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Application of Weierstrass units

to relative power integral bases

Ho Yun Jung, Ja Kyung Koo and Dong Hwa Shin

Abstract. Let K be an imaginary quadratic field not equal to Q(
√−1)

or Q(
√−3). We construct relative power integral bases between certain

abelian extensions of K in terms of Weierstrass units.

1. Introduction

Let L/F be an extension of number fields and let OL and OF be the rings of
integers of L and F , respectively. We say that an element α of L forms a relative
power integral basis for L/F if OL = OF [α]. For example, if N is a positive
integer, then ζN = e2πi/N forms a (relative) power integral basis for the extension
Q(ζN )/Q (see Theorem 2.6 in [21]). In general not much is known about relative
power integral bases except for extensions of degree less than or equal to 9 (see
references [1]–[12]).

Let K be an imaginary quadratic field not equal to Q(
√−1) or Q(

√−3). Let m
and n be positive integers such thatm has at least two prime factors and each prime
factor of mn splits in K/Q. In this paper we shall show that a certain Weierstrass
unit forms a relative power integral basis for the ray class field modulo (mn) over
the compositum of the ray class field modulo (m) and the ring class field of the
order of conductor mn of K (Theorem 4.1). To this end, we shall make use of an
explicit description of the Shimura reciprocity law in [20] due to Stevenhagen.

2. Weierstrass units

For a positive integer N , let Γ(N) be the principal congruence subgroup of level N ,
namely

Γ(N) = {γ ∈ SL2(Z) | γ ≡ I2 (mod N)}.
Then Γ(N) = 〈Γ(N),−I2〉/{±I2} acts on the complex upper half-plane H by
fractional linear transformations.
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Let FN be the field of meromorphic modular functions for Γ(N) (or, of level N)
whose Fourier coefficients lie in the Nth cyclotomic field Q(ζN ). As is well known,
F1 is generated by the elliptic modular function

j(τ) = q−1 + 744 + 196884q+ 21493760q2 + 864299970q3 + · · · (q = e2πiτ )

over Q (see Section 6.1 in [18]). Furthermore, FN is a Galois extension of F1 whose
Galois group is isomorphic to GL2(Z/NZ)/{±I2} (see Section 6.2 in [18]). Let RN

and QRN be the integral closures of Z[j(τ)] and Q[j(τ)] in FN , respectively. We
call the elements of (QRN )∗ modular units of level N . These are precisely those
elements of FN having neither zeros nor poles onH (see p. 36 in [15]). In particular,
we call the elements of R∗

N modular units over Z of level N .
Let Λ = [ω1, ω2] (= ω1Z + ω2Z) be a lattice in C. The Weierstrass ℘-function

relative to Λ is defined by

℘(z; Λ) =
1

z2
+

∑
ω∈Λ−{0}

{ 1

(z − ω)2
− 1

ω2

}
(z ∈ C).

It is a meromorphic function on z, periodic with respect to Λ.

Lemma 2.1. Let z1, z2 ∈ C−Λ. Then, ℘(z1; Λ) = ℘(z2; Λ) if and only if z1 ≡ ±z2
(mod Λ).

Proof. See Section 3 of Chapter IV in [19]. �

Let [ rs ] ∈ (1/N)Z2 − Z2 for an integer N ≥ 2. We define

℘[ rs ]
(τ) = ℘(rτ + s; [τ, 1]) (τ ∈ H).

This is a weakly holomorphic (that is, holomorphic on H) modular form of level N
and weight 2 (see Chapter 6 in [16]). We further define

g2(τ) = 60
∑

ω∈[τ,1]−{0}

1

ω4
, g3(τ) = 140

∑
ω∈[τ,1]−{0}

1

ω6
, Δ(τ) = g2(τ)

3−27g3(τ)
2,

which are modular forms of level 1 and weights 4, 6, and 12, respectively. Now we
define the Fricke function f[ rs ]

(τ) by

(2.1) f[ rs ]
(τ) =

g2(τ) g3(τ)

Δ(τ)
℘[ rs ]

(τ).

