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Regularity and geometric estimates

for minima of discontinuous functionals

Raimundo Leitão and Eduardo V. Teixeira

Abstract. In this paper we study nonnegative minimizers of general
degenerate elliptic functionals,

∫
F (X,u,∇u) dX → min, for variational

kernels F that are discontinuous in u with discontinuity of order ∼ χ{u>0}.
The Euler–Lagrange equation is therefore governed by a nonhomogeneous,
degenerate elliptic equation with free boundary between the positive and
the zero phases of the minimizer. We show optimal gradient estimate
as well as nondegeneracy of minima. We also address weak and strong
regularity properties of the free boundary. We show the set {u > 0} has
locally finite perimeter and that the reduced free boundary, ∂red{u > 0},
has Hn−1-total measure. For more specific problems that arise in jet flows,
we show the reduced free boundary is locally the graph of a C1,γ function.

1. Introduction

Given a bounded smooth domain Ω ⊂ R
n and a nonnegative function φ ∈ W 1,p(Ω)

∩L∞(Ω), 2 ≤ p < n, we study regularity and fine geometric properties of solutions
to the minimization problem

(1.1) min
{∫

Ω

F (X, u,∇u) dX : u ∈ W 1,p
φ (Ω)

}
,

where W 1,p
φ (Ω) denotes the Sobolev space of all functions in Lp with distributional

derivatives in Lp and trace value φ. The variational kernel F : Ω × R × R
n → R,

will be written as F (X, u, ξ) = G(X, ξ) + g(X, u) and it will satisfy the following
structural conditions:

(G1) For all ξ ∈ R
n, the mapping X �→ G(X, ξ) is continuous.

(G2) There exists a positive constant 0 < λ such that

λ |ξ|p ≤ G(X, ξ) ≤ λ−1 |ξ|p.
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(G3) For almost all X ∈ Ω, the mapping ξ �→ G(X, ξ) is strictly convex, differen-
tiable and satisfies

G(X, tξ) = |t|p G(X, ξ), t ∈ R, ξ ∈ R
n.

(G4) There exist constants 0 < δ < 1 and CA > 0 such that

X �→ A(X, ξ) ∈ Cδ(Ω′), sup
ξ∈Rn

‖A(X, ξ)‖Cδ ≤ CA,

for all subdomain Ω′ ⊂ Ω, where A(X, ξ) := ∇ξG(X, ξ).

(g1) The function g is defined by

g(X, u) = f(X)(u+)m +Qχ{u>0}, 1 ≤ m < p,

where f is measurable, −K ≤ f ≤ K, for some K > 0 and Q is C0,β-conti-
nuous, 0 < κ < Q < κ−1 for some κ > 0.

A prototypical kernel to keep in mind is

(1.2) F (X, u, ξ) = |ξ|p−2A(X)ξ · ξ + f(X)(u+)m +Qχ{u>0},

for a positive definite matrix A with continuous coefficients. Motivations come
from the study of jet flow and cavity problems, among many other applications.
For notational convenience, we label the functional appearing in the minimization
problem (1.1) by F : W 1,p

ϕ (Ω) → R, i.e., hereafter

F(u) :=

∫
Ω

F (X, u,∇u) dX.

Also, any positive constant C = C(n, p,m, λ, φ, κ,K, δ, CA,Ω) that depends only
on dimension and the parameter constants of the problem will henceforth be called
a universal constant. We call a solution of the homogeneous problem

(1.3) div(A(X,∇h)) = 0 in Br(X0) ⊂ Ω.

an A-harmonic functions. The key feature of the functional F is that it is discon-
tinuous with respect to u, thus the well established classical theory of the calculus
of variations is not suitable for treating such problems. In fact, at a minimum u,
the functional F presents discontinuity for small perturbations near points on the,
in principle unknown, set ∂{u > 0}. Such a discontinuity reflects a lack of smooth-
ness of u across the boundary of its zero level surface.

The study of the variational problem (1.1) goes back to the fundamental work of
Alt and Caffarelli, [1], which provides a thorough analysis of this problem for p = 2,
f ≡ 0, and A(X) = Id in (1.2). Danielli and Petrosyan in [6] developed the corre-
sponding Alt and Caffarelli theory for the p-Laplacian, i.e., f ≡ 0 and A(X) = Id.

In this paper we study the variational problem (1.1) in full generality, provid-
ing existence, regularity, and geometric properties of certain heterogeneous free
boundary problems governed by degenerate elliptic equations. The results from
this work are new even for the Poisson type equation m = 1. They also yield new
results even in the linear setting p = 2.
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In Section 3 we show there is a minimum for the functional F and that this
minimum is nonnegative and continuous in Ω. We further show that within the
set of positivity, u satisfies the desired Euler–Lagrange equation

div(∇ξG(X,∇u)) = mf(X)um−1, in {u > 0},
in the sense of distributions. Under natural structural assumptions on the kernelG,
u is C1,α in its set of positivity. Nevertheless, due to the discontinuity of F near
free boundary points, ∇u jumps from positive values to zero through ∂{u > 0}.
Therefore, the optimal regularity possible for a minimum is Lipschitz continuity.
Such a result is established in Section 4. By Lipschitz regularity, we conclude that u
grows linearly away from the free boundary. However, from energy considerations,
we actually show that u grows precisely linearly on ∂{u > 0}. This is important
geometric information that provides access to finer geometric-measure features of
the free boundary. In fact, in Section 5 we show that

Λ := div(∇ξG(X,∇u))−mf(X)um−1,

defines a nonnegative measure supported along the free boundary. We further
show that the set of positivity of u, {u > 0}, is locally a set of finite perimeter.
A finer property is actually shown: we verify that

Hn−1(∂{u > 0} ∩Br(Z)) ∼ rn−1,

for any ball Br(Z) centered at a free boundary point. In particular we conclude
the reduced free boundary, ∂red{u > 0} has total Hn−1-Hausdorff measure.

In the last Section we address smoothness of the (reduced) free boundary for
the heterogeneous, quasilinear cavity problem{

div(A(X)∇u)=mf(X)um−1, in {u > 0},
〈A∇u,∇u〉=Q, on ∂{u > 0} ∩ Ω,

where the matrix A is Lipschitz and positive definite. We show the free boundary
is a C1,γ smooth hypersurface, up to a possible Hn−1 negligible set, providing
therefore a classical solution to the corresponding quasilinear Bernoulli type prob-
lem.

Acknowledgement. This paper is part of the first author’s doctoral thesis at
the Department of Mathematics at Universidade Federal do Ceará, Brazil. Both
authors would like to express their gratitude to this institution for such a pleasant
and productive scientific atmosphere.

2. Preliminaries

In this section we gather some preliminary results that we will repeatedly
throughout the article. We begin with the classical criterion of Ladyzhenskaya
and Ural’tseva to estimate the L∞-norm of a function u ∈ W 1,p

φ (Ω) with boundary
values φ ∈ L∞(∂Ω) for 1 < p ≤ n.
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Lemma 2.1. Let u ∈ W 1,p(Ω), 1 < p ≤ n, be such that ‖u‖L∞(∂Ω) < ∞. For
j ≥ j0 ≥ ‖u‖L∞(∂Ω), let Aj := {u > j}. If u satisfies∫

Aj

|∇u|p ≤ γ jα Ln(Aj)
1−p/n+ε

where γ > 0, ε > 0 and 0 ≤ α ≤ ε + p, then there is a constant C > 0 depending
only on γ, α, p, n, ε, j0, and ‖u‖L1(Aj0 )

such that

‖u‖L∞(Ω) ≤ C.

See [13], Chapter 2, Page 71, Lemma 5.2, for a proof of Lemma 2.1. Clearly,
the case p > n is a direct consequence of the Sobolev inequality.

The following is a basic fact: if h is a solution inW 1,p
v (Br(X0)) of equation (1.3),

then h is the unique minimizer of the functional

(2.1) F(w) :=

∫
Br(X0)

〈A(X,∇w),∇w〉 dX,

among functions w ∈ W 1,p
0 (B1) + v. Thus, we have

λ

∫
Br(X0)

|∇h|p dX ≤
∫
Br(X0)

〈A(X,∇h),∇h〉 dX

≤
∫
Br(X0)

〈A(X,∇v),∇v〉 dX ≤ λ−1

∫
Br(X0)

|∇v|p dX.(2.2)

A fundamental tool in our article is the nonhomogeneous Harnack inequality.

Theorem 2.2 (Harnack inequality; see e.g. [15]). Let u ∈ W 1,p(BR) be such that
u ≥ 0 a.e., and satisfy

divA(X,∇u) = g(X), in BR

in the distributional sense, with g(X) ∈ L∞(BR). Then, there exists a constant
C > 0 such that, for all 0 < r ≤ R,

sup
Br

u ≤ C
{
inf
Br

u+
(
rp‖g‖L∞(BR)

)1/(p−1)
}
.

Remark 2.3. Let Ω′ ⊂ R
n be a bounded domain such thatBR ⊂ Ω′. In this article

we will often regard the nonlinear term merely as a bounded source term, i.e.,

mf(X)um(X) =: g(X)

where ‖g‖L∞(BR) ≤ C for a universal constant C > 0. In particular, for 0 ≤ r ≤ 1
we have

sup
Br

u ≤ C
{
inf
Br

u+ rp/(p−1)
(‖g‖L∞(BR)

)1/(p−1)
}
≤ C inf

Br

u+ C r,

where C = C(n, p, λ,Λ, ‖g‖L∞(Ω′)) > 0.
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To address Lipschitz regularity for a minimizer u we will need the C1,α reg-
ularity of A-harmonic functions. Precisely, the result that will be useful is the
following (see [18] for superior estimates at degenerate points):

Theorem 2.4 (C1,α regularity; see e.g. [19]). Let Ω ⊂ R
n be a bounded open set

and let g ∈ L∞(Ω) satisfying

div(A(X,∇u)) = g(X), in Ω

in the distributional sense. Then, there exist constants C > 0 and 0 < α < 1 that
depend only on Ω′, ‖g‖L∞(Ω′), and universal constants, such that

‖∇u‖L∞(Ω′) ≤ C and ‖u‖C1,α(Ω′) ≤ C,

where Ω′ � Ω is a subdomain.

Remark 2.5. We point out that Theorem 2.4 for Ω′ = B2r(X0) gives

(2.3) ‖∇u‖L∞(Br(X0)) ≤ C rγ−1 and ‖∇u‖Cα(Br(X0)) ≤ C rγ−1−α

for some universal constant 0 < γ < 1. Also we shall make use of the gradient
estimate:

(2.4) ‖∇h‖L∞(Br/2(X0)) ≤
C

rn/p
‖∇h‖Lp(Br(X0)),

for A-harmonic functions, where C > 0 is universal constant; see for instance [8],
Proposition 3.3. Sharp estimates below Lipschitz can be found, for instance, in [17].

