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Abstract. This article is the last in a series of three papers, whose aim
is to give new proofs of the well-known theorems of Calderón, Coifman,
McIntosh and Meyer ([1], [3] and [4]). Here we extend the results of
the previous two papers to the polydisc setting. In particular, we solve
completely a question of Coifman open since the nineteen-eighties.

1. Introduction

The present article is a continuation of [8], [9] and is the last paper in the series.
Its goal is to show that the method developed in these papers to give new proofs
of the Lp boundedness of the Calderón commutators and the Cauchy integral on
Lipschitz curves [1], [3] and [4], can be used to extend these classical results to the
n-parameter polydisc setting for any n ≥ 2.

Suppose that F is an analytic function on a disc centered at the origin in
the complex plane and suppose A is a complex valued function on R

n, so that
∂nA/∂x1 . . . ∂xn ∈ L∞(Rn) with an L∞ norm strictly smaller than the radius of
convergence of F . Define the linear operator Cn,F,A by the formula

(1.1) Cn,F,Af(x) := p.v.

∫
Rn

f(x+ t)F
(Δ(1)

t1

t1
◦ · · · ◦ Δ

(n)
tn

tn
A(x)

) dt1
t1

· · · dtn
tn

for n-variable functions f(x) for which the principal value integral exists, where

Δ
(i)
s denotes the finite difference operator at scale s in the direction of ei, given by

Δ(i)
s B(x) := B(x+ sei)−B(x),

and e1, . . . , en is the standard basis in R
n.
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The main theorem we are going to prove is the following.

Theorem 1.1. The operator Cn,F,A extends naturally as a bounded linear operator
from Lp(Rn) into Lp(Rn) for every 1 < p < ∞.

This answers completely a question of Coifman open since the early nineteen-
eighties (see [5] and [6]). The case when the L∞ norm of ∂nA/∂x1 . . . ∂xn is
small and the generic n = 2 case were understood earlier by Journé in [5] and [6]
respectively. Our proof is quite different from the approach in [5] and [6] and works
equally well in all dimensions. In fact, as we will describe in the last section of
the paper, much more can be proved in the same way. Not only are the operators
of (1.1) are bounded, so are (for example) those given by expressions of the form

(1.2) f → p.v.

∫
R4

f(x+ t+ s)F
(Δ(1)

t1

t1
◦ Δ

(2)
t2

t2
◦ Δ

(1)
s1

s1
◦ Δ

(2)
s2

s2
A(x)

)dt1
t1

dt2
t2

ds1
s1

ds2
s2

and their natural generalizations. Of course, in (1.2) one has to assume that
∂4A/∂x2

1∂x
2
2 ∈ L∞(R2). When F (z) = zd with d ≥ 1 the operator in (1.1)

is the natural n-parameter extension of the dth Calderón commutator, whereas
for F (z) = 1/(1 + iz) one obtains the n-parameter generalization of the Cauchy
integral on Lipschitz curves (see [1], [3] and [4]).

For simplicity, henceforth we shall denote the n-parameter dth Calderón com-
mutator by Cn,d,A. It is easy to see that when f(x) and A(x) have the particular
forms

f(x) = f1(x1) · · · fn(xn) and A(x) = A1(x1) · · ·An(xn) ,

one has
Cn,d,Af(x) = C1,d,A1f1(x1) · · ·C1,d,Anfn(xn).

To motivate the introduction of the operators Cn,F,A one just has to recall the
context in which the original Calderón commutators appeared [1], [2] and [3]. If
one tries to extend Calderón’s algebra to R

n and to include in it pseudodifferential
operators containing partial derivatives, one is naturally led to the study of the
operators in (1.1) and their natural generalizations.

It is clear and well known that to prove statements such as the one in The-
orem 1.1, one needs to prove polynomial bounds for the corresponding Calderón
commutators Cn,d,A. More specifically, Theorem 1.1 reduces to the estimate

(1.3) ‖Cn,d,Af‖p ≤ C(n, d) · C(p) · ‖f‖p ·
∥∥∥ ∂nA

∂x1 · · ·∂xn

∥∥∥d
∞

for any f ∈ Lp, where C(n, d) grows at most polynomially in d 1.

The argument in [5] for proving the small L∞ norm theorem used induction
on the dimension n. We work instead directly in R

n and since our method is

1This reduction is a simple consequence of the fact that if one writes the analytic function F as
a power series, the generic operator Cn,F,A itself becomes a series involving all the commutators
Cn,d,A. The polynomial bounds are necessary for this series to be absolutely convergent.
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essentially similar in every dimension, to keep the technicalities to a minimum, we
chose for the reader’s convenience to describe the proof of the main Theorem 1.1 in
the particular case of the plane R

2. However, it will be clear that the same proof
works equally well in every dimension.

So from now on n = 2 and the goal is to prove the corresponding (1.3). The
operators C2,d,A that we would like to understand, are given by

(1.4) C2,d,Af(x) = p.v.

∫
R2

f(x+ t)
(Δ(1)

t1

t1
◦ Δ

(2)
t2

t2
A(x)

)d dt1
t1

dt2
t2

.

If a := ∂2A/∂x1∂x2, then one observes that

(1.5)
Δ

(1)
t1

t1
◦ Δ

(2)
t2

t2
A(x) =

∫
[0,1]2

a
(
x1 + αt1, x2 + βt2

)
dα dβ.

As in [9], using (1.5) d times, one can see that if a and f are Schwartz functions,
the implicit limit in (1.4) exists and can be rewritten as∫

R2d+2

m2,d(ξ, ξ1, . . . , ξd, η, η1, . . . , ηd) f̂(ξ, η) â(ξ1, η1) . . . â(ξd, ηd)(1.6)

· e2πi(x1,x2)·[(ξ,η)+(ξ1,η1)+···+(ξd,ηd)] dξ dξ1 · · · dξd dη dη1 · · · dηd
where

(1.7) m2,d(ξ, ξ1, . . . , ξd, η, η1, . . . , ηd) := m1,d(ξ, ξ1, . . . , ξd) ·m1,d(η, η1, . . . , ηd)

with m1,d(ξ, ξ1, . . . , ξd) and m1,d(η, η1, . . . , ηd) given by∫
[0,1]d

sgn
(
ξ + α1ξ1 + · · ·+ αdξd

)
dα1 · · · dαd

and ∫
[0,1]d

sgn
(
η + β1η1 + · · ·+ βdηd

)
dβ1 · · · dβd ,

respectively. Because of the formula (1.6) C2,d can be seen as a (d + 1)-linear
operator. However, it is important to realize (as in [9]) that even though its symbol
m2,d has the nice product structure in (1.7), it is not a classical biparameter symbol,
since m1,d itself is not a classical Marcinkiewicz–Hörmander–Mihlin multiplier.2

As a consequence of this fact, the general polydisc Coifman–Meyer theorem proved
in [10] and [11] cannot be applied in this case. The strategy would be to combine
the techniques of [10] and [11] with the new ideas of [8] and [9] and to show that
(together with some other logarithmic estimates that will be proved in this paper)
they are enough to obtain the polynomial bounds of (1.3). Given these remarks,
it would clearly be of great help for the reader to be familiar with our earlier
arguments in [8] and [9].

2m1,d is of course the symbol of the one dimensional dth Calderón commutator [9].
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We will prove the following.

Theorem 1.2. Let 1 < p1, . . . , pd+1 ≤ ∞ and 1 ≤ p < ∞ be such that 1/p1+ · · ·+
1/pd+1 = 1/p. Denote by l the number of indices i for which pi 	= ∞. The operator
C2,d extends naturally as a bounded (d+1)-linear operator Lp1 × · · ·×Lpd+1 → Lp

with an operator bound of type

(1.8) C(d) · C(l) · C(p1) · · ·C(pd+1),

where C(d) grows at most polynomially in d and C(pi) = 1 as long as pi = ∞ for
1 ≤ i ≤ d+ 1.

Theorem 1.2 is the biparameter extension of the corresponding Theorem 1.1
in [9]. If we assume it, we see that (1.3) follows from it by taking p1 = p and
p2 = · · · = pd+1 = ∞.

