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Semiclassical hypoelliptic estimates

with a loss of many derivatives

Alberto Parmeggiani and Karel Pravda-Starov

Abstract. We study the pseudospectral properties of general pseudodif-
ferential operators around a doubly characteristic point and provide nec-
essary and sufficient conditions for semiclassical hypoelliptic a priori esti-
mates with a loss of many derivatives.

1. Introduction

In recent years, there has been renewed interest in the analysis of the spectra and
resolvents of non-self-adjoint operators with double characteristics. This interest
partly originates in the study of the long-time behavior of evolution equations
associated with non-self-adjoint operators{

(∂t + P )u(t, x) = 0

u(t, ·)|t=0 = u0.

This is for instance the case in the analysis of kinetic equations and the study of
the trend to equilibrium in statistical physics.

The study of doubly characteristic operators has a long and distinguished tra-
dition in the analysis of partial differential equations [14], [15], [29]. The simplest
examples of such operators are the quadratic differential operators

Q(x,Dx) =
∑

|α+β|=2

qα,β x
αDβ

x , x ∈ R
n,

with qα,β ∈ C, Dxj = i−1∂xj , α, β ∈ Nn. In the elliptic case, the spectra of these
operators were understood and described explicitly in [29]. On the other hand,
the pseudospectral study of these operators is much more recent. Studying the
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pseudospectrum of an operator is studying the regions

Specε(A) =
{
z ∈ C; ‖(A− z)−1‖ ≥ 1

ε

}
, ε > 0,

in the complex plane where its resolvent is large in norm, with the convention that
‖(A−z)−1‖ = +∞ if z belongs to the spectrum Spec(A) of A. The spectral stability
of the operator under small perturbations can be analyzed using the breadth of
the pseudospectrum. Indeed, the pseudospectrum may be defined in an equivalent
way [28] in terms of the spectra

Specε(A) =
⋃

B∈L (H),

‖B‖L (H)≤ε

Spec(A+B)

of the operator perturbations, where L (H) stands for the set of bounded linear
operators on H . The pseudospectral study of a variety of operators has recently
received much attention in diverse contexts. For further details and motivations,
we refer the reader to the overview of this topic in the book [32], and to the refer-
ences therein. For now, we simply remark that the study of the pseudospectrum
is nontrivial only for non-self-adjoint operators, or more precisely for nonnormal
operators. In fact, the classical formula

(1.1) ∀z �∈ Spec(A), ‖(A− z)−1‖ =
1

dist(z, Spec(A))
,

emphasizes that the resolvent of a normal operator cannot blow up far from its
spectrum, and that the spectrum is stable under small perturbations

(1.2) Specε(A) =
{
z ∈ C; dist(z, Spec(A)) ≤ ε

}
.

However, formula (1.1) does not hold any longer for nonnormal operators and the
behavior of the resolvent for such operators can be complicated, becoming very
large in norm far from the spectrum. As a consequence, the spectra of these oper-
ators may be unstable under small perturbations. The rotated harmonic oscillator

P = −∂2x + eiθx2, −π < θ < π, θ �= 0,

is a notable example of an elliptic quadratic operator whose spectrum is unsta-
ble under small perturbations. The seminal works [1], [4] have indeed shown that
its resolvent ‖(P − z)−1‖ exhibits rapid growth in some regions of the resolvent
set far from the spectrum, and that some strong spectral instabilities develop in
some regions with specific geometry, which have been precisely described in the
works [1], [22]. These phenomena of spectral instabilities are not peculiar to the
rotated harmonic oscillator. They were shown to be the typical behavior of any
nonnormal elliptic quadratic operator [23], [25], [26], with rapid resolvent growth
along any ray lying inside the range of their Weyl symbols. This is linked to some
properties of microlocal nonsolvability and to violations of the adjointness condi-
tion in the so-called Nirenberg–Treves condition (Ψ), which allow the construction
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of quasimodes [3], [5], [15], [21], [23], [36], [37]. Similar types of spectral instabili-
ties were shown to occur for general pseudodifferential operators around a doubly
characteristic point, when the quadratic approximations of these operators at the
doubly characteristic set are nonnormal [24]. Beginning with these early insights,
there has been a series of recent works [5], [8], [9], [10], [12], [13], [24], [30], [33],
and [34], aimed at providing a sharp description of the spectral and pseudospectral
properties of general pseudodifferential operators around a doubly characteristic
point. In the present work, we aim at sharpening this picture and at describing
the pseudospectral behavior of a general pseudodifferential operator around a dou-
bly characteristic point by refining the understanding of the underlying geometry
ruling these phenomena.

2. Setting of the analysis

Let m(·;h) : R2n −→ (0,+∞) be an order function (see Dimassi–Sjöstrand’s
book [6]), that is,

∃C0, N0 > 0, ∀ 0 < h ≤ 1, ∀X,Y ∈ R
2n, m(X ;h) ≤ C0〈X − Y 〉N0m(Y ;h),

with 〈X〉 = (1+ |X |2)1/2, where | · | is the Euclidean norm. We consider the symbol
class of h-dependent symbols whose growth is controlled by the order function m
given by

S(m) =
{
a(·;h) ∈ C∞(R2n,C); ∀α ∈ N

2n, ∃Cα > 0,(2.1)

∀ 0 < h ≤ 1, ∀X ∈ R
2n, |∂αXa(X ;h)| ≤ Cαm(X ;h)

}
.

In the present work, we study a semiclassical pseudodifferential operator

(2.2) P = pw
(
x, hDx;h

)
=

1

(2π)n

∫
R2n

ei(x−y)·ξ p
(x+ y

2
, h ξ;h

)
u(y) dy dξ,

defined by the semiclassical Weyl quantization of a symbol p (x, ξ;h) admitting a
semiclassical asymptotic expansion

(2.3) p (x, ξ;h) ∼
+∞∑
j=0

pj (x, ξ)h
j

in the symbol class S(1). The symbols pj ∈ S(1) in the asymptotic expansion are
assumed to be independent of the semiclassical parameter 0 < h ≤ 1. We assume
that the real part of the principal symbol is nonnegative

(2.4) Re p0(X) ≥ 0, X = (x, ξ) ∈ R
2n,

and elliptic at infinity

(2.5) ∃C > 1, ∀ |X | ≥ C, Re p0(X) ≥ 1

C
.
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These two assumptions imply that there exists a neighborhood of zero in the com-
plex plane such that the analytic family of bounded operators

P − z : L2(Rn) −→ L2(Rn), z ∈ neigh(0,C),

is Fredholm of index 0, when the semiclassical parameter 0 < h� 1 is sufficiently
small [5]. An application of the analytic Fredholm theory shows that the spectrum
of the operator P in a small neighborhood V of 0, that can be taken to have the
form V = D(0, c) (the open disk in C of radius c centered at 0) with 0 < c ≤ 1, is
discrete and is composed only of eigenvalues with finite algebraic multiplicity.

We assume further that the characteristic set of the real part of the principal
symbol is reduced to a single point,

(2.6) (Re p0)
−1({0}) = {0} ⊂ R

2n,

and that this point is doubly characteristic for the principal symbol p0,

(2.7) p0(0) = ∇p0(0) = 0,

so that we may write

(2.8) p0(Y ) = q(Y ) +O(Y 3), Y → 0,

q being the quadratic term in the Taylor expansion of the principal symbol at 0.
We aim to study the spectral and pseudospectral properties of the operator P

in a neighborhood of 0. As mentioned above, the study of this problem was started
in [12], [13], where the first lines of this spectral and pseudospectral picture were
sketched.

The results of [12] actually provide an initial localization of the spectrum of
the operator P in any given h-ball centered at z = 0. More specifically, when the
quadratic approximation of the principal symbol is elliptic on a particular vector
subspace S of phase space defined as its singular space1

(2.9) X ∈ S, q(X) = 0 =⇒ X = 0,

then, for any given constant C > 1 and any fixed neighborhood Ω ⊂ C of the
spectrum Spec(qw(x,Dx)) of the quadratic operator qw(x,Dx) described in the
appendix (Section 6), there exist positive constants 0 < h0 ≤ 1, C0 > 0 such that
for all 0 < h ≤ h0, |z| ≤ C satisfying

z − p1(0) /∈ Ω,

we have

(2.10) h‖u‖L2 ≤ C0 ‖(P − hz)u‖L2, u ∈ S (Rn),

1We refer the reader to the appendix, Section 6, for miscellaneous facts about quadratic
operators and the definition of the singular space.
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where p1(0) stands for the value of the subprincipal symbol at the doubly char-
acteristic point 0 ∈ R

2n. This result indicates that the spectrum of P in any
h-ball centered at z = 0 is localized in an h-neighborhood of the spectrum of its
quadratic approximation shifted by the value of the subprincipal symbol at the
doubly characteristic point

p1(0) + Spec
(
qw(x,Dx)

)
.

Under the same assumptions, this pseudospectral picture was complemented by
the following result about the spectrum [13]: for any given C > 0, there exists
0 < h0 ≤ 1, such that for all 0 < h ≤ h0, the spectrum of the operator P in the
open disk D(0, Ch) is given by eigenvalues zk having a semiclassical expansion of
the form

(2.11) zk ∼ h
(
λk + p1(0) + h1/Nkλk,1 + h2/Nkλk,2 + · · · ),

where λk is an eigenvalue of the quadratic operator qw(x,Dx) located in the fixed
ball D(0, C), Nk is the dimension of the corresponding generalized eigenspace, and
the λk,j ∈ C are complex constants.

Next we consider the remainder term in the principal symbol

(2.12) r(X) = p0(X)− q(X),

and assume further the existence of a closed angular sector Γ with vertex at 0, and
a neighborhood V of the origin in R2n such that

(2.13) r(V ) \ {0} ⊂ Γ \ {0} ⊂ {
z ∈ C; Re z > 0

}
.

When the quadratic approximation qw(x,Dx) enjoys some subelliptic properties,
sharp resolvent estimates may be derived outside an h-ball centered at z = 0, in a
parabolic region with a particular geometry. More specifically, when the quadratic
form q has a zero singular space, i.e., S = {0}, we consider the smallest integer
0 ≤ k0 ≤ 2n− 1 satisfying

(2.14)
( k0⋂

j=0

Ker
(
Re F (Im F )j

))⋂
R

2n = {0},

where F is the Hamilton map of q (see the appendix, Section 6). It was shown
in [13] that for any given sufficiently small constant c0 > 0 there exist positive
constants 0 < h0 ≤ 1, C ≥ 1, and C0 > 0, such that for all 0 < h ≤ h0,
u ∈ S (Rn), and z ∈ Ωh,

(2.15) h2k0/(2k0+1) |z|1/(2k0+1) ‖u‖L2 ≤ C0 ‖Pu− zu‖L2,

where

(2.16) Ωh =
{
z ∈ C; Re z ≤ 1

C
h2k0/(2k0+1) |z|1/(2k0+1), C h ≤ |z| ≤ c0

}
.
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The term h2k0/(2k0+1) |z|1/(2k0+1) increases when the spectral parameter z moves
away from the origin in the region where Ch ≤ |z| ≤ c0. When the spectral
parameter has magnitude h, we recover the semiclassical estimate (2.10), and we
emphasize that the resolvent estimate

(P − z)−1 = O(
h−2k0/(2k0+1)|z|−1/(2k0+1)

)
: L2(Rn) −→ L2(Rn),

and the geometry of the parabolic region where it holds, are directly related to the
loss of 2k0/(2k0+1) derivatives appearing in the global subelliptic estimate satisfied
by the quadratic approximation of the operator at the doubly characteristic point
(see the appendix, Section 6),∥∥〈(x,Dx)〉2/(2k0+1)u

∥∥
L2 ≤ C

(‖qw(x,Dx)u‖L2 + ‖u‖L2

)
.