We shall also make use of the following technical lemma regarding convergence
stability.

Lemma 2.6. Let hj : B1(0) → (0, 2) be a sequence of function in W 1,p(B1(0))
such that

div(A(Wj + cjX,∇hj)) = 0 in B1(0),

where cj ∈ R
n and Wj ∈ Ω satisfy

cj → 0, Wj → W0 ∈ Ω and Wj + cjX ∈ Ω,

for all X ∈ B1(0). Suppose

hj → h0 a.e. in B′,

where B′ � B1(0) is a ball. Then, we have, for all B � B′,

div(A(W0,∇h0)) = 0 in B.
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Proof. Since each function hj satisfies 0 ≤ hj ≤ 2 we conclude from the Caccioppoli
inequality ([11], Chapter 3, Lemma 3.27) that there exists a constant C > 0 that
depends only on B′ and universal constants such that

(2.5)

∫
B′

|∇hj |p dX ≤ C.

Thus (see for instance [11], Theorem 1.32), h0 ∈ W 1,p(B′) and

∇hj → ∇h0 weakly in Lp(B′).

Consider ζ ∈ C∞
0 (B′) such that ζ = 1 in B and 0 ≤ ζ ≤ 1. Take ζ(h0 − hj) as a

test function for the solution hj . Then we obtain, for Qj := Wj + cjX,

∣∣∣ ∫
B′

ζ〈A(Qj ,∇hj),∇hj −∇h0〉 dX
∣∣∣ = ∣∣∣ ∫

B′
(hj − h0)〈A(Qj ,∇hj),∇ζ〉 dX

∣∣∣
≤ C

( ∫
B′

|hj − h0|p|∇ζ|p
)1/p

·
( ∫

B′
|∇hj |p

)(p−1)/p

≤ C
(∫

B′
|hj − h0|p

)1/p

,

where we use that (see [11], Chapter 5, Lemma 5.9)

(2.6) |A(X, ξ)| ≤ C(p, λ) |ξ|p−1, for a.e. X ∈ Ω and all ξ ∈ R
n,

and (2.5) in the second inequality.
Thus, since hj → h0 a.e in B′, we conclude from the dominated convergence

theorem that

lim
j→∞

∫
B′

ζ〈A(Wj + cjX,∇hj),∇hj −∇h0〉 dX = 0.

Using (2.6) we obtain

∣∣∣ ∫
B′

ζ〈A(Qj ,∇h0),∇hj −∇h0〉 dX
∣∣∣ ≤ C(p, λ)

∫
B′

|∇h0|p−1|∇hj −∇h0| dX.

Thus, since ∇h0 ∈ Lp/(p−1)(B′), we find

lim
j→∞

∫
B′

ζ〈A(Wj + cjX,∇h0),∇hj −∇h0〉 dX = 0.

By monotonicity of A, we have∫
B′

ζ〈A(Wj + cjX,∇hj)−A(Wj + cjX,∇h0),∇hj −∇h0〉 dX ≥ 0.

Then, we find

lim
j→∞

∫
B

〈A(Wj + cjX,∇hj)−A(W0 + cjX,∇h0),∇hj −∇h0〉 dX = 0.
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Moreover, it follows from (G4) that

∣∣∣ ∫
B

〈A(Qj ,∇hj)−A(W0,∇hj),∇hj −∇h0〉 dX
∣∣∣ ≤ CA

2

∫
B

|∇hj −∇h0| dX,

for j so large that (|Wj − W0| + |cj |)δ ≤ 1/2. Taking into account that χB ∈
Lp/(p−1)(B) we obtain

lim
j→∞

∫
B

〈A(Wj + cjX,∇hj)−A(W0,∇hj),∇hj −∇h0〉 dX = 0.

Analogously, we have

lim
j→∞

∫
B

〈A(Wj + cjX,∇h0)−A(W0,∇h0),∇hj −∇h0〉 dX = 0.

Hence, we obtain

lim
j→∞

∫
B

〈A(W0,∇hj)−A(W0,∇hj),∇hj −∇h0〉 dX = 0

and by Lemma 3.73 in [11] we find

A(W0,∇hj) → A(W0,∇h0),

weakly in Lp/(p−1)(B). Finally, if η ∈ C∞
0 (B) we have

0 =

∫
B

〈A(Qj ,∇hj),∇η〉 dX

=

∫
B

〈A(Qj ,∇hj)−A(W0,∇hj),∇η〉 dX +

∫
B

〈A(W0,∇hj),∇η〉 dX.

Taking j → ∞ we obtain ∫
B

〈A(W0,∇h0),∇η〉 dX = 0,

and the proof is complete. �

3. Existence and continuity of minimizers

In this section we show the discontinuous optimization problem (1.1) has at least
one minimizer. Uniqueness is known to fail even in simpler models. In the sequel
we obtain a universal modulus of continuity for such a minimum.

Theorem 3.1. There exists a minimizer u ∈ W 1,p
φ of the functional (1.1). Fur-

thermore u ≥ 0 in Ω.
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Proof. Let us label

I0 := min
{∫

Ω

F (X, v,∇v) dX : v ∈ W 1,p
φ (Ω)

}
.

To begin, we show that I0 > −∞. Indeed, for any v ∈ W 1,p
φ (Ω), by the Poincaré,

Young (1 < p/m) and Hölder inequalities, there exist universal constants c, C > 0
such that

(3.1) c ‖v‖pLp − c ‖φ‖pLp − λ ‖∇φ‖pLp ≤ λ ‖∇v‖pLp ,

and

(3.2) − c ‖v‖pLp − C ≤ −C ‖v‖mLp ≤ −K ‖v‖mLm .

Combining (3.1) and (3.2) we obtain

(3.3) − C − c ‖φ‖pLp − λ ‖∇φ‖pLp ≤ λ ‖∇v‖pLp −K ‖v‖mLm ,

which yields

−C − c ‖φ‖pLp − λ ‖∇φ‖pLp ≤
∫
Ω

(λ|∇v|p −K|v|m + κχ{v>0}) dX.

Finally, from (G2) and (g1) we find

(3.4)

∫
Ω

(λ|∇v|p −K|v|m + κχ{v>0}) dX ≤
∫
Ω

F (X, v,∇v) dX.

Let vj ∈ W 1,p
φ (Ω) be a minimizing sequence. We can suppose for j � 1, that∫

Ω

F (X, vj ,∇vj) dX ≤ I0 + 1.

From (3.4) and the Hölder inequality we obtain∫
Ω

|∇vj |p dX ≤ K

λ
‖vj‖mLm +

I0
λ

+
1

λ
≤ C ‖vj‖mLp +

I0
λ

+ C .(3.5)

By the Poincaré inequality we have

(3.6) c1 ‖vj‖mLp ≤ C2 (‖∇vj‖mLp + ‖∇φ‖mLp + ‖φ‖mLp).

Also we have

(3.7) c3 ‖∇vj‖mLp ≤ C4 +
1

2
‖∇vj‖pLp .

Combining (3.5), (3.6) and (3.7) we obtain

(3.8)

∫
Ω

|∇vj |p dX ≤ C5 (‖∇φ‖mLp + ‖φ‖mLp) +
I0
λ

+ C6.
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Thus, using the Poincaré inequality once more, we conclude that {vj − φ} is a

bounded sequence in W 1,p
0 (Ω). By weak compactness, there is a function u ∈

W 1,p
φ (Ω) such that, passing to a subsequence, if necessary,

vj → u weakly in W 1,p(Ω), vj → u in Lp(Ω) vj → u a.e. in Ω.

It now follows from the lower semicontinuity ofG (see, for instance, [11], Chapter 5)
that ∫

Ω

G(X,∇u) dX ≤ lim inf
j→∞

∫
Ω

G(X,∇vj) dX.

Condition (g1) and pointwise convergence give∫
Ω

g(X, u) dX ≤ lim inf
j→∞

∫
Ω

g(X, vj) dX.

In conclusion, ∫
Ω

F (X, u,∇u) dX ≤ lim inf
j→∞

∫
Ω

F (X, vj ,∇vj) dX,

which proves the existence of a minimizer.
We turn our attention to proving the nonnegativity of u. To begin, we note

that

χ{max(u,0)>0} ≤ χ{u>0}.

Thus, ∫
Ω

g(X,max(u, 0))− g(X, u) dX

=

∫
Ω

f((u+)m − (u+)m) dX +

∫
Ω

Q(χ{max(u,0)>0} − χ{u>0}) dX ≤ 0.(3.9)

Then, by minimality of u and (3.9) we obtain

0 ≤
∫
Ω

F (X,max(u, 0),∇(max(u, 0)))− F (X, u,∇u) dX

=

∫
Ω

G(X,∇(max(u, 0)))−G(X,∇u) dX +

∫
Ω

g(X,max(u, 0))− g(X, u) dX

≤ −
∫
{u<0}

G(X,∇u) dX.

From (G2) we can write

0 ≥
∫
{u≤0}

G(X,∇u) dX ≥ λ

∫
{u<0}

|∇u|p dX = λ

∫
Ω

|∇(min(u, 0))|p dX,

and the nonnegativity of u follows since the boundary data φ is nonnegative. �
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Remark 3.2. As previously stated, for condition (g1), throughout the whole
paper we shall work under the range 1 ≤ m < p. Such a constraint is needed
merely for the existence of minima of the functional F. Also, by inequalities (3.1),
(3.5) and (3.6), it is possible to show existence of minimizer provided K is small
enough. In addition, we can obtain critical points of the functional F, in the range
p < m ≤ p∗ (see [14]) where p∗ := np/(n− p).

Lemma 3.3. Let u be a minimizer of (1.1). There exists a universal constant M>0
such that ‖u‖L∞(Ω) ≤ M .

Proof. Define
j0 :=

⌈
sup
∂Ω

φ
⌉
,

that is, the smallest natural number above sup∂Ω φ. For each j ≥ j0 we define the
truncated function uj : Ω → R by

uj =

{
j, if u > j,
u, if u ≤ j.

Clearly, by the choice of j0, uj ∈ W 1,p
φ (Ω) and

{uj > 0} = {u > 0}.
If we define Aj := {u > j}, we have, for each j > j0

u = uj in Ac
j and uj = j in Aj .

Thus, by minimality of u and (G2), there holds

λ

∫
Aj

|∇u|p dX ≤
∫
Aj

G(X,∇u) =

∫
Ω

G(X,∇u)−G(X,∇uj) dX(3.10)

≤
∫
Ω

f(um
j − um) dX =

∫
Aj

f(um − jm) dX.

Taking into account the elementary inequality

um = (u− j + j)m ≤ 2m[(u − j)m + jm],

we obtain∫
Aj

|f |(um − jm) dX ≤ C

∫
Aj

|f | (u− j)m dX + CjmLn(Aj)

= C

∫
Aj

|f | [(u− j)+]m dX + CjmLn(Aj).(3.11)

From the range of truncation we consider, it follows that (u − j)+ ∈ W 1,p
0 (Ω).

