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Blaschke-type conditions on unbounded domains,

generalized convexity, and applications in
perturbation theory

Sergey Favorov and Leonid Golinskii

Abstract. We introduce a new geometric characteristic of compact sets
in the plane called r-convexity, which fits nicely into the concept of gener-
alized convexity and extends standard convexity in an essential way. We
obtain a Blaschke-type condition for the Riesz measures of certain sub-
harmonic functions on unbounded domains with r-convex complements,
having growth governed by the distance to the boundary. The result
is applied to the study of the convergence of the discrete spectrum for
the Schatten–von Neumann perturbations of bounded linear operators in
Hilbert space.

1. Introduction

In 1915 Blaschke [3] proved his celebrated result concerning zero sets of bounded
analytic functions in the unit disk, which is a gem of function theory. A vast
literature with various refinements and far reaching extensions of the Blaschke
condition has appeared since; see [9], [18], [22], [35], and [39], and references therein.

We focus on a series of recent papers ([4], [12], [13], [17]), where the authors
study the zero sets of functions analytic in the unit disk, which grow in the direction
of a prescribed subset of the unit circle. The result in [12] for analytic functions is
as follows.

Theorem A. Let E ⊂ ∂D be a closed subset of the unit circle, and let f be an
analytic function in the unit disk D with zero set Zf = {zn} (each zero zn enters
with its multiplicity) so that |f(0)| = 1, and

log |f(z)| ≤ Kf

distq(z, E)
, z ∈ D, q > 0,
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where dist(E1, E2) is the Euclidian distance between closed sets E1 and E2. Then
for each ε > 0,∑

n

(1− |zn|) distp(zn, E) ≤ C(q, E, ε)Kf , p = max(q + κ(E)− 1 + ε, 0),

where κ(E) is the upper Minkowski dimension of E.

This result can be used in perturbation theory of bounded linear operators,
although the situation there is somewhat different. The point is that the basic
objects, the resolvent and the perturbation determinant, are analytic functions
on the resolvent set (including infinity) of the corresponding operator, which is
an unbounded open set of the plane with compact complement E, the spectrum
of the operator. To handle this problem, attempts were made to transfer the
problem to the unit disk, using conformal mapping [8], [21], or the uniformization
theorem [17], apply Theorem A and then return to the initial setting by means of
certain distortion results. Such attempts were by and large successful only in the
cases when E is a single segment [8], [21] or a finite union of disjoint segments [17],
and it is absolutely unclear whether it is possible to make such an argument work
for an arbitrary compact subset of the line.

The reasoning in [12] reveals the potential theoretic character of the problem,
so the natural setting is subharmonic functions v and their Riesz measures (gener-
alized Laplacians) μ = 1/(2π)Δv rather than analytic functions and their zero sets.
In the case v = log |f | with an analytic function f , the Riesz measure is a discrete
and integer-valued measure supported on Zf , and μ{z} equals the multiplicity of
the zero at z.

In this paper we develop a straightforward approach to the study of subhar-
monic functions on unbounded domains with growth governed by the distance to
the boundary. Let E be a compact set in the complex plane C, which does not
split the plane (its complement

Ω = C\E
in the extended plane C is a domain, that is, a connected open set C). Consider
a class of subharmonic functions on Ω subject to the growth and normalization
conditions

v(z) ≤ ψ(d(z)), v(∞) = 0,

where

d(z) := dist(z, E)

is the distance from z to E and ψ is a positive and monotone decreasing function
on R+ = [0,∞).

In the study of the Riesz measures of such functions one is faced with at least
two obstacles. First, the set E may be so small (polar or finite), that to apply
standard techniques from potential theory we must work in the “outer neighbor-
hood”

Ωt := {z ∈ C : d(z) > t}, t > 0, Ω = Ω0.
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Its boundary ∂Ωt = {z : d(z) = t} is nonpolar, since it splits the plane (see The-
orem 3.6.3 in [33]), so the Green’s function Gt for Ωt exists and is unique, when-
ever Ωt is a domain.

Second, it is not hard to construct a compact set E so that Ω is a domain,
but Ωt is not for t > 0. To cope with this problem we introduce a new geometric
characteristic, r-convexity, which fits nicely in the context of generalized convexity;
see [7], [37]. It can be defined in an arbitrary metric space. No linear structure is
needed. Precisely, it is well known that a closed set in C is convex if and only if
it is the intersection of all closed half-planes containing it. For an arbitrary closed
set E this intersection agrees with the convex hull of E. As usual, we denote by

B(x, r) = {z : |z − x| < r}, Bc(x, r) = {z : |z − x| ≥ r},
∂B(x, r) = {z : |z − x| = r}

an open disk of radius r centered at x, its complement, and its boundary, respec-
tively. By replacing half-planes with exteriors of open disks Bc, we come to the
following extension of the usual notion of convexity. We start with the obvious
inclusion

(1.1) E ⊂ convr(E) :=
⋂ {Bc(z, r) : E ⊂ Bc(z, r)}, r > 0.

Definition 1.1. We say that a closed set E is r-convex, if E = convr(E). The set
convr(E) is called the r-convex hull of E.

In other words, E is r-convex if

(1.2) C\E =
⋃ {B(z, r) : B(z, r) ⊂ C\E},

that is, the complement of E can be covered by open disks of a fixed radius r > 0
which belong to this complement. As for the usual notion of convexity, the inter-
section of any family of r-convex sets is r-convex. On the other hand, in contrast
to the usual convexity, a finite union of disjoint r-convex sets is r′-convex for some
r′ ≤ r. It is also clear that E1 ⊂ E2 implies convr(E1) ⊂ convr(E2).

It follows from (1.2), that each r-convex set is also r′-convex for any r′ < r. So
it is natural to consider the number r0(E) := sup{r : E = convr(E)}, called the
radius of convexity of E. For instance, each closed convex set E is r-convex with
r0(E) = ∞, and it is easy to see that the same holds for each closed subset of a line.
Indeed, any open subset of a line complementary to a closed set can be covered
with a disk of arbitrarily large radius. A complete characterization of compact
sets E with r0(E) = ∞ is given in Proposition 1. We show that r0(E) = R for
each compact subset of a circle ∂B(x,R), which contains more than two points
(see Proposition 2.2). The sets with “interior angles”, like {z ∈ D : π/4 ≤ argz ≤
7π/4}, are not r-convex for any r > 0.

It turns out (see Theorem 2.9) that if an r-convex compact set E does not
split the plane, then there exists t0 = t0(E) > 0 such that Ωt is a domain for all
0 ≤ t ≤ t0. So for such t the Green’s function Gt for Ωt exists and is unique. A key
potential theoretic result (Lemma 3.3) provides the lower bound

Gt(z,∞) ≥ C(E)min{1, d(z)}, z ∈ Ω3t, 0 < t ≤ t0,



4 S. Favorov and L. Golinskii

for the Green’s function with its pole at infinity. When E is a finite set, the
result can be improved to Gt(z,∞) ≥ C > 0, z ∈ Ωkt, with some k = k(E) > 1.
For various estimates of the Green’s functions and harmonic measures see, for
instance, [29], [14], and [6].

Here is the main result of the paper.

