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On the product of two π-decomposable groups

L. S. Kazarin, A. Mart́ınez-Pastor and M.D. Pérez-Ramos

Abstract. The aim of this paper is to prove the following result: let π
be a set of odd primes. If the finite group G = AB is a product of two
π-decomposable subgroups A = Oπ(A)×Oπ′(A) and B = Oπ(B)×Oπ′(B),
then Oπ(A)Oπ(B) = Oπ(B)Oπ(A) and this is a Hall π-subgroup of G.

1. Introduction and statement of the main result

All groups considered here are finite. Within the framework of factorized groups, a
well known theorem by Kegel and Wielandt yields the solubility of a group which is
the product of two nilpotent subgroups. This theorem has been the starting point
for a number of results on factorized groups, in particular, by considering the case
when one of the factors is π-decomposable for a set π of primes. A group X is said
to be π-decomposable if X = Xπ ×Xπ′ is the direct product of a π-subgroup Xπ

and a π′-subgroup Xπ′ , where π′ stands for the complement of π in the set of prime
numbers. For any set σ of primes, Xσ will denote a Hall σ-subgroup of a group X .
For instance, different extensions of the Kegel and Wielandt theorem for products
of a 2-decomposable group and a group of odd order, with coprime orders, were
obtained by Berkovich [5], Arad and Chillag [3], Rowley [20] and Kazarin [13].

The present paper contributes to this investigation. More precisely we complete
the study of products of π-decomposable groups carried out in [14] and [15] (see
also [17]) and prove the following general result:

Main Theorem. Let π be a set of odd primes. Let the group G = AB be the
product of two π-decomposable subgroups A = Aπ ×Aπ′ and B = Bπ ×Bπ′ . Then
AπBπ = BπAπ and this is a Hall π-subgroup of G.

This result was stated as a conjecture in [15], [16], and [17], and also was men-
tioned in [4]. In [14] and [15] we proved several particular cases, namely, when one
of the factors is a π-group (Theorem 1 and Lemma 1 in [14]), the factors are soluble

Mathematics Subject Classification (2010): Primary 20D20; Secondary 20D40.
Keywords: Finite groups, π-structure, π-decomposable groups, products of subgroups, Hall sub-
groups.



52 L. S. Kazarin, A. Mart́ınez-Pastor and M.D. Pérez-Ramos

groups (Theorem 2 in [15]), or when the factors have coprime orders (Proposition 1
in [15]). These results substantially extend the above-mentioned previously known
results on products of 2-decomposable groups. Moreover, in [14] and [15] we also
obtained some π-separability criteria for products of π-decomposable groups.

The next example, which appears in [14], shows that analogous results do not
hold in general if the set π of primes contains the prime 2, although some related
positive results were obtained in this case in [15]. Other examples in [14] and [15]
give insight into occurring phenomena.

Example. LetG be a group isomorphic to L2(2
n) where n is a positive integer such

that 2n+1 is divisible by two different primes (this happens if n �= 3 and 2n +1 is
not a Fermat prime). Let q = 2n. Then G = AB where A ∼= Cq+1 is a cyclic group
of order q+1 and B = NG(G2), with G2 a Sylow 2-subgroup of G. Let r be a prime
dividing q+1 and take π = π(NG(G2))∪ {r}. Clearly, 2 ∈ π. Then A = Aπ ×Aπ′

and B is a π-group, but AπB is not a subgroup.

On the other hand, the paper [17] describes completely a minimal counterex-
ample of our main theorem. In particular, it is shown that such a minimal coun-
terexample has to be an almost simple group. Hence, after providing in Section 2
some necessary preliminaries, mainly related to finite simple groups, we will prove
in Section 3 the main theorem by carrying out a case-by-case analysis of the sim-
ple groups occurring as the socle of the minimal counterexample, leading to a final
contradiction.

If n is an integer and p a prime, np will denote the largest power of p dividing n
and π(n) the set of prime divisors of n. In particular, for the order |G| of a group G
we set π(G) = π(|G|). Also, Sylp(G) will denote the set of Sylow p-subgroups of G.

2. Preliminaries

The following result on factorized groups will be used throughout the paper, usually
without further reference.

Lemma 1 (Lemma 1.3.1 in [2]). Let the group G = AB be the product of the
subgroups A and B. If x and y are elements of G, then G = AxBy. Moreover,
there exists an element z of G such that Ax = Az and By = Bz.

The following basic lemma will also be used.

Lemma 2. If G is a soluble group with an abelian Sylow r-subgroup R, for a
prime r, then G = Or′(G)NG(R).

Proof. It is well known (see, for example, Theorem 6.3.2 in [9]) that in a soluble
group CG(R∩Or′,r(G)) ≤ Or′,r(G), where Or′,r(G) is the r-nilpotent radical of G.
Then, when R is abelian, ROr′(G) is a normal subgroup of G and the result follows
by applying the Frattini argument. �

Next we record some arithmetical lemmas, that will be applied later in the
paper.



On the product of two π-decomposable groups 53

Lemma 3 (Zsigmondy, [21]). Let q and n be integers, q, n ≥ 2. A prime number r
is called primitive with respect to the pair (q, n) (or a primitive prime divisor
of qn − 1) if r divides qn − 1 but r does not divide qi − 1 for i < n. Then:

(1) There exists a primitive prime divisor of qn − 1 unless n = 2 and q is a
Mersenne prime or (q, n) = (2, 6).

(2) If the prime r is a primitive prime divisor of qn−1, then r−1 ≡ 0 (mod n).
In particular, r ≥ n+ 1.

Lemma 4. Let q and n be integers, q, n ≥ 2. If an odd prime t divides qn + 1
and is not primitive with respect to the pair (q, 2n), then there exists j dividing n,
j �= n, such that t divides qj + 1.

Proof. Assume that t divides qn+1 and is not a primitive prime divisor of q2n−1.
Then there exists j < 2n such that t is a primitive prime divisor of qj − 1. Since
(q2n − 1, qj − 1) = q(2n,j) − 1 , it is clear that j divides 2n. Assume first that j
is odd. Since j divides 2n, it follows that j divides n. Since qj ≡ 1 (mod t), this
implies that qn ≡ 1 (mod t). But then t divides (qn − 1, qn + 1) and so t = 2,
a contradiction. So we may assume that j is even. Then j = 2j0, for some j0 such
that j0 divides n, j0 �= n. By the choice of j it follows that t divides qj0 + 1 and
we are done. �

2.1. Preliminaries on finite simple groups

According to the classification theorem, the finite nonabelian simple groups oc-
cur in the following families: the alternating groups An, with n ≥ 5; the finite
simple groups of Lie type (classical and exceptional); and the 26 sporadic groups.
The book [11], by Gorenstein, Lyons and Solomon, is a general reference contain-
ing the background on finite simple groups necessary for the paper. In particular,
we will make extensive use throughout the paper of the detailed knowledge on the
orders of the finite simple groups and their automorphisms groups. This can be
found in [11] and also in the Atlas of Finite Groups [6].