Im z

Re z0

Ch

C0

Figure 1. The estimate h2k0/(2k0+1)|z|1/(2k0+1)‖u‖L2 ≤ C0 ‖Pu− zu‖L2 is valid when z
belongs to the dark grey region of the figure, whereas the estimate h‖u‖L2 ≤ C0 ‖Pu −
zu‖L2 is valid in the light grey one.

These results show that the algebraic structure of the singular space makes it
possible to give a sharp description of the spectral and pseudospectral properties
of pseudodifferential operators around a doubly characteristic point. The picture
drawn so far has been sharpened recently by Viola [33], [34]. In these papers,
Viola studies the case when the spectral parameter z enters more deeply into
the numerical range and may grow slightly more rapidly than the semiclassical
parameter h outside the parabolic region Ωh. His result shows that polynomial
resolvent bounds still hold in a larger h(log log h−1)1/n-neighborhood of z = 0.
More precisely, under the previous assumptions with a zero singular space, Viola
shows that for any given ρ > 0, there exist positive constants C0 and C1 such that
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the resolvent
(P − z)−1 : L2(Rn) −→ L2(Rn),

exists and satisfies the bound

‖(P − z)−1‖L (L2) = O(h−1−ρ)

when 0 < h� 1, as long as the spectral parameter z obeys

|z| ≤ 1

C0
h
(
log log

1

h

)1/n

, dist
(
z, Spec(qw(x,Dx))

) ≥ h e
− 1

C1
(log log 1

h )1/n
.

Figure 2 below2 is an illustration of a typical region in the complex plane where
this resolvent estimate holds, for decreasing values of h.

Figure 2.

The disks surrounding the spectral values of the quadratic operator qw(x,Dx)
correspond to the forbidden region

dist
(
z, Spec(qw(x,Dx))

)
< he

− 1
C1

(log log 1
h )1/n

.

Returning to the resolvent estimate (2.15), we observe that the estimate

(2.17) h2k0/(2k0+1) ‖u‖L2 ≤ C0 ‖Pu− zu‖L2,

holds true at the boundary of the parabolic set Ωh, when

Re z ≤ c1 h
2k0/(2k0+1),

∣∣∣ |Im z| − c0
2

∣∣∣ ≤ c1,

2Courtesy of Joe Viola.
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with 0 < c1 � 1. By using semigroup techniques, this resolvent estimate was
improved by Sjöstrand [30] to

(2.18) |Re z| ‖u‖L2 ≤ C0 ‖Pu− zu‖L2,

when
−c1 ≤ Re z ≤ −h2k0/(2k0+1),

∣∣∣ |Im z| − c0
2

∣∣∣ ≤ c1,

and to

(2.19) h2k0/(2k0+1) ‖u‖L2 ≤ C0 exp
(C0

h
(Re z)

(2k0+1)/(2k0)
+

)
‖Pu− zu‖L2,

when

−h2k0/(2k0+1) ≤ Re z ≤ c1

(
h log

1

h

)2k0/(2k0+1)

,
∣∣∣ |Im z| − c0

2

∣∣∣ ≤ c1.

For Re z ∼ h2k0/(2k0+1), we recover the estimate (2.17). Furthermore, this result
shows that the spectral parameter may enter more deeply in a logarithmic fashion
into the numerical range outside the parabolic region Ωh,

Re z ∼
(
h log

1

h

)2k0/(2k0+1)

,

while a polynomial resolvent bound

‖(P − z)−1‖L (L2) = O(
h−2k0/(2k0+1)−ρ0

)
, ρ0 > 0,

continues to hold.
In the present work, we aim at completing this picture by investigating further

the pseudospectral properties of the operator P inside the h-neighborhood of the
set

Σ = p1(0) + Spec(qw(x,Dx)).

More specifically, we study necessary and sufficient conditions for the validity of
the following a priori estimates

(2.20) ∃ c0 > 0, ∃ 0 < h0 ≤ 1, ∀u ∈ S (Rn), ∀ 0 < h ≤ h0,

‖Pu− hzu‖L2 ≥ c0 h
N0/2+1‖u‖L2,

where N0 ≥ 1 is a positive integer, when z belongs to a neighborhood of Σ. While
the resolvent estimate (2.15) and the geometry of the parabolic region (2.16) were
shown to be related to the subelliptic properties of the quadratic approximation
qw(x,Dx), we show in this work that the resolvent estimates (2.20) are actually
linked to some properties of hypoellipticity with a loss of many derivatives. The
proof of the main result of this article (Theorem 3.1) is indeed based on a Grushin-
reduction method following closely and adapting to the semiclassical setting the
approach developed by Parenti and the first author in the study of hypoellipticity
with a loss of many derivatives for operators with multiple characteristics [18].
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We recall that the Grushin-reduction method has proved itself fundamental in
many different problems, especially in spectral theory and in the study of hypoel-
lipticity (and, more recently in the study of solvability and semiglobal solvability
[29], [7], [18], [19], [20]) for operators with multiple characteristics. The idea of
Grushin is roughly the following. Let H be a Hilbert space and let A : H −→ H
be a Fredholm operator (with nonzero kernel) of index 0. The vector subspaces
V1 = Ker A and V2 = Ker A∗ must then have the same finite dimension d. Con-
sider orthonormal bases {w1, . . . , wd} of V1 and {v1, . . . , vd} of V2. Given a vector
subspace V ⊂ H spanned by the orthonormal basis {e1, . . . , ed}, we define the maps

h+V : H � u �−→

⎡⎢⎣ (u, e1)H
...

(u, ed)H

⎤⎥⎦ ∈ C
d, h−V : Cd � v =

⎡⎢⎣ ζ1
...
ζd

⎤⎥⎦ �−→
d∑

j=1

ζj ej ∈ V.

Then, the system

A =

[
A h−Ker A∗

h+Ker A 0

]
: H× C

d −→ H× C
d,

is invertible, with an inverse of the form

E =

[
Ẽ h−Ker A

h+Ker A∗ 0

]
: H× C

d −→ H× C
d,

where

Ẽ : H = V2 ⊕ V ⊥
2 −→ V ⊥

1

u = u1 + u2 �−→ (A|V ⊥
1
)−1u2.

Next, given an operator P with multiple characteristics, we take for A a polynomial-
coefficient differential operator called the localized operator [2], [29]. The latter
is the Weyl-quantization, in the normal directions to the characteristic set, of the
relevant piece in the Taylor expansion of the symbol at the characteristic points
obtained by keeping track of the orders of vanishing of its various parts. Then, the
system [

P R−
R+ 0

]
,

which is approximated by the system A, can be inverted in a suitable pseudodif-
ferential calculus (in the sense of left and right parametrices) by a system[

E E−
E+ E±

]
,

which is approximated by the system E.
As already mentioned, this method proved itself successful in Sjöstrand’s pa-

per [29] in which, for the first time, the hypoellipticity with a loss of one derivative
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(and solvability) for general pseudodifferential operators with multiple character-
istics was studied. Later, along the same lines of problems, Helffer [7] studied the
hypoellipticity with a loss of 3/2-derivatives for operators with multiple charac-
teristics. Pushing the machinery of localized operators to all orders (to describe
the “transport terms” in the parametrix), Parenti and the first author [18] stud-
ied the hypoellipticity with a loss of many derivatives for operators with multiple
symplectic characteristics. They showed in particular that the various examples
of C∞ hypoelliptic operators with multiple characteristics and loss of derivatives,
such as the Stein example, the Christ flat-Kohn example and others, were man-
ifestations of the same phenomenon [19]. More recently, they could also obtain,
by the approach developed in [18], the local and semiglobal solvability of certain
operators with multiple symplectic characteristics [20].

We close this section by describing the organization of the article. The next
section provides the statement of the main result (Theorem 3.1). Section 4 is
dedicated to some case studies, while the proof of Theorem 3.1 is given in Section 5.
Finally, Section 6 is an appendix gathering miscellaneous facts and notation related
to quadratic differential operators.

3. Statement of the main result

We consider the semiclassical pseudodifferential operator P given in (2.2) whose
Weyl symbol p (x, ξ;h) admits the semiclassical asymptotic expansion (2.3) in the
symbol class S(1), and we assume that the principal symbol p0 satisfies the as-
sumptions (2.4), (2.5), (2.6), and (2.7).

Let q be the quadratic term in the Taylor expansion of the principal symbol at
the doubly characteristic point X = 0,

(3.1) p0(X) = q(X) +O(X3), X = (x, ξ) ∈ R
2n,

when X → 0. The assumption Re p0 ≥ 0 implies that the complex-valued
quadratic form q has also a nonnegative real part, Re q ≥ 0.

In the present work, we do not consider the degenerate case, that is the case
when the quadratic form q is only partially elliptic (i.e., it satisfies the ellipticity
condition (2.9) on its singular space). Indeed, we assume that the quadratic form q
is elliptic on the whole phase space:

(3.2) (x, ξ) ∈ R
2n, q(x, ξ) = 0 =⇒ (x, ξ) = 0.

Under this assumption, the spectrum of the quadratic operator

qw(x,Dx)u(x) =
1

(2π)n

∫
R2n

ei(x−y)·ξ q
(x+ y

2
, ξ
)
u(y) dξ dy,

is composed only of eigenvalues with finite algebraic multiplicities (Theorem 3.5
in [29], see also [2]),

(3.3) Spec
(
qw(x,Dx)

)
=

{ ∑
λ∈Spec(F ),
−iλ∈Σ(q)

(
rλ + 2kλ

)
(−iλ); kλ ∈ N

}
,
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where Σ(q) = q(R2n), and where rλ is the dimension of the complex vector space
spanned by the generalized eigenvectors associated with the eigenvalue λ ∈ C of
the Hamilton map of q; see the appendix (Section 6).

Let K ⊂ C be a compact set and let N0 ≥ 1 be a positive integer. We consider
a spectral parameter z(h) with the semiclassical expansion

(3.4) z(h) =

2N0+2∑
k=0

zk h
k/2,

with zk ∈ K for all 0 ≤ k ≤ 2N0 + 2, where the leading term is assumed to satisfy

(3.5) z0 ∈ p1(0) + Spec
(
qw(x,Dx)

)
.