To show Theorem 1.2 we will prove that for every 1 ≤ i ≤ d + 2 and for every
φ1, . . . , φd+1 Schwartz functions, one has

(1.9)
∥∥C∗i

2,d(φ1, . . . , φd+1)
∥∥
p
≤ C(d)·C(l)·C(p1) · · ·C(pd+1)·‖φ1‖p1 · · · ‖φd+1‖pd+1

where (pj)
d+1
j=1 and p are as before and (C∗i

2,d)
d+2
i=1 are the adjoints of the multilinear

operator C2,d.
3 Standard density and duality arguments, as in [9], then allow

one to conclude that the estimates in (1.9) can be extended naturally to arbitrary
products of Lpj and L∞ spaces.4

The plan of the rest of the paper is as follows. In Section 2 we describe some
discrete model operators whose analysis will play an important role in understand-
ing (1.9). In Section 3 we prove that the main estimates (1.9) can be reduced to
a general theorem for the model operators. In Section 4 we prove the theorem
for the discrete model operators of Section 2. In Section 5 we show logarithmic
bounds for some shifted Hardy–Littlewood–Paley hybrid operators that appear
naturally in the study of the discrete models. Finally, in Section 6 we describe
various generalizations of Theorem 1.1.

Acknowledgements. We thank the referee for pointing out to us that logarithmic
estimates for some “shifted singular integrals”, related to the ones used in our
paper, go back (in the martingale setting at least) to the work of Figiel in [7].

2. Discrete model operators

As mentioned earlier, the main task here is to describe some discrete model op-
erators, whose analysis is deeply related to the analysis of (1.9). Because of the
formula (1.6), we now know that

(2.1) C2,d = C1,d ⊗ C1,d

3For symmetry, we aso use the notation C2,d = C∗d+2
2,d .

4The reader is also referred to our earlier [9] for an explanation of why one needs the larger
set of estimates in (1.9) for C2,d and its adjoints, even though one is interested in the more
particular (1.3).
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and so one should not be at all surprised, to find out that these biparameter model
operators that will be introduced are in fact tensor products of the one-parameter
discrete model operators of [9]. Also as in [9], these operators are l-linear, rather
than (d + 1)-linear, for some 1 ≤ l ≤ d + 1. The explanation for this is similar
to the one in [9]. To to prove (1.9), one first decomposes C2,d into polynomially
(in d) many biparameter paraproduct-like pieces and then estimates each piece
independently in d. To be able to achieve this, one has first to realize that one can
estimate most of the L∞ functions easily by their L∞ norms and reduce (1.9) in this
way to the corresponding estimate for some minimal l-linear operators. To prove
the desired bounds for these minimal operators, one has to interpolate between
some Banach and quasi-Banach estimates, as in [9]. The Banach estimates are
easy, but the quasi-Banach estimates are hard. One has to discretize the operators
carefully, in order to understand them completely. This is (in a few words) how
one arrives at the model operators. Their definition is as follows.

A smooth function Φ(x) of one variable is said to be a bump function adapted
to a dyadic interval I if and only if one has

∣∣∂αΦ(x)
∣∣ � 1

|I|α
1(

1 + dist(x, I)/|I|)M
for all derivatives α satisfying |α| ≤ 5 and any large M > 0 with the implicit
constants depending on it. Then, if 1 ≤ q ≤ ∞, we say that |I|−1/qΦ is an Lq

normalized bump adapted to I. The function Φ(x) is said to be of Ψ type if∫
R
Φ(x) dx = 0, otherwise is said to be of Φ type.
A smooth function Φ(x, y) of two variables is said to be a bump function

adapted to the dyadic rectangle R = I × J if and only if it is of the form
Φ(x, y) = Φ1(x) · Φ2(y) with Φ1(x) adapted to I and Φ2(y) adapted to J . If
I is a dyadic interval and n an integer, we denote by In := I + n|I| the dyadic
interval having the same length as I but sitting n units of length |I| away from it.

Fix 1 ≤ l ≤ d+1 and arbitrary pairs of integers n1 = (n1
1,n

2
1), . . . ,nl = (n1

l ,n
2
l ).

Define also nl+1 := (0, 0). For 1 ≤ j ≤ l + 1 consider families (Φj
Rnj

)R of L2

normalized bump functions adapted to dyadic rectangles Rnj = In1
j
× Jn2

j
where

R = I × J runs over a given finite collection R of dyadic rectangles in the plane.
Assume also that for 1 ≤ j ≤ l + 1 at least two of the families (Φj

I
n1
j

)I are of Ψ

type and that the same is true for the families (Φj
J
n2
j

)J for 1 ≤ j ≤ l + 1.

The discrete model operator associated to these families of functions is de-
fined by

(2.2) TR(f1, . . . , fl) =
∑
R∈R

1

|R|(l−1)/2

〈
f1,Φ

1
Rn1

〉 · · · 〈fl,Φl
Rnl

〉
Φl+1

R .

The following theorem holds.

Theorem 2.1. For any such finite family of arbitrary dyadic rectangles, the l-
linear operator TR maps Lp1×· · ·×Lpl → Lp boundedly, for any 1 < p1, . . . , pl < ∞
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with 1/p1 + · · ·+ 1/pl = 1/p and 0 < p < ∞, with a bound of type

(2.3) O
( 2∏

j=1

log2 <nj
1> · · · log2 <nj

l >
)

where, in general, <m> simply denotes 2 + |m|, and the implicit constants are
allowed to depend on l.

This theorem is the biparameter generalization of Theorem 3.1 in [9]. As
pointed out there, standard arguments based on scale invariance and interpola-
tion allow one to reduce Theorem 2.1 to the more precise statement that for every
fj ∈ Lpj with ‖fj‖pj = 1 and every measurable set E ⊆ R

2 of measure 1, there
exists a subset E′ ⊆ E with |E′| ∼ |E| so that

∑
R∈R

1

|R|(l−1)/2

∣∣ 〈f1,Φ1
Rn1

〉∣∣ · · ·∣∣ 〈fl,Φl
Rnl

〉∣∣ ∣∣ 〈fl+1,Φ
l+1
R 〉∣∣(2.4)

�
2∏

j=1

log2 <nj
1> · · · log2 <nj

l >

where fl+1 := χE′ . As in [9], the fact that one loses only logarithmic bounds in
the above estimates, will be of a crucial importance later.

3. Reduction to the model operators

The goal of this section is to show that indeed (1.9) can be reduced to Theorem 2.1
or more precisely to its weaker but more precise variant (2.4). In particular, one
can find here a description of all the ideas that are necessary to understand why it
is possible to estimate the biparameter Calderón commutators C2,d with bounds
that grow at most polynomially in d.

The reader familiar with our previous work will realize that this section is in
fact a tensor product of the corresponding section in [9] with itself. As in [9], the
first task is to decompose C2,d into polynomially many biparameter paraproduct-like
pieces which will be studied later on.

Noncompact and compact Littlewood–Paley decompositions

Let Φ(x) be an even, positive Schwartz function satisfying
∫
R
Φ(x) dx = 1. Define

also Ψ(x) by

Ψ(x) = Φ(x)− 1

2
Φ
(x
2

)
and observe that

∫
R
Ψ(x) dx = 0.

Then, as always, consider the functions Ψk(x) and Φk(x) defined by 2kΨ(2kx)
and 2kΦ(2kx) respectively, for every integer k ∈ Z. Notice also that all the L1
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norms of Φk are all equal 1. Since Ψk(x) = Φk(x) − Φk−1(x) one can see that∑
k≤k0

Ψk = Φk0 , and so
∑
k∈Z

Ψk = δ0;

or, equivalently,

(3.1)
∑
k∈Z

Ψ̂k(ξ) = 1

for almost every ξ ∈ R. On the other hand, as observed in [9], since Ψ̂(0) =

Ψ̂′(0) = 0 one can write Ψ̂(ξ) as

Ψ̂(ξ) = ξ2ϕ(ξ)

for some other smooth and rapidly decaying function ϕ.
These are what we called the noncompact (in frequency) Littlewood–Paley

decompositions. The compact decompositions are obtained similarly, the only
difference being that instead of considering the Schwartz function Φ from before,
one begins with a different one having the property that supp Φ̂ ⊆ [−1, 1] and

Φ̂(0) = 1.
As explained in [9], the advantage of the noncompact Littlewood–Paley projec-

tions is reflected in the perfect estimate

(3.2) |f ∗ Φk(x)| ≤ ‖f‖∞
which plays an important role in the argument.

The generic decomposition of C2,d

Using (1.6), if f, f1, . . . , fd+1 are all Schwartz functions, one can write the (d+2)-
linear form associated to C2,d as∫

ξ+ξ1+···+ξd+1=0

η+η1+···+ηd+1=0

(∫
[0,1]d

sgn
(
ξ + α1ξ1 + · · ·+ αdξd

)
dα1 . . . dαd

)
(3.3)

·
(∫

[0,1]d
sgn

(
η + β1η1 + · · ·+ βdηd

)
dβ1 . . . dβd

)
· f̂(ξ, η) f̂1(ξ1, η1) · · · f̂d+1(ξd+1, ηd+1) dξ dξ1 . . . dξd+1 dη dη1 . . . dηd+1.