Theorem 1.2. Let E be an r-convex compact set with connected complement Ω =
C\E, and let v be a subharmonic function satisfying1

(1.3) v(z) ≤ Kv ψ(d(z)), v(∞) = 0.

Let ϕ be a positive, monotone increasing, and absolutely continuous function on R+,
such that ϕ1(t) := t−1ϕ(t) is monotone increasing in some neighborhood of the ori-
gin, ϕ1(0) = 0, and

(1.4)

∫
0

ϕ′
1(t)ψ

( t
3

)
dt+

∫ ∞
ϕ′(t)ψ

( t
3

)
dt <∞,

(the integrals converge near the origin and infinity, respectively). Then there holds
the Blaschke-type condition

(1.5)

∫
Ω

ϕ(d(ζ))μ(dζ) ≤ C(E,ψ, ϕ)Kv

for the Riesz measure μ of v. If v is bounded from above in Ω, v ≤ Kv, then

(1.6)

∫
Ω

min{1, d(ζ)}μ(dζ) ≤ C(E)Kv.

Actually, the second statement is just the Blaschke condition for subharmonic
functions on unbounded domains, which might be known to experts. Note that if E
is a polar set, then E is removable for the class of bounded from above subharmonic
functions. Hence in this case v is constant.

Remark 1.3. Let E be an r-convex compact set, and let Ω̃ be its outer domain,
that is, the unbounded component of Ω. Then the set Pc(E) = C\Ω̃, known as
the polynomial convex hull of E, is r-convex, and d(z) = dist(z,Pc(E)) for z ∈ Ω̃.

Given a subharmonic function v satisfying (1.3), its restriction ṽ to Ω̃ satisfies
the conditions of Theorem 1.2, so the Blaschke-type condition (1.5) holds with Ω

replaced with Ω̃.

If ψ(x) = x−q, q > 0, which is typical in the application of Theorem 1.2, we
can take

ϕ(x) = xq+1/2 (min{x, 1/x})ε+1/2 =

{
xq+1+ε, x ≤ 1,
xq−ε, x > 1,

0 < ε < q.

1We single out the constant Kv on purpose, in view of applications to perturbation theory in
Section 5.
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A special case of Theorem 1.2 with v = log |f |, f an analytic function, occurs
in perturbation theory in the study of discrete spectra for the Schatten–von Neu-
mann perturbations of certain bounded linear operators. Given a bounded linear
operator A0 on the Hilbert space H, and a compact operator B, the fundamental
theorem of Weyl states that the essential spectra of A0 and A = A0 + B agree,
so the discrete spectrum of A (the set of isolated eigenvalues of finite algebraic
multiplicity) can accumulate only at the joint essential spectrum. We want to
gather some information on the rate of accumulation under the stronger assump-
tion that B belongs to some Schatten–von Neumann operator ideal Sq, 1 ≤ q <∞,
that is, if ‖B‖qSq

:=
∑

n s
q
n(B) <∞, sn(B) are the singular values of B.

A number of results of the form

(1.7)
∑

λ∈σd(A)

dp(λ) ≤ C ‖B‖qSq
, d(λ) := dist(λ, σ(A0))

with some p = p(q) and σ(T ) (σd(T )) the spectrum (discrete spectrum) of an
operator T , are known. Kato in [23] proved (1.7) for self-adjoint A0 and p = q ≥ 1,
C = 1. Recently Hansmann in [20] obtained the same result for a self-adjoint A0

and an arbitrary B ∈ Sq with p = q > 1 and the explicit (in a sense) constant
C = Cq > 1.

For more general classes of operators (1.7) is known to be true for both A0

and B normal with p = q ≥ 2, C = 1, for all three A0, B and A normal with
p = q ≥ 1, C = 1, and for A0 normal, an arbitrary B ∈ Sq with p = q ≥ 1 and
C = 1, under the additional assumption that σ(A0) is a convex set, see [5], [2],
and [19], respectively.

We apply Theorem 1.2 for the study of the rate of accumulation of the eigen-
values for an arbitrary B ∈ Sq and operators A0 (in general, nonnormal) with
r-convex spectrum and growth of the resolvent norm of A0 governed by the dis-
tance to the spectrum (see the conditions (i)-(iii) in Section 5). The corresponding
bound is as follows: ∑

λ∈σd(A)

Φ (d(λ)) ≤ C ‖B‖qSq
,

where Φ is a continuous function on R+ and Φ(0) = 0. This result is illustrated
by several examples at the end of the paper.

Although our result on the rate of accumulation does not seem to be optimal,
it enables one to extend considerably the class of unperturbed operators with the
norm of resolvent growing fast near the spectrum (see, e.g., (5.3) and (5.4)).

We proceed as follows. Section 2 concerns the notion of r-convexity and its
properties. In Section 3 we obtain a lower bound for the Green’s function of
an unbounded domain with a compact r-convex compliment. Our main result
(Theorem 1.2) is proved in Section 4. Applications to perturbation theory are
given in Section 5.
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2. r-convexity

We begin with a characterization of r-convex compact sets E with r0(E) = ∞.

Proposition 2.1. A compact set E with r0(E) = ∞ is either a convex set or
a compact subset of a line. In particular, if an r-convex compact set E with
r0(E) = ∞ is connected, then it is convex.

Proof. Assume that E is not convex. Then there is a pair of points A,B ∈ E so
that the open interval (A,B) ⊂ Ω = C\E. With no loss of generality we set A = 1
and B = −1. Then the vertical interval [−iε, iε] is contained in Ω for sufficiently
small ε.

We call a disk B(z, r) ε-admissible if B(z, r) ⊂ Ω and iε ∈ B(z, r). By assump-
tion there are ε-admissible disks of arbitrarily large radius. It is easy to see that
the centers of such disks lie in the sector

Γ =
{
y >

|x|
ε

− 1− ε2

2ε

}
,

or, otherwise, the center is closer to A or B than to iε. So there are ε-admissible
disks B(z, r) with arbitrarily large y = Imz > 0.

Fix z0 = x0 + iy0 with y0 > 0. We show that z0 belongs to some ε-admissible
disk. Take 0 < ε < y0(1 + |x0|)−1 and consider an ε-admissible disk B(z, r) with
z = x+ iy ∈ Γ and sufficiently large y > 0. Then

|z − iε|2 − |z − z0|2 = 2y(y0 − ε) + 2xx0 + ε2 − x20 − y20 .

Since

εy +
1− ε2

2
> |x|, −2|x| > −2εy − (1 − ε2), (x, y) ∈ Γ,

we obtain

|z − iε|2 − |z − z0|2 ≥ 2y(y0 − ε)− 2|x||x0|+ ε2 − x20 − y20

> 2y(y0 − ε− ε|x0|) + ε2 − x20 − y20 > 0

for sufficiently large y due to the choice of ε. Hence z0 ∈ B(z, r) ⊂ Ω, as claimed.
The reasoning for y0 < 0 is exactly the same, so once E is not convex, then

E ⊂ R. The proof is complete. �

Given an r-convex set E, it is in general hard to compute its radius of convexity.
In some simple instances we can solve this problem.

Proposition 2.2. Let E = {a, b, c} be a 3-point set in a general position and let
R = R(abc) be the circumradius of the triangle Δ = Δ(abc). Then r0(E) = R(abc).
Let E be a compact subset of the circle ∂B(y, ρ) such that |E| ≥ 3. Then r0(E) = ρ.

