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A Nullstellensatz for �Lojasiewicz ideals

Francesca Acquistapace, Fabrizio Broglia and Andreea Nicoara

Abstract. For an ideal of smooth functions a that is either �Lojasiewicz
or weakly �Lojasiewicz, we give a complete characterization of the ideal of
functions vanishing on its variety I(Z(a)) in terms of the global �Lojasiewicz
radical and Whitney closure. We also prove that the �Lojasiewicz radical
of such an ideal is analytic-like in the sense that its saturation equals its
Whitney closure. This allows us to revisit Nullstellensatz results due to
Bochnak and Adkins–Leahy and to resolve positively a modification of the
Nullstellensatz conjecture due to Bochnak.

1. Introduction

In this paper we characterize a class of ideals a having the zero property in the
algebra E(M) of real-valued smooth functions on a smooth manifold M . Recall
that an ideal a has the zero property if it coincides with the ideal I(Z(a)) of all
functions vanishing on its zero set.

The investigation of such a Nullstellensatz for the class of C∞ functions was
initiated by Bochnak in 1973 in [4] and was continued by Risler in [10]. Interesting
contributions by Adkins and Leahy can be found in [2] and [3].

In particular, Bochnak formulated the following conjecture:

Conjecture. Let a be a finitely generated ideal in E(M). Then the following are
equivalent:

(1) a has the zero property;

(2) a is closed and real.

Here the closure is taken in the compact-open topology.

He proved his conjecture when a is generated by finitely many analytic func-
tions. Then Risler in [10] completely resolved the conjecture in dimension 2 and
for principal ideals in dimension 3. Finally, for an ideal generated by analytic func-
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tions (not necessarily finitely many), Adkins and Leahy prove in [2] that I(Z(a))
is the closure of the real radical of a.

Note that a closed finitely generated ideal is �Lojasiewicz (see the definition
below), but the converse is not true ([12], p. 104, example 4.8).

In Theorem 2.7, we give a complete characterization of I(Z(a)) for the case
when a is a �Lojasiewicz ideal in terms of a particular notion of radical called the
�Lojasiewicz radical. This radical certainly contains the real radical, but as far
as we know it is not known whether they are equal. An answer to this question
probably involves the solution of Hilbert’s 17th Problem without denominators in
the smooth setting. We define this radical below in Definition 2.6.

�Lojasiewicz ideals were considered by several authors including Malgrange in
Section 6 of [7], Thom in [11], and Tougeron in [12], page 104. The �Lojasiewicz
radical appears in work by Kohn ([6], Theorem 1.21), and Nowak [8], though
mainly as a notion applied to ideals of germs.

As a consequence of Theorem 2.7, we solve the Bochnak conjecture in terms of
convexity (defined at the beginning of section 4.1):

Theorem 1.1. Let a be a �Lojasiewicz ideal in E(M). Then the following are
equivalent:

(1) a has the zero property;

(2) a is closed, convex, and radical.

In fact, we obtain our result for ideals a with countably many generators but
still satisfying condition (2) of Definition 2.3. See Theorem 3.4.

Note that a convex radical ideal is a real ideal. If we had a good representation
of positive semidefinite functions as sums of squares, the converse would also be
true. This converse happens to be true when a is generated by analytic functions
(see Theorem 4.2). We thus recover the results of Bochnak and Adkins–Leahy.

2. �Lojasiewicz ideals

Let M be a smooth manifold, and let E(M) be its algebra of smooth real-valued
functions endowed with the compact open topology.

The saturation of an ideal a in E(M) is the ideal

ã = {g ∈ E(M) | ∀x ∈M gx ∈ aEx}.
An ideal a is saturated if a = ã.

Lemma 2.1. The following inclusions hold:

a ⊂ ã ⊂ a.

Proof. Consider the ideal

a∗ = {g ∈ E(M) | ∀x ∈M Txg ∈ Txa}.
The Whitney spectral theorem gives a∗ = a (see for instance chapter II of [7]),
and the proof follows since ã ⊂ a∗. �
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Remarks 2.2. (1) Both inclusions a ⊂ ã and ã ⊂ a are strict in general; consult
Adkins–Leahy [2], p. 708, for an example.