Hence, applying the Hölder inequality and Gagliardo–Nirenberg inequalities (see
Chapter 7 of [10]), we find∫

Aj

|f | [(u− j)+
]m

dX ≤ K [Ln(Aj)]
1−m/p∗ ‖∇u‖mLp(Aj)

.
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The Young inequality then gives

(3.12) K[Ln(Aj)]
1−m/p∗‖∇u‖mLp(Aj)

≤ C[Ln(Aj)]
p

p−m− pm
p∗(p−m) +

λ

2C
‖∇u‖pLp(Aj)

.

Since

1−
[ p

p−m
− pm

p∗(p−m)

]
= − p2m

np(p−m)

we find [
Ln(Aj)

] p
p−m− pm

p∗(p−m) ≤ C Ln(Aj).

Then, combining (3.10), (3.11), and (3.12), we obtain∫
Aj

|∇u|p dX ≤ C jm Ln(Aj) = C jm[Ln(Aj)]
1−p/n+p/n.

Moreover, for each j > j0 we have

‖(u− j)+‖L1(Aj) =

∫
Aj

(u− j) dX ≤
∫
Aj

(u− j0) dX ≤
∫
Aj0

(u− j0) dX

= ‖(u− j0)
+‖L1(Aj0 )

≤ ‖u‖L1(Aj0 )
+ C(φ,Ln(Ω)).

We also have (see (3.1) and (3.8) replacing I0 by
∫
Ω
F (X,φ,∇φ) dX),

‖u‖L1(Aj0 )
≤ [Ln(Aj0 )]

(p−1)/p ‖u‖Lp(Aj0)
≤ [Ln(Ω)](p−1)/p ‖u‖Lp(Ω) ≤ C.

Taking γ = C, ε = p/n and α = m in Lemma 2.1 we obtain the boundedness
of u. �

Remark 3.4. A consequence of the L∞ estimates for a minimizer u of the func-
tional F is universal control on u in W 1,p(Ω). In fact, we have

λ−1

∫
Ω

|∇u|p dX ≤ F(φ)−
∫
Ω

f(X)(u+)m +Qχ{u>0} dX ≤ F(φ) + C ≤ C,

where C > 0 is a universal constant. In conclusion,

(3.13) ‖u‖W 1,p(Ω) ≤ C.

Lemma 3.5 (Caccioppoli type inequality). Let u be a minimizer of the func-
tional (1.1). If Br(X0) ⊂ Ω is a ball such that 0 < 2r ≤ dist(X0, ∂Ω) then we have
the estimate

(3.14)

∫
Br(X0)

|∇u|p dX ≤ C rn−p,

where C > 0 is a universal constant.



80 R. Leitão and E.V. Teixeira

Proof. Let ζ ∈ C∞
0 (Ω) be a nonnegative function. Given ε > 0, by the minimality

and nonnegativity of u, we have

0 ≤ 1

ε

∫
Ω

G(X,∇(u− εζ)) −G(X,∇u) dX

+
1

ε

∫
Ω

f(X)
[(
(u − εζ)+

)m − um
]
dX +

1

ε

∫
Ω

Q(χ{u−εζ>0} − χ{u>0}) dX

≤ −
∫
Ω

〈A(X,∇(u − εζ)),∇ζ〉 dX +
1

ε

∫
Ω

f(X)
[(
(u− εζ)+

)m − um
]
dX.

Also, for φ := (u− εζ)+, we have

1

ε

∫
Ω

f(X)[φm − um] dX

=
1

ε

∫
{u>0}

f(X)[φm − um] dX +
1

ε

∫
{u=0}

f(X)
[
(−εζ)+

]m
dX

=

∫
{u>0}

f(X)
[φm − um]

ε
dX.

Taking ε → 0 we obtain

(3.15) −
∫
Ω

〈A(X,∇u),∇ζ〉 dX −
∫
Ω

(mf(X)um−1χ{u>0})ζ dX ≥ 0.

If Br := Br(X0) let η ∈ C∞
0 (Br) be a nonnegative function such that

(3.16) η =

{
1, in Br,

0, in Bc
2r,

and

(3.17) ‖∇η‖L∞(Ω) ≤ 1

2r
.

From (G3) we obtain

(3.18) 〈A(X, ξ), ξ〉 = pG(X, ξ),

for almost every X ∈ Ω and all ξ ∈ R
n. Moreover, we have (see [11], Chapter 5,

Lemma 5.9)

(3.19) |A(X, ξ)| ≤ C(p, λ) |ξ|p−1,

for a.e. X ∈ Ω and all ξ ∈ R
n.

Then, taking ζ = ηpu in inequality (3.15) and using (3.18) and (3.19) we find

0 ≤
∫
Ω

〈A(X,∇u),−ηp∇u− pηp−1u∇η〉 dX −
∫
Ω

(mf(X)um−1χ{u>0})ηpu dX

≤ −C(p, λ)

∫
Ω

|∇u|p ηp dX + C(p, λ)

∫
Ω

u |∇η| |∇u|p−1 ηp−1 dX

+mMmK

∫
Ω

ηp dX.
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Thus, we find

C(p, λ)

∫
Ω

|∇u|pηp dX ≤ C(p, λ)

∫
Ω

up|∇η|p dX +
C(p, λ)

2

∫
Ω

|∇u|pηp dX

+ C(m,M,K)

∫
Ω

ηp dX,

where we use the Young inequality. Hence, we obtain∫
Ω

|∇u|pηp dX ≤ C(p, λ)

∫
Ω

up|∇η|p dX + C(m,M,K, p, λ)

∫
Ω

ηp dX,

and taking into account the conditions (3.16), (3.17) and the boundedness of u
(Lemma 3.3) we obtain∫

Br

|∇u|p dX ≤ C
[C
rp

Ln(B2r) + C Ln(B2r)
]
≤ C (rn−p + rn) ≤ C rn−p,

and the lemma is proved. �

Even though the functional is discontinuous, it is possible to prove that mini-
mizers are universally continuous. The delicate question of optimal regularity will
be addressed in the next section.

Theorem 3.6. Let u be a minimizer of (1.1). There exists a universal constant

β ∈ (0, 1) such that u ∈ C0,β
loc (Ω).

Proof. Let h be the solution of boundary value problem{
div(A(X,∇h)) = 0 in B.

h=u on ∂B,

where B � Ω is a fixed ball. By the minimality of u, (g1) and the mean value
theorem we have∫

B

G(X,∇u)−G(X,∇h) dX ≤
∫
B

g(X,h)− g(X, u) dX(3.20)

=

∫
B

f(hm − um) dX +

∫
B

Q(χ{h>0} − χ{u>0}) dX

≤ mKMm−1

∫
B

|u− h| dX + κ−1Ln({u = 0} ∩B).

We have used that an A-harmonic function with nonnegative boundary values
is positive and 0 ≤ u, h ≤ M (see [11], Chapter 3, Proposition 3.24). Thus,
using (3.18) and monotonicity, see for instance, Lemma 3.2 in [16], we obtain

(3.21)

∫
B

G(X,∇u)−G(X,∇h) dX ≥ c

∫
B

|∇(u− h)|p dX,
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where c = c(n, p,G) is a positive constant. The Young and Poincaré inequalities
together yield

(3.22) mKMm−1

∫
B

|u− h| dX ≤ c

2

∫
B

|∇(u − h)|p dX + CLn(B).

Thus, if B is a ball of radius r > 0, it follows from (3.20), (3.21) and (3.22) that

(3.23) ‖∇(u− h)‖Lp(B) ≤ C rn/p.

Now we will estimate ‖∇h‖Lp(B). If B = Br(X0) for some X0 ∈ Ω and r > 0 we
have (see (2.4) and (2.2) in section 2)

(3.24) ‖∇h‖L∞(Br/2(X0)) ≤
C

rn/p
‖∇h‖Lp(B) ≤ C

r
,

where we use Lemma 3.5 in the last inequality.

Let 0 < r ≤ r0(ε) with rε0 ≤ 1/2 for a constant ε > 0 to be chosen. By the
inequalities (3.23) and (3.24) we estimate

‖∇u‖Lp(Br1+ε ) ≤ ‖∇(u− h)‖Lp(Br1+ε ) + ‖∇h‖Lp(Br1+ε )

≤ ‖∇(u− h)‖Lp(Br) + C r
(1+ε)n

p ‖∇h‖L∞(Br/2) ≤ C
(
r

n
p + r

(1+ε)n
p −1

)
.(3.25)

Taking τ = r1+ε we obtain

(3.26) ‖∇u‖Lp(Bδ) ≤ Cτn/p−(1−θ),

with 0 < θ = θ(ε) < 1 if ε = ε(n, p) > 0 is small.

Hence, from Morrey’s theorem there is a constant β = β(n, p) > 0 such that

u ∈ C0,β
loc (Ω). �

Remark 3.7. In Theorem 3.6 we can consider the cases p = n and p > n (the
later is trivial). Moreover, If h is as in Theorem 3.6 we have ‖h‖L∞(Br/2(X0)) ≤ M .
Thus, if G satisfies the assumption of Theorem 2.4 (see Remark 2.4), we obtain

‖∇h‖L∞(Br/2(X0)) ≤
C

r1−γ
≤ C Ln(Ω)γ

r
≤ C1

r

and the arguments of Theorem 3.6 remain valid. Here we do not use (2.2) and
Lemma 3.5 in the proof of Theorem 3.6.

At this stage of the program, an important consequence of Theorem 3.6 is
the fact that the positivity set, {u > 0}, of u is open. Next theorem gives the
Euler–Lagrange equations satisfied in this set.

Theorem 3.8. Let u be a minimizer of (1.1). Within the open set {u > 0}, u
satisfies

div(A(X,∇u)) = mf(X)um−1

in the distributional sense.
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Proof. For fixed ζ ∈ C∞
0 ({u > 0}), there is 0 < ε0 � 1, so small that

{u+ εζ > 0} = {u > 0},

for all 0 < ε ≤ ε0. We can write, for vε := u+ εζ,

1

ε

∫
{u>0}

(F (X, vε,∇vε)− F (X, u,∇u)) dX

=
1

ε

∫
{u>0}

G(X,∇vε)−G(X,∇u) +

∫
{u>0}

f(X)
vmε − um

ε
.

Taking ε → 0, and using the minimality of u, we obtain

0 =

∫
{u>0}

〈A(X,∇u),∇ζ〉 dX +

∫
{u>0}

mf(X)um−1ζ dX

and the result follows. �

4. Upper and lower gradient bounds

In the previous section we have shown that minimizers are C0,β continuous in Ω,
for some unknown β < 1. From the discontinuity of the functional F along the
free-surface it is also possible to check that minimizers are not C1-regular across
the zero level surface ∂{u > 0}. Thus the optimal regularity one can expect for u
is Lipschitz continuity. This is the content of the next theorem.