Proof. We recall some facts from elementary planar geometry. A triangle Δ(abc)
is always viewed as an open planar set.
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1. Given a triangle Δ(abc) and r > R, there exists exactly one disk B(x, r) such
that two vertices (say, a and b) lie on its boundary, and c /∈ B(x, r). We call this
disk the r-disk and denote it by (ab)r. If r = R and Δ is acute, the R-disks (ab)R,
(ac)R, and (bc)R are by definition the reflections of the circumdisk BΔ through the
sides of Δ. If Δ is not acute, and c is the vertex at the largest angle, then (ac)R
and (bc)R are defined as above, and (ab)R = BΔ.

2. If Δ is acute, then the circles ∂(ab)R, ∂(ac)R, and ∂(bc)R meet at one point
in Δ, precisely at the orthocenter of Δ (see, e.g., Problem 5.9 in [31]). If Δ is
not acute, and c is the vertex at the largest angle, the circles ∂(ab)R, ∂(ac)R, and
∂(bc)R meet at c, and there is a circular triangle with one vertex at c, which lies
in Δ\((ac)R ∪ (bc)R

)
.

3. For r ≥ R let [ab]r be the segment of the disk (ab)r with vertices a and b,
which intersects Δ. Then for R ≤ r1 < r2 we have [ab]r2 ⊂ [ab]r1 , and the inclusion
is proper.

It is clear that r0(E) ≥ R, so we wish to show that the complement to E cannot
be covered with open disks of radius r > R which lie in this complement. Since Δ
is convex, we can restrict our attention to the points of Δ. Assume that each point
x ∈ Δ belongs to such disks. Then x belongs to one of the three segments from 3,
so Δ ⊂ ([ab]r ∪ [ac]r ∪ [bc]r). But by 2 and 3, the latter union can not cover all Δ.
This contradiction completes the proof of the first statement.

As far as the second statement goes, the set E is clearly r-convex for r ≤ ρ.
For r > ρ, as has just been proved, any 3-point set E1 = {a, b, c} ⊂ E is not r-
convex, and convr(E1) contains points from Δ(abc) ⊂ B(y, ρ). Since convr(E1) ⊂
convr(E) for E1 ⊂ E, E cannot be r-convex either, as claimed. �

Remark 2.3. Given a triangle Δ(abc) with circumradius R, let E ⊂ ∂Δ be a
compact set, which contains the vertices a, b, and c. It follows from the above
proof and monotonicity of the r-convex hull, that for r > R the intersection of
convr(E) and Δ contains a nonempty open set.

To extend the above result, we say that a compact set E has finite global
curvature if

(2.1) rg(E) := inf{R(abc)} > 0,

where the infimum is taken over all possible triangles with vertices in E. Clearly,
(2.1) holds for finite sets. When E is a Jordan rectifiable curve, the value r−1

g (E)
is known as the global curvature of E; see [34].

Proposition 2.4. Each compact set E with finite global curvature is r-convex for
some r > 0, and

r0(E) = rg(E).

Proof. Assume that for some r > rg(E) the set E is r-convex. Take a triangle
Δ(a0b0c0) with a0, b0, c0 ∈ E so that r > R(a0b0c0). As was shown in the proof of
Proposition 2.2, the r-convex hull of this triangle (and, moreover, the r-convex hull
of E itself) contains an open subset of Δ(a0b0c0). But it is easily seen from (2.1)
that E has empty interior. This contradiction shows that r0(E) ≤ rg(E).
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There remains only to show the converse inequality. We show that each point
z ∈ C\E can be covered with a disk B ⊂ C\E of radius at least rg(E). Define

(2.2) ρz := sup{r : z ∈ B(x, r) ⊂ C\E}.
A compactness argument shows that there is a disk B(xz , ρz) with

z ∈ B(xz , ρz) ⊂ C\E.
If ∂B(xz, ρz) ∩ E contains at least 3 different points, then ρz ≥ rg(E), as needed.
Assume that ∂B(xz , ρz)∩E = {ζ1}, or ∂B(xz, ρz)∩E = {ζ1, ζ2}, and the points ζ1
and ζ2 do not belong to a diameter of the circle. Then we can shift the disk in
an appropriate direction (perpendicular to the interval [ζ1, ζ2] towards the center
of the circle), and inflate it a bit to obtain a bigger disk with the same property,
which contradicts the maximality (2.2) of ρz.

Hence we can restrict attention to the case where xz = ρz , ∂B(ρz, ρz) ∩
E = {a, b}, a = 0 and b = 2ρz (after an affine transformation of the plane).
Let G = {z : 0 ≤ Rez ≤ 2ρz}.

Assume first that there is a sequence cn = xn + iyn ∈ G ∩ E with cn → a or
cn → b (with no loss of generality let the first relation hold). We want to show
that R(abcn) → ρz. To this end, we apply the explicit formula
(2.3)

R−2(z1z2z3) =
∑
π

1

(zπ(1) − zπ(2))(zπ(1) − zπ(3))
=

4Im2 (z1 − z2)(z2 − z3)

|(z1 − z2)(z1 − z3)(z2 − z3)|2

for the circumradius R(z1z2z3), given in [27], where the sum is taken over all
permutations of {1, 2, 3}. Since cn ∈ G\B(ρz , ρz), cn → 0, it is easy to see that
xn/yn → 0 as n→ ∞. It follows from (2.3) that

R−2(abcn) =
16ρ2z y

2
n

4ρ2z|2ρz − xn − iyn|2(x2n + y2n)
=

4y2n
((2ρz − xn)2 + y2n)(x

2
n + y2n)

=
4

((2ρz − xn)2 + y2n)(x
2
n/y

2
n + 1)

→ 1

ρ2z
,

as claimed. Hence ρz ≥ rg(E).
If there exists no such sequence cn, the disk can be shifted and inflated, as

above, which contradicts maximality of ρz. The proof is complete. �

Proposition 2.5. Each C2-smooth Jordan curve (arc) has finite global curvature.

Proof. Assume on the contrary, that rg(Γ) = 0 where Γ is a C2-smooth Jordan
curve or arc. Then there is a sequence of triangles Δ(anbncn) with an, bn, cn ∈ Γ
such that R(anbncn) → 0 as n → ∞. By taking subsequences, if needed, we have
an → a ∈ Γ, and so bn → a and cn → a as n→ ∞.

On the other hand, we will show that

(2.4) lim
n→∞R−1(anbncn) = τ(a) <∞,
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where τ(a) is the curvature of Γ at a, which will lead to contradiction. Let

Γ = {z(t) = x(t) + iy(t)}, (anbncn) = (z(t1)z(t2)z(t3)), a = z(0).