It depends only on ± [ rs ] (mod Z2) (see p. 8 in [16]) and is weakly holomorphic
because Δ(τ) does not vanish on H.

Lemma 2.2. f[ rs ]
(τ) belongs to FN and satisfies the transformation formula

f[ rs ]
(τ)γ = ftγ[ rs ]

(τ) (γ ∈ GL2(Z/NZ)/{±I2} � Gal(FN/F1)),

where tγ stands for the transpose of γ.

Proof. See Sections 2 and 3 of Chapter 6 in [16]. �
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On the other hand, we define the Siegel function g[ rs ]
(τ) by

g[ rs ]
(τ) = −q(1/2)(r

2−r+1/6)eπis(r−1)(1−qre2πis)

∞∏
n=1

(1−qn+re2πis)(1−qn−re−2πis).

Lemma 2.3. Let M be the primitive denominator of [ rs ] (that is, M is the least
positive integer so that Mr,Ms ∈ Z).

(i) g[ rs ]
(τ)12M and g[ rs ]

(τ) are modular units of levels M and 12M2, respectively.

(ii) g[ rs ]
(τ)12M depends only on ± [ rs ] (mod Z2) and satisfies the transformation

formula

(g[ rs ]
(τ)12M )γ = gtγ[ rs ]

(τ)12M (γ ∈ GL2(Z/MZ)/{±I2} � Gal(FM/F1)).

(iii) Moreover, if M has at least two prime factors, then g[ rs ]
(τ) is a modular unit

over Z.

Proof. (i) See Theorem 1.2 in Chapter 2 and Theorems 5.2 and 5.3 in Chapter 3
of [15].

(ii) See Proposition 1.4 in Chapter 2 of [15].
(iii) See Theorem 2.2 (i) in Chapter 2 of [15]. �

Lemma 2.4. Let [ ab ] , [
c
d ] ∈ Q2−Z2 be such that [ ab ] 	≡ ± [ cd ] (mod Z2). We have

the relation

℘[ ab ]
(τ)− ℘[ cd ]

(τ) = −
g[a+c

b+d

](τ)g[ a−c
b−d

](τ)η(τ)4

g[ ab ]
(τ)2g[ cd ]

(τ)2
,

where

η(τ) =
√
2πζ8q

1/24
∞∏

n=1

(1− qn).

Proof. See page 51 of [15]. �

Proposition 2.5. Consider integers m ≥ 2 and n > 0. The function

(2.2) hm,n(τ) =

℘[
0

1/mn

](τ) − ℘[
1/m
0

](τ)
℘[

0
1/m

](τ) − ℘[
1/m
0

](τ)

is a modular unit of level mn. If m has at least two prime factors, then hm,n(τ) is
a modular unit over Z.

Proof. It follows from Lemma 2.1 that the denominator of hm,n(τ) is not the zero
function. Furthermore, since

(2.3) hm,n(τ) =

f[ 0
1/mn

](τ) − f[ 1/m
0

](τ)
f[ 0

1/m

](τ) − f[ 1/m
0

](τ)

by Definition (2.1), it belongs to Fmn, by Lemma 2.2.
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On the other hand, we see that

hm,n(τ) =

−g[ 1/m
1/mn

](τ)g[−1/m
1/mn

](τ)η(τ)4/g[ 0
1/mn

](τ)2g[ 1/m
0

](τ)2

−g[ 1/m
1/m

](τ)g[−1/m
1/m

](τ)η(τ)4/g[ 0
1/m

](τ)2g[ 1/m
0

](τ)2

=

g[ 1/m
1/mn

](τ)g[−1/m
1/mn

](τ)g[ 0
1/m

](τ)2

g[ 1/m
1/m

](τ)g[−1/m
1/m

](τ)g[ 0
1/mn

](τ)2

by Lemma 2.4. This yields, by Lemma 2.3 (i), that hm,n(τ) is a modular unit.
Moreover, if m has at least two prime factors, then each of

[
1/m
1/mn

]
,

[−1/m
1/mn

]
,

[
0

1/m

]
,

[
1/m
1/m

]
,

[−1/m
1/m

]
,

[
0

1/mn

]

has primitive denominator with at least two prime factors. Therefore hm,n(τ) is a
modular unit over Z, by Lemma 2.3 (iii). �

Remark 2.6. The modular unit hm,n(τ) is called aWeierstrass unit (see Section 6
in Chapter 2 of [15]).