On the other hand, we will use information about the maximal factorizations
of the finite simple groups and their automorphism groups from [19]. Also in this
reference the orders of such groups are collected nicely in Table 2.1.

In this paper we will treat mainly the classical simple groups of Lie type
(for the exceptional groups we will use a different strategy (see Lemma 11 below)).
The definition and basic properties of such groups can be found in Carter’s book [7]
and also in Chapters 2, 3, and 4 of [11]. Moreover, the survey [18] is a good source
for this topic. We collect next the notation and fundamental facts that will be
used later to prove our main theorem.

Let L = G(q) be a classical finite group of Lie type over a finite field of char-
acteristic p, where q is a power of p. The base field will in most cases be GF(q),
the finite field of q elements, except for some twisted groups (see Chapter 3 of [6],
or Section 14.1 in [7]).

Denote by Φ the root system corresponding to the group L, let Π = {r1, . . . , rl}
be the set of all fundamental roots, and let Φ+ ⊇ Π be the set of all positive
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roots. The integer l is called the Lie rank of L. Denote by Xr the root subgroup
corresponding to the root r. In the case where L is a group of untwisted type
(Al(q), Bl(q), Cl(q), or Dl(q)), there holds Xr = {xr(t)|t ∈ GF(q)}. In the remain-
ing cases (twisted groups of types 2Al(q) and

2Dl(q)) we use the description of the
root subgroups of the corresponding groups in Chapter 13 of [7]. The structure of
such subgroups can also be found in Theorem 2.4.1 of [11].

Let U be the unipotent subgroup 〈Xr | r ∈ Φ+〉 (a Sylow p-subgroup) of L.
Let B be the Borel subgroup containing U , that is, the normalizer of U in L. Then
we have that B = UH , where U ∩H = 1 and H is a Cartan subgroup of L. The
normalizer of H in L contains a subgroup N such that N/H ∼= W , the Weyl group
of L (associated with Φ). The subgroups B and N form a so-called (B,N) pair
with Weyl group W (see Sections 8.3 and 13.5 in [7] or Theorem 2.3.1 in [11]).
Any subgroup which contains some conjugate of the Borel subgroup B is called a
parabolic subgroup. A subgroup X of L is called p-local if X = NL(Q) for some
nontrivial p-subgroup Q of L. For each w ∈ W , we choose a coset representative
nw ∈ N . We recall in addition the following properties:

(P1) Each element g ∈ L can be expressed in the form g = bnwu with b ∈ B =
UH , nw ∈ N and u ∈ U (see Theorem 8.4.3 and Proposition 13.5.3 in [7],
or Theorem 2.3.5 in [11]).

(P2) U =
∏

r∈Φ+ Xr, where the product is taken over all positive roots in an
arbitrary ordering (see [7], Theorems 5.3.3 and 13.6.1, or [11], Theorem 2.3.7).

(P3) Any p-local subgroup of L is contained in some parabolic subgroup of L.
Moreover, if Q is a nontrivial p-subgroup of L, then there exists a parabolic
subgroup P such thatQ ≤ Op(P ) andNL(Q) ≤ P (see Theorem 3.1.3 in [11]).

(P4) The main properties of parabolic subgroups can be found in Section 2.6 of [11]
and Section 8.3 of [7]. In particular, if P is a parabolic subgroup of L, then
CL(Op(P )) ≤ Op(P ) and |Op(P )| is a power of q. Moreover, P has a Levi
decomposition P = Op(P )H〈Xr, X−r| r ∈ J〉 for some set of fundamental
roots J ⊆ Π (see 2.6.5, 2.6.6 in [11] or Section 8.5 in [7]).

(P5) The order of a Sylow p-subgroup of the centralizer of a p′-element in the
simple group L of Lie rank at least 2 is at most |U |q−2 (see Propositions 7-12
in [8]).

The structure of the automorphism groups of the groups of Lie type is described
thoroughly in Section 2.5 of [11] and Chapter 12 of [7]. Moreover, we will also use
the information about the centralizers of outer automorphisms of prime order of
such groups which can be found in 9.1 of [10] (see also Chapter 4 of [11]).

The following results on simple groups of Lie type will be essential for the proof
of our main theorem.

Lemma 5. Let L = G(q) be a classical simple group of Lie type over the field GF(q)
of characteristic p. Then |Out(L)|p ≤ q and equality holds only when q ∈ {2, 3, 4}.
Moreover, if q = 3, the only case in which |Out(L)|p = q is possible is L ∼= PΩ+

8 (q).
In particular, |Out(L)|p < q2 for any classical simple group of Lie type.
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Proof. In Table 5 of [6] (see also [19], Table 2.1.A), we find the order of Out(L)
when L is a classical group of Lie type. From this table it follows that |Out(L)|p ≤
2logp(q) if p = 2 and |Out(L)|p ≤ logp(q) if p �= 2 and L �∼= PΩ+

8 (q) with q = p = 3.
Hence |Out(L)|p ≤ q and equality holds only in the asserted cases. �

Lemma 6. Let L = G(q) be a classical simple group of Lie type over the field GF(q)
of characteristic p of Lie rank at least 2. Let U be a Sylow p-subgroup of L and
let S �= 1 be a subgroup of U such that |U : S| < q2. Then CL(S) is a p-group.

Moreover, if L ≤ G ≤ Aut(L), then CG(S) is a p-group.

Proof. We will use the notation and properties (P1)–(P5) of the simple groups of
Lie type described above.

Take a subgroup S �= 1 of U such that |U : S| < q2 and assume that CL(S)
is not a p-group. Then there exists a p′-element g of prime order r in CL(S). We
claim first that r divides q2 − 1.