Then, by using the Littlewood–Paley decompositions in (3.1) several times one
can write

(3.4) 1 =
∑

l0,l1,...,ld+1∈Z

Ψ̂l0(ξ) Ψ̂l1(ξ1) · · · Ψ̂ld(ξd) Ψ̂ld+1
(ξd+1).

As in [9], since for every (d+ 2) tuple (l0, l1, . . . , ld+1) ∈ Z
d+2, one has that either

l0 ≥ l1, . . . , ld+1 or l1 ≥ l0, . . . , ld+1 . . . or ld+1 ≥ l0, . . . , ld, fixing always the biggest
parameter and summing over the rest, one can rewrite (3.4) as∑

l

Ψ̂l(ξ) Φ̂l(ξ1) · · · Φ̂l(ξd) Φ̂l(ξd+1)+ · · ·+
∑
l

Φ̂l(ξ) Φ̂l(ξ1) · · · Φ̂l(ξd) Ψ̂l(ξd+1).(3.5)
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Also as in [9], we use in (3.5) compact Littlewood–Paley decompositions for
the ξ and ξd+1 variables and noncompact ones for the remaining variables. Every
individual term in the decomposition (3.5) contains only one Ψ type of a function
and we would like to have (at least) two. To be able to produce another one, one
has to recall that ξ + ξ1 + · · · + ξd+1 = 0. Taking this into account, we examine
the second (for instance) term in (3.5) in the particular case when l = 0. For
simplicity, we rewrite it as

(3.6) Φ̂(ξ) Ψ̂(ξ1) · · · Φ̂(ξd) Φ̂(ξd+1).

We know from before that Ψ̂(ξ1) = ξ21ϕ̂(ξ1) and so we can write

Ψ̂(ξ1) = ξ1 ϕ̂(ξ1)(−ξ−ξ2−· · ·−ξd+1) = −ξ1 ξ ϕ̂(ξ1)−ξ1 ξ2 ϕ̂(ξ1)−· · ·−ξ1 ξd+1 ϕ̂(ξ1).

Using this in (3.6) allows one to decompose it as another sum of O(d) terms,
containing this time two functions of Ψ type, since besides ξ1ϕ̂(ξ1) one finds now

either a factor of type ξΦ̂(ξ) or of type ξjΦ̂j(ξj) for some j = 2, . . . , d+ 1.
If one performs a similar decomposition for every scale l ∈ Z and each of the

terms in (3.5) one obtains a splitting of the function 1{ξ+ξ1+···+ξd+1=0} as a sum
of O(d2) expressions whose generic inner terms contain two functions of Ψ type as
desired.

Since we are in the biparameter setting, one has to decompose 1{η+η1+···+ηd+1=0}
in a completely similar manner. Combining these two decompositions allows us to
rewrite the (d+ 2) linear form of C2,d as

∑
k1,k2∈Z

∫
ξ+ξ1+···+ξd+1=0

η+η1+···+ηd+1=0

(∫
[0,1]d

sgn
(
ξ + α1ξ1 + · · ·+ αdξd

)
dα1 . . . dαd

)
(3.7)

·
( ∫

[0,1]d
sgn

(
η + β1η1 + · · ·+ βdηd

)
dβ1 . . . dβd

)
· Φ̂1,0

k1
(ξ) Φ̂1,1

k1
(ξ1) · · · Φ̂1,d

k1
(ξd) Φ̂

1,d+1
k1

(ξd+1)

· Φ̂2,0
k2

(η) Φ̂2,1
k2

(η1) · · · Φ̂2,d
k2

(ηd) Φ̂
2,d+1
k2

(ηd+1)

· f̂(ξ, η) f̂1(ξ1, η1) · · · f̂d+1(ξd+1, ηd+1) dξ dξ1 . . . dξd+1 dη dη1 . . . dηd+1,

which completes our generic decomposition.

Recall that at least two of the families
(
Φ̂1,j

k1
(ξj)

)
k1

for 0 ≤ j ≤ d+ 1 are of Ψ

type and likewise at least two of the families
(
Φ̂2,j

k2
(ηj)

)
k2

for 0 ≤ j ≤ d+1 are of Ψ
type. We denote these indices by i1 and i2 and j1 and j2 respectively. There are
several cases that one has to consider which correspond to the positions of these
indices. We call an index intermediate if it is between 1 and d and extremal if it
is either 0 or d + 1. In [8] we encountered essentially only two cases. Case 1 was
when at least one of the Ψ positions corresponded to an intermediate index and
Case 2 was when both of the Ψ positions were extremal. Since we now work in
the biparameter setting, there are four possible cases of types Case i ⊗ Case j for
1 ≤ i, j ≤ 2.
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Case 1 ⊗ Case 1

Assume here that i1 = j1 = 0 and i2 = j2 = 1. As mentioned earlier, the fact that
i1 = i2 = 0 is not important, and i1 and i2 can be anywhere else in the interval
[0, d+ 1]. Also, the fact that the intermediate indices i2 and j2 have been chosen
to be equal is not important either. We chose them so for notational simplicity.
As in [9] we would like now to expand the two implicit symbols in (3.7).

As in [9] we define ξ̃ := ξ + α2ξ2 + · · ·+ αdξd and η̃ := η + β2η2 + · · ·+ βdηd.
Recall from [9] that the idea is to treat the first symbol of (3.7) as depending on

the variables ξ1 and ξ̃ and similarly the second symbol of (3.7) as depending on η1
and η̃. Also, since most of our functions do not have compact support in frequency,
we need to consider some other compact Littlewood–Paley decompositions. We
first write, as in [9],

1 =
∑
l0,l1

Ψ̂l(ξ̃) Ψ̂l1(ξ1) =
∑
l0�l1

· · ·+
∑
l0∼l1

· · ·+
∑
l0	l1

· · ·

which can be rewritten as

(3.8)
∑
r1

Φ̂r1(ξ̃) Ψ̂r1(ξ1) +
∑
r1

Ψ̂r1(ξ̃) Ψ̂r1(ξ1) +
∑
r1

Ψ̂r1(ξ̃) Φ̂r1(ξ1).

Then, we consider an identical decomposition, but for the variables η̃ and η1, where
the summation index is r2. If we insert (3.8) into (3.7) it becomes a sum of three
distinct expressions that generate the subcases 1a, 1b, and 1c respectively. If, in
addition, one inserts in (3.7) the formula for the variables η̃ and η1 analogous
to (3.8), one ends up with nine biparameter subcases of types Case 1a⊗ Case 1a,
Case 1a⊗ Case 1b, etc.

Case 1a⊗ Case 1a

To analyze the impact that these extra decompositions have, we consider for sim-
plicity (as in [9]) the particular term corresponding to k1 = k2 = 0. However, the
argument we use is scale invariant.

For now we ignore the symbol in (3.7) and concentrate on the remaining ex-
pression which becomes(∑

r1

[
Φ̂r1(ξ̃) Ψ̂r1(ξ1)

]
Φ̂1,0

0 (ξ) Φ̂1,1
0 (ξ1) · · · Φ̂1,d

0 (ξd) Φ̂
1,d+1
0 (ξd+1)

)
(3.9)

·
(∑

r2

[
Φ̂r2(η̃) Ψ̂r2(η1)

]
Φ̂2,0

0 (η) Φ̂2,1
0 (η1) · · · Φ̂2,d

0 (ηd) Φ̂
2,d+1
0 (ηd+1)

)

=
( ∑

r1≤0

· · ·+
∑
r1>0

· · ·
)
·
( ∑

r2≤0

· · ·+
∑
r2>0

· · ·
)

:=
(
1′a + 1′′a

)⊗ (
1′a + 1′′a

)
,

which allows us to split our existing subcase into four additional subcases.
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Case 1′
a ⊗ Case 1′

a

This corresponds to the situation when both r1 and r2 are negative. As in [9],

using the fact that Ψ̂r1(ξ1) is compactly supported and given that Φ̂1,1
0 (ξ1) is also

of Ψ type (in fact it is of the form ξ1ϕ̂(ξ1)) one can rewrite the ξ part of (3.9) as∑
r1≤0

2r1Φ̂r1(ξ̃) Φ̂
1,0
0 (ξ) Ψ̂1,1

r1 (ξ1) · · · Φ̂1,d
0 (ξd) Φ̂

1,d+1
0 (ξd+1)

=
∑
r1≤0

2r1
[̂̃
Φr1(ξ̃)

̂̃
Ψ1,1

r1 (ξ1)
] · Φ̂1,0

0 (ξ) Ψ̂1,1
r1 (ξ1) · · · Φ̂1,d+1

0 (ξd+1) Φ̂r1(ξ̃)

for naturally chosen compactly supported functions
̂̃
Φr1(ξ̃),

̂̃
Ψ1,1

r1 (ξ1) and Ψ̂1,1
r1 (ξ1).