3. The Shimura reciprocity law

Throughout this section let K be an imaginary quadratic field of discriminant dK
not equal to Q(

√−1) or Q(
√−3), and set

(3.1) θK =
dK +

√
dK

2
.

This belongs to H and forms a (relative) power integral basis for K/Q. Further-
more, g2(θK) and g3(θK) are nonzero (see p. 37 in [16]).

For a nonzero ideal f of OK we denote the ray class field modulo f by Kf.
Furthermore, if O = [NθK , 1] is the order of conductor N ≥ 1 of K, then we mean
the ring class field of the order O by HO. As a consequence of the main theorem
of complex multiplication we have the following lemma.

Lemma 3.1. Let N be a positive integer.

(i) We have K(N) = K(f(θK) | f ∈ FN is finite at θK).

(ii) If N ≥ 2, then K(N) = K(1)(f[ 0
1/N

](θK)).

Proof. (i) See the corollary to Theorem 2 in Chapter 10 of [16].

(ii) See the corollary to Theorem 7 in Chapter 10 of [16]. �
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Lemma 3.2. If θ ∈ H is imaginary quadratic, then j(θ) is an algebraic integer.

Proof. See Theorem 4.14 in [18]. �

Proposition 3.3. Consider integers m ≥ 2 and n > 0. Then hm,n(θK) generates
K(mn) over K(m). Moreover, if m has at least two prime factors, then hm,n(θK)
is a unit of OK(mn)

.

Proof. We first derive that

K(mn) = K(1)(f[ 0
1/mn

](θK)) (by Lemma 3.1 (ii))

= K(m)

(f[ 0
1/mn

](θK)− f[ 1/m
0

](θK)

f[ 0
1/m

](θK)− f[ 1/m
0

](θK)

)
(by Lemma 3.1 (i))

= K(m)(hm,n(θK)) (by (2.3)).

Ifm has at least two prime factors, then hm,n(τ) is a modular unit over Z by Propo-
sition 2.5; hence hm,n(τ) and hm,n(τ)

−1 are both integral over Z[j(τ)]. Therefore
we conclude by Lemma 3.2 that hm,n(θK) is a unit as an algebraic integer. �

Lemma 3.4 (Shimura reciprocity law). Let N be a positive integer and let O be
the order of conductor N of K. Consider the matrix group

WK,N =

{[
t−BKs −CKs

s t

]
∈ GL2(Z/NZ) | t, s ∈ Z/NZ

}
,

where

min(θK ,Q) = X2 +BKX + CK = X2 − dKX +
d2K − dK

4
.

(i) The map

WK,N/{±I2} −→Gal(K(N)/K(1))

α �−→ (f(θK) �→ fα(θK) | f(τ) ∈ FN is finite at θK)

is an isomorphism.

(ii) The map of (i) induces an isomorphism

{tI2 ∈ GL2(Z/NZ) | t ∈ (Z/NZ)∗}/{±I2} −→ Gal(K(N)/HO).

(iii) If M is a divisor of N , then we get an isomorphism

{tI2 ∈ GL2(Z/NZ) | t ∈ (Z/NZ)∗ with t ≡ ±1 (mod M)}/{±I2}
−→ Gal(K(N)/K(M)HO).