We apply (2.3) again to obtain

Im (z(t1)− z(t2))(z(t2)− z(t3)) = (y(t1)− y(t2))(x(t2)− x(t3))

− (x(t1)− x(t2))(y(t2)− y(t3)),

so

Im (z(t1)− z(t2))(z(t2)− z(t3))

(t1 − t2)(t2 − t3)(t1 − t3)
=

[t1t2]y [t2t3]x − [t1t2]x [t2t3]y
t1 − t3

= [t1t2t3]y [t2t3]x − [t1t2t3]x [t2t3]y,

where

[titk]f :=
f(ti)− f(tk)

ti − tk
, [t1t2t3]f :=

[t1t2]f − [t2t3]f
t1 − t3

are divided differences of the first and second order, respectively. The limit relation

lim
ti→0

[t1t2t3]f =
1

2
f ′′(0),

provided f is a C2-smooth function at the origin, is one of the basic properties of
divided differences (see, e.g., [28], page 12). Hence

lim
ti→0

Im (z(t1)− z(t2))(z(t2)− z(t3))

(t1 − t2)(t2 − t3)(t1 − t3)
=
y′′(0)x′(0)− x′′(0)y′(0)

2
,

and finally, by (2.3) and the definition of the curvature,

lim
ti→0

R−1(z(t1)z(t2)z(t3)) =
|y′′(0)x′(0)− x′′(0)y′(0)|

|z′(0)|3 .

This is (2.4), as claimed. �

Remark 2.6. Proposition 2.5 is a particular case of the much more sophisticated
Theorem 1 (iii) in [34], which claims that Γ has finite global curvature if and only
if its arc length parametrization τ(s) is C1, and τ ′ satisfies the Lipschitz condition
with Lipschitz constant r−1

g (E).

Yet another example arises in the theory of elliptic equations in domains with
nonsmooth boundaries [1].

Definition 2.7. A planar domain Ω with boundary ∂Ω is said to satisfy the
uniform ball condition if there is r > 0 so that for each x ∈ ∂Ω there is a ball B of
radius r such that

B ⊂ Ω, x ∈ ∂B.

Let Γ be a Jordan curve, and let C\Γ = Ωi ∪ Ωo be the interior and exterior
domains of Γ. We say that Γ is a BC-curve if both Ωi and Ωo satisfy the uniform
ball condition. A Jordan arc γ is a BC-arc if there is a BC-curve Γ ⊃ γ.
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It is easy to see that if E is an r-convex compact set then Ω = C\E satisfies
the uniform ball condition. Indeed, let x ∈ ∂Ω. There is a sequence of points
zn ∈ Ω so that zn → x as n → ∞. Take the corresponding sequence of disks Bn

of radius r, zn ∈ Bn ⊂ Ω. Then a certain subsequence of Bn converges to B in
Definition 2.7.

Proposition 2.8. A Jordan curve (arc) is r-convex for some r > 0 if and only if
it is a BC-curve (arc).

Proof. Due to the above remark we need to show that each BC-curve (arc) is
r-convex for some r > 0. So let Γ be a BC-curve, let z ∈ Ωi, and suppose
d(z) = d(z,Γ) < r. Take ζ ∈ Γ with |z − ζ| = d(z) and the “supporting” disks Bi

and B0 of radius r at the point ζ as in Definition 2.7. Since Bi ⊂ Ωi and Bo ⊂ Ωo,
the disks touch each other at ζ. The disk B(z, d(z)) ⊂ Ωi passes through ζ, hence
it is necessarily contained in Bi and touches Bi at ζ. So z ∈ Bi, as needed. The
argument for z ∈ Ωo is the same.

As for the BC arc γ, take the BC curve Γ ⊃ γ. Let z ∈ Γ\γ. Then the inner
supporting disk Bi at z is disjoint from γ, so it can be shifted appropriately so
that z is contained in its shift, which is still disjoint from γ. �

The simple example E = {i/n} ∪ {1/n} ∪ {0}, n ≥ 1, exhibits a set E, which
is not r-convex, but such that C\E satisfies the uniform ball condition.

Given a compact set E, consider the unbounded open set Ωt := {z ∈ C :
d(z, E) > t} for t ≥ 0. It is clear that {Ωt} forms a monotone decreasing family of
sets.

Let Θt ⊆ Ωt be the unbounded component of Ωt. It is not hard to construct a
compact set E so that Θ0 = Ω0, i.e., C\E is connected, but Θt = Ωt for all t > 0.
We show that this is not the case for r-convex sets, and the situation is stable for
small enough t.

Theorem 2.9. Let E be an r-convex compact set for r > 0, and let Θ0 = Ω0.
Then there is t0 = t0(E) such that 0 < t0 ≤ r/4, and Θt = Ωt for 0 ≤ t ≤ t0.

Proof. Define S = S(E) := maxζ∈E |ζ|, and assume that r ≤ S(E). The proof is
split into several steps.

Step 1. The set Ω̂ := Ωr ∩B(0, 2S) is relatively compact, so it contains a finite
r/2-net Z = {zj}Nj=1,

Z ⊂ Ω̂, dist(z′, Z) ≤ r

2
< r, ∀z′ ∈ Ω̂.

Since Ω0 = Θ0 = C\E is connected, we can find paths Γj : [0,∞) → Θ0 with

Γj(0) = zj, Γj(τ) → ∞, τ → ∞; j = 1, . . . , N.

We put δ := 1
2 minj,τ dist(Γj(τ), E) > 0, so that Γj ⊂ Θδ, 1 ≤ j ≤ N .
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Step 2. Let z′ ∈ Ω̂, then there is zk ∈ Z, 1 ≤ k ≤ N such that |z′ − zk| < r.
In other words, z′ ∈ B(zk, r), zk ∈ B(z′, r). Put

B1 := B(zk, r) ∪B(z′, r), {ξ±} := ∂B(zk, r) ∩ ∂B(z′, r).

Since both z′ and zk are in Ωr, the closure B1 is contained in Ω0, so

dist([z′, zk], E) > dist([z′, zk], ∂B1) = dist([z′, zk], {ξ±})

=
√
r2 − |z′ − zk|2/4 >

√
3

2
r.

Now, take t0 := min(δ, r/4), so by Step 1, [z′, zk] ⊂ Ωt and Γk ⊂ Ωt for t ≤ t0.
Hence [z′, zk] ∪ Γk ⊂ Ωt, and as the set on the left-hand side is a path from z′ to
infinity, we conclude

[z′, zk] ∪ Γk ⊂ Θt ⇒ z′ ∈ Θt, ∀t ≤ t0.

Clearly, Bc(0, 2S) ⊂ Θt for such t, so, finally, Ωr ⊂ Θt for t ≤ t0.

Step 3. Assume that for some η, 0 < η ≤ t0, the statement of the theorem is
wrong, so Ωη has a bounded component D such that D ∩ Θη = ∅. We want to
show that

(2.5) d(z) ≤
√
2 η, ∀z ∈ D.

Let z ∈ D. Note that d(z) ≤ r, for otherwise z ∈ Ωr ⊂ Θη by Step 2, and hence
z ∈ D ∩ Θη, which is impossible. By the definition of r-convexity there exists
z′ ∈ Ω such that z ∈ B(z′, r) ⊂ Ω0, so z

′ ∈ Ωr ⊂ Θη, and, in particular, z′ = z.
Hence the segment [z′, z] meets the boundary ∂D, so there is a point ζ ∈ [z′, z]
with d(ζ) = η, and we conclude that

(2.6) dist([z′, z], E) ≤ η.