This allows us to split the symbol( ∫ 1

0

sgn(ξ̃ + α1ξ1) dα1

)̂̃
Φr1(ξ̃)

̂̃
Ψ1,1

r1 (ξ1)

as a double Fourier series of the form

(3.10)
∑

ñ,ñ1∈Z

Cr1
ñ,ñ1

e2πi
ñ

2r1
˜ξ · e2πi ñ1

2r1
ξ1 ,

where the Fourier coefficients satisfy the quadratic estimates

(3.11)
∣∣Cr1

ñ,ñ1

∣∣ = ∣∣Cñ,ñ1

∣∣ � 1

<ñ>2

1

<ñ1>#

for an arbitrarily large number # > 0. See [9] for these important estimates.
Clearly, one can make similar calculations for the η part of (3.9). Using them,

one can see that the contribution of 1′a ⊗ 1′a in (3.7) (at scale 1) is∫
[0,1]d−1

∫
[0,1]d−1

∑
r1≤0

2r1
∑
r2≤0

2r2
∑
ñ,ñ1

Cr1
ñ,ñ1

∑
˜ñ,˜ñ1

Cr2
˜ñ,˜ñ1∫

ξ+ξ1+···+ξd+1=0

η+η1+···+ηd+1=0

[
Φ̂1,0

0 (ξ) e2πi
ñ

2r1
ξ · Φ̂2,0

0 (η) e2πi
˜ñ

2r2
η
]

·
[
Ψ̂1,1

r1 (ξ1) e
2πi

ñ1
2r1

ξ1 · Ψ̂2,1
r2 (η1) e

2πi
˜ñ1
2r2

η1

]
·
[
Φ̂1,2

0 (ξ2) e
2πi ñ

2r1
α2ξ2 · Φ̂2,2

0 (η2) e
2πi

˜ñ
2r2

β2η2

]
· · ·
·
[
Φ̂1,d

0 (ξd) e
2πi ñ

2r1
αdξd · Φ̂2,d

0 (ηd) e
2πi

˜ñ
2r2

βdηd

]
·
[
Φ̂1,d+1

0 (ξd+1) · Φ̂2,d+1
0 (ηd+1)

]
·
[
Φ̂r1(ξ̃) · Φ̂r2(η̃)

]
(3.12)

· f̂(ξ, η) f̂1(ξ1, η1) . . . f̂d+1(ξd+1, ηd+1)

· dξ dξ1 . . . dξd+1 dη dη1 . . . dηd+1 dα2 . . . dαd dβ2 . . . dβd.
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Now, if one fixes �α, �β, r1, r2, ñ, ñ1, ˜̃n, and ˜̃n1, the corresponding inner expresion
in (3.12) becomes∫

ξ+ξ1+···+ξd+1=0

η+η1+···+ηd+1=0

[
f̂(ξ, η) · Φ̂1,0

0 (ξ) e2πi
ñ

2r1
ξ · Φ̂2,0

0 (η) e2πi
˜ñ

2r2
η
]

(3.13)

·
[
f̂1(ξ1, η1) · Ψ̂1,1

r1 (ξ1) e
2πi

ñ1
2r1

ξ1 · Ψ̂2,1
r2 (η1) e

2πi
˜ñ1
2r2

η1

]
· · ·
·
[
f̂d(ξd, ηd) · Φ̂1,d

0 (ξd) e
2πi ñ

2r1
αdξd · Φ̂2,d

0 (ηd) e
2πi

˜ñ
2r2

βdηd

]
·
[
f̂d+1(ξd+1, ηd+1) · Φ̂1,d+1

0 (ξd+1) · Φ̂2,d+1
0 (ηd+1)

]
· Φ̂r1

(
ξ + α2ξ2 + · · ·+ αdξd

) · Φ̂r2

(
η + β2η2 + · · ·+ βdηd

)
· dξ dξ1 . . . dξd+1 dη dη1 . . . dηd+1.

To continue the calculations we need the following lemma.

Lemma 3.1. If F, F1, . . . , Fd+1, Φ̃, and
˜̃
Φ are Schwartz functions, then one has∫

ξ+ξ1+···+ξd+1=0

η+η1+···+ηd+1=0

F̂ (ξ, η) F̂1(ξ1, η1) · · · F̂d+1(ξd+1, ηd+1)

· ̂̃Φ(aξ + a1ξ1 + · · ·+ ad+1ξd+1

)· ̂̃̃Φ(bη + b1η1 + · · ·+ βd+1ηd+1

)
· dξ dξ1 . . . dξd+1 dη dη1 . . . dηd+1

=

∫
R4

F
(
x1 − at1, x2 − at2

)
F1

(
x1 − a1t1, x2 − b1t2

)
· · · Fd+1

(
x1 − ad+1t1, x2 − bd+1t2

) · Φ̃(t1) ˜̃Φ(t2) dx1 dx2 dt1 dt2

for arbitrary real numbers a, a1, . . . , ad+1, b, b1, . . ., and bd+1.

This Lemma 3.1 is the biparameter extension of Lemma 4.1 in [9] and since its
proof requires no new ideas it is left to the reader. As pointed out in [9] there is
also a natural generalization of it, which states that the formula works for more
than two averages (so one can take an arbitrary number of Φ̃ functions and another

arbitrary number of
˜̃
Φ function).

As in [9], if G is an arbitrary Schwartz function and a is a real number we
denote by Ga the function defined by

Ĝa(ξ) = Ĝ(ξ) e2πiaξ.

Alternatively, one has Ga(x) = G(x− a). Using Lemma 3.1 and this notation, the
previous (3.13) can be rewritten as∫

R4

(
f ∗ Φ1,0, ñ

2r1

0 ⊗ Φ
2,0,

˜ñ
2r2

0

)
(x1 − t1, x2 − t2)

(
f1 ∗Ψ1,1,

ñ1
2r1

r1 ⊗Ψ
2,1,

˜ñ1
2r2

r2

)
(x1, x2)
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·
d∏

j=2

(
fj ∗ Φ1,j, ñ

2r1
αj

0 ⊗ Φ
2,j,

˜ñ
2r2

βj

0

)
(x1 − αj t1, x2 − βj t2)

·
(
fd+1 ∗ Φ1,d+1

0 ⊗ Φ2,d+1
0

)
(x1, x2)Φr1(t1)Φr2(t2) dt1 dt2 dx1 dx2

=

∫
R4

(
f ∗Φ1,0, ñ

2r1

0 ⊗ Φ
2,0,

˜ñ
2r2

0

)(
x1− t1

2r1
, x2− t2

2r2

)(
f1∗Ψ1,1,

ñ1
2r1

r1 ⊗Ψ
2,1,

˜ñ1
2r2

r2

)
(x1, x2)

·
d∏

j=2

(
fj ∗ Φ1,j, ñ

2r1
αj

0 ⊗ Φ
2,j,

˜ñ
2r2

βj

0

)(
x1 − αjt1

2r1
, x2 − βjt2

2r2

)

·
(
fd+1 ∗ Φ1,d+1

0 ⊗ Φ2,d+1
0

)
(x1, x2)Φ0(t1)Φ0(t2) dt1 dt2 dx1 dx2

=

∫
R4

(
f ∗ Φ1,0,

ñ−t1
2r1

0 ⊗ Φ
2,0,

˜ñ−t2
2r2

0

)
(x1, x2)

(
f1 ∗Ψ1,1,

ñ1
2r1

r1 ⊗Ψ
2,1,

˜ñ1
2r2

r2

)
(x1, x2)

·
d∏

j=2

(
fj ∗ Φ1,j,

ñ−t1
2r1

αj

0 ⊗ Φ
2,j,

˜ñ−t2
2r2

βj

0

)
(x1, x2)

·
(
fd+1 ∗ Φ1,d+1

0 ⊗ Φ2,d+1
0

)
(x1, x2)Φ0(t1)Φ0(t2) dt1 dt2 dx1 dx2.