We define the symbols

(3.6) ak(X) = ãk(X)− zk :=
∑

j+|α|/2=1+k/2

0≤j≤1+[N0/2], |α|≤N0+2

p
(α)
j (0)

α!
Xα − zk,

for 0 ≤ k ≤ 2N0 + 2, where [x] stands for the integer part of x. Notice that

(3.7) a0(X) = q(X) + p1(0)− z0,

with q the quadratic form defined in (3.1). The two operators

Q = aw0 (x,Dx) = qw(x,Dx) + p1(0)− z0 : B −→ L2(Rn),(3.8)

Q∗ = a0
w(x,Dx) = qw(x,Dx) + p1(0)− z0 : B −→ L2(Rn),(3.9)

are known to be Fredholm operators of index 0 (see Lemma 3.1 in [14], or Theo-
rem 3.5 in [29]), where B is the Hilbert space

B =
{
u ∈ L2(Rn); xαDβ

xu ∈ L2(Rn), α, β ∈ N
n, |α+ β| ≤ 2

}
,

equipped with the norm

‖u‖2B =
∑

|α+β|≤2

∥∥xαDβ
xu

∥∥2
L2 .

Setting

(3.10) V1 = Ker Q, V2 = Ker Q∗,

we can decompose L2(Rn) as

(3.11) L2(Rn) = V1 ⊕ V ⊥
1 = V2 ⊕ V ⊥

2 ,

with V ⊥
1 = Ran Q∗, V ⊥

2 = Ran Q. Since

0 = ind Q = dim Ker Q − codim Ran Q = dim V1 − codim V ⊥
2 ,
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the kernels of the operators Q and Q∗ have the same dimension

1 ≤ d = dim V1 = dim V2 < +∞.

Let φ1, . . . , φd and ψ1, . . . , ψd be orthonormal bases of V1 and V2, so that

(3.12) Qφj = 0, Q∗ψk = 0, 1 ≤ j, k ≤ d.

Because of the ellipticity of the quadratic symbols q and q, the eigenfunctions φj ,
ψk belong to the Schwartz space S (Rn). We denote by π1 and π2 the orthogonal
projections onto the vector spaces V ⊥

1 and V ⊥
2 ,

(3.13) π1u = u−
d∑

j=1

(u, φj)L2 φj , π2u = u−
d∑

j=1

(u, ψj)L2 ψj .

The unbounded operators

(3.14) Q|V ⊥
1

: V ⊥
1 −→ V ⊥

2 = Ran Q, Q∗|V ⊥
2

: V ⊥
2 −→ V ⊥

1 = Ran Q∗,

are isomorphisms when equipped with the domains

D(Q|V ⊥
1
) = B ∩ V ⊥

1 , D(Q∗|V ⊥
2
) = B ∩ V ⊥

2 .

We define the operator

S : L2(Rn) = V2 ⊕ V ⊥
2 −→ L2(Rn)(3.15)

u = u1 + u2 �−→ (Q|V ⊥
1
)−1u2.

The main result of this article is the following theorem:

Theorem 3.1. Let K ⊂ C be a compact subset and let N0 ≥ 1 be a positive integer.
Let P be a semiclassical pseudodifferential operator (2.2) satisfying the assumptions
(2.3), (2.4), (2.5), (2.6), (2.7), and (3.2). Let z(h) be the spectral parameter (3.4)
whose leading part satisfies the assumption (3.5). Let Ω be a compact subset of
K2N0+2 (the Cartesian product of K with itself 2N0 + 2 times ). The a priori
estimate

∃ c0 > 0, ∃ 0 < h0 ≤ 1, ∀u ∈ L2(Rn), ∀ 0 < h ≤ h0, ∀ (z1, . . . , z2N0+2) ∈ Ω,(3.16)

‖Pu− hz(h)u‖L2 ≥ c0 h
N0/2+1‖u‖L2

holds if and only if the a priori estimate

(3.17) ∃ c0 > 0, ∃ 0 < h0 ≤ 1, ∀u− ∈ C
d, ∀ 0 < h ≤ h0, ∀ (z1, . . . , z2N0+2) ∈ Ω,

|E±u−| ≥ c0 h
N0/2+1|u−|

holds, where E± stands for the d× d matrix

(3.18) E± =

2N0+2∑
j=1

Aj h
1+j/2, Aj =

(
A

(j)
k,l

)
1≤k,l≤d

∈Md(C),
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and where the entries A
(j)
k,l of each Aj are given by

(3.19) A
(j)
k,l =

j∑
i=1

(−1)i
∑

1≤kp≤2N0+2
k1+···+ki=j

(
awk1

S awk2
S · · · awki−1

S awki
φl, ψk

)
L2 .

The operators awk (x,Dx) are the Weyl quantizations of the symbols defined in (3.6).

Remark 3.2. It will be shown in the proof of Theorem 3.1 that the operator S is a
pseudodifferential operator. This accounts for the fact that S : S (Rn) −→ S (Rn)

and the definition of the entries A
(j)
k,l .

This result indicates that the resolvent growth, up to large powers of 1/h, is
entirely determined by the Taylor series of the symbol up to a certain specified or-
der.

4. Some case studies

Before plunging into the proof of Theorem 3.1, which will be given in Section 5, we
wish to discuss in this section some case studies. We begin by studying the case of
semiclassical hypoelliptic estimates with a loss of 3/2 derivatives.

4.1. Semiclassical hypoelliptic estimates with a loss of 3/2 derivatives

When N0 = 1, Theorem 3.1 shows that the semiclassical hypoelliptic estimate with
a loss of 3/2 derivatives

(4.1) ∃ c0 > 0, ∃ 0 < h0 ≤ 1, ∀u ∈ L2(Rn), ∀ 0 < h ≤ h0, ∀ z1 ∈ K,∥∥Pu− hz0u− h3/2z1u
∥∥
L2 ≥ c0 h

3/2 ‖u‖L2,

holds if and only if the matrix

A1(z1) =
(
(aw1 (x,Dx)φl, ψk)L2

)
1≤k,l≤d

,

is invertible for all z1 ∈ K, where aw1 (x,Dx) is the differential operator defined by
the Weyl quantization of the symbol

a1(X) =
∑
|α|=3

p
(α)
0 (0)

α!
Xα +

∑
|α|=1

p
(α)
1 (0)

α!
Xα − z1.

Denoting by d0 the rank of the matrix A0 = ((φl, ψk)L2)1≤k,l≤d, we observe that
its determinant detA1(z1) is a polynomial function in the variable z1 of degree d0.
We distinguish two cases:

(i) d0 = 0;

(ii) 1 ≤ d0 ≤ d.
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When d0 = 0, the matrix A0 is zero and the invertibility of the matrix A1(z1) =
A1(0) is independent of the parameter z1. When detA1(0) �= 0, the a priori
estimate (4.1) holds. This indicates that there is no eigenvalue for the operator P
in any h3/2-neighborhood of the point hz0, when 0 < h � 1. On the other hand,
when detA1(0) = 0, the a priori estimate (4.1) is violated for every z1 ∈ C and
the resolvent cannot be bounded in norm as O(h−3/2) in any h3/2-neighborhood
of the point hz0.

When 1 ≤ d0 ≤ d, we consider an open neighborhood ω of the finite set

Λ =
{
z ∈ C; detA1(z) = 0

}
.

We deduce from Theorem 3.1 that

∃ c0 > 0, ∃ 0 < h0 ≤ 1, ∀u ∈ S (Rn), ∀ 0 < h ≤ h0, ∀ z1 ∈ K ∩ (C \ ω),∥∥Pu− hz0u− h3/2z1u
∥∥
L2 ≥ c0 h

3/2 ‖u‖L2.

In this case, the spectrum of the operator P in the disk D(hz0, Ch
3/2) is localized

in any h3/2-neighborhood U of the set hz0 + h3/2Λ, and the resolvent of P is
bounded in norm as O(h−3/2) on the set D(hz0, Ch

3/2) ∩ (C \ U).

4.2. Case when the eigenfunctions have some parity properties

When the eigenfunctions φ1, . . . , φd, ψ1, . . . , ψd have some parity properties, the
conclusions of Theorem 3.1 can be sharpened further as follows.

Proposition 4.1. Under the hypotheses of Theorem 3.1, we make the additional
assumptions:

(i) The functions φ1, . . . , φd are all even, or all odd.

(ii) The functions ψ1, . . . , ψd are all even, or all odd.

(iii) All the terms with odd indices in the semiclassical expansion of the spectral
parameter (3.4) are zero

z(h) =

N0+1∑
k=0

z2k h
k.

Then, the conclusions of Theorem 3.1 hold with

E± =

2N0+2∑
j=1

Aj h
1+j/2,

where
A2j+1 = 0, ∀ j with 1 ≤ 2j + 1 ≤ 2N0 + 2,

when the functions φ1, . . . , φd and ψ1, . . . , ψd have the same parity, or else

A2j = 0, ∀ j with 1 ≤ 2j ≤ 2N0 + 2,

when the functions φ1, . . . , φd and ψ1, . . . , ψd have opposite parities.
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Proof. To begin, we claim that when the functions ψ1, . . . , ψd ∈ V2 are all even, or
all odd, then Su is even (respectively odd) whenever u ∈ S (Rn) is an even (respec-
tively odd) function. To see this, observe that when all the functions ψ1, . . . , ψd

are even, the function

π2u = u−
d∑

j=1

(u, ψj)L2 ψj ,

is even (respectively odd) whenever u ∈ S (Rn) is even (respectively odd), because
(u, ψj)L2 = 0 when u is odd. On the other hand, when all the functions ψ1, . . . , ψd

are odd, π2u is also even (respectively odd) whenever u ∈ S (Rn) is even (respec-
tively odd) because (u, ψj)L2 = 0 when u is even. Then we observe that Qu is
even (respectively odd) whenever u ∈ S (Rn) is even (respectively odd). Indeed,
recalling that

Q = qw(x,Dx) + p1(0)− z0,

the parity property holds true for Qu since it trivially holds true in the case of the
operators

(xαξβ)w =
1

2

(
xαDβ

x +Dβ
xx

α
)
, |α+ β| = 2.

For u ∈ S (Rn), we write Su = v1 + v2 with v1, v2 ∈ S (Rn) with v1 even and v2
odd (see Remark 3.2). We assume that u ∈ S (Rn) is even (respectively odd). It
follows from (3.14) and (3.15) that

Ran S ⊂ V ⊥
1 , π2 = QS.

Since π2u = QSu = Qv1 +Qv2 is even (respectively odd), then Qv2 = 0 (respec-
tively Qv1 = 0), that is, v2 ∈ V1 (respectively v1 ∈ V1). On the other hand, we
have

0 = (Su, v2)L2 = (v1 + v2, v2)L2 = (v1, v2)L2 + ‖v2‖2L2 = ‖v2‖2L2,

respectively

0 = (Su, v1)L2 = (v1 + v2, v1)L2 = ‖v1‖2L2 + (v2, v1)L2 = ‖v1‖2L2,

because Ran S ⊂ V ⊥
1 , and (v1, v2)L2 = 0 when v1 and v2 have opposite parities.

It follows that Su = v1 is even (respectively Su = v2 is odd). This concludes the
proof of the claim.

Next, we observe that

(
aw(x,Dx)u

)
(−x) = 1

(2π)n

∫
R2n

ei(−x−y)·ξ a
(−x+ y

2
, ξ
)
u(y) dy dξ

=
1

(2π)n

∫
R2n

ei(x−y)·ξ a
(
− x+ y

2
,−ξ

)
u(−y) dy dξ.