Theorem 4.1. Given a subdomain Ω′ � Ω, there exists a constant C > 0 that
depends only on Ω′ and universal constants, such that

‖∇u‖L∞(Ω′) ≤ C.

Proof. Suppose, with the aim of obtaining a contradiction, that there exists a
sequence of points Xj ∈ Ω′ ∩ {u > 0} such that

(4.1) Xj → ∂{u > 0} and
u(Xj)

dist(Xj , ∂{u > 0}) ↗ ∞.

We write
Uj := u(Xj) and dj := dist(Xj , ∂{u > 0}).

For each j, let Yj ∈ ∂{u > 0} be such that

dj = |Xj − Yj |.

Recall we have proven in Theorem 3.8 that

div(A(X,∇u)) = mf(X)um−1 in {u > 0}.
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Thus, by the Harnack inequality (Theorem 2.2), universal boundedness of u,
and (g1), there exists a constant c>0 (see Remark 2.3) that depends only on Ω′ and
universal constants, such that

dj + inf
B3dj/4

(Xj)
u ≥ c Uj .

In turn, we have

(4.2) sup
Bdj/4

(Yj)

u ≥ c Uj − dj .

Consider the set

(4.3) Aj :=
{
Z ∈ Bdj(Yj) : dist(Z, ∂{u > 0}) ≤ 1

3
dist(Z, ∂Bdj(Yj))

}
.

First we claim that Bdj/4(Yj) ⊂ Aj . In fact, if |Z − Yj | ≤ dj/4, then

1

3
dist(Z, ∂Bdj(Yj)) ≥ 1

3

3dj
4

=
dj
4

≥ dist(Z, ∂{u > 0}).
Thus,

Mj := sup
Z∈Aj

dist(Z, ∂Bdj (Yj))u(Z) = dist(Zj , ∂Bdj(Yj))u(Zj) ≥ 3dj
4

sup
Bdj/4

(Yj)

u.

Therefore,

u(Zj) ≥ dj
dist(Zj , ∂Bdj (Yj))

3

4
sup

Bdj/4
(Yj)

u ≥ 3

4
sup

Bdj/4
(Yj)

u.

Hence, using (4.2) we have

(4.4) u(Zj) ≥ 3

4
(c Uj − dj).

For each j, let Wj ∈ ∂{u > 0} be such that

(4.5) rj := |Zj −Wj | = dist(Zj , ∂{u > 0}) ≤ 1

3
dist(Zj , ∂Bdj(Yj)).

Using (4.5) we conclude that

(4.6) rj ≤ 1

3
(dj − |Zj − Yj |) ≤ 1

3
(dj − rj).

That is,

(4.7)
dj
rj

≥ 4 .

From (4.4) and (4.7) we have, for j so large that

Uj

dj
≥ 1

c
,

(
c
Uj

dj
− 1 ≥ 0

)
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the lower estimate

(4.8)
u(Zj)

rj
≥ 1

rj

3

4
(c Uj − dj) =

3dj
4rj

(
c
Uj

dj
− 1

)
≥ 4

3

4

(
c
Uj

dj
− 1

)
.

We have proven that

(4.9)
u(Zj)

rj
→ ∞.

If X ∈ B2rj (Wj) we obtain (see (4.5))

|X − Yj | ≤ |X −Wj |+ |Wj − Zj|+ |Zj − Yj | ≤ 2rj + rj + |Zj − Yj | ≤ dj .

Thus, B2rj (Wj) ⊂ Bdj (Yj). Also we have

dist(X, ∂{u > 0}) ≤ rj
2
,

for all X ∈ Brj/2(Wj). The triangular inequality and (4.5) then yield

dist(X, ∂Bdj(Yj)) ≥ dist(Zj , ∂Bdj(Yj))− |Zj −X | ≥ dist(Zj , ∂Bdj(Yj))− 3rj
2

≥ dist(Zj , ∂Bdj (Yj))− 1

2
dist(Zj , ∂Bdj(Yj)) =

1

2
dist(Zj , ∂Bdj(Yj)).

We conclude that Brj/2(Wj) ⊂ Aj and

u(Zj) ≥ Mj

dist(Zj , ∂Bdj (Yj))
≥ dist(X, ∂Bdj (Yj))u(X)

dist(Zj , ∂Bdj(Yj))
≥ 1

2
u(X),

for all X ∈ Brj/2(Wj). From the preceding inequality we obtain

(4.10) sup
Brj/2

(Wj)

u ≤ 2 u(Zj).

Since Brj (Zj) ⊂ {u > 0}, by the Harnack inequality there exists a universal
constant c′ > 0 that depends only on Ω′ and universal constants such that

inf
B3rj/4(Zj)

u ≥ c′u(Zj)− rj .

Therefore, we conclude,

sup
Brj/4

(Wj)

u ≥ c′ u(Zj)− rj

and using (4.9) we find (for j sufficiently large)

(4.11) sup
Brj/4

(Wj)

u

u(Zj)
≥ c′

2
.
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For each j, consider the normalized function uj : B1(0) → (0, 2), defined by

(4.12) uj(X) :=
u(Wj +

1
2 rj X)

u(Zj)
.

Notice that from (4.10), and (4.11), we have (for j sufficiently large)

(4.13) max
B1(0)

uj ≤ 2, max
B1(0)

uj ≥ c′

2
, uj(0) = 0.

Let h be the A-harmonic function in Brj/2(Wj) equal to u on the boundary.
By (3.20), as in Theorem 3.6, we have

(4.14)∫
Brj/2(Wj)

〈A(X,∇u),∇u〉 − 〈A(X,∇h),∇h〉 dX ≤ K

∫
Brj/2

(Wj)

|um − hm| dX + Crnj .

Analogously, for each j sufficiently large, consider the normalized function
hj : B1(0) → (0, 2), defined by

(4.15) hj(X) :=
h(Wj +

1
2 rj X)

u(Zj)
.

It is easy to see that

(4.16)

{
div(A(Wj +

1
2 rj X,∇hj))= 0 in B1(0)

hj = uj on ∂B1(0).

Also, from the normalization,

(4.17) ∇uj(X)=
rj

2u(Zj)
∇u

(
Wj+

1

2
rjX

)
, ∇hj(X)=

rj
2u(Zj)

∇h
(
Wj+

1

2
rjX

)
,

for all X ∈ B1(0). By a change of variables and (G3) we obtain∫
Brj/2

(Wj)

|um − hm| dX ≤ um(Zj)C(m)
(rj
2

)n
∫
B1(0)

|uj − hj | dX

≤ C(n,m)um(Zj)
(rj
2

)n

.

Similarly,∫
Brj/2

(Wj)

〈A(X,∇u),∇u〉 dX = ςj ·
∫
B1(0)

〈A(
Wj +

rj
2
X,∇uj

)
,∇uj〉 dX,

where

ςj :=
( rj
2u(Zj)

)−p (rj
2

)n

.
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We conclude that

c

∫
B1(0)

|∇(uj − hj)|p dX ≤
∫
B1(0)

〈A(
Wj +

rj
2
X,∇uj

)
,∇uj dX〉

−
∫
B1(0)

〈A(
Wj +

rj
2
X,∇hj

)
,∇hj〉 dX

≤ lj → 0.(4.18)

where

lj := C rmj

( rj
u(Zj)

)p−m

= C um(Zj)
( rj
u(Zj)

)p

≤ C
( rj
u(Zj)

)p

.

Moreover, uj is a minimizer of the functional

Fj(v) :=

∫
B1

Gj(X,∇v) + fj(X)(v+)m +Qj(X)χ{v>0} dX,

where

Gj(X, ξ) := G
(
Wj +

rj
2
X, ξ

)
, for all X ∈ B1, ξ ∈ R

n,

fj(X) := 2mum(Zj)
( rj
2u(Zj)

)p

f
(
Wj +

rj
2
X
)
, for all X ∈ B1

and

Qj(X) :=
( rj
2u(Zj)

)p

Q
(
Wj +

rj
2
X
)
, for all X ∈ B1.

Since the functional Fj satisfies the structural conditions (G1), (G2), (G3), (G4),
and (g1) and 0 ≤ uj ≤ 2 in B1 we conclude, as in the proof of Theorem 3.6, that uj

and hj are uniform Hölder continuous in B8/9(0). Thus, up to a subsequence,

uj → u0 and hj → h0,

uniformly in B4/9(0), and (see Lemma 2.6 and Remark 3.4)

(4.19) ∇uj → ∇u0 and ∇hj → ∇h0,

weakly in Lp
(
B4/9(0)

)
. Passing to the limit in (4.16), we find (see Lemma 2.6)

(4.20) div(A(W0,∇h0)) = 0 in B2/9(0),

where, up to a subsequence, Wj → W0 ∈ ∂{u > 0}. From (4.18) we find

∇(uj − hj) → 0 weakly in Lp
(
B2/9(0)

)
.

Then, we obtain ∇(u0 − h0) = 0 in Lp
(
B4/9(0)

)
. Thus, u0 = h0 + c, for some

c ∈ R, and it solves the elliptic PDE

div(A(W0,∇u0)) = 0 in B2/9(0).

Therefore, since u0(0) = 0 and u0 ≥ 0, we obtain, by the strong maximum princi-
ple, that u0 ≡ 0 in B2/9(0), which contradicts (4.13). Theorem 4.1 is proven. �
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The optimal regularity estimate on u established in Theorem 4.1 implies that u
grows at most linearly away from the free surface ∂{u > 0}. From energy consid-
erations, we will show next that minimizers grow precisely linearly.

Theorem 4.2. Given a subdomain Ω′ � Ω, there exist constants c1 > 0 and r1 > 0
that depend only on Ω′ and universal constants, such that if X0 ∈ ∂{u > 0} ∩ Ω′,
0 < r ≤ r1, then

sup
X∈Br(X0)

u(X) ≥ c1r.

Proof. Given a point X0 ∈ ∂{u > 0} ∩ Ω′, define

v(X) =
u(X0 + rX)

r
, ∀X ∈ B1(0).

Since u is Lipschitz continuous we have

(4.21) ‖v‖L∞(B1(0)) ≤ C.

Let hr be the universal barrier given by⎧⎪⎨
⎪⎩

div(A(X0 + rX,∇hr))= 0 in B1(0) \B1/2(0)

hr =1 on ∂B1(0),

hr =0 in B1/2(0).

Define the test function ξ in B1(0) by

ξ(X) = min
{
v(X), hr(X) sup

B1(0)

v
}
.

Using (4.21) we have
0 ≤ ξ ≤ v ≤ C.