(3.14)

While we must remember that all the calculations so far have been made under
the assumption that k1 = k2 = 0, they can clearly be performed in general and
then the formula analogous to (3.14) is

∫
R4

(
f∗Φ1,0,

ñ−t1

2k1+r1

k1
⊗ Φ

2,0,
˜ñ−t2

2k2+r2

k2

)
(x1, x2)

(
f1 ∗Ψ

1,1,
ñ1

2k1+r1

k1+r1
⊗Ψ

2,1,
˜ñ1

2k2+r2

k2+r2

)
(x1, x2)

·
d∏

j=2

(
fj ∗ Φ

1,j,
ñ−t1

2k1+r1
αj

k1
⊗ Φ

2,j,
˜ñ−t2

2k2+r2
βj

k2

)
(x1, x2)(3.15)

·
(
fd+1 ∗ Φ1,d+1

k1
⊗ Φ2,d+1

k2

)
(x1, x2)Φ0(t1)Φ0(t2) dt1 dt2 dx1 dx2.

In conclusion, if one writes �α = (α2, . . . , αd) and �β = (β2, . . . , βd) one sees that
the part of (3.7) that corresponds to Case 1′a⊗ Case 1′a can be written as∫

[0,1]d−1

∫
[0,1]d−1

(∑
r1≤0

2r1
∑
r2≤0

2r2
∑
ñ,ñ1

Cr1
ñ,ñ1

∑
˜ñ,˜ñ1

Cr2
˜ñ,˜ñ1

· Cr1,r2,ñ,ñ1,˜ñ,˜ñ1,�α,�β,t1,t2
2,d

)

· Φ0(t1)Φ0(t2) dt1 dt2 d�α d�β,(3.16)

where Cr1,r2,ñ,ñ1,˜ñ,˜ñ1,�α,�β,t1,t2
2,d is the operator whose (d+ 2)-linear form is given by

summing the inner expressions of (3.15) over k1 and k2. To prove (1.9) for (3.16)

one would need to prove it for the operators Cr1,r2,ñ,ñ1,˜ñ,˜ñ1,�α,�β,t1,t2
2,d with bounds

that are summable over r1, r2, ñ, ñ1, ˜̃n, and ˜̃n1 and integrable over �α, �β, t1, and t2.
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It is clear that these operators are essentially biparameter paraproducts and there-
fore one expects that the method of [10], and [11] should be used. That will be
indeed the case, but on the other hand the appearance of the parameters men-
tioned earlier, has the consequence of shifting the implicit bump functions that
appear in their definitions and as a consequence one has to be very precise when
evaluates the size of their boundedness constants.

Since in our case all the bump functions are of Φ type away from the indices 0
and 1, the idea is to use the perfect estimate (3.2) (or rather, its biparameter
variant) to bound all the functions which are in L∞. To be more specific, as in [9],
we denote by S the set of all the indices 2 ≤ j ≤ d for which pj 	= ∞. Set
l := |S|+2 and freeze all the L∞ normalized Schwartz functions fj corresponding
to the indices in {2, . . . , d}\S. The resulting operator is a minimal l-linear operator

which will be denoted by Cl,r1,r2,ñ,ñ1,˜ñ,˜ñ1,�α,�β,t1,t2
2,d .

Shifted hybrid maximal and square functions

It is now time to recall a few basic facts about biparameter paraproducts, to be able
to continue. Consider two generic families (Φj

k1
)k1 and (Φj

k2
)k2 of L1 normalized

bump functions for 1 ≤ j ≤ l + 1 so that in each of them for two indices the
corresponding sequences are of Ψ type.

An l-linear biparameter paraproduct is an l-linear operator whose (l+1)-linear
form is given by

(3.17)

∫
R2

∑
k1,k2∈Z

l+1∏
j=1

(
fj ∗ Φj

k1
⊗ Φj

k2

)
(x1, x2) dx1 dx2.

First assume that we are in a case similar to the one considered before and
that the Ψ functions appear for the indices j = 1, 2. Then one can estimate the
absolute value of (3.17) by

∫
R2

SS(f1)(x1, x2) · SS(f2)(x1, x2) ·
l+1∏
j=2

MM(fj)(x1, x2) dx1 dx2

where, in general, MM(f)(x1, x2) and SS(f)(x1, x2) are defined by

MM(f)(x1, x2) = sup
k1,k2

∣∣ f ∗ Φk1 ⊗ Φk2(x1, x2)
∣∣

and

(3.18) SS(f)(x1, x2) =
( ∑

k1,k2

∣∣ f ∗ Φk1 ⊗ Φk2(x1, x2)
∣∣2)1/2

,

respectively. In order for (3.18) to make sense, we assume of course that both
(Φk1)k1 and (Φk2)k2 are of Ψ type. Since both MM and SS are known to be
bounded in every Lp space for 1 < p < ∞, the above argument proves that our
particular biparameter paraproduct in (3.17) is bounded from Lp1×· · ·×Lpl into Lp

as long as 1/p1 + · · ·+ 1/pl = 1/p and 1 < p1, . . . , pl, p < ∞.
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As one can imagine, the above l2×l2×l∞ argument can be twisted, in which case
one naturally obtains hybrid maximal and square functions of type MS and SM
defined, respectively, by

MS(f)(x1, x2) = sup
k1

(∑
k2

∣∣ f ∗ Φk1 ⊗ Φk2(x1, x2)
∣∣2)1/2

,(3.19)

SM(f)(x1, x2) =
(∑

k1

sup
k2

∣∣ f ∗ Φk1 ⊗ Φk2(x1, x2)
∣∣2)1/2

.(3.20)

One has to assume that the family (Φk2)k2 is of Ψ type in (3.19) and that (Φk1)k1

is of Ψ type in (3.20), for these expressions to make sense.
As observed in [11] all these hybrid operators are bounded in Lp for 1 < p < ∞

as well and, as a consequence, one can bound every biparameter paraproduct in
arbitrary products of Lp spaces, as long as all of their indices are strictly be-
tween 1 and ∞. This discussion shows that in order to understand the operator

Cl,r1,r2,ñ,ñ1,˜ñ,˜ñ1,�α,�β,t1,t2
2,d (and of course, all the other possible operators) one has

to understand how to bound not only the above operators, but also their shifted
analogs of types Mn1Mn1 , Sn1Sn2 , Mn1Sn2 and Sn1Mn2 which are defined simi-

larly, but with respect to the shifted functions (Φ
n1/2

k1

k1
)k1 and (Φ

n2/2
k2

k2
)k2 .

In [8] we obtained a complete understanding of the one-parameter shifted max-
imal and square functions Mn and Sn and proved their boundedness on Lp spaces
with operator bounds of type O(log <n>).5

Now the arguments of [8] and [11] show that their hybrid biparameter analogs
mentioned before, will also be bounded on Lp spaces with operatorial bounds of
type O(log2 <n1> log2 <n2>), as long as one can prove logarithmic bounds for
the so called Fefferman–Stein inequality, namely

(3.21)
∥∥∥( N∑

j=1

|Mnfj|2
)1/2∥∥∥

p
≤ Cp log

2 <n> ·
∥∥∥( N∑

j=1

|fj |2
)1/2∥∥∥

p

which should hold true for every 1 < p < ∞.
This inequality will be proven in detail in a later section. Until then, we will

use all these logarithmic bounds freely.

Banach estimates for Cl,r1,r2,ñ,ñ1,˜ñ,˜ñ1,�α,�β,t1,t2
2,d

Given the logarithmic bounds for the shifted maximal and square functions de-

scribed earlier, it is not difficult to see (as in [9]) that Cl,r1,r2,ñ,ñ1,˜ñ,˜ñ1,�α,�β,t1,t2
2,d is

indeed bounded from Ls1 × · · ·×Lsl into Ls as long as 1/s1+ · · ·+1/sl = 1/s and
1 < s1, . . . , sl, s < ∞ with operator bounds no greater than

(3.22) <r1><r2> log <ñ> log< ˜̃n> log<ñ1> log< ˜̃n1> log< [t1]> log< [t2]>

5The logarithmic bounds for Mn can be found in chapter II of [12], while martingale analogues
of some shifted singular integrals have been studied in [7], as we mentioned earlier.



Calderón commutators and Cauchy integral III 1427

raised to the power 2l. Moreover, this contribution is perfect, given the extra
factors 2r1 and 2r2 that appeared before (recall that both r1 and r2 are negative

in our case) and the quadratic decay in ñ, ñ1, ˜̃n, and ˜̃n1.

Quasi-Banach estimates for Cl,r1,r2,ñ,ñ1,˜ñ,˜ñ1,�α,�β,t1,t2
2,d

Assume now that the index s above satisfies 0 < s < ∞ and so it can be sub-
unitary. We would like to estimate the boundedness constants of

(3.23) Cl,r1,r2,ñ,ñ1,˜ñ,˜ñ1,�α,�β,t1,t2
2,d : Ls1 × · · · × Lsl → Ls.