It follows that the function awu is even (respectively odd) whenever u ∈ S (Rn) is
even (respectively odd) when the symbol a is even, whereas awu is odd (respectively
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even) whenever u ∈ S (Rn) is even (respectively odd) when a is odd. Therefore,
when all the terms with odd indices in the semiclassical expansion of the spectral
parameter (3.4) are zero, that is

z(h) =

N0+1∑
k=0

z2k h
k,

we have from (3.6) that

a2k(X) =
∑

j+|α|/2=1+k
0≤j≤1+[N0/2], |α|≤N0+2

p
(α)
j (0)

α!
Xα − z2k,

is an even function and that

a2k+1(X) =
∑

j+|α|/2=1+k+1/2
0≤j≤1+[N0/2], |α|≤N0+2

p
(α)
j (0)

α!
Xα,

is an odd function. Under assumption (ii), we deduce from Remark 3.2 and the
previous claim that the function

awk1
S awk2

S · · ·awki−1
S awki

u ∈ S (Rn), with 1 ≤ k1 + · · ·+ ki = 2j ≤ 2N0 + 2,

is even (respectively odd) whenever u ∈ S (Rn) is even (respectively odd). On the
other hand, the function

awk1
S awk2

S · · ·awki−1
S awki

u ∈ S (Rn), with 1 ≤ k1 + · · ·+ ki = 2j + 1 ≤ 2N0 + 2

is odd (respectively even) whenever u ∈ S (Rn) is even (respectively odd). It
follows that (

awk1
S awk2

S · · · awki−1
S awki

φl, ψk

)
L2 = 0,

with 1 ≤ k1 + · · · + ki = 2j + 1 ≤ 2N0 + 2 (respectively 1 ≤ k1 + · · · + ki =
2j ≤ 2N0 + 2), when the functions φ1, . . . , φd and ψ1, . . . , ψd have the same parity
(respectively opposite parities). This ends the proof of Proposition 4.1. �

4.3. Case d = dim V1 = dim V2 = 1

We now consider the case when the kernels V1 and V2 are one-dimensional, that is

V1 = Ker Q = Span φ1, V2 = Ker Q∗ = Span ψ1,

spanned by eigenfunctions satisfying (φ1, ψ1)L2 �= 0. In this case, the matrix (3.18)
can be written as

E± =

2N0+2∑
j=1

h1+j/2

j∑
i=1

(−1)i
∑

1≤kp≤2N0+2
k1+···+ki=j

(
awk1

S awk2
S · · · awki−1

S awki
φ1, ψ1

)
L2 .
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We define successively, for every 1 ≤ j ≤ 2N0 + 2,

(4.2) z̃1 =
1

(φ1, ψ1)L2

(
ãw1 (x,Dx)φ1, ψ1

)
L2 ,

and

z̃j =
1

(φ1, ψ1)L2

[
(ãwj φ1, ψ1)L2 +

j∑
i=2

(−1)i+1
∑

1≤kp≤2N0+2
k1+···+ki=j

(4.3)

(
(ãwk1

− z̃k1)S (ãwk2
−z̃k2)S · · · (ãwki−1

−z̃ki−1)S (ãwki
−z̃ki)φ1, ψ1

)
L2

]
.

The following result follows from Theorem 3.1.

Corollary 4.2. With the hypotheses of Theorem 3.1, we assume further that the
kernels V1 = Span φ1 and V2 = Span ψ1 are one-dimensional, spanned by eigen-
functions satisfying (φ1, ψ1)L2 �= 0. Let N0 ≥ 1 be a positive integer and let
K ⊂ C\{z̃N0} be a compact subset, where the complex numbers z̃j, 1 ≤ j ≤ 2N0+2,
are defined in (4.2) and (4.3). Then, there exist c0 > 0 and 0 < h0 ≤ 1 such that
for all u ∈ L2(Rn), 0 < h ≤ h0, and z ∈ K one has∥∥∥Pu− hz0u−

N0−1∑
j=1

h1+j/2 z̃j u− h1+N0/2 z u
∥∥∥
L2

≥ c0 h
1+N0/2 ‖u‖L2.

Recalling (3.3) and (3.5), we shall now consider the specific case when

(4.4) z0 − p1(0) =
∑

λ∈Spec(F ),
−iλ∈Σ(q)

−iλrλ,

is the first eigenvalue in the bottom of the spectrum of the elliptic quadratic oper-
ator qw(x,Dx). In this case, we recall from [29] (see also [17], Theorem 2.1) that
the eigenvalue z0 − p1(0) has algebraic multiplicity 1 and that the eigenspace

V1 = Ker Q = Cφ1,

is spanned by a ground state of exponential type

φ1(x) = e−a(x) ∈ S (Rn),

where a is a complex-valued quadratic form whose real part is positive definite.
The quadratic form a is defined as (with 〈·, ·〉 the Euclidean inner product in Rn)

a(x) = −1

2
i 〈x,B+x〉, x ∈ R

n, Im B+ > 0,

where B+ is the symmetric matrix with positive definite imaginary part ImB+

defining the positive Lagrangian plane (see [29], Proposition 3.3)

V + =
⊕

λ∈Spec(F )
−iλ∈Σ(q)

Vλ =
{
(x,B+x); x ∈ C

n
}
,
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where Vλ is the space of the generalized eigenvectors associated with the eigen-
value λ of the Hamilton map of q. On the other hand, we observe that the adjoint
operator is actually given by the quadratic operator

qw(x,Dx)
∗ = qw(x,Dx),

whose symbol is the complex conjugate of the symbol q. This quadratic symbol
is also elliptic. It follows that z0 − p1(0) is the first eigenvalue in the bottom of
the spectrum of the quadratic operator qw(x,Dx)

∗. Therefore this eigenvalue has
algebraic multiplicity 1 and its eigenspace is also spanned by a ground state

ψ1(x) = e−ã(x) ∈ S (Rn)

of exponential type, where ã is a complex-valued quadratic form whose real part is
positive definite. Under these assumptions, we are therefore in the situation where
d = dim V1 = dim V2 = 1, with even eigenfunctions φ1 and ψ1,

V1 = Span φ1, V2 = Span ψ1.

These two eigenspaces are equal, V1 = V2, that is φ1 = ψ1, if and only if V + = V −
(see [35], Theorem 1.7), where

V − =
⊕

λ∈Spec(F )
iλ∈Σ(q)

Vλ.

In any case, we notice that (φ1, ψ1)L2 �= 0 since this scalar product is equal to the
Fourier transform evaluated at zero,

(4.5) (φ1, ψ1)L2 = f̂(0) �= 0,

of the Gaussian function f(x) = e−b(x), with b = a+ ã a complex-valued quadratic
form whose real part is positive definite, see e.g. [15] (Theorem 7.6.1). We con-
sider the case when N0 = 2Ñ0, with Ñ0 ≥ 1. Notice that (4.5) means that
πV2

∣∣
V1

: V1 −→ V2 is invertible, where πV2 : L
2(Rn) −→ L2(Rn) is the orthogonal

projection onto V2 (of course, the same holds for πV1

∣∣
V2

: V2 −→ V1). Under these

assumptions, we define successively for every 1 ≤ j ≤ 2Ñ0 + 1,

(4.6) z̃2 =
1

(φ1, ψ1)L2

[
(ãw2 φ1, ψ1)L2 − (ãw1 S ã

w
1 φ1, ψ1)L2

]
,

z̃2j =
1

(φ1, ψ1)L2

[
(ãw2j φ1, ψ1)L2 +

2j∑
i=2

(−1)i+1(4.7)

×
∑

1≤kp≤2N0+2
k1+···+ki=2j

(awk1
S awk2

S · · ·awki−1
S awki

φ1, ψ1)L2

]
.

We therefore deduce from Proposition 4.1 and Theorem 3.1 the following result.
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Corollary 4.3. Under the hypotheses of Theorem 3.1, we make the additional
assumption (4.4). Let Ñ0 ≥ 1 be a positive integer and let K ⊂ C \ {z̃2Ñ0

} be

a compact subset, where the complex numbers z̃2j, 1 ≤ j ≤ 2Ñ0 + 1, are defined
in (4.6) and (4.7). Then, there exist c0 > 0 and 0 < h0 ≤ 1 such that for all
u ∈ S (Rn), 0 < h ≤ h0, and z ∈ K, one has

∥∥∥Pu− hz0u−
Ñ0−1∑
j=1

h1+j z̃2j u− hÑ0+1 z u
∥∥∥
L2

≥ c0 h
Ñ0+1‖u‖L2.

On the other hand, we may calculate explicitly all the terms in the semiclassical
expansion (2.11) of an eigenvalue of P with leading term hz0, when the assumptions
of Corollary 4.3 are satisfied. Indeed, the semiclassical expansion is given in this
case by

zk ∼ h
(
λk + p1(0) + hλk,1 + h2λk,2 + · · · ),

since z0 − p1(0) is an eigenvalue with algebraic multiplicity 1 of the quadratic op-
erator qw(x,Dx). Then, we directly deduce from Proposition 4.1 and Theorem 3.1
that the coefficients λk,j must correspond to the terms z̃2j given in Corollary 4.3,
that is

λk,j = z̃2j, 1 ≤ j ≤ Ñ0.

5. Proof of Theorem 3.1

Let K ⊂ C be a compact subset and let N0 ≥ 1 be a positive integer. Let

P = pw(x, hDx;h) =
1

(2π)n

∫
R2n

ei(x−y)·ξ p
(x+ y

2
, h ξ;h

)
u(y) dy dξ,

be a semiclassical pseudodifferential operator satisfying the assumptions (2.3),
(2.4), (2.5), (2.6), (2.7), and (3.2), and let

z(h) =

2N0+2∑
k=0

zk h
k/2, zk ∈ K,

be the spectral parameter whose leading part satisfies assumption (3.5). After
conjugating by the unitary operator

(5.1) Th : L2(Rn) � u(x) �−→ hn/4u(h1/2x) ∈ L2(Rn)

it is sufficient to prove Theorem 3.1 for the operator

(5.2) P = Th p
w
(
x, hDx;h

)
T−1
h = pw

(
h1/2x, h1/2Dx;h

)
.

In the following, the standard notation c = a#wb denotes the Weyl symbol of the
operator obtained by composition

cw(x,Dx) = aw(x,Dx) b
w(x,Dx) = (Opwa)(Opwb),
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with the standard normalization of the Weyl quantization

aw(x,Dx)u(x) = (Opwa)u(x) =
1

(2π)n

∫
R2n

ei(x−y)·ξ a
(x+ y

2
, ξ
)
u(y) dy dξ.

We refer the reader to the notation introduced in Section 3 and begin by noting
that the orthogonal projections π1 and π2 onto the vector spaces V ⊥

1 and V ⊥
2

satisfy
π1, π2 : S (Rn) −→ S (Rn),

since the eigenfunctions φj and ψk belong to the Schwartz space S (Rn). Next, we
observe that the L2-adjoint of the bounded operator S : L2(Rn) → L2(Rn) defined
in (3.15) is given by

S∗ : L2(Rn) = V1 ⊕ V ⊥
1 −→ L2(Rn)(5.3)

u = u1 + u2 �−→ (Q∗|V ⊥
2
)−1u2.

By definition, these two operators are continuous on L2(Rn) and satisfy the iden-
tities

(5.4) SQ = Q∗S∗ = 1− (1 − π1), QS = S∗Q∗ = 1− (1− π2).