(2) We turn to the analytic setting. If M is analytic and g belongs to the
ring O(M) of analytic functions on M , then gx can be identified with Txg. A con-
sequence of this fact is that for any ideal a ⊂ O(M), a∗ = ã, where the two
operations on a are performed in the ring O(M) only. Unlike what happens in the
smooth case, in the analytic setting a∗ is not the closure of a in the compact-open
topology; see [5] for details. Henceforth we will call analytic-like any ideal in E(M)
satisfying a∗ = ã.

(3) Note that

ã = {g ∈ E(M) | ∀ compact K ⊂M ∃h ∈ E(M) s.t. Z(h) ∩K = ∅ and hg ∈ a}
= {g ∈ E(M) | ∀x ∈M ∃h ∈ E(M) s.t. h(x) �= 0 and hg ∈ a}.

Proof. It is clear that both the second and third sets are subsets of ã. It is also
clear that the second set is a subset of the third. Therefore, the three-way equality
reduces to proving that ã is a subset of the second set. Let g ∈ ã. Given any
compact subset K of M, let x ∈ K. It follows that gx ∈ aEx, and in a suitable
neighborhood Ux of x,

g = α1f1 + · · · + αkfk.

Take a positive semidefinite bump function ϕ such that x ∈ Vx = {ϕ > 0} ⊂ Ux.
Then

ϕg = (ϕα1)f1 + · · · + (ϕαk)fk ∈ a.

The family {Vx}x∈K is an open cover of the compact set K. Take a finite subcover
Vx1 , . . . , Vxj with corresponding bump functions ϕ1, . . . , ϕj . Summing the expres-
sions for ϕ1g, . . . , ϕjg, we obtain that (ϕ1 + · · ·+ϕj)g is a finite sum of elements of
a with coefficients in E(M). As (ϕ1+ · · ·+ϕj)(y) �= 0 for all y ∈ K by construction,
we set h = ϕ1 + · · · + ϕj and conclude that g is an element of

{g ∈ E(M) | ∀ compact K ⊂M ∃h ∈ E(M) s.t. Z(h) ∩K = ∅ and hg ∈ a}
as needed. �

Definition 2.3. An ideal a ⊂ E(M) is a �Lojasiewicz ideal if

(1) a is generated by finitely many smooth functions f1, . . . , fl;

(2) a contains an element f with the property that for any compact K ⊂ M,
there exist a constant c and an integer m depending on K such that |f(x)| ≥
c d(x,Z(a))m on an open neighborhood of K, i.e., f satisfies a �Lojasiewicz
inequality on each compact set.

Remark 2.4. It is well known that in the definition above one can take f to be
the sum of squares of the generators f2

1 + · · · + f2
l . This can be seen as follows:

f1, . . . , fl cannot be simultaneously flat at any point in M ; otherwise, f would be
flat at some point of its zero set, hence it could not satisfy the inequality in the
definition. So f2

1 + · · ·+ f2
l is nowhere flat and dominates C |f |2 on every compact

set of M for an appropriately chosen constant C > 0. It thus satisfies the required
inequality with exponent 2m. In what follows, we will replace condition (2) by:
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(2’) Let {f1, . . . , fl} be generators of a. For any compact K ⊂ M there is a
constant C and a positive integer m such that |f(x)| ≥ c d(x,Z(a))m on an
open neighborhood of K, where f = f2

1 + · · · + f2
l .

Lemma 2.5. Let a be a �Lojasiewicz ideal generated by f1, . . . , fl and f = f2
1 +

· · · + f2
l . Let g ∈ E(M) be such that Z(g) ⊃ Z(f) = Z(a). Then for any compact

set K ⊂M, there exist a constant c and a positive integer m such that g2m ≤ cf on
an open neighborhood of K. In particular, there exist an integer m and an element
a ∈ a such that g2m ≤ |a| on an open neighborhood of K.