This time one has to discretize the operators in the x1 and x2 variables and
then take advantage of the general result in Theorem 2.1. Arguing as in [9] we see
that the problem reduces to estimating expressions of the form

1

26r1l
1

26r2l

∑
R

1

|R|(l−1)/2

∣∣∣ 〈f,Φ1,0
I[ñ−t1]

⊗ Φ2,0
J
[˜ñ−t2]

〉∣∣∣ · ∣∣∣ 〈f1,Φ1,1
Iñ1

⊗ Φ2,1
J

˜ñ1

〉∣∣∣
·
∏
j∈S

∣∣∣ 〈fj ,Φ1,j
I[(ñ−t1)αj ]

⊗ Φ2,j
J
[(˜ñ−t2)βj ]

〉∣∣∣ · ∣∣∣ 〈fd+1,Φ
1,d+1
I ⊗ Φ2,d+1

J

〉∣∣∣
where the sum runs over dyadic rectangles of the form R = I × J . By applying
Theorem 2.1 we see that the operator norm of (3.23) can be majorized by

(
2−6r1 2−6r2 log <ñ> log < ˜̃n> log <ñ1> log < ˜̃n1> log < [t1]> log < [t2]>

)2l
,

and the same is true for all its adjoint operators. In the end, by using the same in-

terpolation argument as in [9], one can see that the operator Cl,r1,r2,ñ,ñ1,˜ñ,˜ñ1,�α,�β,t1,t2
2,d

satisfies the inequality (1.9) with bounds that are clearly acceptable in (3.16) as
desired.

These complete the discussion of Case 1′a⊗ Case 1′a. The rest of the cases can
be treated similarly after certain adjustments. Since all of these adjustments have
been described carefully in [9], the only thing that is left is to realize that they
work equally well in our tensor product framework. The straightforward (but quite
delicate) details are left to the reader.

4. Proof of Theorem 2.1

The proof of Theorem 2.1 is based on the method developed in [10] and [11]. First,
we need to recall the following lemma whose detailed proof can be found in [11].

Lemma 4.1. Let J ⊆ R be an arbitrary interval. Then, every bump function φJ

adapted to J can be written as

(4.1) φJ =
∑
k∈N

2−1000 l k φk
J ,
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where for each k ∈ N, φk
J is also a bump adapted to J but with the additional

property that supp(φk
J ) ⊆ 2kJ .6 Moreover, if we assume

∫
R φJ(x)dx = 0 then all

the functions φk
J can be chosen so that

∫
R
φk
J (x)dx = 0 for every k ∈ N.

Fix the normalized functions f1, . . . , fl and the set E as in (2.4). Using Lem-
ma 4.1, one can estimate the (l + 1)-linear form on the left-hand side of (2.4) by

|ΛR(f1, . . . , fl+1)|
≤

∑
�k∈N2

2−1000 l |�k| ∑
R∈R

1

|R|(l−1)/2

∣∣ 〈f1,Φ1
Rn1

〉∣∣ · · · ∣∣ 〈fl,Φl
Rnl

〉∣∣ ∣∣ 〈fl+1,Φ
l+1,�k
R 〉∣∣ ,(4.2)

where the new functions Φl+1,�k
R have basically the same structure as the old Φl+1

R

but they have the additional property that supp(Φl+1,�k
R ) ⊆ 2

�kR. Here we have

written 2
�kR := 2k1I × 2k2J , �k = (k1, k2) and |�k| = k1 + k2.

As before, the form (4.2) will be majorized by tensoring two separate l2 × l2 ×
l∞×· · ·× l∞ estimates with respect to the parameters I and J . As a consequence,
for every index 1 ≤ j ≤ l + 1 there are hybrid square and maximal functions
naturally attached to that position which we denote by (M−S)j . More specifically
(M − S)j can be the discrete variant of Mn1

j
Mn2

j
or of Sn1

j
Sn2

j
or of Mn1

j
Sn2

j
or

of Sn1
j
Mn2

j
, depending on the positions of the corresponding Ψ functions. For

simplicity, we do not write explicitly the dependence of these functions (M−S)j on
the shifting parameters nj . Recall also that each of them comes with a boundedness
constant which is no greater than O(log2 <n1

j > log2 <n2
j >).7

We construct now an exceptional set as follows. For each �k ∈ N
2 define

(4.3)

Ω−5|�k| =
l⋃

j=1

{
(x, y) ∈ R

2 : (M − S)j(fj)(x, y) > C25|�k| log2 <n1
j > log2 <n2

j >
}
.

Also, define

(4.4) Ω̃−5|�k| =
{
(x, y) ∈ R

2 : MM
(
χΩ−5|�k|

)
(x, y) >

1

2l

}
and

(4.5)
˜̃
Ω−5|�k| =

{
(x, y) ∈ R

2 : MM
(
χ
˜Ω−5|�k|

)
(x, y) >

1

2|�k|

}
.

Finally, we define

Ω =
⋃

�k∈N2

˜̃
Ω−5|�k|.

It is clear that |Ω| < 1/2 if C is a big enough constant. Now we fix C. Then define
E′ := E \ Ω and observe that |E′| ∼ 1.

62kJ is the interval having the same center as J and whose length is 2k|J |.
7It is a standard fact that the continuous and the discrete variants of these operators behave

similarly.
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Fix �k ∈ N
2 and look at the corresponding inner sum in (4.2). We split it into

two parts as follows. Part I comprises the sum over those rectangles R with the
property that

(4.6) R ∩ Ω̃c
−5|�k| 	= ∅

while Part II comprises the sum over those rectangles with the property that

(4.7) R ∩ Ω̃c
−5|�k| = ∅.

We observe that Part II equals zero, because if R∩ Ω̃c
−5|�k| 	= ∅ then R ⊆ Ω̃−5|�k|

and in particular this implies that 2
�kR ⊆ ˜̃

Ω−5|�k| which is a set disjoint from E′.
It is therefore enough to estimate Part I. For simplicity, we will still denote by R
the collection of rectangles that occur in Part I of the sum.

Since R ∩ Ω̃c
−5|�k| 	= ∅, it follows that |R ∩Ω−5|�k||/|R| ≤ 1/2l or equivalently,

|R ∩ Ωc
−5|�k|| > (2l − 1)/(2l) |R|.

We are now going to describe l + 1 decomposition procedures, one for each
function fj for 1 ≤ j ≤ l+1. Later on, we will combine them, in order to estimate
our sum.

First of all, independently, for every index 1 ≤ j ≤ l, we define recursively a
sequence of larger and larger sets {Ωj

sj}, and also a sequence of disjoint collections

of rectangles {Rj
sj} as follows. We start by defining

Ωj

−5|�k|+1
=

{
(x, y) ∈ R

2 : (M − S)j(fj)(x, y) >
C 25|�k| log2 <n1

j > log2 <n2
j >

21

}
and set

Rj

−5|�k|+1
=

{
R ∈ R :

∣∣R ∩ Ωj

−5|�k|+1

∣∣ > 1
2l |R|

}
.

Then we define

Ωj

−5|�k|+2
=

{
(x, y) ∈ R

2 : (M − S)j(fj)(x, y) >
C 25|�k| log2 <n1

j > log2 <n2
j >

22

}
and similarly set

Rj

−5|�k|+2
=

{
R ∈ R \ Rj

−5|�k|+1
:
∣∣R ∩ Ωj

−5|�k|+2

∣∣ > 1
2l |R|

}
,

and so on. The constant C > 0 used above is the one in the definition of the set E′

from before. Since there are finitely many rectangles, these iterative procedures
will eventually terminate, producing the aforementioned sets {Ωj

sj} and {Rj
sj}.

In particular, for each 1 ≤ j ≤ l, they allow us to decompose the collection of
rectangles R as R = ∪sjRj

sj .
We would clearly like to have such a decomposition available for the final func-

tion fl+1 as well. To do this, we first need to construct the analogue for it of
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the set Ω−5|�k|. Choose an integer N > 0 so large that for every R ∈ R we have

|R ∩ Ωl+1c
−N | > (2l − 1)/(2l) |R|, where

Ωl+1
−N =

{
(x, y) ∈ R

2 : (M − S)l+1(fl+1)(x, y) > C 2N
}
.