Using standard notation for a metric on phase space [15], [16], for m ∈ R we write

Sm = S(〈X〉m, g) = {
a ∈ C∞(R2n,C); ∀α ∈ N

2n, ∃Cα > 0, ∀X ∈ R
2n,(5.5)

|∂αXa(X)| ≤ Cα〈X〉m−|α|}
for the class of (h-independent) global pseudodifferential operators (after Shubin,
see [31]), where g is the admissible, geodesically temperate metric (see, e.g., [16],
Lemma 2.6.23) given by

g =
|dX |2
〈X〉2 , X = (x, ξ) ∈ R

2n,

and we write Opw(Sm) for the set of associated pseudodifferential operators with
symbols in Sm.

As global pseudodifferential operators in Rn, the operators 1−π1 and 1−π2 are
smoothing since their symbols in the standard quantization, given respectively by

d∑
j=1

e−ix·ξ φj(x) φ̂j(ξ) ∈ S−∞ and

d∑
j=1

e−ix·ξ ψj(x) ψ̂j(ξ) ∈ S−∞,

belong to the Schwartz space S (R2n). This also implies that

1− π1 ∈ Opw(S−∞) and 1− π2 ∈ Opw(S−∞).

Setting

T+u =
d∑

j=1

(u, ψj)L2 φj and T−u =
d∑

j=1

(u, φj)L2 ψj ,
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the same arguments show that T± ∈ Opw(S−∞). Next, we deduce from (3.10),
(3.12) and (3.14) that the mapping

Φ : B −→ L2(Rn) = V2 ⊕ V ⊥
2

u �−→
d∑

j=1

(u, φj)L2 ψj +Qu,

is invertible with inverse given by

Φ−1 : L2(Rn) −→ B

u �−→
d∑

j=1

(u, ψj)L2 φj + Su.

We can write Φ = aw(x,Dx), with a ∈ S2. Referring to [16] (Section 2.6) for the
definition of Sobolev spaces attached to a pseudodifferential calculus, we notice that
L2(Rn) = H(1, g) and B = H(〈X〉2, g). Then we deduce from Corollary 2.6.28
in [16] that

Φ−1 ∈ Opw(S−2).

Since T+ ∈ Opw(S−∞), this implies that S ∈ Opw(S−2) and justifies Remark 3.2.

Now we prove Theorem 3.1. We start by observing that for X = (x, ξ) ∈ R2n,

p
(
h1/2X ;h

)− h z(h) =

1+[N0/2]∑
k=0

pk(h
1/2X)hk −

2N0+2∑
k=0

zk h
1+k/2 mod S

(
h[N0/2]+2

)
,

up to a symbol belonging to the class S(h[N0/2]+2), defined in (2.1). From the
Taylor expansions

pk(X) =
∑

|α|≤N0+2

p
(α)
k (0)

α!
Xα +

∑
|α|=N0+3

N0 + 3

α!
Xα

∫ 1

0

(1 − t)N0+2 p
(α)
k (tX) dt

of the symbols, we obtain that

p (h1/2X ;h)− h z(h)

=
∑

k=0,...,1+[N0/2]
|α|≤N0+2

p
(α)
k (0)

α!
Xα hk+|α|/2 −

2N0+2∑
k=0

zk h
1+k/2 +

∑
k=0,...,1+[N0/2]

|α|=N0+3

N0 + 3

α!

×Xαhk+|α|/2
∫ 1

0

(1−t)N0+2p
(α)
k

(
t h1/2X

)
dt mod S

(
h[N0/2]+2

)
.(5.6)

By assumption (2.7), the point 0 ∈ R2n is doubly characteristic for the principal
symbol, that is p0(0) = ∇p0(0) = 0. Setting

Rα(X ;h) =
∑

k=0,...,1+[N0/2]

N0 + 3

α!
hk

∫ 1

0

(1 − t)N0+2p
(α)
k

(
t h1/2X

)
dt,
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we can therefore write

p (h1/2X ;h)− h z(h)

=

2N0+2∑
k=0

ak(X)h1+k/2 + hN0/2+3/2
∑

|α|=N0+3

XαRα(X ;h) mod S
(
h[N0/2]+2

)
,(5.7)

with the symbols ak defined in (3.6). As pk ∈ S(1), we readily see that

(5.8) Rα ∈ S(1).

Following [18], we now use a Grushin-reduction method. To this end, we define

R− : Cd −→ V2(5.9)

u− �−→
d∑

j=1

u−(j)ψj ,

R+ : L2(Rn) −→ C
d(5.10)

u �−→ (
(u, φj)L2

)
1≤j≤d

,

where φj and ψk are the eigenfunctions defined in (3.12). Setting

(5.11) φ+0,k = φk, ψ−
0,k = ψk, k = 1, . . . , d,

we shall construct by induction functions φ+j,k, ψ
−
j,k ∈ S (Rn), for 1 ≤ k ≤ d,

1 ≤ j ≤ 2N0 + 2, and d× d complex matrices Aj ∈Md(C) for j = 1, . . . , 2N0 + 2,
which are all independent of the semiclassical parameter and satisfy the equations

(5.12) R+E+ = Id +OL (Cd)(h
1/2),

(5.13)

2N0+2∑
k=0

h1+k/2 awk (x,Dx)E+ +R−E± = OL (Cd,L2)

(
hN0+5/2

)
,

(5.14) E−
( 2N0+2∑

k=0

awk (x,Dx)h
1+k/2

)
+ E±R+ = OL (L2,Cd)

(
hN0+5/2

)
,

(5.15) S aw0 (x,Dx) + E+R+ = Id +OL (L2)(h
1/2),

where

E+ : Cd −→ L2(Rn)(5.16)

u− �−→
d∑

k=1

u−(k)
( 2N0+2∑

j=0

φ+j,k h
j/2

)
,
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E− : L2(Rn) −→ C
d(5.17)

u �−→
((
u,

2N0+2∑
j=0

ψ−
j,k h

j/2
)
L2

)
1≤k≤d

,

and

(5.18) E± =

2N0+2∑
j=1

Aj h
1+j/2.

The notation OL (E,F )(h
N ) stands for a remainder which is a bounded operator

T : E → F with a norm satisfying ‖T ‖L (E,F ) � hN .
We next observe that equation (5.12) is satisfied immediately since the functions

(φ+0,k)1≤k≤d = (φk)1≤k≤d are chosen orthonormal

( d∑
k=1

u−(k)
( 2N0+2∑

j=0

φ+j,k h
j/2

)
, φl

)
L2

= u−(l) +
∑

k=1,...,d
j=1,...,2N0+2

hj/2 u−(k)
(
φ+j,k, φl

)
L2 .

Equation (5.13) can be written as

(5.19)
∑

1≤l≤d
0≤j,k≤2N0+2

h1+(k+j)/2u−(l) awk (x,Dx)φ
+
j,l

+
∑

1≤l≤d
1≤j≤2N0+2

h1+j/2(Aj u−)(l)ψl = O(
hN0+5/2|u−|

)
.

We deduce from (3.8), (3.12), and (5.11) that the coefficient of h on the left-hand
side of (5.19) is zero, that is,∑

1≤l≤d

u−(l) aw0 (x,Dx)φ
+
0,l =

∑
1≤l≤d

u−(l)Qφl = 0.

Next, we observe that the coefficient of h1+j/2, with 1 ≤ j ≤ 2N0 + 2, on the
left-hand side of equation (5.19) is zero if and only if we have

(5.20)
∑

1≤l≤d
0≤k1,k2≤2N0+2

k1+k2=j

u−(l) awk1
(x,Dx)φ

+
k2,l

+
∑

1≤l≤d

(Aju−)(l)ψl = 0.

By assuming that the Schwartz functions φ+k,l have already been determined for
all 0 ≤ k ≤ j − 1, 1 ≤ l ≤ d, for satisfying equation (5.20) it will be sufficient to

choose the functions (φ+j,l)1≤l≤d and the matrix Aj = (A
(j)
k,l )1≤k,l≤d to satisfy the

identities

(5.21) Qφ+j,l = −
∑

1≤k≤d

A
(j)
k,l ψk −

∑
0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

awk1
(x,Dx)φ

+
k2,l

,



1462 A. Parmeggiani and K. Pravda-Starov

for every 1 ≤ l ≤ d. Taking

(5.22) A
(j)
k,l = −

∑
0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

(
awk1

(x,Dx)φ
+
k2,l

, ψk

)
L2 ,

yields that the right-hand side of (5.21) is fully determined and belongs to V ⊥
2 ,

Qφ+j,l = −π2
( ∑

0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

awk1
(x,Dx)φ

+
k2,l

)
∈ V ⊥

2 .

It follows from (3.14) and (3.15) that we can choose the functions φ+j,l as

φ+j,l = −(Q|V ⊥
1
)−1 π2

( ∑
0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

awk1
(x,Dx)φ

+
k2,l

)
(5.23)

= −S
( ∑

0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

awk1
(x,Dx)φ

+
k2,l

)
.

Since S : S (Rn) −→ S (Rn) (see Remark 3.2), the functions (φ+j,l)1≤l≤d belong

to S (Rn). By iterating this process, we obtain functions φ+j,l for 1 ≤ l ≤ d and
0 ≤ j ≤ 2N0 + 2 and matrices Aj for 1 ≤ j ≤ 2N0 + 2, satisfying equation (5.13).
Next, equation (5.14) can be written as∑
0≤j,k≤2N0+2

h1+
j+k
2

(
awk (x,Dx)u, ψ

−
j,l

)
L2+

∑
1≤k≤d

1≤j≤2N0+2

h1+j/2A
(j)
l,k (u, φk)L2 =O(

hN0+
5
2 ‖u‖L2

)
,

for 1 ≤ l ≤ d. We therefore need to satisfy the equations(
u,

∑
0≤j,k≤2N0+2

h1+
j+k
2 awk (x,Dx)ψ

−
j,l+

∑
1≤k≤d

1≤j≤2N0+2

h1+j/2 A
(j)
l,k φk

)
L2

= O(
hN0+

5
2 ‖u‖L2

)
.

We get from (3.9), (3.12) and (5.11) that the coefficient of h in∑
0≤j,k≤2N0+2

h1+(j+k)/2 awk (x,Dx)ψ
−
j,l +

∑
1≤k≤d

1≤j≤2N0+2

h1+j/2 A
(j)
l,k φk,

is zero. It will therefore suffice to choose the Schwartz functions ψ−
j,l, for 1 ≤ l ≤ d

and 1 ≤ j ≤ 2N0 + 2, such that∑
0≤k1,k2≤2N0+2

k1+k2=j

awk1
(x,Dx)ψ

−
k2,l

+
∑

1≤k≤d

A
(j)
l,k φk = 0,
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that is

(5.24) Q∗ψ−
j,l = −

∑
1≤k≤d

A
(j)
l,k φk −

∑
0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

awk1
(x,Dx)ψ

−
k2,l

,

for all 1 ≤ l ≤ d and 1 ≤ j ≤ 2N0 + 2. Assuming that the Schwartz functions ψ−
k,l

have already been determined for all 0 ≤ k ≤ j − 1 and 1 ≤ l ≤ d, by using (3.14)
and (5.3) we define the functions (ψ−

j,l)1≤l≤d as

ψ−
j,l = −(Q∗|V ⊥

2
)−1π1

( ∑
0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

awk1
(x,Dx)ψ

−
k2,l

)

= −S∗
( ∑

0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

awk1
(x,Dx)ψ

−
k2,l

)
.(5.25)

The next lemma establishes the identity

A
(j)
l,k = −

∑
0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

(
awk1

(x,Dx)ψ
−
k2,l

, φk
)
L2 ,

which yields that equations (5.24) are satisfied and therefore that equation (5.14)
holds.