By (P3), there exists a parabolic subgroup P of L such that S ≤ Op(P )
and NL(S) ≤ P . Without loss of generality we may assume that B ≤ P .
Let D = Op(P ). By [7], π(H) ⊆ π(q2 − 1). Hence, by (P1), g = bnwu ∈ P ,
where b ∈ B, 1 �= w ∈ W , and u ∈ U . Now the fact that |U : S| < q2 and (P4)
imply that P = B ∪ BnwB = DH〈Xγ , X−γ〉 for some fundamental root γ ∈ Π,
w = wγ and |Xγ | = q. Then we obtain that the subgroup 〈Xγ , X−γ〉 is isomor-
phic to SL2(q) or L2(q) and hence r divides |SL2(q)|. Therefore, r divides q2 − 1.
Applying (P5) we get a contradiction which allows us to deduce that CL(S) is
a p-group.

Now assume that L ≤ G ≤ Aut(L). Using the information about the central-
izers of outer automorphisms of prime order of groups of Lie type in 9.1 of [10]
(see also Chapter 4 of [11]), it can be deduced that CG(S) is also a p-group. �

We will need later the following lemma on sporadic simple groups.

Lemma 7. Assume that N is a sporadic simple group which is isomorphic to one
in the set {M22, M23, M24, HS, He, Ru, Suz, Fi22, Co1}. If s is the largest prime
dividing |N |, then CAut(N)(S) is an s-group, for any S ∈ Syls(N).

Proof. The result follows from a case-by-case analysis of the orders of the central-
izers of Sylow s-subgroups (see [6] or [11] for the details). �

3. Proof of the main theorem

In this section we assume that G is a counterexample of minimal order to our main
theorem. The main result in [17] gives a precise description of the structure of such
a group:

Theorem 1 (Theorem 3 in [17]). Let π be a set of odd primes. Assume that the
group G = AB is the product of two π-decomposable subgroups A = Aπ × Aπ′

and B = Bπ × Bπ′ and G is a counterexample of minimal order to the assertion
AπBπ = BπAπ.
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Then G has a unique minimal normal subgroup N , which is a nonabelian simple
group, so that N �G ≤ Aut(N).

Moreover, the following properties hold:

(i) G = AN = BN = AB; in particular, |N ||A ∩B| = |G/N ||N ∩ A||N ∩B|.
(ii) (|Aπ′ |, |Bπ′ |) �= 1, Aπ′ ∩Bπ′ = 1, and A ∩B is a π-group.

(iii) Neither A nor B is a π-group or a π′-group.

(iv) π(G) = π(N) ≥ 5.

(v) If, in addition, N is a simple group of Lie type of characteristic p and p �∈ π,
then A ∩B = 1.

For such a group G and its unique minimal normal subgroup N we have the
following results.

Lemma 8. Assume that S ≤ X and S is an s-group for X ∈ {A,B} and a prime
number s ∈ σ, with σ ∈ {π, π′}. Then π(|X : CX(S)|) ⊆ σ. In particular, CX(S)
is not an s-group.

Proof. The first part is clear since Xσ′ ≤ CX(S). Consequently, if CX(S) were
an s-group, X would be a σ-group, a contradiction. �

Lemma 9. N is not a sporadic simple group.

Proof. By Theorem C in [19], if N is a sporadic simple group, N �G ≤ Aut(N)
and G is factorized, we have that

N ∈ {M11, M12, M22, M23, M24, J2, HS, He, Ru, Suz, Fi22, Co1}.
Note also that by Theorem 1(iv) the cases N ∼= M11, N ∼= M12, and N ∼= J2

are impossible. Then Lemmas 7 and 8 provide the contradiction. �

Lemma 10. N is not an alternating group of degree n ≥ 5.

Proof. First note that, by Theorem 1(iv), we may assume that N ∼= An with
n ≥ 11. By Theorem D in [19], if N�G ≤ Aut(N), the only factorizations G = AB
where A and B are subgroups of G not containing N satisfy that An−k � A ≤
Sn−k × Sk for some 1 ≤ k ≤ 5. Since An−k is a simple group, because n− k ≥ 5,
and 2 ∈ π(An−k), it follows that An−k is a π′-group. Then A ≤ Sn−k × Sk is also
a π′-group, which is a contradiction. �

Lemma 11. N is not an exceptional group of Lie type.

Proof. By Theorem B in [19], if N is an exceptional group of Lie type, N � G ≤
Aut(N) and G is factorized, then

N ∈ {G2(q), q = 3c; F4(q), q = 2c;G2(4)}.
We check next that each of the possibilities for the groupN leads to a contradiction.
Recall that π(G) = π(N).
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Case N ∼= G2(4). In this case |N | = 212 · 33 · 52 · 7 · 13 and |Out(N)| = 2. Since
a Sylow 13-subgroup of N is self-centralizing in Aut(N) (see [6]), we get a
contradiction by Lemma 8.

Case N ∼= G2(q), q = 3c. In this case all possible factorizations G = AB
(not only the maximal ones) with subgroups A and B not containing N
satisfy A ∩ N ∈ {SL3(q), SL3(q).2}, either B ∩ N ∈ {SU3(q), SU3(q).2} or
B∩N = 2G2(q) in the case when c is odd, andN = (A∩N)(B∩N). Since 2 di-
vides (|A∩N |, |B∩N |) and each of the subgroups has a Sylow 3-subgroup con-
taining its centralizer in the corresponding subgroup, we deduce that all these
are π′-groups and hence N is a π′-group, a contradiction.

Case N ∼= F4(q), q = 2c. In this case all possible factorizations G = AB (not only
the maximal ones) with subgroups A and B not containing N are as follows:
A ∩ N = Sp8(q), B ∩ N ∈ {3D4(q),

3D4(q).3}, and N = (A ∩N)(B ∩N).
Since 2 divides (|A ∩N |, |B ∩N |) and each of these subgroups has a Sylow
2-subgroup containing its centralizer in the corresponding subgroup, it fol-
lows that N is a π′-group, which is a contradiction. �

Henceforth we assume that N = G(q) is a classical simple group of Lie type
over a field GF(q) of prime characteristic p, with q = pe.

Lemma 12. Assume that N is of Lie rank l > 1. Then

(|A ∩N |, |B ∩N |) ≡ 0 (mod p).

Proof. From the fact that G = AN = BN = AB, it follows that

|N |p|A ∩B|p
|N ∩ A|p|N ∩B|p = |G/N |p,

which divides |Out(N)|p. Suppose that |B∩N | is not divisible by p. It follows that
|N |p/|N ∩A|p divides |G/N |p and, in particular, |N |p/|N ∩A|p ≤ |Out(N)p| ≤ q,
by Lemma 5. For S ∈ Sylp(N ∩ A) we deduce from Lemma 6 that CG(S) is
a p-group, and so we have a contradiction, by Lemma 8. �

Lemma 13. Let a ∈ X and b ∈ Y , for any X,Y ∈ {A,B}, be elements of prime
orders r = o(a) and s = o(b), respectively (eventually a = b). Assume that CN (a)
and CN (b) are p′-groups. Then:

(i) If (|A ∩N |, |B ∩N |) ≡ 0 (mod p), then {p, s, r} ⊆ σ.