By the minimality of v in B1(0), if we define Π :=
{
hr supB1(X0) u < v

}
and

Φ :=

∫
Π

G(X0 + rX,∇ξ)−G(X0 + rX,∇v) dX,

we can estimate

Φ =

∫
B1(0)

G(X0 + rX,∇ξ)−G(X0 + rX,∇v) dX

≥
∫
B1(0)

g(X0 + rX, rv) − g(X0 + rX, rξ) dX

= rm
∫
Π

f(X0 + rX)(vm − ξm) dX(4.22)

+

∫
B1(0)

Q(X0 + rX)(χ{v>0} − χ{ξ>0}) dX.
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Also we have

rm
∫
Π

|f(X0 + rX)(vm − ξm)| dX ≤ rmKmCm−1

∫
Π

|v − ξ| dX(4.23)

≤ rmC

∫
Π

|v − ξ|p dX + rmC ≤ rmC

∫
Π

|∇(v − ξ)|p dX + rmC

≤ rmC

∫
Π

|∇v|p dX + rmC

∫
Π

|∇ξ|p dX + rmC.

Similarly we estimate∫
B1(0)

Q(X0 + rX)(χ{v>0} − χ{ξ>0}) dX(4.24)

=

∫
B1(0)

Q(X0 + rX)(1− χ{ξ>0}) dX

=

∫
B1(0)

Q(X0 + rX)χ{ξ=0} dX ≥ εLn({ξ = 0}) ≥ εLn
(
B1/2(0)

)
,

where C > 0 is a universal constant. Taking into account (G2) and (G3), we obtain∫
Π

G(X0 + rX,∇ξ)−G(X0 + rX,∇v) dX(4.25)

≤ λ−1

∫
Π

| sup
B1(0)

v∇hr|p dX − λ

∫
Π

|∇v|p dX

≤ C
(

sup
B1(0)

v
)p

∫
B1(0)

|∇hr|p dX − λ

∫
Π

|∇v|p dX,

for a universal C > 0. Also by the C1,α estimates for hr, we have

C
(

sup
B1(0)

v
)p

∫
B1(0)

|∇hr|p dX ≤ C
(

sup
B1(0)

v
)p

for a universal constant C > 0. Substituting inequalities (4.23), (4.24) and (4.25)
into (4.22) and taking r sufficiently small, we obtain

C
(

sup
B1(0)

v
)p

≥ (λ− rmC)

∫
Π

|∇v|p dX + cLn
(
B1/2(0)

) ≥ cLn
(
B1/2(0)

)
,

for universal constants c > 0 and C > 0. Therefore, supB1(0) v ≥ c, and strong
nondegeneracy is proven. �

Corollary 4.3. Given a subdomain Ω′ � Ω, there exist constants c, d0 > 0 that
depend only on Ω′ and universal constants, such that if X ∈ {u > 0} ∩ Ω′ and
dist(X, ∂{u > 0}) ≤ d0, then

u(X) ≥ c · dist(X, ∂{u > 0}).
We emphasize that the technique employed in proof of Theorem 4.2 is a gen-

eralization of the ones used in [1].
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5. Hausdorff estimates on the free boundary

In this section we turn out attention to fine Hausdorff estimates on the free sur-
face ∂{u > 0}.

Theorem 5.1. Given a subdomain Ω′ � Ω and Z ∈ ∂{u > 0} ∩ Ω′, there exist
constants r0 > 0 and 0 < ς < 1 that depend only on Ω′ and universal constants,
such that,

(5.1) ς ωn r
n ≤ Ln(Br(Z) ∩ {u > 0}) ≤ (1− ς)ωn r

n,

for all 0 ≤ r ≤ r0.

Proof. Let X0 ∈ B̄r/4(Z) be a maximum point of u, i.e.,

u(X0) = sup
X∈Br/4(Z)

u(X).

By the strong nondegeneracy property (0 < r ≤ r0 with r0 = r1 and r1 > 0 as in
Theorem 4.2) we obtain

u(X0) ≥ c r > 0,

where c > 0 is a universal constant. By the Lipschitz continuity of u there exists
a universal constant C > 0 such that

u(X) ≥ u(X0)− C |X −X0| ≥ c r

2
> 0, ∀X ∈ B c

2C
r(X0),

with C ≥ c. Hence,

B c
2C

r(X0) ⊂ Br(Z) ∩ {u > 0},
and the lower bound in (5.1) follows.

Now we prove the upper bound. We argue by contradiction, i.e., let us assume
that there exists a sequence of positive real numbers rj with rj ↘ 0 as j → ∞ and

(5.2)
Ln(Brj (Z) ∩ {u = 0})

rnj
→ 0.

We define the sequence uj : B1(0) → R by

(5.3) uj(X) :=
u(Z + rjX)

rj
.

Let hj be the solution to

(5.4)

{
div(A(Z + rjX,∇hj)) = 0 in B1(0)

hj =uj on ∂B1(0).



Regularity and geometric estimates for minima 91

Notice that by Lipschitz continuity of u, both uj and hj are bounded. Esti-
mates (3.20) and (3.21) from the proof of Theorem 3.6 give after renormalization,∫

B1(0)

|∇(hj − uj)|p dX ≤ rmj

∫
B1(0)

|hm
j − um

j | dX + C
Ln(Brj (Z) ∩ {u = 0})

rnj

≤ rmj C

∫
B1(0)

|hj − uj | dX + C
Ln(Brj (Z) ∩ {u = 0})

rnj

≤ rmj C

∫
B1(0)

|hj − uj |p dX + rmj C + C
Ln(Brj (Z) ∩ {u = 0})

rnj

≤ rmj C

∫
B1(0)

|∇(hj − uj)|p dX + rmj C + C
Ln(Brj (Z) ∩ {u = 0})

rnj
,

where C > 0 is a universal constant. Hence, for j sufficiently large we have

(5.5)

∫
B1(0)

|∇(hj − uj)(X)|p dX ≤ rmj C + C
Ln(Brj (Z) ∩ {u = 0})

rnj
.

Moreover, by the Lipschitz regularity of u and the C1,α elliptic estimate we can
assume that

uj → u0 and hj → h0

uniformly in B4/5(0). Since hj is the solution to problem (5.4) we obtain

div(A(Z,∇h0(Y ))) = 0, in B1/2(0).

It follows from (5.2) and (5.5) that

u0 = h0 + c, in B1/2(0).

where c is a constant. Then,

div(A(Z,∇u0(Y ))) = 0, in B1/2(0).

Since u0 ≥ 0 and u0(0) = 0, by the strong maximum principle, we obtain u0 ≡ 0
in B1/2(0). But this contradicts the strong nondegeneracy property, shown in The-
orem 4.2. �

Theorem 3.8 gives the Euler–Lagrange equation u satisfies within its set of
positivity. To further investigate the behavior of u along the free boundary, we need
to obtain the equation u satisfies across the free surface of discontinuity of the
functional, ∂{u > 0}.
Lemma 5.2. Let u be a minimizer of the functional (1.1), then

div(A(X,∇u))−mf(X)um−1χ{u>0} ≥ 0, in Ω

in the sense of distribution. In particular it defines a Radon measure

Λ := div(A(X,∇u))−mf(X)um−1χ{u>0}

Furthermore, the support of Λ is contained in ∂{u > 0}.
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Proof. By Lemma 3.5 we have

−
∫
Ω

〈A(X,∇u),∇ζ〉 dX −
∫
Ω

(mf(X)um−1χ{u>0})ζ dX ≥ 0,

for all nonnegative functions ζ ∈ C∞
0 (Ω). Moreover, as in Theorem 3.8,

(5.6) divA(X,∇u) = mf(X)um−1 in {u > 0}.
Hence, the measure Λ defined by∫

Ω

ζdΛ := −
∫
Ω

〈A(X,∇u),∇ζ〉 dX −
∫
Ω

(mf(X)um−1χ{u>0}) ζ dX,

is a nonnegative Radon measure with support on Ω ∩ ∂{u > 0}. �

With the aid of the measure Λ, we can establish fine upper and lower control
on the Hn−1 Hausdorff measure of the free boundary, which ultimately yields
important geometric measure theoretic information about ∂{u > 0}.
Theorem 5.3. The set {u > 0} has locally finite perimeter and for fixed Ω′ � Ω
there exist constants c and C that depend only on Ω′ and universal constants such
that

(5.7) c rn−1 ≤ Hn−1(∂{u > 0} ∩Br(Z)) ≤ C rn−1

for any ball Br(Z) ⊂ Ω′ centered at a free boundary point, Z ∈ ∂{u > 0}. In par-
ticular,

Hn−1(∂{u > 0} \ ∂red{u > 0}) = 0.

Proof. Through a suitable approximation scheme, using test function 0 ≤ ζk ≤ 1,
ζk with ζk → χBr(Z), we have (for almost r > 0)∫

Br(Z)

dΛ =

∫
∂Br(Z)

〈A(X,∇u), ν〉 dSX −
∫
Br(Z)

mf(X)um−1χ{u>0} dX

≤ C ‖∇u‖p−1
L∞(Ω′)r

n−1 + C rn−1 ≤ C rn−1,(5.8)

where C > 0 is a constant that depend only on Ω′ and universal constants. This
proves the upper bound in (5.7).

To check the lower bound, let us assume, aiming at a contradiction, that there
exists a sequence of positive real numbers rj such that rj ↘ 0 as j → ∞ and

(5.9)
Hn−1(∂{u > 0} ∩Brj (Z))

rn−1
j

→ 0.

With the notation used in Theorem 5.1 and Lemma 5.2, we obtain the sequence
of nonnegative measures Λj in B4/5(0), defined by

(5.10) Λj :=
[
div(A(Z + rjX,∇uj))− rmj mf(Z + rjX)χ{uj>0}u

m−1
j

]
dX.
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By compactness we can assume that Λj ⇀ Λ0 in the sense of measures. Moreover,
using (5.9) we have

(5.11) Λj ⇀ 0.

In the sequel we will show that

(5.12) Λ0 := div(A(Z,∇u0)).

From the uniform positive density property we know Ln(∂{u0 > 0}) = 0. Thus,
we only need to verify (5.12) for balls B contained entirely in {u0 = 0} and
in {u0 > 0}. Let B ⊂ {u0 > 0}. Define

Aj(X) := A(Z + rjX,∇uj), ∀X ∈ B4/5(0).

By the Lipschitz regularity of u and (G2) we have

|Aj | ≤ C(n,Λ)|∇uj |p−1 ≤ C.

Thus, we may extract a subsequence (that we denote by Aj) such that

Aj → A0 weak- � in L∞(B4/5).

Furthermore, uj converges in the C1,α topology to u0 in B (see Section 2, Theo-
rem 2.4 and Remark 5.5 below). Hence,

Aj → Aq(Z,∇u0) weak- � in L∞(B).

Also we have

(5.13)
∣∣∣ ∫

B

rmj mf(Z + rjX)χ{uj>0}u
m−1
j dX

∣∣∣ ≤ rmj C Ln(B) → 0.