Lemma 5.1. The functions φ+k,l and ψ
−
k,l constructed above satisfy the identities∑

0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

(
awk1

(x,Dx)φ
+
k2,l

, ψk

)
L2 =

∑
0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

(
φl, a

w
k1
(x,Dx)ψ

−
k2,k

)
L2 ,

for every 1 ≤ j ≤ 2N0 + 2 and 1 ≤ k, l ≤ d. Furthermore, the entries of the

matrices Aj = (A
(j)
k,l )1≤k,l≤d are given by

A
(j)
k,l =

j∑
i=1

(−1)i
∑

1≤kp≤2N0+2
k1+···+ki=j

(
awk1

S awk2
S · · · awki−1

S awki
φl, ψk

)
L2 ,

for all 1 ≤ j ≤ 2N0 + 2 and 1 ≤ k, l ≤ d.

Proof. For 1 ≤ k, l ≤ d, we have from (5.11) and (5.23) that∑
0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

(
awk1

φ+k2,l
, ψk

)
L2 =

∑
0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

(
φ+k2,l

, awk1
ψk

)
L2 =

(
φl, a

w
j ψk

)
L2

−
∑

1≤k1,k2≤2N0+2
k1+k2=j

∑
0≤k3,k4≤2N0+2
k3+k4=k2, k3≥1

(
S awk3

φ+k4,l
, awk1

ψk

)
L2 .
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We can write∑
1≤k1,k2≤2N0+2

k1+k2=j

∑
0≤k3,k4≤2N0+2
k3+k4=k2, k3≥1

(
S awk3

φ+k4,l
, awk1

ψk

)
L2

=
∑

1≤k1,k2≤2N0+2
k1+k2=j

(
φl, a

w
k2
S∗ awk1

ψk

)
L2 +

∑
1≤k1,k3,k4≤2N0+2

k1+k3+k4=j

(
φ+k4,l

, awk3
S∗ awk1

ψk

)
L2 ,

for all 1 ≤ j ≤ 2N0 + 2, which yields∑
0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

(
awk1

φ+k2,l
, ψk

)
L2 =

(
φl, a

w
j ψk

)
L2 −

∑
1≤k1,k2≤2N0+2

k1+k2=j

(
φl, a

w
k1
S∗ awk2

ψk

)
L2

−
∑

1≤k1,k2,k3≤2N0+2
k1+k2+k3=j

(
φ+k1,l

, awk2
S∗ awk3

ψk

)
L2 .

By using the definition (5.23) of the functions φ+k,l and iterating this process, we
obtain∑
0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

(
awk1

φ+k2,l
, ψk

)
L2 =

j∑
i=1

(−1)i+1
∑

1≤kp≤2N0+2
k1+···+ki=j

(
φl, a

w
k1
S∗ awk2

S∗· · · awki−1
S∗awki

ψk

)
L2 .

On the other hand, from (5.11) and (5.25) it follows that∑
0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

(
φl, a

w
k1
ψ−
k2,k

)
L2 =

∑
0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

(
awk1

φl, ψ
−
k2,k

)
L2 =

(
awj φl, ψk

)
L2

−
∑

1≤k1,k2≤2N0+2
k1+k2=j

∑
0≤k3,k4≤2N0+2
k3+k4=k2, k3≥1

(
awk1

φl, S
∗ awk3

ψ−
k4,k

)
L2 .

Since we can write∑
1≤k1,k2≤2N0+2

k1+k2=j

∑
0≤k3,k4≤2N0+2
k3+k4=k2, k3≥1

(
awk1

φl, S
∗ awk3

ψ−
k4,k

)
L2

=
∑

1≤k1,k2≤2N0+2
k1+k2=j

(
awk2

S awk1
φl, ψk

)
L2 +

∑
1≤k1,k3,k4≤2N0+2

k1+k3+k4=j

(
awk3

S awk1
φl, ψ

−
k4,k

)
L2 ,

we get∑
0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

(
φl, a

w
k1
ψ−
k2,k

)
L2 =

(
awj φl, ψk

)
L2 −

∑
1≤k1,k2≤2N0+2

k1+k2=j

(
awk1

S awk2
φl, ψk

)
L2

−
∑

1≤k1,k2,k3≤2N0+2
k1+k2+k3=j

(
awk1

S awk2
φl, ψ

−
k3,k

)
L2 .
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By using the definition (5.25) of the functions ψ−
k,l and iterating this process, we

obtain that

∑
0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

(
φl, a

w
k1
ψ−
k2,k

)
L2 =

j∑
i=1

(−1)i+1

×
∑

1≤kp≤2N0+2
k1+···+ki=j

(
awk1

S awk2
S · · · awki−1

S awki
φl, ψk

)
L2 .

As(
φl, a

w
k1
S∗ awk2

S∗ · · ·awki−1
S∗ awki

ψk

)
L2 =

(
awki

S awki−1
S · · · awk2

S awk1
φl, ψk

)
L2 ,

we conclude from (5.22) that

A
(j)
k,l = −

∑
0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

(
awk1

φ+k2,l
, ψk

)
L2 = −

∑
0≤k1,k2≤2N0+2
k1+k2=j, k1≥1

(
φl, a

w
k1
ψ−
k2,k

)
L2 ,

for all 1 ≤ j ≤ 2N0 + 2. �

Writing u = u1 + u2 ∈ L2(Rn), with (u1, u2) ∈ V1 × V ⊥
1 , we finally obtain from

(3.8), (5.4) and (5.11) that equation (5.15) holds:

SQu+

d∑
k=1

(u, φk)L2

( 2N0+2∑
j=0

φ+j,k h
j/2

)
= u2 +

d∑
k=1

(u, φk)L2φk +O(h1/2‖u‖L2)

= u2 + u1 +O(h1/2‖u‖L2)

= u+O(h1/2‖u‖L2).

We shall now use the Grushin-reduction, (5.12), (5.13), (5.14), and (5.15), in order
to prove Theorem 3.1.

Let Ω be a compact subset of K2N0+2. We first assume that there exist c0 > 0
and 0 < h0 ≤ 1 such that for all u ∈ L2(Rn), 0 < h ≤ h0, and (z1, . . . , z2N0+2) ∈ Ω,

(5.26) ‖Pu− hz(h)u‖L2 ≥ c0 h
N0/2+1‖u‖L2.

From (5.7) and (5.26) we get that, for any given u− ∈ Cd,

(5.27) c0 h
N0/2+1‖E+u−‖L2 ≤ ‖(P − hz(h))E+u−‖L2

≤
∥∥∥ 2N0+2∑

k=0

h1+k/2 awk (x,Dx)E+u− +R−E±u−
∥∥∥
L2

+ ‖R−E±u−‖L2

+ hN0/2+3/2
∥∥∥ ∑

|α|=N0+3

Opw
(
XαRα(X ;h)

)
E+u−

∥∥∥
L2

+O(
h[N0/2]+2

) ‖E+u−‖L2 .
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By using the symbolic calculus in the Weyl quantization, we readily obtain
from (5.8) and the exact formula ([15], Theorem 18.5.4)

(5.28) Xα#wRα =

|α|∑
p=0

1

p!

( 1

2i
σ(∂X1 , ∂X2)

)p

Xα
1 Rα(X2;h)

∣∣∣
X1=X2=X

,

that the operator Opw(XαRα(X ;h)) can be written as

(5.29) Opw
(
XαRα(X ;h)

)
=

∑
β≤α

Opw
(
R̃β(X ;h)

)
Opw(Xβ),

for some symbols R̃β belonging to the class S(1). It follows from (5.16) and (5.29)
that

‖Opw
(
XαRα(X ;h)

)
E+u−‖L2 ≤

∑
1≤k≤d

0≤j≤2N0+2

|u−(k)|hj/2
∥∥Opw

(
XαRα(X ;h)

)
φ+j,k

∥∥
L2

� |u−|
∑

1≤k≤d
0≤j≤2N0+2

β≤α

∥∥Opw
(
Xβ

)
φ+j,k

∥∥
L2 = O(1)|u−|,(5.30)

since the functions φ+j,k belong to S (Rn). As ‖R−‖L (Cd,L2) = O(1), it follows
from (5.13), (5.27) and (5.30) that

(5.31) hN0/2+1‖E+u−‖L2 � |E±u−|+O(
hN0/2+3/2

)|u−|.
Since ‖R+‖L (L2,Cd) = O(1), we get from (5.12) that

(5.32) |u−| ≤ |R+E+u−|+O(h1/2) |u−| ≤ ‖E+u−‖L2 +O(h1/2) |u−|,

whence from (5.31) and (5.32) we obtain

hN0/2+1|u−| � |E±u−|+O(hN0/2+3/2) |u−|,

that is, there exist constants c0 > 0 and 0 < h0 ≤ 1, such that
(5.33)

∀u− ∈ C
d, ∀ 0 < h ≤ h0, ∀ (z1, . . . , z2N0+2) ∈ Ω, |E±u−| ≥ c0 h

N0/2+1 |u−|.

This concludes the proof of the first implication.
We shall now prove the converse implication. We therefore assume that the

estimate (5.33) holds. It follows from (2.3), (2.7), (3.1), (3.4), and (3.7) that

p (h1/2X ;h)− hz(h) = p0(h
1/2X) + h p1(h

1/2X)− h z0 mod S(h3/2)

= h
(
q(X) + p1(0)− z0

)
+ r0,h(X) + r1,h(X) mod S(h3/2)

= h a0(X) + r0,h(X) + r1,h(X) mod S(h3/2),(5.34)
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with

r0,h(X) =
∑
|α|=3

3

α!
Xαh3/2

∫ 1

0

(1− t)2p
(α)
0 (t h1/2X) dt,(5.35)

r1,h(X) =
∑
|α|=1

Xαh3/2
∫ 1

0

p
(α)
1 (t h1/2X) dt.(5.36)

Let χ0 ∈ C∞
0 (R2n) be a cutoff function satisfying 0 ≤ χ0 ≤ 1 and

(5.37) supp χ0 ⊂ {
X ∈ R

2n; |X | ≤ 2
}
, χ0 = 1 on

{
X ∈ R

2n; |X | ≤ 1
}
,

and let A� 1 be a large positive constant to be chosen later. Setting

(5.38) M0 = χw
0

(
Ah1/2x,Ah1/2Dx

)
,

it follows from (3.8) and (5.15) that for all u ∈ S (Rn),

h‖u‖L2 ≤ h ‖E+R+u‖L2 + h ‖SQu‖L2 +O(h3/2) ‖u‖L2

� h |R+u|+ h ‖SQM0 u‖L2 + h ‖SQ(1−M0)u‖L2 +O(h3/2) ‖u‖L2,

since ‖E+‖L (Cd,L2) = O(1). From (5.4) one has

‖SQ(1−M0)u‖L2 = ‖π1(1−M0)u‖L2 ≤ ‖(1−M0)u‖L2,

whence

(5.39) h‖u‖L2 � h|R+u|+ h‖SQM0 u‖L2 + h‖(1−M0)u‖L2.