(ii) If, in addition, a ∈ A, b ∈ B, and CN (a) and CN (b) are soluble, then
{p, s, r} ⊆ π′. In particular, A ∩B = 1.

Proof. (i) Observe that here p ∈ π(|X : CX(a)|) ∩ π(|X : CX(b)|) and the conclu-
sion follows from Lemma 8.

(ii) Assume now that a ∈ A, b ∈ B, and CN (a) and CN (b) are soluble.
If {p, s, r} ⊆ π, then Aπ′ ∩N ≤ CN (a) and Bπ′ ∩N ≤ CN (B),and so Aπ′ ∩N and
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Bπ′ ∩ N are soluble groups. Since G/N is soluble, this means that Aπ′ and Bπ′

are soluble. Since 2 �∈ π, Aπ and Bπ are also soluble groups, and we conclude that
both A and B are soluble, which contradicts Theorem 2 in [15]. Hence we have
proved that {p, s, r} ⊆ π′. The assertion A∩B = 1 follows from Theorem 1(v). �

Recall that q is a prime power, q = pe, p a prime and e a positive integer.
Also let n ≥ 3 and (q, n) /∈ {(2, 6), (4, 3)}. In the sequel we will denote by qn any
primitive prime divisor of pen − 1, i.e. primitive with respect to the pair (p, ne)
(so that qn | pen − 1 but qn � | pi − 1 for i < en). Note that if r is a primitive prime
divisor of q2k − 1 for some k ≥ 2, then r divides qk + 1.

Lemma 14. For N = G(q) a classical group of Lie type of characteristic p and
q = pe, there exist primes r, s ∈ π(N) \π(G/N) and maximal tori T1 and T2 of N
as stated in Table 1.

Moreover, except for the case denoted (�) in Table 1, for any element a ∈ N
of order r and any element b ∈ N of order s we may assume that CN (a) ≤ T1

and CN (b) ≤ T2, and these are abelian p′-groups.
On the other hand, there is neither a field automorphism nor a graph-field

automorphism of N centralizing elements of N of order r or s (except for the
triality automorphism in the case PΩ+

8 (q)).

Proof. This can be derived from the known facts about the maximal tori in these
groups (see, for instance, [8]). Information about the centralizers of outer auto-
morphisms of prime order of groups of Lie type can be found in [10], 9.1. �

Whenever Lemma 14 is applied, we will use the same notation for the primes r
and s and for the elements a ∈ N and b ∈ N . Since |N ||A ∩ B| = |G/N ||N ∩ A|
|N ∩ B| and r, s �∈ π(G/N), we note that r, and also s, divides either |N ∩ A|
or |N ∩B|. In particular, we can consider either a ∈ A∩N or a ∈ B ∩N , and the
same for b ∈ N .

In the sequel we will use the notation and the main results of [19], where the
maximal factorizations of the almost simple groups are described. More exactly,
factorizations G = XY where X and Y are maximal subgroups of the group G
with N �G ≤ Aut(N), not containing N , are described in Tables 1-5 of [19].

Lemma 15. N is not isomorphic to Ln(q), n ≤ 3.

Proof. If N ∼= L2(q), apart from some exceptional cases that we will consider next,
from [19] we know that possible factorizationsG = AB satisfy that A and B are sol-
uble, so the result follows from Theorem 2 in [15]. The remaining cases are excluded
by Theorem 1 (iv), except for N ∼= L2(q) when either q = 29 or q = 59. Since in
both cases a Sylow q-subgroup of N is self-centralizing in Aut(N) and |G|q =
|N |q = q, we get a contradiction from Lemma 8.

Assume now that N ∼= L3(q), so |Out(N)| = 2(q − 1, 3)logp(q). Observe first
that the cases q ≤ 8 are excluded by Theorem 1(iv). From [19] we know that
all factorizations G = AB satisfy that for one of the factors, say A, |N ∩ A|
divides q3−1

q−1 · 3, which is not divisible by p �= 3, a contradiction by Lemma 12.
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N r s |T1| |T2| Remarks

Ln(q) qn qn−1
qn−1

(n,q−1)(q−1)
qn−1−1
(n,q−1) (n, q) �= (6, 2)

n ≥ 4 (n− 1, q) �= (6, 2)

PSp2n(q) q2n q2(n−1)
qn+1

(2,q−1)
(qn−1+1)(q+1)

(2,q−1) n even (�)

(n, q) �= (4, 2)
PΩ2n+1(q)

q2n qn
qn+1

(2,q−1)
(qn−1)
(2,q−1) n odd

n ≥ 3 (n, q) �= (3, 2)

PΩ−
2n(q) q2n q2(n−1)

qn+1
(4,qn+1)

(qn−1+1)(q−1)
(4,qn+1) (n, q) �= (4, 2)

n ≥ 4

PΩ+
2n(q) q2(n−1) qn−1

(qn−1+1)(q+1)
(4,qn−1)

(qn−1−1)(q−1)
(4,qn−1) n even

(n, q) �= (4, 2)

n ≥ 4 q2(n−1) qn
(qn−1+1)(q+1)

(4,qn−1)
qn−1

(4,qn−1) n odd

Table 1.

For the case p = 3, we get that |N : N ∩ B|3 ≤ q/3 < q2, so CG(N ∩ B) is
a p-group because of Lemma 6, and this is a contradiction by Lemma 8. �

Lemma 16. N is not isomorphic to Ln(q), n ≥ 4.

Proof. Recall that |π(N)| > 4 because of Theorem 1(iv).
Assume first that either N ∼= L6(2) or N ∼= L7(2). In both cases, if s is the

largest prime number dividing |N |, then |G|s = |N |s = s and a Sylow s-subgroup
of G is self-centralizing in G, a contradiction by Lemma 8.

Hence we may assume that N ∼= Ln(q), with n ≥ 4, (n, q) �= (6, 2), and
(n, q) �= (7, 2). Then, by Lemma 14, there exist tori T1 and T2 in N with orders:

|T1| = qn − 1

(n, q − 1)(q − 1)
, |T2| = qn−1 − 1

(n, q − 1)
.