Proof. (i) See Section 3 in [20].
(ii) See Proposition 5.3 in [14].
(iii) This is a direct consequence of (i) and (ii). �
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Lemma 3.5. Let N ≥ 2 be an integer for which (N) = NOK is not a power of a
prime ideal.

(i) g[ 0
1/N

](θK)12N is a unit of OK(N)
.

(ii) If u is an integer prime to N , then g[ 0
u/N

](θK)12N is also a unit of OK(N)
.

Proof. (i) See Remark 4.3 in [13] and [17] (or p. 293 in [16]).

(ii) We obtain

g[ 0
u/N

](θK)12N = g
t(uI2)

[
0

1/N

](θK)12N

= (g[ 0
1/N

](τ)12N )uI2(θK) (by Lemma 2.3 (i) and (ii))

= (g[ 0
1/N

](θK)12N )uI2 (by Lemmas 3.1 (i) and 3.4 (i)).

Now, the result follows from (i). �

Remark 3.6. The singular value g[ 0
1/N

](θK)12N is called a Siegel–Ramachandra

invariant modulo (N), and it forms a normal basis for K(N)/K (see [13]).

4. Construction of relative power integral bases

We are ready to prove our main theorem concerning relative power integral bases.

Theorem 4.1. Let K be an imaginary quadratic field not equal to Q(
√−1) or

Q(
√−3). Consider integers m ≥ 2 and n > 0 such that

(i) m has at least two prime factors,

(ii) each prime factor of mn splits in K/Q.

If L = K(mn) and F = K(m)HO with O the order of conductor mn of K, then
hm,n(θK) forms a relative power integral basis for L/F .

Proof. Let α = hm,n(θK). Since α is a unit of OL by Proposition 3.3, we have the
inclusion

OL ⊇ OF [α].

For the converse, let β be an element ofOL. Since L = F (α) by Proposition 3.3,
we can express β as

(4.1) β = c0 + c1α+ · · ·+ c�−1α
�−1 for some c0, c1, . . . , c�−1 ∈ F,

where � = [L : F ]. In order to prove the converse inclusion OL ⊆ OF [α] it
suffices to show that c0, c1, . . . , c�−1 ∈ OF . Multiplying both sides of (4.1) by αk

(k = 0, 1, . . . , �− 1) yields

c0α
k + c1α

k+1 + · · ·+ c�−1α
k+�−1 = βαk.
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Now, we take the trace Tr = TrL/F to obtain

c0Tr(α
k) + c1Tr(α

k+1) + · · ·+ c�−1Tr(α
k+�−1) = Tr(βαk).

Then we obtain the linear system (in the unknowns c0, c1, c2, . . . , c�−1)

T

⎡
⎢⎢⎢⎣

c0
c1
...

c�−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Tr(β)
Tr(βα)

...
Tr(βα�−1)

⎤
⎥⎥⎥⎦ , where T =

⎡
⎢⎢⎢⎣

Tr(1) Tr(α) · · · Tr(α�−1)
Tr(α) Tr(α2) · · · Tr(α�)

...
...

. . .
...

Tr(α�−1) Tr(α�) · · · Tr(α2�−2)

⎤
⎥⎥⎥⎦ .

Since α, β ∈ OL, all the entries of T and

⎡
⎢⎣

Tr(β)
Tr(βα)

...
Tr(βα�−1)

⎤
⎥⎦ lie in OF . Hence we get

c0, c1, . . . , c�−1 ∈ 1

det(T )
OF .

Let α1, α2, . . . , α� be the conjugates of α via Gal(L/F ). We then derive that

det(T ) =

∣∣∣∣∣∣∣∣∣∣

∑�
k=1 α

0
k

∑�
k=1 α

1
k · · · ∑�

k=1 α
�−1
k∑�

k=1 α
1
k

∑�
k=1 α

2
k · · · ∑�

k=1 α
�
k

...
...

. . .
...∑�

k=1 α
�−1
k

∑�
k=1 α

�
k · · · ∑�

k=1 α
2�−2
k

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

α0
1 α0

2 · · · α0
�

α1
1 α1

2 · · · α1
�

...
...