Proof. Let X = Z(a), and fix a compact set K ⊂ M. Now let U be an open set
such that U ⊃ K, U is compact, and U ⊂ M . Then for x, y ∈ U close enough to
each other, |g(x) − g(y)| ≤ c1 d(x, y) holds by the mean value theorem, where c1
is a suitable positive constant related to maxima of norms of first order partial
derivatives of g on U. Now d(x,X) = infy∈X d(x, y), so since g vanishes on X, we
obtain |g(x)| ≤ c1 d(x,X) for x ∈ U close enough to X. Since K is compact, we
can find finitely many open sets Vi ⊂ U, where the previous inequality holds and
such that X ∩ K ⊂ V = ∪Vi. Therefore, we have |g(x)| ≤ c1 d(x,X) on V. Let
W be an open neighborhood of X ∩ K such that its closure W satisfies W ⊂ V.
Set H = U \W , which is compact. Let minx∈H d(x,X) = α > 0, supU |g| = A,
and c2 = A/α. Hence for x ∈ H, one gets

|g(x)| ≤ c2 d(x,X).

Let c3 = max{c1, c2}. We now have |g(x)| ≤ c3 d(x,X) on U and hence g(x)2m ≤
c2m3 d(x,X)2m for any m. Since a is �Lojasiewicz, in a neighborhood of the compact
set U, one has the inequality c d(x,X)2m ≤ f(x). Combining these inequalities,
one gets g2m ≤ c4f in an open neighborhood of K, where c4 = c2m3 /c. �

Lemma 2.5 motivates us to globalize the definition of the �Lojasiewicz radical.

Definition 2.6. The �Lojasiewicz radical of an ideal a ∈ E(M) is given by

�L
√
a := {g ∈ E(M) | ∃ f ∈ a andm ≥ 1 such that f − g2m ≥ 0}.

It is not hard to verify that �L
√
a is a radical real ideal for any ideal a.

We can now prove our main result:

Theorem 2.7. Let a ⊂ E(M) be a �Lojasiewicz ideal. Then

• �L
√
a is analytic-like, i.e., �̃L

√
a = �L

√
a.

• I(Z(a)) = �L
√
a.

Proof. Note that for any ideal b we have:

• b ⊂ I(Z(b)). Indeed, g ∈ b implies Tx(g) ∈ Tx(b) for all x ∈ M . Hence if
x ∈ Z(b), then Tx(g) has order at least 1 because Tx(b) is contained in the
maximal ideal of the ring of formal power series at x. Therefore, g(x) = 0.

• Z( �L
√
b) = Z(b).
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We thus have �̃L
√
a ⊂ �L

√
a ⊂ I(Z(a)). Hence both assertions in the statement

will be proved if we show I(Z(a)) ⊂ �̃L
√
a.

Take g ∈ I(Z(a)), and let f = f2
1 + · · · + f2

l , where f1, . . . , fl are generators
of a. Let K be a compact set in M . By Lemma 2.5, g2m ≤ cf on a neighborhood
of K. Let ϕK ∈ E(M) be a nonnegative function taking the value 1 on K and
the value 0 outside the neighborhood where the inequality g2m ≤ cf holds. Hence
(ϕKg)2m ≤ cf on the whole of M , which means ϕKg ∈ �L

√
a. By Remark 2.2 (3),

we are done. �

3. Weakly �Lojasiewicz ideals

Examining the proofs above, we see that the main ingredient is the existence of a
function f ∈ a that is the sum of the squares of the generators and has the same
zero set as a, making a �Lojasiewicz. In Lemma 3.2 below, we construct a function
with this property for a more general class of ideals.

Definition 3.1. An ideal a ⊂ E(M) is weakly �Lojasiewicz if

(1) a is locally finitely generated, i.e., for any x ∈ M there exist finitely many
elements in a generating aE(U), where U is a suitable neighborhood of x;

(2) There exists an element f ∈ ã such that for any compact K ⊂M, there exist
a constant c and an exponent m such that |f(x)| ≥ c d(x,Z(a))m.

Lemma 3.2. Let a be a weakly �Lojasiewicz ideal. Then there exists f ∈ ã satisfying
property (2) in Definition 3.1 such that Z(f) = Z(a). Moreover, for any compact
set K ⊂M, there exists a neighborhood U of K such that the restriction of f to U
belongs to aE(U).

Proof. Since a is locally finitely generated, we can assume it is globally generated by
countably many smooth functions {fj}j>0. Let h be a smooth function satisfying
property (2) of Definition 3.1. Since hx ∈ aEx, for any x ∈ M, there is lx such

that hx =
∑lx

j=1 ajxfj and this equality holds in a neighborhood Ux of x. Hence,
if K ⊂ M is a compact set, there exist finitely many points x1, . . . , xs such that
K ⊂ Ux1 ∪ · · · ∪ Uxs . Take l = max

i
{lxi}, and let {ϕi} be a smooth partition of

unity subordinate to the covering U = Ux1 ∪ · · · ∪ Uxs . Then

h =
(∑

i

ϕi

)
h =

∑
i

ϕi

( l∑
j=1

ajxifj

)
=

l∑
j=1

(∑
i

ϕiajxi

)
fj.