Observing that ‖S‖L (L2) = O(1) and ‖M0‖L (L2) = O(1), when 0 < h ≤ A−2 ≤ 1,
we then deduce from (3.8) and (5.34) that

h
∥∥SQM0 u

∥∥
L2 ≤ ∥∥S(P − hz(h))M0 u

∥∥
L2 +

∥∥Srw0,hM0 u
∥∥
L2(5.40)

+
∥∥Srw1,hM0 u

∥∥
L2 +O(h3/2)‖u‖L2,

that in turn yields∥∥S(P − hz(h))M0 u
∥∥
L2 �

∥∥(P − hz(h))M0 u
∥∥
L2(5.41)

�
∥∥M0(P − hz(h))u

∥∥
L2 +

∥∥ [P,M0]u
∥∥
L2

�
∥∥Pu− hz(h)u

∥∥
L2 +

∥∥ [P,M0]u
∥∥
L2 ,

which, along with (5.40), gives

h
∥∥SQM0 u

∥∥
L2 �

∥∥Pu− hz(h)u
∥∥
L2 +

∥∥ [P,M0]u
∥∥
L2(5.42)

+
∥∥Srw0,hM0 u

∥∥
L2 +

∥∥Srw1,hM0 u
∥∥
L2 +O(h3/2)‖u‖L2.

We shall need the following technical lemma.
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Lemma 5.2. We have∥∥Srw1,hM0 u
∥∥
L2 =

∥∥Srw1,h χw
0 (Ah

1/2X)u
∥∥
L2 = O

( h
A

)
‖u‖L2 +OA(h

2)‖u‖L2,

when 0 < h ≤ A−2 ≤ 1.

Proof. Since ‖S‖L (L2) = O(1), we first observe that∥∥Srw1,hM0 u
∥∥
L2 ≤ ∥∥rw1,hM0 u

∥∥
L2 .

We refer the reader to Section 2 for the definitions of the symbol classes and we
recall from [6] (Proposition 7.7) that for any given a(·;h) ∈ S(m1), b(·;h) ∈ S(m2),
there exists a symbol c(·;h) ∈ S(m1m2) such that

a
(
x, h ξ;h

)
#w b

(
x, h ξ;h

)
= a

(
x, h ξ;h

)
b
(
x, h ξ;h

)
+ h c

(
x, h ξ;h

)
.

By using the symplectic change of coordinates (x, ξ) �→ (h1/2x, h−1/2ξ) correspond-
ing, at the operator level as in (5.1) and (5.2), to the conjugation by the unitary
operator Th, we obtain that

(5.43) a
(
h1/2X ;h

)
#w b

(
h1/2X ;h

)
= a

(
h1/2X ;h

)
b
(
h1/2X ;h

)
+ h c

(
h1/2X ;h

)
.

We deduce from (5.43) that if R1(·;h) ∈ S(1) and R2(·;h) ∈ S(〈X〉−1), then there
exists R3(·;h) ∈ S(h) such that

(5.44)
(
h1/2Xj R1(h

1/2X ;h)
)
#wR2(h

1/2X ;h)

= h1/2Xj R1(h
1/2X ;h)R2(h

1/2X ;h) +R3(h
1/2X ;h),

since Xj R1(·;h) ∈ S(〈X〉). We next observe that (2.3) and (5.37) yield that

(5.45)

∫ 1

0

p
(α)
1 (tX) dt ∈ S(1), χ0(AX) ∈ S

(OA(〈X〉−1)
)
,

where the notation S(OA(m)) stands for the following class of symbols possibly
depending on the parameter A ≥ 1 with seminorms also possibly depending on
this parameter:

S
(OA(m)

)
=

{
a(·;h,A) ∈ C∞(R2n,C); ∀α ∈ N

2n, ∀A ≥ 1, ∃Cα,A > 0,(5.46)

∀ 0 < h ≤ 1, ∀X ∈ R
2n,

∣∣ ∂αX a(X ;h,A)
∣∣ ≤ Cα,Am(X ;h)

}
.

It therefore follows from (5.36), (5.44), and (5.45) that

A

h
r1,h#

wχ0(Ah
1/2X) =

( ∑
|α|=1

(Ah1/2X)α
∫ 1

0

p
(α)
1 (t h1/2X) dt

)
#wχ0(Ah

1/2X)

=
∑
|α|=1

(Ah1/2X)αχ0(Ah
1/2X)

∫ 1

0

p
(α)
1 (t h1/2X) dt+R8(h

1/2X ;h,A),
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with R8(·;h,A) ∈ S(OA(h)). Since the symbol∑
|α|=1

(Ah1/2X)αχ0(Ah
1/2X)

∫ 1

0

p
(α)
1 (t h1/2X) dt

belongs to the class S(1) uniformly with respect to the parameters when 0 < h ≤
A−2 ≤ 1, we thus get∥∥rw1,hM0 u

∥∥
L2 =

∥∥rw1,h χw
0 (Ah

1/2X)u
∥∥
L2 = O

( h
A

)
‖u‖L2 +OA(h

2)‖u‖L2,

when 0 < h ≤ A−2 ≤ 1, and this concludes the proof of the lemma. �

We shall also need the following technical result.

Lemma 5.3. We have∥∥Srw0,hM0 u
∥∥
L2 = O

( h
A

)
‖u‖L2 +OA(h

2)‖u‖L2,

when 0 < h ≤ A−2 ≤ 1.

Proof. From (5.35) we have

(5.47)
A

h
r0,h(X)#wχ0(Ah

1/2X)

=
( ∑

|α|=3

3

α!
XαAh1/2

∫ 1

0

(1 − t)2p
(α)
0 (t h1/2X) dt

)
#wχ0(Ah

1/2X).

Observing from (5.28) that if R(·;h) ∈ S(1) then for each α ∈ Nn there exist
symbols Rβ(·;h) ∈ S(1), with β ≤ α, |β| < |α|, β ∈ Nn, such that

(5.48) XαR(h1/2X ;h) = Xα#wR(h1/2X ;h)+
∑
β≤α

|β|<|α|

h(|α|−|β|)/2XβRβ(h
1/2X ;h),

by induction we readily have that if R(·;h) ∈ S(1), then for each α ∈ Nn there
exist symbols Rβ(·;h) ∈ S(1), with β ≤ α, |β| < |α|, β ∈ Nn, such that

XαR(h1/2X ;h)=Xα#wR(h1/2X ;h) +
∑
β≤α

|β|<|α|

h(|α|−|β|)/2Xβ#wRβ(h
1/2X ;h).(5.49)

We deduce from (2.3), (5.47) and (5.49) that there exist symbols Rβ(·;h,A) ∈
S(OA(1)), for |β| ≤ 2, such that

A

h
r0,h(X)#wχ0(Ah

1/2X)

=
∑
|α|=3

3

α!
XαAh1/2#w

( ∫ 1

0

(1− t)2p
(α)
0 (t h1/2X) dt

)
#wχ0(Ah

1/2X)

+ h
∑
|β|≤2

h(2−|β|)/2Xβ#wRβ(h
1/2X ;h,A)#wχ0(Ah

1/2X).
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The symbolic calculus shows that

r1(X ;h,A)

=
∑
|β|≤2

h(2−|β|)/2Xβ #wRβ(h
1/2X ;h,A)#wχ0(Ah

1/2X)∈S(OA(〈X〉2)),(5.50)

since Xβ ∈ S(〈X〉2) when |β| ≤ 2, Rβ(h
1/2X ;h,A) ∈ S(OA(1)), and χ0(Ah

1/2X)
∈ S(1) uniformly with respect to the parameters h and A, when 0 < h ≤ A−2 ≤ 1.
On the other hand, we get from (2.3), (5.37) and another use of the symbolic
calculus that there exists a symbol r2(·;h,A) ∈ S(OA(〈X〉−∞)) such that

(∫ 1

0

(1− t)2 p
(α)
0 (t h1/2X) dt

)
#wχ0(Ah

1/2X)

= χ0(Ah
1/2X)

∫ 1

0

(1− t)2p
(α)
0 (t h1/2X) dt+ h r2(h

1/2X ;h,A).(5.51)

It follows that

A

h
r0,h(X)#wχ0(Ah

1/2X) = h
∑
|α|=3

3

α!
XαAh1/2#wr2(h

1/2X ;h,A)(5.52)

+
∑
|α|=3

3

α!
XαAh1/2#w

(
χ0(Ah

1/2X)

∫ 1

0

(1− t)2p
(α)
0 (t h1/2X) dt

)
+ h r1(X ;h,A).

Using (5.28) shows that there exist symbols

r3(·;h,A), r4(·;h,A) ∈ S
(OA(〈X〉−∞)

)
, r5(·;h,A) ∈ S

(OA(〈X〉2)),
such that

(h1/2Xj1Xj2Xj3)#
wr2(h

1/2X ;h,A) = (Xj1Xj2)#
w(h1/2Xj3)#

wr2(h
1/2X ;h,A)

+
i

2

(
h1/2{Xj1Xj2 , Xj3}

)
#wr2(h

1/2X ;h,A)

=
(
(Xj1Xj2)#

wr3(h
1/2X ;h,A)

)
+ r4(h

1/2X ;h,A) = r5(X ;h,A),

when 0 < h ≤ A−2 ≤ 1. It follows from (5.52) and the preceding identity that
there exists a symbol r6(·;h,A) ∈ S(OA(〈X〉2)) such that

(5.53)
A

h
r0,h(X)#wχ0(Ah

1/2X)

=
∑
|α|=3

3

α!
XαAh1/2#w

(
χ0(Ah

1/2X)

∫ 1

0

(1− t)2p
(α)
0 (t h1/2X) dt

)
+ h r6(X ;h,A),
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when 0 < h ≤ A−2 ≤ 1. When |α| = 3, formula (5.28) once more gives that there
exist symbols Rβ(·;h,A) ∈ S(OA(1)), with |β| ≤ 2, such that

Xα#w
(
χ0(Ah

1/2X)

∫ 1

0

(1− t)2p
(α)
0 (t h1/2X) dt

)
= Xαχ0(Ah

1/2X)

∫ 1

0

(1−t)2p(α)0 (t h1/2X) dt

+ h1/2
∑
|β|≤2

h(2−|β|)/2XβRβ(h
1/2X ;h,A).