Hence, for B ⊂ {u0 > 0}, indeed (5.12) does hold. Now suppose B ⊂ {u0 = 0}.
Clearly, [

div(Aq(Z,∇u0))
]
(B) = 0.

On the other hand, if Bk is a sequence of balls such that Bk ↗ B then for
some jk ∈ N we have

(5.14) uj ≡ 0 in Bk for all j > jk.

Indeed, let B̃ ⊂ B. If there were a subsequence ujk satisfying ujk �= 0 in B̃ then, by

the strong nondegeneracy property (Theorem 4.2), there must exist points Pkj ∈ B̃
such that

ujk(Pkj ) ≥ c > 0.

Passing to another subsequence we can assume Pkj → P ∈ B̃. Since ujk → u0

uniformly we obtain u0(P ) > 0 which is a contradiction.
Thus, from (5.14) we obtain

(5.15) Λj(B) → 0.
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Therefore, (5.12) holds for any B ⊂ {u0 = 0}, and combining (5.11) and (5.12)
we find

div(A(Z,∇u0)) = 0 in B4/5(0).

However, as before, this contradicts the nondegeneracy of u0 established in Theo-
rem 4.2. �

Theorem 5.4 (Representation). Let u be a minimizer of (1.1). Then

div(A(X,∇u)) −mf(X)um−1 χ{u>0} = Q̃Hn−1�∂red{u > 0},

in the sense of measures, for some Borel function Q̃. Moreover, Q̃ is bounded away
from zero and infinity. That is for a universal constant C > 0 there holds

C−1 ≤ Q̃ ≤ C.

In particular, the free boundary ∂{u > 0} is a set of finite perimeter.

Proof. This follows from Theorem 5.3 and standard arguments (see Theorem 4.5
in [1]). �

Remark 5.5. Let u be a minimizer of (1.1) in Ω and let Brj (Xj) ⊂ Ω be a
sequence of balls with rj → 0, Xj → X0 ∈ Ω, and u(Xj) = 0. Consider the
blow-up sequence

uj(X) =
1

rj
u(Xj + rjX).

Since the uj are uniformly Lipschitz continuous, for a subsequence,

uj → u0 in Cα
loc(R

n) for every 0 < α < 1,(5.16)

∇uj → ∇u0 weak- � in L∞
loc(R

n),(5.17)

∂{uj > 0} → ∂{u0 > 0} locally in the Hausdorff distance,(5.18)

χ{uj>0} → χ{u0>0} in L1
loc(R

n).(5.19)

Moreover, by the classical truncation argument (see for instance, [2]),

(5.20) ∇uj → ∇u0 a.e.

Also, by Theorem 3.8, assertions (5.16)–(5.20) and C1,α convergence within the
positive set, we obtain

−
∫
{u0>0}

〈A(X0,∇u0),∇ζ〉 dX = − lim
j→∞

∫
{u0>0}

〈A(Xj + rjX,∇uj),∇ζ〉 dX

= lim
j→∞

rmj

∫
{uj>0}

mf(Xj + rjX)um−1
j ζ dX = 0,
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for all ζ ∈ C∞
0 ({u0 > 0}). In fact,

∣∣∣ rmj
∫
{uj>0}

mf(Xj + rjX)um
j ζ dX

∣∣∣ ≤ rmj C,

for all ζ ∈ C∞
0 ({u0 > 0}). Hence,

div(A(X0,∇u0)) = 0 in {u0 > 0}.

We are in position to obtain the blown-up minimization problem.

Lemma 5.6. If u(Xj) = 0, Xj → X0 ∈ Ω, then any blow-up limit u0 with respect
to Brj (Xj) is minimizer of the functional

(5.21) F0(v) :=

∫
B1(0)

G(X0,∇v) +Q(X0)χ{v>0} dX.

Proof. Set D = B1(0). Take any v, v − u0 ∈ H1
0 (D), η ∈ C∞

0 (D), 0 ≤ η ≤ 1.
Consider

vj := v + (1 − η)(uj − u0) and Qj(X) := Q(Xj + rjX), ∀X ∈ D.

We will write

Fj(v) :=

∫
B1(0)

G(Xj + rjX,∇v) + rmj f(Xj + rjX)(v+)m +Qj(X)χ{v>0} dX.

Since vj = uj in ∂D and uj is a local minimum we have, for large j,

(5.22) Fj(uj) ≤ Fj(vj).

From the fact that |∇uj | ≤ C and ∇uj → ∇u0 a.e., we conclude∫
D

G(Xj + rjX,∇uj) dX →
∫
D

G(X0,∇u0) dX.

Similarly ∫
D

G(Xj + rjX,∇vj) dX →
∫
D

G(X0,∇v0) dX.

Moreover, we have

∣∣∣ ∫
D

rmj f(Xj + rjX)
(
um
j − (v+j )

m
)
dX

∣∣∣ ≤ rmj C

∫
D

(|uj |p∗
+ |vj |p∗)

dX,

where, as before, p∗ := np/(n− p). Since there exists a universal constant C > 0
such that ‖uj‖L∞ ≤ C (and Ω is bounded) we have

‖uj‖Lp∗ ≤ C.
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By definition of vj

‖vj‖Lp∗ ≤ C ‖v‖Lp∗ + C
(‖uj‖Lp∗ + ‖u0‖Lp∗

)
.

Therefore,

∣∣∣ ∫
D

rmj f(Xj + rjX)um
j − rmj f(Xj + rjX)(v+j )

m dX
∣∣∣ → 0.

Also, we have

∣∣∣ ∫
D

(Qj −Q(X0))(χ{uj>0} − χ{vj>0}) dX
∣∣∣ ≤ 2

∫
D

|Qj −Q(X0)| dX,

and using the continuity of the function Q we obtain∫
D

(Qj −Q(X0))(χ{uj>0} − χ{vj>0}) dX → 0.

Finally,
χ{vj>0} ≤ χ{v>0} + χ{η<1}

and (see (5.19)) ∫
D

χ{uj>0} dX →
∫
D

χ{u0>0} dX.

Then it follows from (5.22) that∫
D

G(X0,∇u0) +Q(X0)χ{u0>0} dX ≤
∫
D

G(X0,∇v)

+ (χ{v>0} + χ{η<1})Q(X0) dX.

Taking η → 1 finishes up the proof. �

As a consequence, we can classify blow-ups at points in the reduced free bound-
ary.

Theorem 5.7. For almost every X0 ∈ ∂red{u > 0} we have

u(X) = α(X0)〈X −X0, ν(X0)〉+ + o(|X −X0|),

for any X ∈ {u > 0} near X0, where ν(X0) is the measure theoretic normal vector
to ∂red{u > 0} at X0 and

(5.23) α(X0) =
( Q̃(X0)

〈A(X0, ν(X0)), ν(X0)〉
)1/(p−1)

.

Proof. From 4.5.6 (2), 2.9.8, and 2.9.9 of [9], applied to Hn−1 on ∂{u > 0} and the
Vitali relation

{(X,Br(X)) : X ∈ ∂{u > 0}, Br(X) � Ω},
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for almost every X0 ∈ ∂red{u > 0} we have the condition

(5.24) θ�n−1(Hn−1�∂{u > 0}, X0) ≤ 1

and

(5.25)

∫
Br(X0)∩∂{u>0}

|Q̃− Q̃(X0)| dHn−1 = o(rn−1)

for r → 0, where the symbol in (5.25) represents the average. Recalling the notation
used in Remark 5.5 we have, from standard geometric measure theory arguments
together with nondegeneracy and assertions (5.16)–(5.20),

u0 ≡ 0 in {X ∈ R
n : 〈X, ν(X0)〉 < 0}

and {u0 > 0} = {X ∈ R
n : 〈X, ν(X0)〉 > 0}.

Also we have
div(A(X0,∇u0)) = 0 in {u0 > 0}.

Since ∂{u0 > 0} is the smooth surface {X ∈ R
n : 〈X, ν(X0)〉 = 0} we obtain

∂{u0 > 0} = ∂red{u0 > 0}.
By Theorem 5.4 we find

−
∫
Ω′
〈A(X0 + rjX,∇uj),∇ζ〉 dX = rmj

∫
Ω′

mf(X0 + rjX)um−1
j χ{uj>0} ζ dX

+

∫
∂{uj>0}∩Ω′

Q̃(X0 + rjX) ζ dHn−1,

for ζ ∈ C∞
0 (Ω′), where Ω′ � {〈X, ν(X0)〉 < 0}. Now let η ∈ C∞

0 (B′
r) be a

nonnegative function, whereB′
r is a ball inR

n−1 := {〈X, ν(X0)〉 < 0}. By standard
arguments (see [1], Theorem 4.8) we have∫

∂{uj>0}
ζ dHn−1 →

∫
Rn−1

η dHn−1.

Furthermore, for some universal constant C > 0 we have

|rmj
∫
Ω′

mf(X0 + rjX)um−1
j χ{uj>0} ζ dX | ≤ rm C,

where we use that the sequence uj is universally bounded. Thus, using (5.25) we
obtain

div(A(X0,∇u0)) = Q̃(X0)Hn−1�{X ∈ R
n : 〈X, ν(X0)〉 = 0}.

Moreover, since ∂red{u0 > 0} is C1 we have

(5.26) 〈A(X0, ν(X0)), ν(X0)〉 = Q̃(X0),
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for X0 at ∂red{u0 > 0}. However,

ν(X0) =
∇u(X0)

|∇u(X0)| ,

and using (G3) and the identity (5.26) we obtain

α(X0) =
( Q̃(X0)

〈A(X0, ν(X0)), ν(X0)〉
)1/(p−1)

, ∀X ∈ {〈X, ν(X0)〉 = 0}.

Hence, we conclude

(5.27) ∇u0(X) · ν(X0) = α(X0), ∀X ∈ {〈X, ν(X0)〉 = 0}.
Define the function v0 by

(5.28) v0(X) =

{
u0(X), if X ∈ {〈X, ν(X0)〉 < 0}

−u0(X
∗), if X ∈ {〈X, ν(X0)〉 ≥ 0},

where X∗ is the reflection of X with respect to the hyperplane {〈X, ν(X0)〉 = 0}.
Using standard arguments we verify that v0 is Lipschitz continuous in R

n (u0 is
Lipschitz continuous by Theorem 4.1) and

div(A(X0,∇v0)) = 0 in R
n.

By the C1,β regularity of v0, we can apply the blow-up argument from [12] to
conclude that v0 is an affine function. Then, using (5.27) we find

u0(X) = α(X0)〈X −X0, ν(X0)〉+

and the result is proved. �

Remark 5.8. If
A(X, ξ) = |ξ|p−2 ξ,

that is, in the case of the p-Laplacian, we conclude from Lemma 5.6 that the
blow-up u0 is a minimizer of the functional∫

B1(0)

|∇v|p +Q(X0)χ{v>0} dX.