With the notation of Lemma 14, let r = qn and s = qn−1. Take an element a ∈ N
of order r, and an element b ∈ N of order s. Then CN (a) ≤ T1, CN (b) ≤ T2 and
both subgroups are abelian p′-groups. Since (|A ∩ N |, |B ∩ N |) ≡ 0 (mod p) by
Lemma 12, it follows from Lemma 13 (i) that {p, s, r} ⊆ σ.
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Recall that r does not divide |G/N |. We may assume without loss of generality
that r ∈ π(A) and a ∈ A ∩N .

Assume first that p ∈ π and so {p, s, r} ⊆ π. In this case Aπ′ ∩N and hence A
are soluble groups. Assume in addition that s does not divide |B ∩ N |. Then,
both r and s must divide the order of the soluble group N ∩ A. By the proof of
Lemma 3.1 in [1] (see also Lemmas 2.5 and 2.6 in [1]), this can only happen if
n = s ≥ 5, p = q, and |N ∩ A| divides s(qs − 1). Therefore, applying the formula
for the order of N , we get that s must also divide |B ∩N |, a contradiction. Hence,
if p ∈ π, we deduce that s divides |B ∩N | and we can assume that b ∈ B ∩N , but
this contradicts Lemma 13 (ii). Hence we conclude that {p, s, r} ⊆ π′.

Recall now that the field automorphisms of N do not centralize elements of
order r or s. Moreover, there is no diagonal automorphism of N centralizing an
element of order r. This implies that G/N is a π′-group.

If s ∈ π(A), since r, s ∈ π′ we get π ∩ π(N ∩A) ⊆ π(CN (a)) ∩ π(CN (b)). Since

(|T1|, |T2|) =
( qn − 1

(q − 1)(n, q − 1)
,
qn−1 − 1

(n, q − 1)

)
= 1,

this means that A ∩N and hence A are π′-groups, a contradiction.
Therefore we may assume that {p, s, r} ⊆ π′, a ∈ A ∩N and b ∈ B ∩N . Then

π ∩ π(N ∩A) ⊆ π(T1) and π ∩π(N ∩B) ⊆ π(T2), where (|T1|, |T2|) = 1. Therefore
Aπ = Aπ ∩N ≤ T1, Bπ = Bπ ∩N ≤ T2 and both are Hall subgroups of N .

Assume first that there exists a prime divisor t of |Aπ | such that t is not
primitive with respect to the pair (q, n). Since t divides qn − 1 but is not a
primitive prime divisor, t divides qj − 1 with j �= n a divisor of n (recall that
(qn − 1, qj − 1) = q(n,j) − 1). If n = jk, with k > 1 an integer, then N contains a
subgroup of order ((qj − 1)t)

k. However, then, by the formula for the order of N ,
we deduce that t must divide |B|, a contradiction since (|Aπ |, |Bπ|) = 1.

Hence we may assume that any prime divisor of |Aπ| is primitive with respect
to the pair (q, n). Then, if we consider any element x ∈ Aπ ≤ T1 of prime order,
we have also that CN (x) ≤ T1, but this means that A∩N ≤ T1, which is the final
contradiction since p ∈ π(A ∩N) by Lemma 12. �

Lemma 17. N is not isomorphic to Un(q), n ≥ 3.

Proof. Assume that N ∼= Un(q), n ≥ 3. Suppose first that n is odd. From
Theorem A in [19], the only groups G such that N ≤ G ≤ Aut(N) and N is
a unitary group of odd dimension that are factorizable occur for N ∼= U3(3),
U3(5), U3(8) or U9(2). Since in our case |π(N)| ≥ 5, the only possible case
would be N ∼= U9(2). Note that in this case π(N) = {2, 3, 5, 7, 11, 17, 19, 43} and
Out(N) ∼= S3. By Lemma 12 we may assume that p = 2 divides (|A∩N |, |B∩N |).
This groupN has maximal tori of orders 19·3 and 17·5. We may let r = 17 ∈ π(A).
Since the centralizer of an element of order 17 in N has odd order 17 ·5 and 2 ∈ π′,
we deduce that r = 17 ∈ π′, 5 ∈ π and |Aπ ∩N | = 5, so |Aπ| divides 5 · 3. On the
other hand, an element of N of order s = 19 has a centralizer in N of order 19 · 3.
Since r ∈ π(A), we have that s �∈ π(A) and s ∈ π′ ∩ π(B). This means that |Bπ|
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divides 32. Since the order of a 5-Sylow subgroup of N is at least 25, this gives a
contradiction.

Assume now that n = 2m is even, m ≥ 2. It follows from Tables 1 and 3
in [19] (and with the same notation) that one of the maximal subgroups in the
factorization of G with N ≤ G ≤ Aut(N), say X , has the property X ∩N = N1

∼=
U2m−1(q), unless N ∼= U4(2) or U4(3). Since |π(U4(2))| < 5 and |π(U4(3))| < 5,
these possibilities are excluded.

Apart from some exceptional cases that we will check later, any group H such
that N1 ≤ H ≤ Aut(N1) has no proper factorizations (in the sense that the factors
do not contain N1). Assume that A ≤ X and so X = A(X ∩ B). Now note that
X = NG(N1) and so X/CG(N1) is isomorphic to a subgroup of Aut(N1) and then
it has no proper factorizations. If N1

∼= N1CG(N1)/CG(N1) were contained either
in ACG(N1)/CG(N1) or in (X ∩ B)CG(N1)/CG(N1), which are π-decomposable
groups, it would follow that N1 = X ∩ N would be a π-group, a contradiction.
This means that either X = ACG(N1) or X = (X ∩ B)CG(N1). In the latter
case we would have G = AB = CG(N1)B. But from the structure of Out(N),
it follows that |CG(N1)| divides q+1 and such a factorization is impossible by order
arguments. Now assume X = ACG(N1). Since A = Aπ ×Aπ′ , applying again that
X/CG(N1) has no proper factorizations, we get that either X = AπCG(N1) or
X = Aπ′CG(N1). Since Aπ is a soluble group and X/CG(N1) contains a subgroup
isomorphic to N1, the case X = AπCG(N1) cannot occur. Then X = Aπ′CG(N1),
and Aπ ≤ CG(N1) is of order dividing q + 1. Then |X | divides |Aπ′ |(q + 1).
But, if n = 2m > 4, then (q + 1)3 divides |N1| = |U2m−1(q)|, and so q + 1 divides
|Aπ′ |, which means that A is a π′-group, a contradiction. Finally, if n = 2m = 4,
then (q + 1)2/(3, q + 1) divides |N1| = |U2m−1(q)|, and so π(X) ⊆ π(Aπ′) ∪ {3},
but |N1|3 > (q + 1)3, so 3 ∈ π′ and A is again a π′-group, a contradiction.