. . .
...

α�−1
1 α�−1

2 · · · α�−1
�

∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣

α0
1 α1

1 · · · α�−1
1

α0
2 α1

2 · · · α�−1
2

...
...

. . .
...

α0
� α1

� · · · α�−1
�

∣∣∣∣∣∣∣∣∣
=

∏
1≤k1<k2≤�

(αk1 − αk2)
2 (by the Vandermonde determinant formula)

= ±
∏

σ1 �=σ2∈Gal(L/F )

(ασ1 − ασ2)

= ±
∏

σ1 �=σ2∈Gal(L/F )

(ασ1σ
−1
2 − α)σ2 .(4.2)

If σ is a nonidentity element of Gal(L/F ), then by Lemma 3.4 (iii) one can set
σ = tI2 for some t ∈ N such that

gcd(t,mn) = 1, t ≡ ±1 (mod m) and t 	≡ ±1 (mod mn).
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Thus we deduce that

ασ − α = hm,n(θK)σ − hm,n(θK)

=

(f[ 0
1/mn

](θK)− f[ 1/m
0

](θK)

f[ 0
1/m

](θK)− f[ 1/m
0

](θK)

)σ

−
f[ 0

1/mn

](θK)− f[ 1/m
0

](θK)

f[ 0
1/m

](θK)− f[ 1/m
0

](θK)
(by (2.3))

=

f
tσ

[
0

1/mn

](θK)− f[ 1/m
0

](θK)

f[ 0
1/m

](θK)− f[ 1/m
0

](θK)
−

f[ 0
1/mn

](θK)− f[ 1/m
0

](θK)

f[ 0
1/m

](θK)− f[ 1/m
0

](θK)

(by Lemmas 3.4 (iii) and 2.2)

=

f[ 0
t/mn

](θK)− f[ 0
1/mn

](θK)

f[ 0
1/m

](θK)− f[ 1/m
0

](θK)

=

℘[
0

t/mn

](θK)− ℘[
0

1/mn

](θK)

℘[
0

1/m

](θK)− ℘[
1/m
0

](θK)
(by Definition (2.1))

=

g[ 0
(t+1)/mn

](θK)g[ 0
(t−1)/mn

](θK)g[ 0
1/m

](θK)2g[ 1/m
0

](θK)2

g[ 1/m
1/m

](θK)g[−1/m
1/m

](θK)g[ 0
t/mn

](θK)2g[ 0
1/mn

](θK)2
(by Lemma 2.4).

Since each of [
0

1/m

]
,

[
1/m
0

]
,

[
1/m
1/m

]
,

[−1/m
1/m

]
,

[
0

t/mn

]
,

[
0

1/mn

]

has by the hypothesis (i) primitive denominator with at least two prime factors,
the values

g[ 0
1/m

](θK), g[ 1/m
0

](θK), g[ 1/m
1/m

](θK), g[−1/m
1/m

](θK), g[ 0
t/mn

](θK), g[ 0
1/mn

](θK)

are units as algebraic integers by Lemmas 2.3 (iii) and 3.2. On the other hand, set

t+ 1

mn
=

a

N
for some relatively prime positive integers N and a.

Since t 	≡ ±1 (mod mn), we get N ≥ 2. Moreover, (N) = NOK is not a power of
a prime ideal by the hypothesis (ii). So g[ 0

(t+1)/mn

](θK) = g[ 0
a/N

](θK) is a unit

as an algebraic integer by Lemma 3.5 (ii). In a similar fashion, we also see that
g[ 0

(t−1)/mn

](θK) is a unit as an algebraic integer. Therefore ασ−α is a unit of OL.

This implies that det(T ) is a unit of OF by (4.2), and hence we get the converse
inclusion

OL ⊆ OF [α]

as desired. �

Remark 4.2. Since OL = OF [α] and the discriminant of α is a unit of OF , L/F
is an unramified extension.
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