We examine the configuration of two disks, B(z′, r) and B(z, d(z)), each of
which belongs to Ω0. As the circle ∂B(z, d(z)) contains points from E, it is clear
that the closed disk B(z, d(z)) cannot lie inside B(z′, r). Hence either the smaller
disk B(z, d(z)) touches the bigger one from within, and in this case the point ζ of
contact is in E (which implies d(z) = dist([z′, z], E), and (2.5) follows from (2.6)),
or the disks have a proper intersection. Write

B2 := B(z′, r) ∪B(z, d(z)) ⊂ Ω0, {ξ±} := ∂B(z′, r) ∩ ∂B(z, d(z)).

Then

(2.7) dist([z′, z], E) ≥ dist([z′, z], ∂B2) = dist([z′, z], ξ+) = dist([z′, z], ξ−) ≥ h,

where h is the length of the altitude from the vertex ξ+ in the triangle Δ(z′, z, ξ+).
If this altitude crosses the side [z′, z] then√

r2 − h2 +
√
d2(z)− h2 = |z − z′| < r,

2h2 > d2(z) + 2
√
(r2 − h2)(d2(z)− h2) > d2(z),

so d(z) <
√
2h, and (2.5) follows from (2.6) and (2.7). If the altitude crosses the

extension of the side [z′, z], one has d(z) = dist([z′, z], E), and again (2.5) holds.
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The inclusion z ∈ D ⊂ Ωη means d(z) > η, so we obtain the two-sided bound

(2.8) η < r′ := sup
z∈D

d(z) ≤
√
2 η.

Let {zn} ⊂ D so that d(zn) → r′. We can assume zn → z0, and hence there is a
point z0 ∈ D with η < d(z0) = r′ ≤ √

2 η.

Step 4. We show that there is a triangle Δ(abc) with circumradius R(Δ) < 4η
such that

(2.9) Δ(abc) ∩ E = ∅, E1 := Δ(abc) ∩ E ⊃ {a, b, c}.
Take the point z0 from Step 3 and consider the disk B(z0, r

′). Its boundary has
nonempty intersection with E. If the circle ∂B(z0, r

′) contains 3 different points
from E, then in view of (2.8) we are done. Assume that ∂B(z0, r

′) ∩E = {ζ1}, or
∂B(z0, r

′) ∩E = {ζ1, ζ2}, and the points ζ1 and ζ2 do not belong to a diameter of
the circle. The same argument as in the proof of Proposition 2.4 shows that such
configurations cannot occur.

There remains only the case where z0 = 0, ∂B(z0, r
′) ∩E = {a, b}, a = ir′ and

b = −ir′ (after an appropriate affine transformation of the plane). Set

G := {z = x+ iy : 0 < x ≤ r′, |y| ≤ r′}.
Then G ∩ E = ∅, since otherwise the circle could be shifted to the right to have
B(z′0, r′)∩E = ∅, which, as we have already seen, contradicts the maximality of r′.
Let h be the nonzero number of least magnitude such that the triangle Δ(abch),
ch = r′ + ih, contains points from E. The number h exists since by assumption
c0 = r′ ∈ E, and 0 < |h| ≤ r′ (if there are two options, h and −h, we take the
positive one). Clearly, such points from E belong to the side ach for h > 0 (bch for
h < 0). If we choose the point c ∈ E on the corresponding side, then (2.9) holds.
The triangle Δ(abc) is either acute or rectangular. For its sides we have by (2.8)

(2.10) M := max(|ab|, |ac|, |bc|) ≤
√
5 r′ ≤

√
10 η,

and by the known upper bound for the circumradius of such a triangle R(Δ) ≤
M < 4η.

Step 5. The choice of t0 = min(δ, r/4) implies R(Δ) < 4η ≤ 4t0 ≤ r. By Propo-
sition 2.2 (see Remark 2.3 after its proof), the set E1 in (2.9) is not r-convex, and
convr(E1) ∩Δ(abc) = ∅. Hence, convr(E) ∩Δ(abc) = ∅, which contradicts the r-
convexity of E, and so the assumption made in Step 3 must be wrong for r ≤ S(E).

To remove the assumption r≤S(E), note that if r>S(E), then E is r1-convex
with r1 = S(E). So for the value t0 one has 0 < t0 ≤ r1/4 < r/4, as needed.
The proof is complete. �

Note that for E = {ζ1, . . . , ζN} the result is obvious with

(2.11) 0 ≤ t ≤ t1(E) :=
1

2
δ(E), δ(E) := min

i�=k
|ζi − ζk|.



Blaschke-type conditions 13

3. Lower bounds for Green’s functions

We will be dealing with domains Ω = C\E where E a compact set in C.

Definition 3.1. The Green’s function for a domain Ω is a map GΩ : Ω × Ω →
(−∞,∞], such that, for each w ∈ Ω,

(i) GΩ(·, w) is harmonic on Ω\{w}, and bounded from above and below outside
each neighborhood of w;

(ii) GΩ(w,w) = ∞, and as z → w,

GΩ(z, w) =− log |z − w|+O(1), w = ∞,

GΩ(z, w) = log |z|+O(1), w = ∞;

(iii) GΩ(z, w) → 0, as z → ζ, for nearly every ζ ∈ ∂Ω.

Let us list some basic properties of the Green’s functions in the form we need
them later on (see, e.g., Section 4.4 in [33]):

(1) If ∂Ω is nonpolar, then there exists a unique Green’s function GΩ for Ω;

(2) GΩ(z, w) = GΩ(w, z) > 0, moreover, if Ω′ is a relatively compact (in C) open
subset of Ω, then minz,w∈Ω′ GΩ(z, w) = C(Ω,Ω′) > 0;

(3) If Ω′ ⊂ Ω′′ are domains in C with nonpolar boundaries, then

GΩ′ (z, w) ≤ GΩ′′(z, w), z, w ∈ Ω′.

The notion of Harnack distance proves useful for our reasoning (see [33], pp. 14–15).

Definition 3.2. Let D be a domain in C. Given z1, z2 ∈ D, the Harnack distance
between z1 and z2 is the smallest number τD(z1, z2) so that for every positive
harmonic function h on D,

τ−1
D (z1, z2)h(z2) ≤ h(z1) ≤ τD(z1, z2)h(z2).

It is known that

1. τD(z, w) = τD(w, z) ≥ 1 and τD(z, z) = 1;

2. τD(z1, z3) ≤ τD(z1, z2) τD(z2, z3) for z1, z2, z3 ∈ D;

3. τD is a continuous function of both variables, in particular, ifD1 is a relatively
compact (in C) open subset ofD, then maxz,w∈D1 τD(z, w) = C(D,D1) <∞.

Given a compact set E, we recall the notation Ωt = {z ∈ C : d(z) > t} (we
view Ωt as an open subset of C). If E is an r-convex compact set with connected
complement, then, by Theorem 2.9, we know that Ωt is a subdomain of C for
sufficiently small t. Its boundary ∂Ωt = {z : d(z) = t} is nonpolar (since it splits
the plane), so the Green’s function Gt for Ωt exists and is unique.

The main technical tool is the following lower bound for Gt(z,∞). In what
follows C = C(E) stands for different positive constants which depend only on E,
and the particular values of which are immaterial.
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Lemma 3.3. Let E be an r-convex compact set with connected complement Ω =
C\E. Then for 0 < t ≤ t0, where t0 ≤ r/4 is defined in Theorem 2.9,

(3.1) Gt/3(z,∞) ≥ Cmin{1, d(z)}, z ∈ Ωt.