It follows from (5.53) and the previous identity that there exists a symbol

r7(·;h,A) ∈ S
(OA(〈X〉2)),

such that

A

h
r0,h(X)#wχ0(Ah

1/2X)

=
∑
|α|=3

3

α!
XαAh1/2χ0(Ah

1/2X)

∫ 1

0

(1−t)2p(α)0 (t h1/2X) dt+ h r7(X ;h,A),(5.54)

because
h(2−|β|)/2XβRβ(h

1/2X ;h,A) ∈ S
(OA(〈X〉2)),

when |β| ≤ 2 and 0 < h ≤ A−2 ≤ 1. Consider then the symbol

(5.55) r2,h(X) =
∑
|α|=3

3

α!
XαAh1/2χ0(Ah

1/2X)

∫ 1

0

(1− t)2p
(α)
0 (t h1/2X) dt,

which can be written as

r2,h(X) =
∑

|α1|=2,|α2|=1

Xα1(Ah1/2X)α2χ0(Ah
1/2X)pα1,α2(h

1/2X),

for some symbols pα1,α2 belonging to the class S(1), since p0 ∈ S(1). We therefore
deduce from (5.37) that the symbol r2,h belongs to the class S(〈X〉2) uniformly
with respect to the parameters when 0 < h ≤ A−2 ≤ 1. By using the fact that the
symbol of the operator S belongs to the class S−2, we obtain from (5.54) and (5.55)
that

Srw0,hM0 = Srw0,h χ
w
0 (Ah

1/2X) =
h

A
rw3,h + h2rw4,h,

for some symbols r3,h ∈ S(1) and r4,h ∈ S(OA(1)), uniformly with respect to the
parameters when 0 < h ≤ A−2 ≤ 1. It follows that∥∥Srw0,hM0 u

∥∥
L2 � h

A
‖u‖L2 +OA(h

2)‖u‖L2,

when 0 < h ≤ A−2 ≤ 1. This concludes the proof of Lemma 5.3. �
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We now resume the proof of Theorem 3.1 and deduce from (5.42) and Lem-
mas 5.2 and 5.3 that

h
∥∥SQM0 u

∥∥
L2 �

∥∥Pu− hz(h)u
∥∥
L2 +

∥∥ [P,M0]u
∥∥
L2

+O
( h
A

)
‖u‖L2 +OA(h

2)‖u‖L2 +O(h3/2)‖u‖L2,(5.56)

when 0 < h ≤ A−2 ≤ 1. Then, from (5.39) and (5.56), we get

h‖u‖L2 �
∥∥Pu− hz(h)u

∥∥
L2 +

∥∥ [P,M0]u
∥∥
L2 + h |R+u|

+ h
∥∥(1−M0)u

∥∥
L2 +O

( h
A

)
‖u‖L2 +OA(h

2)‖u‖L2 +O(h3/2)‖u‖L2,

when 0 < h ≤ A−2 ≤ 1. We next choose the large parameter A � 1 to control
the term O(h/A)‖u‖L2 by the left-hand side of the preceding estimate. With this
definitive choice fixing the parameters A0 ≥ 1 and 0 < h0 � 1, we obtain

h‖u‖L2 �
∥∥Pu− hz(h)u

∥∥
L2 +

∥∥ [P,M0]u
∥∥
L2 + h |R+u|

+ h
∥∥(1−M0)u

∥∥
L2 +O(h3/2)‖u‖L2,(5.57)

when 0 < h ≤ h0. Using (2.3) and (5.37) observe that the Weyl symbol of the
operator

[P,M0] =
[
P, χw

0 (A0h
1/2X)

]
,

is given by

1

i

{
p (h1/2X ;h), χ0(A0h

1/2X)
}
mod S(h2) =

h

i

{
p0, χ0(A0·)

}
(h1/2X) mod S(h2),

whence it follows that

(5.58)
∥∥ [P,M0]u

∥∥
L2 � h

∥∥Opw
({p0, χ0(A0·)} (h1/2X)

)
u
∥∥
L2 + h2‖u‖L2.

From (2.5), (2.6) and (5.37) we have that the principal symbol is elliptic near the
supports of the functions

(1− χ0)(A0·) and {p0, χ0(A0·)}.

This yields the estimate∥∥(1−M0)u
∥∥
L2 +

∥∥Opw
({p0, χ0(A0·)} (h1/2X)

)
u
∥∥
L2

=
∥∥(1− χ0)

w(A0h
1/2X)u

∥∥
L2 +

∥∥Opw
({p0, χ0(A0·)} (h1/2X)

)
u
∥∥
L2

�
∥∥Pu− hz(h)u

∥∥
L2 +O(h)‖u‖L2.(5.59)

From (5.57), (5.58) and (5.59) we then have that

h‖u‖L2 �
∥∥Pu− hz(h)u

∥∥
L2 + h |R+u|,
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when 0 < h� 1. Since N0 ≥ 1, this implies

hN0/2+1‖u‖L2 � hN0/2
∥∥Pu− hz(h)u

∥∥
L2 + hN0/2+1|R+u|

�
∥∥Pu− hz(h)u

∥∥
L2 + hN0/2+1|R+u|,(5.60)

when 0 < h� 1. On the other hand, from (5.7) and (5.14) we have that

|E±R+u| ≤
∣∣∣E−

( 2N0+2∑
k=0

awk (x,Dx)h
1+k/2

)
u
∣∣∣+O(hN0+5/2)‖u‖L2

≤ |E−(P − hz(h))u|+O(h[N0/2]+2)‖u‖L2

+ hN0/2+3/2
∑

|α|=N0+3

∣∣E−Opw
(
XαRα(X ;h)

)
u
∣∣

�
∥∥(P − hz(h))u

∥∥
L2 +O(

h[N0/2]+2
) ‖u‖L2(5.61)

+ hN0/2+3/2
∑

|α|=N0+3

∣∣E−Opw
(
XαRα(X ;h)

)
u
∣∣,

because ‖E−‖L (L2,Cd) = O(1). It follows from (5.8) and (5.17) that(
E−Opw

(
XαRα(X ;h)

)
u
)
k-th component

=
(
Opw

(
XαRα(X ;h)

)
u,

2N0+2∑
j=0

ψ−
j,k h

j/2
)
L2

=

2N0+2∑
j=0

hj/2
(
u,Opw

(
XαRα(X ;h)

)
ψ−
j,k

)
L2 = O(1)‖u‖L2,(5.62)

since ψ−
j,k ∈ S (Rn). We therefore get from (5.61) and (5.62) that

|E±R+u| �
∥∥Pu− hz(h)u

∥∥
L2 +O(

hN0/2+3/2
) ‖u‖L2 +O(

h[N0/2]+2
) ‖u‖L2.

If the estimate (5.33) holds, we thus have

c0 h
N0/2+1|R+u| ≤ |E±R+u|
�

∥∥Pu− hz(h)u
∥∥
L2 +O(

hN0/2+3/2
) ‖u‖L2 +O(

h[N0/2]+2
) ‖u‖L2,

and deduce from (5.60) that

hN0/2+1‖u‖L2 �
∥∥Pu− hz(h)u

∥∥
L2 +O(

hN0/2+3/2
) ‖u‖L2 +O(

h[N0/2]+2
) ‖u‖L2.

This shows that
hN0/2+1‖u‖L2 �

∥∥Pu− hz(h)u
∥∥
L2 ,

when 0 < h � 1. Hence the estimate (5.26) holds true for any given Schwartz
function and by density it also holds true for all u ∈ L2(Rn). This finally proves
the second implication and concludes the proof of Theorem 3.1. �
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6. Appendix

This appendix gathers miscellaneous facts and notation related to quadratic dif-
ferential operators used in the previous sections. We refer the reader to [11], [13],
and [27] for the results recalled in this section.

Associated with a complex-valued quadratic form

q : Rn
x × R

n
ξ −→ C

(x, ξ) �−→ q(x, ξ),

with n ≥ 1, one has the Hamilton map F ∈ M2n(C), uniquely defined by the
identity

(6.1) q
(
(x, ξ); (y, η)

)
= σ

(
(x, ξ), F (y, η)

)
, (x, ξ) ∈ R

2n, (y, η) ∈ R
2n,

where q(·; ·) stands for the polarized form associated with the quadratic form q and
where σ is the standard symplectic form on R2n = Rn × Rn,

(6.2) σ
(
(x, ξ), (y, η)

)
= ξ · y − x · η, (x, ξ) ∈ R

2n, (y, η) ∈ R
2n.

It readily follows from the definition that the real and imaginary parts of the
Hamilton map

Re F =
1

2
(F + F ), Im F =

1

2i
(F − F ),

F being the complex conjugate of F , are the Hamilton maps associated with the
quadratic forms Re q and Im q. The singular space S associated with the quadratic
symbol q was introduced in [11] and is defined by

(6.3) S =
( 2n−1⋂

j=0

Ker
(
Re F (Im F )j

)) ⋂
R

2n.

This linear subspace of the phase space plays a basic role in the understanding of
the properties of the quadratic operator

qw(x,Dx)u(x) =
1

(2π)n

∫
R2n

ei(x−y)·ξ q
(x+ y

2
, ξ
)
u(y) dξ dy,

when its symbol may fail to satisfy the ellipticity condition

(x, ξ) ∈ R
2n, q(x, ξ) = 0 =⇒ (x, ξ) = 0.

In particular, the known description of the spectrum of elliptic quadratic opera-
tors [29] extends to certain classes of “partially elliptic” quadratic operators. More
specifically, when q is a quadratic symbol with a nonnegative real part Re q ≥ 0,
satisfying the ellipticity condition on its singular space S (partial ellipticity)

(6.4) (x, ξ) ∈ S, q(x, ξ) = 0 =⇒ (x, ξ) = 0,



Semiclassical hypoelliptic estimates 1475

then the spectrum Spec(qw(x,Dx)) of the quadratic operator qw(x,Dx) is com-
posed only of eigenvalues with finite algebraic multiplicities [11] (Theorem 1.2.2)
and is given explicitly by

(6.5) Spec
(
qw(x,Dx)

)
=

{ ∑
λ∈Spec(F ),

−iλ∈C+∪(Σ(q|S)\{0})

(rλ + 2kλ) (−iλ); kλ ∈ N

}
,

where rλ is the dimension of the space of generalized eigenvectors of F in C2n

belonging to the eigenvalue λ ∈ C, and where

Σ(q|S) = q(S) ⊂ iR, C+ =
{
z ∈ C; Re z > 0

}
.

Equivalently, the singular space can be defined as the subset of phase space where
all the Poisson brackets Hk

Im qRe q, with k ≥ 0, vanish

S =
{
X ∈ R

2n; Hk
Im qRe q(X) = 0, k ≥ 0

}
.

This shows that the singular space corresponds exactly to the set of points X0

in the phase space where the real part of the symbol q composed with the flow
generated by the Hamilton vector field

t �−→ Re q(etHIm qX0)

associated with its imaginary part Im q, vanishes to infinite order at t = 0. Further-
more, quadratic operators with zero singular space were shown to enjoy notable
subelliptic properties [27]. Namely, when q is a complex-valued quadratic form
with a nonnegative real part Re q ≥ 0, and a zero singular space S = {0}, then
the quadratic operator qw(x,Dx) fulfills the subelliptic estimate with a loss of
2k0/(2k0 + 1) derivatives

(6.6)
∥∥〈(x,Dx)

〉2/(2k0+1)
u
∥∥
L2 ≤ C

(‖qw(x,Dx)u‖L2 + ‖u‖L2

)
, u ∈ S (Rn),

where 〈(x,Dx)〉2 = 1 + |x|2 + |Dx|2, and where 0 ≤ k0 ≤ 2n − 1 stands for the
smallest integer satisfying( k0⋂

j=0

Ker
(
Re F (Im F )j

)) ⋂
R

2n = {0}.
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