This shows that h belongs to aE(U) and that the latter is a �Lojasiewicz ideal.
Next, take an exhaustion of M by compact sets {Kj}j>0 such that Kj ⊂

IntKj+1 for every j ≥ 1. We can assume that a is generated on a neighborhood
of Kj by fi, . . . , fij . Consider the open locally finite covering of M given by
{Uj = IntKj+1 \ Kj−2}j≥1, where K−1 = K0 = ∅. Let {αj}j≥1 be a collection
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of smooth functions αj : M → [0, 1] satisfying that αj = 1 on Kj \ IntKj−1

and supp(αj) ⊂ Uj for all j ≥ 1. Note that αjf1, . . . , αjfij still generate a in a
neighborhood Vj ⊂ Kj+1 of Kj \ IntKj−1 and that a is a �Lojasiewicz ideal on Vj .

Now put

f =

∞∑
j=1

αj

( ij∑
i=1

f2
i

)
.

We get:

1. f ∈ E(M). Indeed, for any x ∈ Kj \ IntKj−1 ⊂ M, f is the sum of three
summands of finitely many functions,

f = αj−1

( ij−1∑
i=1

f2
i

)
+ αj

( ij∑
i=1

f2
i

)
+ αj+1

( ij+1∑
i=1

f2
i

)
.

2. f ∈ ã. Indeed, for x ∈ Kj \Kj−1, the germ fx belongs to the ideal generated
by f1, . . . , fij+1 , which generate the ideal a on Vj+1.

3. f ≥ 0 and Z(f) = Z(a) since this is true locally.

4. f satisfies the inequality of Definition 3.1. Indeed, if K ⊂M is a compact set,
thenK ⊂ Kj for some j. Hence f belongs to the restriction of a to V1∪· · ·∪Vj ,
which is a �Lojasiewicz ideal, and f

∣∣
V1∪···∪Vj

is a finite combination with

positive coefficients of the squares of a family of generators of aE(V1∪· · ·∪Vj).
�

Remark 3.3. Statement 4 at the end of the previous proof implies that a weakly
�Lojasiewicz ideal is locally �Lojasiewicz in the sense that for any point x ∈M, there
is an open neighborhood V of x such that the restriction of a to V is a �Lojasiewicz
ideal. It is not hard to prove the converse.

Next, note that similar statements to those of Lemma 2.5 and Theorem 2.7 hold
true for a weakly �Lojasiewicz ideal a with an analogous proof, simply replacing
f2
1 + · · ·+f2

l by the function f constructed in Lemma 3.2 above, provided the ideal
a is saturated as f ∈ ã. Hence, we obtain:

Theorem 3.4. Let a ⊂ E(M) be a weakly �Lojasiewicz ideal. Then I(Z(a)) =
�̃L
√
ã.

In particular, if a is saturated, then I(Z(a)) = �̃L
√
a.

4. Consequences

4.1. Resolving a modification of the Bochnak conjecture

We now want to relate the notion of being �Lojasiewicz with convexity.
We say that an ideal a of E(M) is convex if each g ∈ E(M) satisfying |g| ≤ f

for some f ∈ a belongs to a. In particular, the �Lojasiewicz radical �L
√
a of an ideal

a of E(M) is a radical convex ideal.
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Moreover, we define the convex hull g(a) of an ideal a of E(M) by

g(a) := {g ∈ E(M) | ∃f ∈ a such that |g| ≤ f}.
Note that g(a) is the smallest convex ideal of E(M) that contains a and

�L
√
a =

√
g(a).

Hence if a is convex and radical, it coincides with its �Lojasiewicz radical, and
we immediately get:

Corollary 4.1. If the ideal a ⊂ E(M) is a (weakly) �Lojasiewicz ideal, the following
are equivalent:

(1) a has the zero property;

(2) a is closed, convex, and radical.