Proof. By Theorem 2.9, we have Ωt = Θt for 0 < t ≤ t0.
Assume first that d(z) > t0, so z ∈ Ωt0 . By properties (2) and (3),

Gt/3(z,∞) ≥ Gt0/3(z,∞) ≥ C ≥ Cmin{1, d(z)},

as needed.
For the rest of the proof we assume that z ∈ Ωt and d(z) ≤ t0, so t < d(z) ≤ t0.

By r-convexity, z ∈ B(z′, r) ⊂ Ω, and since 2t0 < r (see Theorem 2.9), the following
chain of inequalities can be checked easily:

(3.2) r > |z − z′| ≥ d(z′)− d(z) ≥ r − t0 > t0 ≥ d(z) > t.

Define

r1 := |z − z′| − t

3
, r2 := d(z)− t

3
,

so 2t/3 < r2 < r1 < |z − z′|. It follows from (3.2) that the disks B(z′, r1) and
B(z, r2) satisfy

(a) B(z′, r1) ∪B(z, r2) ⊂ Ωt/3;

(b) z′ /∈ B(z, r2), z /∈ B(z′, r1);

(c) B(z′, r1) ∩B(z, r2/2) = ∅. Indeed,

r1 +
r2
2

= |z − z′| − t

3
+

1

2

(
d(z)− t

3

)
> |z − z′|.

Let L := ∂B(z′, r1) ∩ B(z, 3r2/4) be the arc of ∂B(z′, r1) inside B(z, 3r2/4).
A simple argument from planar geometry shows that property (c) implies the lower
bound |L| > r2/2 for the length of L.

We proceed with the bounds for the Green’s functions. By properties (a)
and (b), the function Gt/3(·, z) is harmonic and positive in the disk B(z′, r1).
As r1 < |z − z′| < r, the mean value theorem provides

Gt/3(z
′, z) =

1

2πr1

∫
∂B(z′,r1)

Gt/3(ζ, z)m(dζ) ≥ 1

2πr

∫
L

Gt/3(ζ, z)m(dζ).

Since B(z, r2) ⊂ Ωt/3, and the Green’s function increases with the domain, we
have

Gt/3(u, v) ≥ GB(z,r2)(u, v), u, v ∈ B (z, r2) .

The latter can be computed explicitly as

GB(z,r2)(z, v) = log
∣∣∣ r2
v − z

∣∣∣ ≥ log
4

3
, v ∈ B

(
z,

3r2
4

)
.
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Hence Gt/3(z, ζ) ≥ log 4
3 for ζ ∈ L, so, taking into account r2 = d(z) − t/3 >

2d(z)/3, we obtain the lower bound

(3.3) Gt/3(z
′, z) ≥ log 4

3

2πr
|L| > log 4

3

4πr
r2 >

log 4
3

6πr
d(z).

To pass from z′ to ∞, we invoke the Harnack distance. Let D = Ω2t0 be a
domain in C which depends only on E and such that D ⊂ Ωt/3. It is clear that
z ∈ D (by the assumption d(z) ≤ t0), so the function ht,z(ζ) := Gt/3(z, ζ) is
positive and harmonic in D. Next, 2t0 < r implies Ωr is a relatively compact
subset of D, so z′ ∈ Ωr ⊂ D, and, by the definition of the Harnack distance with
z1 = ∞ and z2 = z′,

τ−1
D (∞, z′)Gt/3(z, z

′) ≤ Gt/3(z,∞).

By property (3) of the Harnack distance, minz′∈Ωr τ
−1
D (∞, z′) = C > 0, and hence,

by (3.3),
Gt/3(z,∞) ≥ Cd(z) ≥ Cmin{1, d(z)}, z ∈ Ωt,

as claimed. The proof is complete. �

Remark 3.4. Assume that E is a nonpolar r-convex compact set with connected
complement. Then the Green’s function G = G0 exists and is unique, and it easily
follows from Lemma 3.3 that

G(z,∞) ≥ Cmin{1, d(z)}, z ∈ Ω.

For similar bounds for the Green’s functions of a bounded domain with C2 bound-
ary, see formula (2.8) in [38]. Note that our result is proved under no assumptions
on the smoothness of the boundary.

4. Proof of the main result and its consequences

We consider subharmonic functions and their Riesz measures. Let D be a domain
in C such that its boundary ∂D is nonpolar, and let v be a subharmonic function
on D, v ≡ −∞, which has a harmonic majorant on D. Let μ = 1/(2π)Δv be
its Riesz measure. By the fundamental Riesz decomposition theorem (RDT) (see,
e.g., Theorem 4.5.4 in [33])

v(z) = u(z)−
∫
D
G(z, ζ)μ(dζ), z ∈ D,

u is the least harmonic majorant of v on D and G is the Green’s function of D.
We apply this result to subharmonic functions on Ω = C\E where E is an

r-convex compact set, with D = Ωt for t ≤ t0 from Lemma 3.3, so its boundary
is nonpolar, and G = Gt. We assume that the subharmonic function v on Ω is
subject to the growth and normalization conditions (1.3), and we assume that ψ
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is a positive and monotone decreasing function on R+. Hence v has a harmonic
majorant ut on D, and so

(4.1) v(z) = ut(z)−
∫
Ωt

Gt(z, ζ)μ(dζ), z ∈ Ωt.

Proof of Theorem 1.2. By (1.3), v is bounded above on Ωt, and

(4.2) v(z) ≤ Kv ψ(t), z ∈ Ωt, t > 0,

so the least harmonic majorant ut exists and satisfies the same bound (4.2). More-
over, (4.1) with z = ∞ gives

(4.3)

∫
Ωt

Gt(∞, ζ)μ(dζ) ≤ Kv ψ(t), 0 < t ≤ t0.

Next, it follows from the hypothesis of the theorem that ϕ′
1 ≥ 0 a.e. on some

interval [0, δ] (we assume δ ≤ t0). We decompose the integral on the left-hand side
of (1.5) as∫

Ω

ϕ(d(ζ))μ(dζ) ≤
{∫

Ω\Ωδ

+

∫
Ωδ∩B(0,6S+1)

+

∫
Bc(0,6S+1)

}
ϕ(d(ζ))μ(dζ)

= I1 + I2 + I3, S = max
ζ∈E

|ζ|.

We begin with the bound for

I1 =

∫
Ω\Ωδ

ϕ1(d(ζ))σ(dζ), σ(dζ) := d(ζ)μ(dζ).

Put

Hδ(t) :=

∫
Ωt\Ωδ

d(ζ)μ(dζ) =

∫
Ωt\Ωδ

σ(dζ) = σ({ζ : t < d(ζ) ≤ δ}).

The following result known as the layer cake representation (LCR) theorem (see
Theorem 1.13 in [26]), plays a key role in the next step of the proof.

Theorem (LCR). Let ν be a measure on the Borel sets of the positive real line R+

such that
ξ(t) := ν([0, t)), ξ(0) = 0

is finite for every t > 0. Let (X,Σ, σ) be a measure space and let f be any non-
negative measurable function on X. Then∫

X

ξ(f(x))σ(dx) =

∫ ∞

0

σ({x : f(x) > t}) ν(dt).