The exceptional cases when N ∼= U2m(q) and X ∩ N = N1
∼= U2m−1(q) is

factorized, occur when N1
∼= U3(3), U3(5), U3(8) or U9(2), by Table 3 in [19]. The

case N ∼= U4(3) corresponding to the first possibility is excluded since |π(N)| ≤ 4.
Hence we must study the cases N ∼= U4(5), U4(8) and U10(2). In all these three
cases there exist maximal tori T1 and T2 of orders

|T1| = qn − 1

(n, q + 1)(q + 1)
and |T2| = qn−1 + 1

(n, q + 1)
.

Take r = qn and s = q2(n−1), so s divides qn−1 + 1. It can be seen that:

(r, s) = (13, 7), |T1| = 13 · 22 and |T2| = 7 · 32, for U4(5);

(r, s) = (17, 19), |T1| = 5 · 7 · 13 and |T2| = 33 · 19, for U4(8);

(r, s) = (31, 19), |T1| = 11 · 31 and |T2| = 19 · 33, for U10(2).

Note also that p divides (|A ∩ N |, |B ∩ N |) by Lemma 12. Moreover, if a and b
are elements of orders r and s, respectively, we have here that CN (a) = T1 and
CN (b) = T2. Since T1 and T2 are soluble p′-groups, we deduce that {p, s, r} ⊆ π′.
Moreover, from Table 1 in [19] we know that, for one of the factors, say B, |B∩N |
divides |N1| = |Un−1(q)|. By order arguments, we see in each case that r divides
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|N∩A| and s divides |N∩B|, and in all cases the primes 2 and 3 divide both |A ∩N |
and |B∩N |. On the other hand, CN (a) = T1 is a 3

′-group, so 3 ∈ π′ and this implies
that G/N is a π′-group in all cases (recall that 2 ∈ π′). Then Bπ = Bπ∩N ≤ CN (b)
and this is a π′-group, which means that B is a π′-group, a contradiction. �

Lemma 18. N is not isomorphic to PSp4(q), q = pe.

Proof. Assume that N ∼= PSp4(q) Then

|N | = 1

(2, q − 1)
q4 (q4 − 1)(q2 − 1)

and |Out(N)| = (2, q − 1)(2, p)e. Moreover, the cases q ≤ 7 can be excluded by
Theorem 1(iv).

There is a torus T in N of order q2+1
(2,q−1) . Since q2 + 1 is not divisible by 4, |T |

is odd. Let r ∈ π(T ). Since

( q2 + 1

(2, q − 1)
, q2 − 1

)
= 1,

we deduce that r is a primitive prime divisor of q4 − 1 and any element of prime
order in T acts irreducibly on the natural module of Sp4(q). Hence we have that
CN (a) ≤ T for any element 1 �= a ∈ T . Since T is a p′-group, applying Lemmas 12
and 13, we deduce that {p} ∪ π(T ) ⊆ σ, for some σ ∈ {π, π′}. Moreover, there
is no field automorphism of N centralizing any element of T . Without loss of
generality assume that π(A) ∩ π(T ) �= ∅. Then it is easy to deduce that either A
is a σ-group or A = Aπ × A2 and A is soluble. In the latter case, looking at the
orders of maximal soluble subgroups of N divisible by a primitive prime divisor of
q4 − 1 (see Lemma 2.8 in [1]), we get that |A∩N | = |Aπ ∩N | divides q2 +1. This
contradicts Lemma 12 and concludes the proof, since A is not a σ-group. �

Lemma 19. N is neither isomorphic to PSp2n(q) nor to PΩ2n+1(q), for q = pe

and n ≥ 3.

Proof. Assume that N is isomorphic either to PSp2n(q) or to PΩ2n+1(q), with
n ≥ 3. Then

|N | = 1

(2, q − 1)
qn

2

(q2n − 1)(q2n−2 − 1) · · · (q2 − 1)

and |Out(N)| = (2, q − 1)e.
We deal first with the cases (∗) not considered in Lemma 14. If n = 3 and

q = 2, then N ∼= PSp6(2)
∼= Ω7(2) and, in this case, |π(N)| = 4, which contradicts

Theorem 1(iv). If n = 4 and q = 2, then N ∼= PSp8(2)
∼= Ω9(2) and this group

has a self-centralizing Sylow subgroup of order 17, which is contained either in A
or in B, a contradiction by Lemma 8.

For the cases (n, q) �= (3, 2) and (n, q) �= (4, 2), as stated in Lemma 14, N has
tori T1 and T2 of the following orders:
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(a) If n is even,

|T1| = qn + 1

(2, q − 1)
, |T2| = (qn−1 + 1)(q + 1)

(2, q − 1)
.

In this case let r = q2n and s = q2n−2.

(b) If n is odd,

|T1| = qn + 1

(2, q − 1)
, |T2| = (qn − 1)

(2, q − 1)
.

In this case let r = q2n and s = qn.

In both cases we will denote by a ∈ N an element of order r and by b ∈ N an
element of order s. We study these cases separately.

Case (a): n even.

Without loss of generality we may assume that r ∈ π(A) and a ∈ A ∩N .
In this case CN (a) ≤ T1 (and T1 is abelian), and CN (b)/Z(CN (b)′) ∼= C × L,

with C ≤ Cqn−1+1 and L′ ∼= L2(q). (Recall that L2(q) ∼= PSp2(q)
∼= Ω3(q).)

Suppose first that r ∈ π. Since CN (a) is a p′-group, and p divides (|N ∩ A|,
|N ∩ B|) by Lemma 12, we deduce by Lemma 13 that {p, r} ⊆ π ∩ π(A) (recall
also that r does not divide |G/N |). In this case Aπ′ ∩ N is a soluble group and
hence A is a soluble group. By Lemma 2.8 in [1], the order of A∩N divides either
2n(qn + 1) or 16n2(q − 1)rlog2(2n). In the latter case we have q = p, r = 2n+ 1,
and n is a power of 2. Since s is a primitive prime divisor of q2n−2 − 1, we have
that s ≥ 2n − 1. Hence we deduce that s �∈ π(A ∩ N) and so s ∈ π(N ∩ B).
If s ∈ π′, from the order of CN (b) we deduce that a Sylow p-subgroup of B ∩ N
has order at most q. Since |N |p ≤ |G/N |p|N ∩ A|p|N ∩ B|p we deduce that

qn
2 ≤ max{(logp(q) · logp(n))p · q, (log2(2n))p · q} (recall that p �= 2, since we are

in the case {p, r}⊆ π). This gives a contradiction since n ≥ 4. Therefore we have
s ∈ π, so that {p, r, s} ⊆ π.