Through a standard Hadamard domain variation argument (see [1], Theorems 2.5
and 5.5 and [6], Theorems 2.1 and 5.6), we obtain the free boundary condition

α(X0) =
(Q(X0)

p− 1

)1/p

,

for X0 ∈ ∂red{u > 0}.
Using (5.23) we have the relation

Q̃(X0) =
(Q(X0)

p− 1

)(p−1)/p

.

between Q̃ and Q, for almost every X0 ∈ ∂red{u > 0}. Taking p = 2 we find the
relation that appears in [1].
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6. Jet flow problems and smoothness of the free boundary

In this section we address the question of the smoothness of the free boundary.
Because our primary motivations come from the theory of heterogeneous jet

flows, in this section we shall only treat the nondegenerate problem, i.e., we will
work under the assumptions

(6.1) F (X, ξ) =
1

2
A(X)|ξ|2 + f(X)(u+)m +Qχ{u>0},

for X ∈ Ω and ξ ∈ R
n, 1 ≤ m < 2, f ∈ C(Ω) and Q ∈ C0,β , 0 < κ < Q < κ−1.

The matrix A is assumed to be Lipschitz and positive definite.
The proof we will present for smoothness of the reduced free boundary is based

on a flatness improvement coming from Harnack type estimates and it follows
closely the recent work of [7]. There are a few subtle differences though. For
instance the equation we consider is naturally in divergence form, thus it has drift
terms in non-divergence form. Also the free boundary condition obtained in (5.23)
is a bit more involved than the one treated in [7]. For sake of completeness and
the readers’ convenience, we shall carry out all the details.

We shall use Caffarelli’s viscosity solution setting to address the free boundary
regularity theory. We recall some terminologies. Let u, φ∈C(Ω). If u(X0)= φ(X0)
and there exists a neighborhood V of X0 such that

(6.2) u(X) ≥ φ(X) (respectively u(X) ≤ φ(X)) in V,

we say that φ touches u from below (respectively above) at X0 ∈ Ω. Moreover, if
the inequality in (6.2) is strict in V \ {X0}, we say that φ touches u strictly from
below (resp. above) at X0 ∈ Ω.

The next proposition is standard in Caffarelli’s theory ([3], [4], [5]), so we omit
its proof.

Proposition 6.1. Assume (6.1). A minimizer u of (1.1) is a viscosity solution of

(6.3)

{
div(A(X)∇u) = g(X) in Ω+(u) := {u > 0},
〈A∇u,∇u〉 = Q on F(u) := ∂{u > 0} ∩ Ω,

where g ∈ L∞(Ω) ∩ C(Ω). The free boundary condition above is understood in the
Caffarelli viscosity sense: if φ ∈ C2(Ω) and φ+ touches u from below (respectively
from above) at X0 ∈ F(u) with |∇φ|(X0) �= 0 then

(6.4) 〈A(X0)∇φ(X0),∇φ(X0)〉 ≤ Q(X0) (resp. ≥ Q(X0)).

The free boundary regularity result we will prove is this section is the following:

Theorem 6.2. Let u be a viscosity solution to (6.3) in the ball B1(0). Suppose
that 0 ∈ F(u), Q(0) = 1, and aij(0) = δij . There exists a universal constant ε̃ > 0
such that, if the graph of u is ε̃-flat in B1(0), i.e.

(6.5) (Xn − ε̃)+ ≤ u(X) ≤ (Xn + ε̃)+ for X ∈ B1(0),
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and

(6.6) [aij ]C0,1(B1(0)) ≤ ε̃, ‖g‖L∞(B1(0)) ≤ ε̃, [Q]C0,β(B1(0)) ≤ ε̃,

then F (u) is C1,γ in B1/2(0).

Corollary 6.3. Assume (6.1). The reduced free boundary of a minimizer u of (1.1)
is locally a C1,γ surface. In particular,

〈A(Z)∇u(Z),∇u(Z)〉 = Q(Z),

in the classical sense for Hn−1 almost all free boundary points Z ∈ ∂{u > 0}.
Thus, taking g(X) = mf(X)um−1 we obtain the free boundary regularity

theory for our problem. The approach is based fundamentally on comparison
criterion.

Definition 6.4. Let v ∈ C2(Ω). We say v is a strict (comparison) subsolution
(respectively supersolution) to (6.3) in Ω, if the following conditions are satisfied:

1. div(A(X)∇v) > g(X) (resp. <) in Ω+(v);

2. If X0 ∈ F(v) then

〈A∇φ,∇φ〉(X0) > Q(X0) (resp. 0 < 〈A∇φ,∇φ〉(X0) < Q(X0)).

The next lemma provides a basic comparison principle for solutions to the free
boundary problem (6.3).

Lemma 6.5. Let u be a viscosity solution to (6.3) in Ω. If v is a strict subso-
lution to (6.3) in Ω, such that u ≥ v+ in Ω, then, in Ω+(v) ∪ F(v), the strict
inequality, u > v+ holds.

Lemma 6.5 yields the crucial tool for the proof of Theorem 6.2. More precisely,
using the comparison principle established in Lemma 6.5, we prove a Harnack
inequality for solution u. For 0 < ε < 1 to be chosen later, we can assume, by
normalization and dilating variables, the following conditions:

‖aij − δij‖L∞(Ω) ≤ ε2,(6.7)

‖g(X)‖L∞(Ω) ≤ ε2,(6.8)

‖∇aij‖L∞(Ω) ≤ ε2,(6.9)

‖Q− 1‖L∞(Ω) ≤ ε2.(6.10)

We need the following lemma.

Lemma 6.6. Let u be a viscosity solution to (6.3) in Ω, satisfying (6.7)–(6.10).
There exists a universal constant ε̃ > 0 such that if 0 < ε ≤ ε̃ and u satisfies

p+(X) ≤ u(X) ≤ (p(X) + σ)+, |σ| < 1

20
in B1(0), p(X) = Xn + σ,

then if at X0 = 1
10en

(6.11) u(X0) ≥
(
p(X0) +

ε

2

)+

,
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then

(6.12) u ≥ (p+ cε)+ in B1/2(0),

for some 0 < c < 1. Analogously, if

(6.13) u(X0) ≤
(
p(X0) +

ε

2

)+

,

then

(6.14) u ≤ (p+ (1 − c)ε)+ in B1/2(0).

Proof. The proof is as in [7]. We will only check the first claim, as the proof of the
second is analogous. Let w : D → R be defined by

(6.15) w(X) = c
(|X −X0|−γ − (

4
5

)−γ)
,

where D := B4/5(X0) \B1/40(X0). We choose c > 0 such that

(6.16) w =

{
0, on ∂B4/5(X0),

1, on ∂B1/40(X0).

We compute directly

∂iw = −γ(Xi −X i
0) |X −X0|−γ−2

and

∂ijw = γ|X −X0|−γ−2
{
(γ + 2)(Xi −X i

0)(Xj −Xj
0)|X −X0|−2 − δij

}
.

If we write bi :=
∑n

j=1 ∂aij/∂xi, from ‖aij−δij‖L∞(Ω) ≤ ε2 and ‖bi‖L∞(Ω) ≤ C0ε
2,

we obtain, in D, by choosing γ > 0 large,

div(A(X)∇v) = γ |X −X0|−γ−2
{
(γ + 2)|X −X0|−2

n∑
i,j=1

aij(X)(Xi −X i
0)

· (Xj −Xj
0)−

n∑
i,j=1

aij(X)δij −
n∑

i=1

bi(X)(Xi −X i
0)
}

≥ γ |X −X0|−γ−2{(γ + 2)− C(n)} ≥ δ0,(6.17)

where δ0 > 0 is a universal constant. From (6.11) we have u ≥ p in B1(0). Thus,

(6.18) B1/20(X0) ⊂ B+
1 (u).

Moreover,

div(A(X)∇(u − p)) = div(A(X)∇u)− bn = g(X)− bn, in B1/20(X0),

with
‖g(X)− bn‖L∞(B1/20(X0)) ≤ Cε2.
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Hence, by the Harnack inequality, we obtain

u(X)− p(X) ≥ u(X0)− p(X0)− C ‖g(X)− bn‖L∞(B1/20(X0))

≥ u(X0)− p(X0)− Cε2,

for all X ∈ B1/40(X0). Using (6.11) for ε sufficiently small,

(6.19) u(X)− p(X) ≥ c ε− C ε2 ≥ c0 ε, in B1/40(X0).

Define

(6.20) v(X) = p(X) + c0 ε (w(X)− 1), X ∈ B4/5(X0),

and for t ≥ 0,

(6.21) vt(X) = v(X) + t, X ∈ B4/5(X0).

By the maximum principle (see (6.16) and (6.17)) we have w ≤ 1 in D. Then,
extending w to 1 in B1/40(X0) we find

(6.22) v0(X) = v(X) ≤ p(X) ≤ u(X), X ∈ B4/5(X0).

Consider
t0 = sup

{
t ≥ 0 : vt ≤ u in B4/5(X0)

}
.

Assume, for the moment, that we have already verified t0 ≥ c0 ε. From the defini-
tion of v we have

u(X) ≥ v(X) + t0 ≥ p(X) + c0 εw(X), ∀X ∈ B4/5(X0).

Notice that B1/2(0) ⊂ B3/5(X0) and

w(X) ≥
{

(35 )
−γ − (45 )

−γ , in B3/5(X0) \B1/40(X0),

1, on B1/40(X0).

Hence, we conclude (ε small) that

u(X)− p(X) ≥ c ε, in B1/2(0),

and the result is proved.
Now we prove that indeed t0 ≥ c0 ε. For this, we suppose for the sake of

contradiction, that t0 < c0 ε. Then there would exist Y0 ∈ B4/5(X0) such that

vt(Y0) = u(Y0).

In the sequel, we show that Y0 ∈ B1/40(X0). From definition of vt and by the fact
that w has zero boundary values on ∂B4/5(X0) we have

vt = p− c0 ε+ t0 < u in ∂B4/5(X0),

where we have used that u ≥ p and t0 < c0 ε. Moreover,

div(A(X)∇vt) ≥ (c0 δ0 − ε) ε > ε2 in D
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and

(6.23) |∇vt0 | ≥ | ∂nv| = |1 + c0 ε ∂nw|, in D.

By the radial symmetry of w, we have

(6.24) ∂nw(X) = |∇w(X)|〈νX , en〉, X ∈ D,

where νX is the unit vector in the direction of X −X0. From (6.17) we have

|∇w|2 = γ2 |X −X0|−2(γ+2)|X −X0|2 = γ2 |X −X0|−2(γ+1) ≥ c > 0, in D.