We apply this with X = Ω\Ωδ, ν(dt) = ϕ′
1(t)dt and f(x) = d(x):

I1 =

∫
Ω\Ωδ

ϕ1(d(ζ))σ(dζ) =

∫ δ

0

ϕ′
1(t)Hδ(t) dt.
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For t < d(ζ) ≤ δ one has d(ζ) ≤ (1 + δ)min{1, d(ζ)} ≤ CGt/3(ζ,∞) in view of
Lemma 3.3. Here and in the rest of the proof C stands for a positive constant
which depends on E, ϕ, and ψ, as in (1.5). So by (4.3),

Hδ(t) ≤ C

∫
Ωt

Gt/3(ζ,∞)μ(dζ) ≤ C

∫
Ωt/3

Gt/3(ζ,∞)μ(dζ) ≤ C Kv ψ
( t
3

)
,

and, finally,

(4.4) I1 ≤ C Kv

∫ δ

0

ϕ′
1(t)ψ

( t
3

)
dt.

Since d(ζ) ≤ |ζ|+ S ≤ 7S + 1 for ζ ∈ B(0, 6S + 1), the bound for I2 is

I2 =

∫
Ωδ∩B(0,6S+1)

ϕ1(d(ζ)) d(ζ)μ(dζ) ≤ max
δ≤y≤7S+1

ϕ1(y)

∫
Ωδ

d(ζ)μ(dζ)

≤ C

∫
Ωδ

min{1, d(ζ)}μ(dζ) ≤ C

∫
Ωδ/3

Gδ/3(ζ,∞)μ(dζ) ≤ C Kv ψ
(δ
3

)
,

and so

(4.5) I2 ≤ C Kv.

The bound for I3 is standard, and has nothing to do with the subtle Lemma 3.3.
The LCR theorem and the inclusion Bc(0, 6S + 1) ⊂ Ω5S+1 give

(4.6) I3 ≤
∫
Ω5S+1

ϕ(d(ζ))μ(dζ) =

∫ ∞

5S+1

ϕ′(t)H(t) dt, H(t) :=

∫
Ωt

μ(dζ).

For t ≥ 5S + 1 we put

Rt :=
2

3
(t− S) ≥ 2

3
(4S + 1), Rt − S =

2t− 5S

3
≥ t

3
,

and apply again the RDT in the form

v(z) = ũ(z)−
∫
|ζ|>Rt

G̃(z, ζ)μ(dζ), |z| > Rt,

where G̃ is the Green’s function of the domain {ζ : |ζ| > Rt} and ũ is the least
harmonic majorant of v on this domain. Since d(z) ≥ Rt − S for |z| > Rt, the
assumptions on v and ψ imply

ũ(z) ≤ Kv ψ(Rt − S), |z| > Rt,

and, as above,

(4.7)

∫
|ζ|>Rt

G̃(∞, ζ)μ(dζ) ≤ Kv ψ(Rt − S) ≤ Kv ψ
( t
3

)
.
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The function G̃(∞, ζ) is known to have the explicit form G̃(∞, ζ) = log |ζ|−log |Rt|,
so, by (4.7), we conclude

log
3

2

∫
|ζ|> 3

2 Rt

μ(dζ) ≤
∫
|ζ|> 3

2 Rt

log
∣∣∣ ζ
Rt

∣∣∣μ(dζ)
≤

∫
|ζ|>Rt

log
∣∣∣ ζ
Rt

∣∣∣μ(dζ) ≤ Kv ψ
( t
3

)
.

Next, note that

{
ζ : |ζ| > 3

2
Rt

}
⊃

{
ζ : d(ζ) >

3

2
Rt + S

}
= Ωt,

so

H(t) =

∫
Ωt

μ(dζ) ≤ C Kv ψ
( t
3

)
,

and, finally, in view of (4.6), we have

(4.8) I3 ≤ C Kv

∫ ∞

5S+1

ϕ′(t)ψ
( t
3

)
dt.

The main statement of Theorem 1.2 now follows from (4.4), (4.5), and (4.8).

The case of bounded subharmonic functions is not formally covered by the
main result since ϕ1(0) = 1 = 0 for ϕ(x) = min{1, x}. Fortunately, (1.6) is a
direct consequence of (4.3) and Lemma 3.3. Indeed, for 0 < t < t0

CKv ≥
∫
Ωt

Gt(∞, ζ)μ(dζ) ≥ C

∫
Ωt

min{1, d(ζ)}μ(dζ),

and there remains only to let t→ 0. The proof is complete. �

Corollary 4.1. Suppose that for a subharmonic function v estimate (1.3) holds
with ψ(t) = t−q, q > 0. Then, for each ε > 0,

(4.9)

∫
Ω

ϕ(d(ζ))μ(dζ) ≤ C(E, q, ε)Kv,

with

ϕ(x) = xq+1/2 (min{x, 1/x})ε+1/2
=

{
xq+1+ε, x ≤ 1,
xq−ε, x > 1,

0 < ε < q.

In some instances, in addition to the hypothesis of Theorem 1.2, the support of
the Riesz measure μ is bounded. Such a situation occurs when v = log |f | for an
analytic function f on Ω satisfying f(∞) = 1 (see Section 5). Now only the first
term in (1.4) matters, so we obtain:
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Corollary 4.2. In addition to the assumptions of Theorem 1.2, let suppμ ⊂
B(0, Rμ), and, instead of (1.4), suppose∫

0

ϕ′
1(t)ψ

( t
3

)
dt <∞.

Then ∫
Ω

ϕ(d(ζ))μ(dζ) ≤ C(E,ψ, ϕ,Rμ)Kv.

Consider the case of finite sets E, where the bound for the Green’s function
in (3.1) and the main result can be refined. We formulate this for the special bound
as in Corollary 4.1, although the general case of Theorem 1.2 can be handled in
the same fashion.

Theorem 4.3. Let E = {ζ1, . . . , ζN} be a finite set and let v be a subharmonic
function on Ω = C\E so that

(4.10) v(z) ≤ Kv

dq(z)
, v(∞) = 0; q > 0, z ∈ Ω.

Then there are positive constants k = k(E) > 1 and t2 = t2(E), defined below
in (4.16), such that

(4.11) Gt(z,∞) >
log 2

N
> 0, z ∈ Ωkt, t ≤ t2,

and for each 0 < ε < q∫
Ω

ϕ(d(ζ))μ(dζ) ≤ C(E, q, ε)Kv, ϕ(x) =

{
xq+ε, x ≤ 1 ;
xq−ε, x > 1 .

If, in addition, suppμ is bounded then

(4.12)

∫
Ω

dq+ε(ζ)μ(dζ) <∞.

Proof. Put

(4.13) mj :=
∏
i�=j

|ζi − ζj |, C := 2N−1 max
j
mj .

The function

(4.14) vt(z) :=
1

N

( N∑
j=1

log |z − ζj | − log t− logC
)

is subharmonic on C (and harmonic on Ω), and vt(z) = log |z|+O(1), as z → ∞.
For

0 ≤ t ≤ t1(E) =
1

2
δ(E), δ(E) := min

i�=k
|ζi − ζk|
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(see (2.11)), on each circle |z − ζn| = t, 1 ≤ n ≤ N , one has

vt(z) =
1

N

(∑
j �=n

log |z − ζj | − logC
)
.