4.2. Recovering the Bochnak and Adkins–Leahy Nullstellensatz results

To compare our results with those of Bochnak and Adkins–Leahy, we have to relate
�Lojasiewicz radicals with real radicals of ideals generated by analytic functions. So
assume M is an analytic manifold and the ideal a ⊂ E(M) is generated by analytic
functions. It follows that the zero set of a is a global analytic set X and a is locally
finitely generated. Furthermore, there exists an analytic function f ∈ ã whose zero
set is X, and so a is a weakly �Lojasiewicz ideal (see [1]).

Theorem 4.2. Let M be an analytic manifold, and let a ∈ O(M) be an ideal of
real analytic functions. Then

˜
�L

√
ãE(M) = r

√
aE(M).

Proof. Let X = Z(a), and consider the ideal �L
√
a ⊂ O(M). We have the following:

• ( �L
√
a)Ox ⊂ �L

√
aOx = r

√
aOx. Indeed, if g ∈ ( �L

√
a)Ox, then g =

∑
i hiai,

where hi ∈ Ox and ai ∈ �L
√
a. Hence a2mi

i ≤ cif, for some f ∈ a, and so
(hiai)

2mi ≤ c′if, for f ∈ a, which means hiai ∈ �L
√
aOx. So g ∈ �L

√
aOx. Since

the �Lojasiewicz radical contains the real radical and Z( �L
√
aOx) = Z( r

√
aOx)

the last equality is the Risler Nullstellensatz in the ring of germs of analytic
functions; see [9].

• ( �L
√
a)Ex ⊂ �L

√
aEx by the same argument as before.

• �L
√
aEx = ( �L

√
aE(M) )x. Only the inclusion �L

√
aEx ⊂ ( �L

√
aE(M) )x requires

some justification. Indeed, if ϕ ∈ aEx, then ϕ =
∑
ϕiai, for ϕi ∈ Ex and

ai ∈ a. This holds true in an open neighborhood U of x. Take a smooth
bump function ψ such that ψ = 1 in a smaller neighborhood and its support
is contained in U . Then ψϕ =

∑
(ψϕi)ai ∈ aE(M), and its germ at x is

precisely ϕ. Thus, taking �Lojasiewicz radicals and localizing at x, we have
�L
√
aEx ⊂ ( �L

√
aE(M) )x as needed.
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We have obtained

( �L
√
a)Ex ⊂ �L

√
aEx = ( �L

√
aE(M) )x.

Now apply the Taylor homomorphism at x to obtain

Tx( �L
√
aEx) = ( �L

√
a)xFx ⊂ Tx( �L

√
aE(M))x ⊂ r

√
aOxFx.

It is worth noting here that we identify the Taylor series of analytic functions
with the corresponding germs. The last inclusion holds because the elements of
( �L
√
aE(M))x vanish on Xx. Therefore, their Taylor series belong to IFx(Xx) =

r
√
aOx Fx by Malgrange’s theorem (see Theorem 3.5 in page 90 of [7]). Arguing as

in [3],

r
√
aOx ⊂ r

√
aEx = ( r

√
aE(M) )x.

As a result, the last inclusion is an equality.
We have now finished making preliminary observations and are ready to prove

the statement. Consider

g ∈
˜

�L

√
ãE(M).

For any compact set K ⊂ M, there is an open neighborhood U of K such that g

belongs to
�L

√
ãE(U). It follows that g2m ≤ cf for some f ∈ ãE(U), c > 0, and

m ≥ 1. In turn, on a smaller neighborhood V ⊂ U of K, we get f ∈ aE(V ).
This means that for any x ∈ M, the germ gx belongs to �L

√
aEx, which equals

( �L
√
aE(M) )x. Applying what was stated before, we see that

Txg ∈ Tx( �L
√
aE(M)) ⊂ ( r

√
aE(M) )x,

which implies gx ∈ ( r
√

aE(M))x for all x ∈ M and so g ∈ r
√

aE(M). The converse
inclusion comes from the fact that the �Lojasiewicz radical is analytic-like and bigger
than the real one by Theorem 2.7. �

As a consequence of Theorems 2.7 and 4.2, we recover the result of Adkins and
Leahy in [3]. Concerning Bochnak’s result, note that a finitely generated analytic
ideal a ⊂ E(M) is closed and if it is real, it coincides with its real radical. Hence
it has the zero property.
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