Now note that the only nonsoluble composition factors of CN (b) are isomorphic
to L2(q). Since Bπ′ is not soluble because of Theorem 2 in [15] and its order is
coprime with p ∈ π, by Dickson’s theorem (see II, 8.27 in [12]) we deduce that
the order of a nonsoluble subgroup of N ∩ B divides |A5| or |S5| and there holds
q ≡ ±1(mod 5). In this case 5 ∈ π′, p �= 5 and qn + 1 ≡ 2(mod 5) (recall that n
is even). In particular |A ∩ N |5 is either n5 or log2(2n)5. On the other hand,
|N ∩B|5 does not exceed ((qn−1 + 1)(q2 − 1))5. Moreover, since there are no field
automorphisms centralizing elements of order r, it follows that logp(q)5 = 1. Hence
|N |5 ≤ max{n5((q

n−1 + 1)(q2 − 1))5, log2(2n)5((q
n−1 + 1)(q2 − 1))5}, which is a

contradiction (recall that n ≥ 3).
Therefore, we may assume {p, r}⊆π′. Suppose that s∈π(A). Since (|CN (a)|, s)

= 1, this means that s ∈ π′. It follows that π∩π(A∩N) ⊆ π(CN (a))∩π(CN (b))∩π.
However, since π((qn+1, (qn−1+1)(q2−1))) ⊆ {2} it follows that π∩π(A∩N) = ∅.
This means that A ∩N and so A are π′-groups, a contradiction (recall that there
is no field automorphism centralizing an element of order r or s).
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Thus we conclude that s ∈ π(B ∩ N). Assume first that s ∈ π. Since field
automorphisms do not centralize elements of order s ∈ π, we may assume that
p ∈ π′ does not divide |G/N | (note that for p = 2, each outer automorphism of N
is a field automorphism). Note also that |N ∩ B|p ≤ q. Hence it follows from the

order formula |N |p = |G/N |p|N ∩A|p|N ∩B|p, that |N ∩A|p ≤ qn
2−1, and so |Np :

(N ∩A)p| ≤ q (recall that A∩B = 1, since p ∈ π′ by Theorem 1 (v)). By Lemma 6,
this means that CG((N ∩ A)p) is a p-group, so A is a π′-group, a contradiction.

Therefore we have that {p, r, s} ⊆ π′. Hence π ∩ π(N ∩ A) ⊆ π(qn + 1) and
π ∩ π(N ∩ B) ⊆ π((qn−1 + 1)(q2 − 1)), and then π ∩ π(N ∩ A) ∩ π(N ∩ B) = ∅.
On the other hand, since the field automorphisms of N do not centralize elements
of order r or s, and 2 ∈ π′, we deduce that Aπ ≤ N , Bπ ≤ N , and both are Hall
subgroups of N .

Assume that there exists t ∈ π ∩ π(A) which is not a primitive prime divisor
of q2n−1. It follows from Lemma 4 that t divides qj+1, for some j �= 1 dividing n.
We claim that n = lj, with l odd and l ≥ 3. Indeed, if l is even, since qj ≡
(−1)(mod t), we get qn = (qj)l ≡ 1(mod t), a contradiction since t divides qn + 1.
Now, since N has a torus of order (qj+1)l which is not contained in Aπ = Aπ∩N ≤
T1 and G/N is a π′-group, we get a contradiction with the fact that (t, |N∩B|) = 1
(recall n ≥ 3).

Hence we may assume that each prime in π ∩ π(A) is a primitive prime divisor
of q2n − 1. Then if we consider any element x ∈ Aπ ≤ T1 of prime order we
have also that CN (x) ≤ T1, but this means that A ∩ N ≤ T1, which is the final
contradiction since p ∈ π(A ∩N).

Case (b): n odd.

Without loss of generality we may assume that r∈π(A). In this case CN (a)≤T1,
CN (b) ≤ T2 and both centralizers are abelian. If r ∈ π, we have also p ∈ π, by Lem-
mas 12 and 13. In this case A is soluble and we deduce that s = qn �∈ π(A) as
in case (a). Hence s ∈ π(B ∩N) and since p divides |N ∩B| and |CN (b)| divides
qn − 1, we deduce that s ∈ π. In this case both subgroups A ∩N and B ∩N are
soluble, so A and B are soluble and this contradicts Theorem 2 in [15].

Thus we can assume that r ∈ π′, so that p ∈ π′ and π∩π(N ∩A) ⊆ π(CN (a)) ⊆
π(qn + 1). If s ∈ π(A), we get s ∈ π′ by Lemma 13, and hence π ∩ π(N ∩ A) ⊆
π(CN (b)) ⊆ π(qn − 1). Since (qn + 1, qn − 1)2′ = 1, this means that A ∩ N and
hence A are π′-groups, a contradiction.

Now we may assume s ∈ π(B ∩ N) ∩ π′, because p ∈ π′. Again we have
π∩π(N ∩A) ⊆ π(qn+1) and since the field automorphisms of N do not centralize
an element of order r, it follows that |G/N | is a π′-group and Aπ = Aπ ∩N . On
the other hand, we deduce also that π ∩ π(B ∩N) ⊆ π(qn − 1) and Bπ = Bπ ∩N .
Since (qn +1, qn − 1)2′ = 1, it turns out that Aπ and Bπ are Hall subgroups of N ,
and also of G. As in case (a) we deduce that for some prime divisor of qn+1, t ∈ π,
we have n = lj with l ≥ 3 odd and qj + 1 ≡ 0(mod t). We get a contradiction,
as in case (a), since (qj + 1)l divides |N |. �

Lemma 20. N is not isomorphic to PΩ+
2n(q), for q = pe and n ≥ 4.
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Proof. Note that PΩ+
6 (q)

∼= L4(q) and this case has been studied in Lemma 16.
Assume that N ∼= PΩ+

2n(q), n ≥ 4. Then

|N | = 1

d
qn(n−1) (q2n−2 − 1) · · · (q2 − 1)(qn − 1),

d = (4, qn − 1), and |Out(N)| = 2de if n ≥ 5 and |Out(N)| = 6de if n = 4.
As stated in Lemma 14, N has tori T1 and T2 of the following orders:

(a) If n is even,

|T1| = 1

d
(qn−1 + 1)(q + 1) , |T2| = 1

d
(qn−1 − 1)(q − 1).