Then, similarly to the previous procedures, we define

Ωl+1
−N+1 =

{
(x, y) ∈ R

2 : (M − S)l+1(fl+1)(x, y) > C 2N/21
}

and set
Rl+1

−N+1 =
{
R ∈ R :

∣∣R ∩ Ωl+1
−N+1

∣∣ > 1
2l |R|

}
,

then define

Ωl+1
−N+2 =

{
x ∈ R

2 : (M − S)l+1(fl+1)(x, y) > C 2N/22
}

and set
Rl+1

−N+2 =
{
R ∈ R \ Rl+1

−N+1 :
∣∣R ∩ Ωl+1

−N+2

∣∣ > 1
2l |R|

}
,

and so on, constructing the sets {Ωl+1
sl+1

} and {Rl+1
sl+1

} such that the same collection

of rectangles which appear in Part I, splits also as ∪sl+1
Rl+1

sl+1
.

Then we write Part I as∑
s1,...,sl>−5|�k|,sl+1>−N

∑
R∈Rs1,...,sl+1

1

|R|(l+1)/2

∣∣ 〈f1,Φ1
Rn1

〉∣∣(4.8)

· · · ∣∣ 〈fl,Φl
Rnl

〉∣∣ ∣∣ 〈fl+1,Φ
l+1,�k
R 〉∣∣ |R|,

where Rs1,...,sl+1
:= R1

s1 ∩ · · · ∩Rl+1
sl+1

. Now, if R belongs to Rs1,...,sl+1
this means

in particular that R has not been selected at either of the previous sj − 1 steps for
1 ≤ j ≤ l + 1, which means that |R ∩ Ω1

s1−1| ≤ 1
2l |R|, . . . , |R ∩ Ωl+1

sl+1−1| ≤ 1
2l |R|

or equivalently |R ∩ Ω1c
s1−1| > 2l−1

2l |R|, . . . , |R ∩ Ωl+1c
sl+1−1| > 2l−1

2l |R|. This implies
that

(4.9)
∣∣R ∩ Ω1c

s1−1 ∩ · · · ∩ Ωl+1c
sl+1−1

∣∣ > 1

2
|R|.

In particular, using (4.9), the term in (4.8) is smaller than

(4.10)
∑

s1,...,sl>−5|�k|
sl+1>−N

∑
R∈Rs1,...,sl+1

1

|R|(l+1)/2

∣∣ 〈f1,Φ1
Rn1

〉∣∣ · · · ∣∣ 〈fl,Φl
Rnl

〉∣∣

· ∣∣ 〈fl+1,Φ
l+1,�k
R 〉∣∣ ∣∣R ∩ Ω1c

s1−1 ∩ · · · ∩ Ωl+1c
sl+1−1

∣∣
=

∑
s1,...,sl>−5|�k|
sl+1>−N

∫
Ω1c

s1−1∩···∩Ωl+1c
sl+1−1

∑
R∈Rs1,...,sl+1

1

|R|(l+1)/2

· ∣∣ 〈f1,Φ1
Rn1

〉∣∣ · · · ∣∣ 〈fl,Φl
Rnl

〉∣∣ ∣∣ 〈fl+1,Φ
l+1,�k
R 〉∣∣χR(x, y) dx dy
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�
∑

s1,...,sl+1>−5|�k|
sl+1>−N

∫
Ω1c

s1−1∩···∩Ωl+1c
sl+1−1∩ΩRs1,...,sl+1

l+1∏
j+1

(M − S)j(fj) (x, y) dx dy

�
∑

s1,...,sl+1>−5|�k|
sl+1>−N

25l|�k|
l∏

j=1

log2 <n1
j > log2 <n2

j > 2−s1 · · · 2−sl+1 |ΩRs1,...,sl+1
|,

where
ΩRs1,...,sl+1

:=
⋃

R∈Rs1,...,sl+1

R.

On the other hand we can write

|ΩRs1,...,sl+1
| ≤ |ΩR1

s1
| ≤ ∣∣{(x, y) ∈ R

2 : MM(χΩ1
s1
)(x, y) > 1/(2l)

}∣∣
� |Ω1

s1 | =
∣∣∣{(x, y) ∈ R

2 : (M − S)1(f1)(x, y) >
C(�k,n1)

2s1

}∣∣∣ � 2s1p1 .

Similarly, we have ∣∣ΩRs1,...,sl+1

∣∣ � 2sjpj

for every 1 ≤ j ≤ l and also ∣∣ΩRs1,...,sl+1

∣∣ � 2sl+1α,

for every α > 1. Here we used the facts that all the operators (M−S)j are bounded
on Ls as long as 1 < s < ∞ and that |E′| ∼ 1. In particular, it follows that

(4.11)
∣∣ΩRs1,...,sl+1

∣∣ � 2s1p1θ1 · · · 2slplθl2sl+1αθl+1

for any 0 ≤ θ1, . . . , θl+1 < 1 such that θ1 + · · ·+ θl+1 = 1.
Now we split the sum in (4.10) into

∑
s1,...,sl>−5|�k|

sl+1>0

25l|�k|
l∏

j=1

log2 <n1
j > log2 <n2

j > 2−s1 · · · 2−sl+1 |ΩRs1,...,sl+1
|(4.12)

+
∑

s1,...,sl>−5|�k|
0>sl+1>−N

25l|�k|
l∏

j=1

log2 <n1
j > log2 <n2

j > 2−s1 · · · 2−sl+1|ΩRs1,...,sl+1
|.

To estimate the terms in (4.12) we use the inequality (4.11) as follows. First, we
choose θ1, . . . , θl small enough so that 1− pjθj > 0 for every 1 ≤ j ≤ l. Because of
this, θl+1 can get quite close to 1. To estimate the first term in (4.12) we pick α
very close to 1 so that 1−αθl+1 > 0, while to estimate the second term we pick α
large enough so that 1− αθl+1 < 0.

With these choices, the sum in (4.12) is at most O(2100 l |�k| ∏l
j=1 log

2 < n1
j >

log2 <n2
j >) and after summing over �k ∈ N

2 this causes the expression in (4.2) to

be O(
∏l

j=1 log
2 <n1

j > log2 <n2
j >), as desired. This ends the proof.
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5. Logarithmic bounds for the shifted hybrid maximal and
square functions

To complete the proof of the main theorem, we need to demonstrate the logarithmic
bounds that have been used for the shifted hybrid maximal and square functions.
As we mentioned before, the arguments of [8] and [10] show that they would
follow from the following logarithmic bound for the vector valued Fefferman–Stein
inequality.

Theorem 5.1. Let n ∈ Z be a fixed integer and denote by Mn the shifted maximal
operator associated to n. Then, one has, for every N and any 1 < p < ∞,

(5.1)
∥∥∥( N∑

j=1

|Mnfj|2
)1/2∥∥∥

p
≤ Cp log

2 <n>
∥∥∥( N∑

j=1

|fj|2
)1/2∥∥∥

p
.

Proof. The proof is a combination of the classical argument of Fefferman and Stein
from [12] with the new ideas from [8]. Workman’s [13] gives a nice presentation
of the Fefferman–Stein inequality and we follow that presentation closely. There
are three cases. Clearly, |n| is supposed to be large, otherwise there is nothing to
prove. Assume also that n is positive, since the negative case is completely similar.

Case 1: p = 2

This case is very simple and it follows immediately from the theorem in [8] which
says that Mn is bounded on L2 (and in fact on any Lp) with an operator bound
of type O(log <n>).

Case 2: p > 2

To understand this case one first needs to observe the following lemma.

Lemma 5.2. The inequality

(5.2) α ·
∫
{x:Mnf(x)>α}

|Φ(x)| dx �
∫
R

|f(x)|Mn Φ(x) dx

holds for every α > 0 and measurable functions f and Φ, where Mn is defined as

MnΦ(x) :=

[log2 n]∑
k=0

M−2k Φ(x).

Proof. To prove this we need to recall a few facts from [8]. Denote by In maximal
dyadic intervals chosen with the property that

(5.3)
1

|In|
∫
In

|f(x)| dx > α.

Clearly, they are disjoint and their union equals {x : Mf(x) > α}. Each In comes

with [log2 n] equal length dyadic intervals, denoted by I1n, . . . , I
[log2 n]
n , attached

to it.
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More precisely, Ikn lies 2k steps of length |In| to the left of In. It was observed
in [8] that {

x : Mnf(x) > α
} ⊆

⋃
In

In ∪ I1n ∪ · · · ∪ I [log2 n]
n .

Using these, one can majorize the left hand side of (5.2) by

α ·
∑
In

[log2 n]∑
k=1

∫
Ik
n

|Φ(x)| dx �
∑
In

[log2 n]∑
k=1

( 1

|In|
∫
In

|f(y)| dy
)
·
(∫

Ik
n

|Φ(x)| dx
)

=
∑
In

[log2 n]∑
k=1

(∫
In

|f(y)| dy
)
·
( 1

|In|
∫
Ik
n

|Φ(x)| dx
)
.(5.4)

Now, for every y ∈ In one can see that

1

|In|
∫
Ik
n

|Φ(x)|dx � M−2kΦ(y).

