3). Since a ∈ Z(KPR(Λ)),

0 = asλ = sλa =
∑
α∈G

r(α)=s(λ)

rαsλαsα∗ .
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Since Λ is cofinal, {r(α) : α ∈ G} = Λ0 by Lemma 4.4. Thus S = {α ∈ G : r(α) =
s(λ)} �= ∅. But {sλαsα∗ : α ∈ S} is linearly independent by Lemma 4.1. Thus
rα = 0 for α ∈ S, contradicting our choice of {rα}. It follows that G = Λn as
claimed, and that

a =
∑
α∈Λn

rαsαsα∗ .

Next we claim that rμ = rν for all μ, ν ∈ Λn. Let μ, ν ∈ Λn. Let x ∈ s(μ)Λ∞.
Since Λ is cofinal, there exist m ∈ Nk and γ ∈ s(ν)Λs(x(m)). Set η = x(0,m).
Now

rμsνγs(μη)∗ = rμsνγsη∗sμ∗ = sνγsη∗
∑
α∈Λn

rμsμ∗sαsα∗

= sνγsη∗sμ∗
∑
α∈Λn

rαsαsα∗ = sνγs(μη)∗a

= asνγs(μη)∗ =
∑
α∈Λn

rαsαsα∗sνsγs(μη)∗ = rνsνγs(μη)∗ .

Since sνγs(μη)∗ �= 0 this implies rμ = rν . Let r = rμ. Now

a =
∑
α∈Λn

rsαsα∗ =
∑
v∈Λ0

∑
α∈vΛn

rsαsα∗ = r
∑
v∈Λ0

pv = r1KPR(Λ)

as desired.

2) Suppose there exists a ∈ Z(KPR(Λ))\{0}. Write a =
∑

(α,β)∈F rα,βsαsβ∗ in

normal form. Then Lemma 4.4 gives that {v∈Λ0 : ∃(α, β)∈F with v = r(β)}=Λ0,
contradicting that F is finite. �

The simplicity of C∗(Λ) played an important role in §3. To reconcile this with
Theorem 4.7, recall from [11] that an ideal I ∈ KPR(Λ) is basic if rpv ∈ I for
r ∈ R\{0} then pv ∈ I, and that KPR(Λ) is basically simple if its only basic ideals
are {0} and KPR(Λ). By Theorem 5.14 of [3], KPR(Λ) is basically simple if and
only if Λ is cofinal and aperiodic (and by Theorem 6.1 of [3], KPR(Λ) is simple if
and only if R is a field and Λ is cofinal and aperiodic). Thus Theorem 4.7 is in the
spirit of Corollary 3.3.

5. Commutative Kumjian–Pask algebras

We view Nk as a category with one object � and composition given by addition,
and use {ei}ki=1 to denote the standard basis of Nk.

Example 5.1. Let d : N
k → N

k be the identity map. Then (Nk, d) is a k-
graph. By Example 7.1 in [3], KPR(N

k) is commutative with identity p
, and
KPR(N

k) is isomorphic to the ring of Laurent polynomials R[x1, x
−1
1 , . . . , xk, x

−1
k ]

in k commuting indeterminates.
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Lemma 5.2. Suppose Λ = Λ1

⊔
Λ2 is a disjoint union of two k-graphs. Then

KPR(Λ) = KPR(Λ1)⊕KPR(Λ2).

Proof. For each i ∈ {1, 2}, let (qi, ti) be the generating Kumjian–Pask Λi-family
of KPR(Λi), and let (p, s) be the generating Kumjian–Pask Λ-family of KPR(Λ).
Restricting (p, s) to Λi gives a Λi-family in KPR(Λ), and hence the universal prop-
erty for KPR(Λi) gives a homomorphism πi

p,s : KPR(Λi) → KPR(Λ) such that

πi
p,s ◦ (qi, ti) = (p, s). Each πi

p,s is graded, and the graded uniqueness theorem

(Theorem 4.1 in [3]) implies that πi
p,s is injective.

We now identify KPR(Λi) with its image in KPR(Λ). If μ ∈ Λ1 and λ ∈ Λ2,
then sμsλ = sμps(μ)pr(λ)sλ = 0. Similarly sλsμ, sμ∗sλ∗ , sλ∗sμ∗ , sλsμ∗ , sμ∗sλ, sλ∗sμ,
and sμsλ∗ are all zero. Thus KPR(Λ1)KPR(Λ2) = 0 = KPR(Λ2)KPR(Λ1), and
the internal direct sum KPR(Λ1) ⊕KPR(Λ2) is a subalgebra of KPR(Λ). Finally,
KPR(Λ1)⊕KPR(Λ2) is all of KPR(Λ) since the former contains all the generators
of the latter. This gives the result. �

Proposition 5.3. Let Λ be a row-finite k-graph with no sources and R a commu-
tative ring with 1. Then the following conditions are equivalent:

1. KPR(Λ) is commutative;

2. r = s on Λ and r|Λn is injective;

3. Λ ∼= ⊔
v∈Λ0 N

k;

4. KPR(Λ) ∼=
⊕

v∈Λ0 R[x1, x
−1
1 , . . . , xk, x

−1
k ].

Proof. 1) ⇒ 2) Suppose that KPR(Λ) is commutative. Aiming at a contradiction,
suppose there exists λ ∈ Λ such that s(λ) �= r(λ). Then sλ∗sλ = sλsλ∗ , and

ps(λ) = p2s(λ) = ps(λ)sλ∗sλ = ps(λ)sλsλ∗ = ps(λ)pr(λ)sλsλ∗ = 0.

But pv �= 0 for all v ∈ Λ0 by Theorem 3.4 of [3]. This contradiction gives r = s.

Next, suppose λ, μ ∈ Λn with λ �= μ. Aiming at a contradiction, suppose that
r(λ) = r(μ). Since r = s, we have r(λ) = s(λ) = s(μ) = r(μ). Then

sλ = pr(λ)sλ = ps(λ)sλ = ps(μ)sλ = sμ∗sμsλ = sμ∗sλsμ = 0

by (KP3). Now ps(λ) = 0, contradicting that pv �= 0 for all v ∈ Λ0 by Theorem 3.4
of [3]. Thus r is injective on Λn.

2) ⇒ 3) Assume that r = s on Λ and that r|Λn is injective. Since r = s, the set
{vΛv}v∈Λ0 is a partition of Λ. Since r is injective on Λei , the subgraph vΛeiv has
a single vertex v and a single edge fv

i . Thus f
v
i 
→ ei defines a graph isomorphism

vΛv → Nk. Hence Λ =
⊔

v∈Λ0 vΛv ∼= ⊔
v∈Λ0 N

k.

3) ⇒ 4) Assume that Λ ∼= ⊔
v∈Λ0 N

k. By Lemma 5.2, KPR(Λ) is isomorphic to⊕
KPR(N

k), and by Example 5.1 each KPR(N
k) is isomorphic to

R[x1, x
−1
1 , . . . , xk, x

−1
k ].

4) ⇒ 1) This follows since
⊕

R[x1, x
−1
1 , . . . , xk, x

−1
k ] is commutative. �
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