With the notation of Lemma 14, let r = q2n−2 and s = qn−1.

(b) If n is odd,

|T1| = 1

d
(qn−1 + 1)(q + 1) , |T2| = 1

d
(qn − 1).

In this case let r = q2n−2 and s = qn.

If n = 4 and q = 2, |π(PΩ+
8 (2))| = 4, hence (n, q) �= (4, 2) and, in particular,

all such primitive prime divisors exist.
Let a, b ∈ N be elements of orders r and s, respectively, and let CN (a) ≤ T1

and CN (b) ≤ T2, and recall that these subgroups are abelian p′-groups. Since p
divides (|N ∩ A|, |N ∩B|) we deduce that {p, r, s} ⊆ σ, for {σ, σ′} = {π, π′}.

Now note that, for n > 4, since a field or a graph-field automorphism centralizes
no element of order r or s, it follows that π(G/N) \ {2} ⊆ σ if r, s ∈ σ. In the
case n = 4 there exist graph automorphisms of order 3 and |G/N |3 ≤ 3 · logp(q)3.
We claim that in this case {r, s, 3} ⊆ σ and so the previous conclusion for π(G/N)
remains valid when n = 4. Assume that 3 ∈ σ′. If r ∈ π(A) and s ∈ π(B),
then |N ∩ A|3|N ∩ B|3 divides ((q3 + 1)(q + 1))3((q

3 − 1)(q − 1))3, which is not
the case by comparison with |N |3. Without loss of generality if r, s ∈ π(A),
then π(A) ∩ σ′ ⊆ π(((q3 + 1)(q + 1), (q3 − 1)(q − 1))) ⊆ {2} and so 3 �∈ σ′, a
contradiction which proves the claim.

Without loss of generality assume that r ∈ π(A ∩ N). Observe that in both
cases (a) and (b), |NN (〈a〉)/CN (〈a〉)| divides 2(n− 1) and r ≡ 1 (mod 2n− 2).
Moreover, in case (a) there holds that |NN(〈b〉)/CN (〈b〉)| divides 2(n−1) and s ≥ n.
On the other hand, in case (b) we have that |NN (〈b〉)/CN (〈b〉)| divides 2n
and s ≥ n+ 1.

Assume that {p, r, s} ⊆ π. Since Aπ′ ∩ N ≤ CN (a) ≤ T1, we deduce that
Aπ′ ∩ N and hence A are soluble groups. Since a Sylow r-subgroup of A is
cyclic, we have that A ∩ N = Or′(A ∩ N)NA∩N(〈a〉) by Lemma 2. Moreover,
|NN∩A(〈a〉)/CN∩A(〈a〉)| divides 2n− 2.

Suppose first that s ∈ π(A) and b ∈ N ∩ A. Since s divides neither |T1|,
nor |CN∩A(a)|, it follows that either s divides 2(n − 1) or s ∈ π(Or′(A ∩ N)).
Since s ≥ n, the first case cannot occur. Hence s ∈ π(Or′(A ∩ N)). Since Sylow
s-subgroups of A are also cyclic, we have that A ∩ N = Os′(A ∩ N)NA∩N(〈b〉).
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Observe that elements of order sr do not exist in N . Consequently, r divides 2n−2
or 2n, which is not the case as r ≥ 2n−1. Hence s ∈ π(B∩N) and we can assume
that b ∈ N ∩B. This contradicts that {p, r, s} ⊆ π by Lemma 13 (ii).

Hence we have {p, r, s} ⊆ π′ and so π(G/N) ⊆ π′. Suppose that s ∈ π(A).
Then we deduce that π∩π(A)⊆π(CN (a))∩π(CN (b)). However, π(|T1|, |T2|) ⊆ {2},
in both cases (a) and (b), and so π ∩ π(A) = ∅, which means that A is a π′-group,
a contradiction.

Now we have that s ∈ π(B ∩ N). It follows that Aπ = Aπ ∩ N ≤ T1 and
Bπ = Bπ ∩ N ≤ T2 are Hall subgroups of N , and also of G. Arguing as in
cases Ln(q) or PSp2n(q), by using the formula for the order of N , we get the final
contradiction. �

Lemma 21. N is not isomorphic to PΩ−
2n(q), for q = pe and n ≥ 4.

Proof. If N ∼= PΩ−
8 (2)), we can take r = 17 and there exists a self-centralizing

Sylow subgroup of this order, so we get a contradiction by Lemma 8.
Assume that N ∼= PΩ−

2n(q), n > 4. By Lemma 14 we can consider tori T1

and T2 of N of the orders

|T1| = qn + 1

(4, qn + 1)
, |T2| = (qn−1 + 1)(q − 1)

(4, qn + 1)
,

primitive divisors r = q2n and s = q2n−2, and elements a and b of orders r and s,
respectively, such that CN (a) ≤ T1, CN (b) ≤ T2, and these subgroups are abelian
p′-groups. In particular, {p, r, s} ⊆ σ, for {σ, σ′} = {π, π′}, since (|N ∩A|, |N ∩B|)
≡ 0 (mod p). Moreover, π(logp(q)) ⊆ σ because field automorphisms of N do not
centralize elements of order r or s.

Without loss of generality assume that r ∈ π(A). Suppose first that r ∈ π.
Then Aπ′ ∩ N and hence A are soluble groups. Moreover, by Lemma 13 (ii) we
deduce that s ∈ π(A). Since Sylow r-subgroups of N and Sylow s-subgroups of N
are cyclic, we can consider A∩N = Or′(A∩N)NA∩N (〈a〉) = Os′(A∩N)NA∩N (〈b〉).
Observe that |NN (〈a〉)/CN (〈a〉)| divides 2n and |NN (〈b〉)/CN (〈b〉)| divides 2(n−1),
where r ≥ 2n+ 1 and s ≥ 2n− 1. Since there are no elements of order rs in N we
deduce that s �∈ π(A), a contradiction.

Hence we may assume {p, r, s} ⊆ π′ and then |G/N | is a π′-group. If r, s ∈ π(A),
the order of Aπ would divide (|T1|, |T2|)2′ = 1 and so A would be a π′-group, a
contradiction.

Therefore we have that r ∈ π(A∩N), s ∈ π(B ∩N), and so Aπ = Aπ ∩N ≤ T1

and Bπ = Bπ∩N ≤ T2 are Hall subgroups of N and G. Arguing as in the previous
cases, using the formula for the order of N , we get the final contradiction. �

The main theorem is proved.
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