Using this in (5.4) one immediately obtains the desired (5.2). �

The result of the above lemma implies that

Mn : L1(R,MnΦdx) → L1,∞(R, |Φ|dx).
Since it can be assumed that Φ is not identically equal to zero, we know that
MnΦ > 0. In particular, we also have the trivial bound

Mn : L∞(R,MnΦdx) → L∞(R, |Φ|dx)
and by interpolation, we obtain the following L2 estimate:

(5.5)

∫
R

|Mnf(x)|2|Φ(x)| dx �
∫
R

|f(x)|2Mn Φ(x) dx.

Returning to the proof of Case 2, since p > 2 we know that q := p/2 > 1. By
picking an appropriate ‖Φ‖q′ = 1 and relying on the previous (5.5), one can write

∥∥∥( N∑
j=1

|Mnfj |2
)1/2∥∥∥2

p
=

∥∥∥ N∑
j=1

|Mnfj|2
∥∥∥
q
=

∫
R

( N∑
j=1

|Mnfj |2
)
|Φ| dx

�
∫
R

( N∑
j=1

|fj |2
)
Mn Φ dx �

∥∥∥ N∑
j=1

|fj|2
∥∥∥
q
‖Mn Φ‖q′ �

∥∥∥( N∑
j=1

|fj |2
)1/2∥∥∥2

p
‖Mn‖q′→q′ .

On the other hand, from the definition of Mn and the result of [8], we know that

‖Mn‖q′→q′ ≤
[log2 n]∑
k=1

‖M−2k‖q′→q′ �
[log2 n]∑
k=1

log 2k � log2 <n>,

which completes Case 2.
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Case 3: 1 < p < 2

The idea here is to prove the following endpoint case

(5.6)
∥∥∥( N∑

j=1

|Mnfj|2
)1/2∥∥∥

1,∞
� log2 <n> ·

∥∥∥( N∑
j=1

|fj |2
)1/2∥∥∥

1

directly and then to apply standard vector-valued interpolation with the corre-
sponding L2 estimate.

To prove (5.6), let α > 0 and define

F (x) :=
( N∑

j=1

|fj(x)|2
)1/2

.

Select maximal dyadic intervals In with the property

1

|In|
∫
In

F (x) dx > α.

As before, we think of each In as being related to the dyadic interval I, having the
same length as In, and lying n steps of length |In| to the left of it. If we define
Ω :=

⋃
I In one has as usual

(5.7) |Ω| =
∑
I

|In| ≤ 1

α

∑
I

∫
In

F (x) dx ≤ 1

α
‖F‖1.

Observe that F ≤ α on Ωc and also that

α <
1

|In|
∫
In

F (x) dx ≤ 2α

because of the maximality of In.

Now split each fk as fk = f ′
k + f ′′

k where f ′
k := fk χΩc and f ′′

k := fk χΩ.

Contribution of {f ′
k}

One can write∣∣∣{x :
(∑

j

|Mn f
′
j(x)|2

)1/2

> α/2
}∣∣∣ ≤ 1

α2

∥∥∥(∑
j

|Mn f
′
j(x)|2

)1/2∥∥∥2

2

� 1

α2
log2 <n>

∥∥∥(∑
j

|f ′
j(x)|2

)1/2∥∥∥2
2
� log2 <n>

1

α2

∫
Ωc

F 2(x) dx

≤ log2 <n>
1

α
‖F‖1

as desired.
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Contribution of {f ′′
k }

Estimating the corresponding contribution for {f ′′
k }, requires a bit more care. First

define the functions gk by

(5.8) gk :=
∑
I

( 1

|In|
∫
In

|fk(x)| dx
)
· χIn ,

and then define

G(x) :=
(∑

j

|gj(x)|2
)1/2

.

Fix x ∈ In and observe that by the Minkowski inequality one can write

G(x) =
(∑

j

( 1

|In|
∫
In

|fj(y)| dy
)2)1/2

≤ 1

|In|
∫
In

(∑
j

|fj(y)|2
)1/2

dy

=
1

|In|
∫
In

F (y) dy ≤ 2α.

Using that G is supported in Ω and arguing as before, we have

∣∣∣{x :
(∑

j

|Mn gj(x)|2
)1/2

> α/2
}∣∣∣ � 1

α2
log2 <n>

∥∥∥(∑
j

|gj(x)|2
)1/2∥∥∥2

2

=
1

α2
log2 <n> ‖G‖22 � log2 <n> |Ω| ≤ 1

α
log2 <n> ‖F‖1.

Now we would like to compare Mn f
′′
k (x) with Mn gk(x) if possible. Denote by Ω̃

the set

Ω̃ :=
⋃
I

3In ∪ 3I1n ∪ · · · ∪ 3I [log2 n]
n

and observe that |Ω̃| � log <n> |Ω|. We will prove that for every x ∈ Ω̃c one has

(5.9) Mn f
′′
k (x) ≤ Mn gk(x)

and this will clearly allow us to reduce the contribution of {f ′′
k } to the contribution

of {gk} which was understood earlier. Fix x ∈ Ω̃c and x ∈ J , where J is a dyadic
interval such that the corresponding 1

|Jn|
∫
Jn

|f ′′
k (y)| dy is nonzero. In particular, Jn

has to intersect Ω which is the support of f ′′
k . Suppose now that I is so that

Jn ∩ In 	= ∅. Then, one must have In ⊆ Jn as the other alternative Jn ⊆ In is not
possible since x ∈ Ω̃c. This implies that

1

|Jn|
∫
Jn

|f ′′
k (x)| dx =

1

|Jn|
∫
Jn

|gk(x)| dx

which is enough to guarantee (5.9) and conclude the proof. �
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6. Generalizations

The goal of this section is to point out that virtually all the earlier generalizations
that we described in [8] and [9], have natural extensions in this multiparameter
setting and can be proved by the same method. We give here just two samples and
leave the rest (and the straightforward details) to the imaginative reader. Suppose
for simplicity that we are in R

2 and write D1 := ∂/∂x1 and D2 := ∂/∂x2. A direct
computation shows that the double commutator [|D2|, [|D1|, A]] can be rewritten as

(6.1)
[ |D2|, [|D1|, A]

]
f(x) = p.v.

∫
R2

f(x+ t)
(Δ(1)

t1

t1
◦ Δ

(2)
t2

t2
A(x)

)dt1
t1

dt2
t2

which is precisely the bidisc extension of the first commutator of Calderón. There
is of course a similar formula available in every dimension.

Theorem 6.1. Let a1, . . . , an be real numbers, all different from zero. The expres-
sion

p.v.

∫
Rn

f(x+ t)
(Δ(1)

a1t1

t1
◦ · · · ◦ Δ

(n)
antn

tn
A(x)

)dt1
t1

· · · dtn
tn

,

viewed as a bilinear map in f and ∂nA/∂x1 · · · ∂xn, is bounded from Lp×Lq into Lr

for every 1 < p, q ≤ ∞ with 1/p+ 1/q = 1/r and 1/2 < r < ∞.

The particular case q = ∞ is in Journé’s [5] but the rest of the estimates seem
to be new.

Then, one can also observe by a direct calculation that

[
|D2|,

[ |D1|,
[ |D2|, [ |D1|, A ]

] ]]
f(x)

= p.v.

∫
R4

f(x+ t+ s)
(Δ(1)

t1

t1
◦ Δ

(2)
t2

t2
◦ Δ

(1)
s1

s1
◦ Δ

(2)
s2

s2
A(x)

)dt1
t1

dt2
t2

ds1
s1

ds2
s2

which is the bidisc analogue of an operator introduced in [9]. As we promised, we
record now the following theorem.

Theorem 6.2. Let F be an analytic function on a disc centered at the origin in the
complex plane and let A be a complex valued function in R

2 so that ∂4A/∂x2
1∂x

2
2 ∈

L∞(R2) with an L∞ norm strictly smaller than the radius of convergence of F .
Then, the linear operator

f → p.v.

∫
R4

f(x+ t+ s)F
(Δ(1)

t1

t1
◦ Δ

(2)
t2

t2
◦ Δ

(1)
s1

s1
◦ Δ

(2)
s2

s2
A(x)

)dt1
t1

dt2
t2

ds1
s1

ds2
s2

is bounded on Lp(R2) for every 1 < p < ∞.
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