Also we have 〈νX , en〉 ≥ c in {vt0 ≤ 0} ∩ D (for ε small enough). In fact, if ε is
small enough

{vt0 ≤ 0} ∩D ⊂ {p ≤ c0 ε} = {Xn ≤ c0 ε− σ} ⊂ {Xn < 1/20}.
We therefore conclude that

〈νX , en〉 = 1

|X0 −X | 〈X −X0, en〉 ≥ 5

4
〈X −X0, en〉

=
5

4

(
−Xn +

1

20
− 1

20
+

1

10

)
>

1

16
, in {vt0 ≤ 0} ∩D.

Moreover, from ‖aij − δij‖ ≤ ε2 we have

(6.25) 〈A(X)ξ, ξ〉 ≥ |ξ|2 (1 − ε2), ∀X ∈ Ω, ∀ξ ∈ R
n.

Therefore, from (6.23), (6.24) and (6.25) we obtain

〈A∇vt0 ,∇vt0〉 ≥ |∇vt0 |2 − Cε2 ≥ 1 + c1 ε+ ε(c1 − Cε) + c21 ε
2 > 1 + ε2 > Q,

in {vt0 ≤ 0} ∩D. In particular, we have

〈A∇vt0 ,∇vt0〉 > Q in D ∩ F(vt0).

Thus, vt0 is a strict subsolution in D and by Lemma 6.5 (u is a viscosity solution of
problem (6.3) in B1(0)) we conclude that Y0 ∈ B1/40(X0). This is a contradiction.
In fact, we would get

u(Y0) = vt0(Y0) = v(Y0) + t0 ≤ p(Y0) + t0 < p(Y0) + c0 ε.

which leads to a contradiction with (6.19). This concludes the proof of the lemma.
�

We can now establish the main tool needed for the proof of Theorem 6.2.

Theorem 6.7. Let u be a viscosity solution to (6.3) in Ω satisfying (6.7)–(6.10).
There exists a universal constant ε̃ > 0 such that if u satisfies

(6.26) (Xn + a0)
+ ≤ u(X) ≤ (Xn + d0)

+ in Br(X0) ⊂ Ω,

at some X0 ∈ Ω+(u) ∪ F (u), with

(6.27) d0 − a0 ≤ ε r, ε ≤ ε̃,
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then

(6.28) (Xn + a1)
+ ≤ u(X) ≤ (Xn + d1)

+ in Br/40(X0),

with

(6.29) a0 ≤ a1 ≤ d1 ≤ d0, d1 − a1 ≤ (1 − c) ε r,

and 0 < c < 1 universal.

Proof. With no loss of generality, we assume X0 = 0 and r = 1. We analyze two
distinct cases.

1) |a0| < 1/20: We put p(X) = Xn + a0 and by (6.26)

(6.30) p+(X) ≤ u(X) ≤ (p(X) + a0)
+ (d0 ≤ a0 + ε).

Thus, we can apply Lemma 6.6 to obtain the result.

2) |a0| ≥ 1/20: Assume that a0 < −1/20. If we take ε < 1/20, it follows that
(p+ ε)+ = 0. Thus 0 belongs to the interior of the zero phase of u, which yields a
contradiction.

If a0 > 1/20, then B1/20(0) ⊂ B+
1 (u) and the result follows from the Harnack

inequality. In fact, if p = xn + d0

div(A(X)∇(p− u)) = bn − g(X),

with ‖bn − g(X)‖L∞(B1/20(0)) ≤ C ε2. Hence, since (p− u)(0) = a0 we have

p(X)− u(X) ≥ c0d0 − Cε2, (0 < c1 < 1)

which implies

u(X) ≤ p(X)− d0c0 + Cε2 = Xn + d0(1− c0) + Cε2, ∀X ∈ B1/40(X0).

Let c1 = d0 − a0. Then,

u(X) ≤ Xn + (c1 + a0)(1 − c0) + Cε2 = Xn + a0 + c1(1− c0)− a0c0 + Cε2

≤ Xn + a0 + c1(1− c0)− c0
20

+ Cε2 ≤ Xn + a0 + c1(1− c0),

if ε is small enough. Hence, if we put a1 := a0 and d1 = a0 + c1(1− c0) we obtain
the result. �

From the Harnack inequality, Theorem 6.7, we obtain precisely as in [7] the
following key estimate for flatness improvement.

Corollary 6.8. Let u be a viscosity solution to (6.3) in Ω satisfying (6.7)–(6.10).
If u satisfies (6.26) then in B1(X0) the function ũε := (u−Xn)/ε has a Hölder
modulus of continuity at X0 outside of a ball of radius ε/ε̃, i.e., for all X ∈
(Ω+(u) ∪ F (u)) ∩B1(X0) with |X −X0| ≥ ε/ε̃,

|ũε(X)− ũε(X0)| ≤ C |X −X0|γ .
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We are ready to establish improvement of flatness.

Theorem 6.9 (Flatness improvement). Let u be a viscosity solution to (6.3) in Ω
satisfying (6.7)–(6.10). Assume that u satisfies

(6.31) (Xn − ε)+ ≤ u ≤ (Xn + ε)+ for X ∈ B1(0),

with 0 ∈ F(u). If 0 < r ≤ r0 for a universal constant r0 and 0 < ε ≤ ε0(r), then

(6.32)
(
X · ν − r

2
ε
)+

≤ u ≤
(
X · ν +

r

2
ε
)+

for X ∈ Br(0),

with |ν| = 1, and |ν − en| ≤ C ε2 for a universal constant C.

Proof. Again the proof follows the lines of [7]. Fix 0 < r ≤ r0 with r0 a constant
to be chosen. Aiming at contradiction, suppose that there exist a sequence εj → 0
and a sequence uj of solutions to (6.3) in B1(0) with right-hand side gj and free
boundary condition Qj such that

(6.33) (Xn − εj)
+ ≤ uj ≤ (Xn − εj)

+ for X ∈ B1(0), 0 ∈ F(uj),

but uj does not satisfy the conclusion (6.32). Define

ũj(X) =
uj(X)−Xn

εj
, X ∈ Ω1(uj),

where Ωρ := (B+
1 (u) ∪ F (u)) ∩ Bρ(0), for 0 < ρ < 1. Then (by Corollary 5.8)

the graphs of the ũj over Ω 1
2
(uj) converge (possibly passing to a subsequence)

in the Hausdorff distance to the graph of a Hölder continuous function ũ over
B1/2(0) ∩ {Xn ≥ 0}. We claim that ũ is a solution of the problem{

Δũ = 0 in B1/2(0) ∩ {Xn > 0},
∂nũ = 0 on B1/2(0) ∩ {Xn = 0},

in the viscosity sense (see Definition 2.5 and the subsequent remark in [7]). Given a
quadratic polynomial P (X) touching ũ at X0 ∈ B1/2(0) ∩ {Xn ≥ 0} strictly from
below we need to prove that

(i) if X0 ∈ B1/2(0) ∩ {Xn > 0} then ΔP ≤ 0;

(ii) if X0 ∈ B1/2(0) ∩ {Xn = 0} then ∂nP (X0) ≤ 0.

As in [7], there exist points Xj ∈ Ω1/2(uj), Xj → X0, and constants cj → 0
such that

uj(Xj) = P̃ (Xj) and uj(X) ≥ P̃ (X) in a neighborhood of Xj

where
P̃ (X) = εj(P (X) + cj) +Xn.

We have two possibilities:
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(a) If X0 ∈ B1/2(0)∩ {Xn > 0} then, since P touches uj from below at Xj , we
obtain

C1ε
2
j ≥ gj(Xj) ≥

n∑
i,l=1

ajil(X)∂ilP̃ +

n∑
i=1

bji (Xj)∂iP̃

= εj

n∑
i,l=1

ajil(Xj)∂ilP + εj

n∑
i=1

bji (Xj)∂iP + bjn(Xj),

where ‖bji‖L∞ ≤ C0 ε
2
j and ‖∂iP‖L∞ ≤ C. Therefore,

n∑
i,l=1

ajil(Xj) ∂ilP ≤ C εj ,

Thus, we have

ΔP =

n∑
i,l=1

(δil − ajil(Xk)) ∂ilP +

n∑
i,l=1

ajil(Xk) ∂ilP ≤ C εj .

Hence, taking j → ∞ we obtain ΔP ≤ 0.

(b) If X0 ∈ B1/2(0) ∩ {Xn = 0} we can assume (see [7]) that

(6.34) ΔP > 0.

Notice that for j sufficiently large we have Xj ∈ F (uj). In fact, aiming at
a contradiction, suppose that there exists a subsequence Xjn ∈ B+

1 (ujn) such
that Xjn → X0. Then, arguing as in (a), we obtain

ΔP ≤ C εj,

which contradicts (6.34) as jn → ∞. Therefore, there exists j0 ∈ N such that
Xj ∈ F (uj) for j ≥ j0. Moreover,

|∇P̃ | ≥ 1− εj |∇P | > 0,

for j sufficiently large (we can assume that j ≥ j0). Since that P̃
+ touches uj from

below we have

〈Aj(Xj)∇P̃ (Xj),∇P̃ (Xj)〉 ≤ Qj(Xj) ≤ (1 + ε2j).

Moreover,

〈Aj(Xj)∇P̃ (Xj),∇P̃ (Xj)〉 ≥ |∇P̃ (Xj)|2 − C ε2j

= ε2j |∇P (Xj)|2 + 1 + 2 εj ∂nP (Xj)− C ε2j ,

where we have used |∇P̃ |2 ≤ C. In conclusion, we obtain

(6.35) ε2j |∇P (Xj)|2 + 1 + 2 εj ∂nP (Xj)− C ε2j ≤ 1 + ε2j .

Hence, dividing (6.35) by εj and taking j → ∞ we obtain ∂nP (X0) ≤ 0.
The choice of r0 and the conclusion of the theorem follows from the regularity

of ũ. �
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We can finally conclude the proof of Theorem 6.2.

Proof of Theorem 6.2. Let

uj(X) =
u(ρjX)

ρj
, X ∈ B1(0),

be the rescaling of u with ρj = r̃j for a fixed r̃ such that

r̃β ≤ 1

4
and r̃ ≤ r0 ,

where r0 is the universal constant as in Theorem 6.9. Note that uj is solution
of (6.3) with

ajil(X) := ajil(ρjX),

gj(X) := g(ρjX),

Qj(X) := Q(ρjX).

Moreover, if ε̃ := ε20(r̃) and εj := 2−j ε0(r̃) we obtain

|ajil(X)− δil| = |ail(ρjX)− ail(0)| ≤ [ail]C0,1 ρj ≤ ε̃ r̃j ≤ ε2j ,

‖bji‖L∞ ≤ [aij ]C0,1ρj ≤ C0 ε̃ r̃
j ≤ ε2j ,

‖gj‖L∞ ≤ ‖gj‖L∞ρj ≤ ε̃ r̃j ≤ ε2j ,

|Qj(X)− 1| = |Q(ρjX)−Q(0)| ≤ [Q]C0,β ρβj ≤ ε̃ r̃jβ ≤ ε2j .

The proof now follows as in [7]. �
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