Since |z − ζj | ≤ |z − ζn|+ |ζn − ζj | = t+ |ζn − ζj |,

vt(z) ≤ 1

N

(∑
j �=n

log(|ζj − ζn|+ t)− logC
)

≤ 1

N

(
(N − 1) log 2 +

∑
j �=n

log |ζn − ζj | − logC
)
≤ 0

in view of the choice of C. Hence ut(z) = vt(z)−Gt(z,∞) is subharmonic on Ωt

and

lim sup
z→ζ

ut(z) ≤ 0, ζ ∈ ∂Ωt, lim sup
z→∞

ut(z)

log |z| = 0,

so by the Phragmen–Lindelöf principle (see Corollary 2.3.3 in [33]) ut ≤ 0, or

(4.15) vt(z) ≤ Gt(z,∞), z ∈ Ωt.

On the other hand, put

(4.16) k := 1 + 2C
( 2

δ(E)

)N−1

> 1, t2 :=
t1
k
.

For z ∈ Ωkt and t ≤ t2 we have for some l,m, 1 ≤ l,m ≤ n, that

min
1≤i≤n

|z−ζi| = |z−ζl| > kt, min
i�=l

|z−ζi| = |z−ζm| ≥ |ζl−ζm|−|z−ζl| ≥ δ(E)−kt,

so

vt(z) =
1

N

(∑
j �=l

log |z − ζj |+ log |z − ζl| − log t− logC
)

>
1

N

(
(N − 1) log(δ(E)− kt) + log kt− log t− logC

)
≥ 1

N

(
(N − 1) log

δ(E)

2
+ log k − logC

)
>

log 2

N
,

by the choice of k and C. Finally,

Gt(z,∞) ≥ vt(z) >
log 2

N
> 0, z ∈ Ωkt, t ≤ t2,

as needed.
The rest of the proof follows the same line of reasoning as the the proof of

Theorem 1.2, using the LCR theorem, with Lemma 3.3 replaced with (4.11). �
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To show that Corollary 4.1 and Theorem 4.3 are optimal in some sense, we
proceed with the following simple result.

Lemma 4.4. Let E ⊂ C be an arbitrary compact set, which does not split the
plane, let D be a relatively compact (in the sense of C) subdomain of Ω = C\E,
and suppose ∞ ∈ D. Let v be a subharmonic and continuous (in the sense of C),
nonnegative function on Ω. Then the least harmonic majorant u for D exists, and

(4.17) vmin := min
ζ∈∂D

v(ζ) ≤ u(z) ≤ max
ζ∈∂D

v(ζ) =: vmax, z ∈ D.

Proof. By assumption, v is nonnegative and bounded on D, so the least harmonic
majorant u exists, and it is nonnegative and bounded.

To prove the right inequality, note that v is continuous on D, and so

lim sup
z→ζ∈∂D

v(z) = v(ζ) ≤ vmax.

By the maximum principle v ≤ vmax, so u ≤ vmax.
To prove the left inequality, note that

lim inf
z→ζ

u(z) ≥ lim inf
z→ζ

v(z) = v(ζ) ≥ vmin.

Put V = −u + vmin. This is a harmonic and bounded function on D, and
lim supz→ζ V (z) ≤ 0, ζ ∈ ∂D. Again, by the maximum principle, V ≤ 0 in D,
as needed. The proof is complete. �

For the class of subharmonic functions v satisfying (1.3) with ψ(t) = t−q, q > 0,
there is an obvious extremal element v̂(z) = d−q(z). This function is subharmonic
and continuous on Ω, and it is quite natural to expect that it provides divergence
of integrals in (4.9).

We apply Lemma 4.4 to v̂. By the RDT,

0 = v̂(∞) = û(∞)−
∫
D

GD(z,∞) μ̂(dz), μ̂ =
1

2π
Δv̂,

and so, by Lemma 4.4,

(4.18)
[
max
ζ∈∂D

d(ζ)
]−q ≤

∫
D

GD(z,∞) μ̂(dz) ≤ [
min
ζ∈∂D

d(ζ)
]−q

.

Two types of domains D are of particular interest.

1. As above in Section 2, let Θt be the unbounded component of the set
Ωt = {z : d(z) > t}. Then d(ζ) = t on ∂Θt, so, by (4.18),

(4.19)

∫
Θt

GΘt(z,∞) μ̂(dz) = t−q .

2. Let D = Dt = {|z| > t} where t > S = maxζ∈E |ζ|. Then, for |z| ≥ t,

(4.20)
t− S

t
|z| ≤ d(z) ≤ |z|+ S,
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GDt(z,∞) = log |z|
t , and (4.18) takes the form

(4.21) (t+ S)−q ≤
∫
Dt

log
|z|
t
μ̂(dz) ≤ (t− S)−q .

We mention two important consequences of (4.21). First, let t > τ > S. Then∫
Dt

μ̂(dz) ≤
(
log

t

τ

)−1
∫
Dt

log
|z|
τ
μ̂(dz) ≤

(
log

t

τ

)−1
∫
Dτ

log
|z|
τ
μ̂(dz)

≤
(
log

t

τ

)−1

(τ − S)−q <∞.(4.22)

Next,

(4.23)

∫
Dt

log |z| μ̂(dz) ≤ (t− S)−q + log t

∫
Dt

μ̂(dz) <∞.

We show now that Corollary 4.1 is false for the function v̂ and ε < 0.

Theorem 4.5. Let E ⊂ C be an arbitrary compact set, which does not split the
plane and let v̂(z) = d−q(z), q > 0. Then, for each 0 < ε < q,

(4.24) I± :=

∫
Ω

dq± ε(z) μ̂(dz) = +∞.

Proof. Define M := B(0, S + 1)\E = B(0, S + 1)
⋂
Ω. We actually prove that∫

DS+1

dq+ ε(z) μ̂(dz) =

∫
M

dq− ε(z) μ̂(dz) = +∞, DS+1 = {|z| > S + 1}.

We begin with I+. By (4.20) with t = S + 1 we have, for |z| ≥ S + 1,

dq+ ε(z) ≥ |z|q+ ε

(S + 1)q+ ε
≥ C1(E, q, ε) |z|q log |z|,

so that

(4.25)

∫
DS+1

dq+ ε(z) μ̂(dz) ≥ C1(E, q, ε)

∫
DS+1

|z|q log |z| μ̂(dz).

Let σ(dz) be the restriction of log |z| μ̂(dz) to DS+1. The LCR theorem gives∫
DS+1

|z|q σ(dz) = q

∫ ∞

0

tq−1 dt

∫
Dt∩DS+1

log |z| μ̂(dz)

= (S + 1)q
∫
DS+1

log |z| μ̂(dz) + q

∫ ∞

S+1

tq−1 dt

∫
Dt

log |z| μ̂(dz),

so, by (4.25),∫
DS+1

dq+ ε(z) μ̂(dz) ≥ C2(E, q, ε)

∫ ∞

S+1

tq−1 dt

∫
Dt

log |z| μ̂(dz).
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But GDt(z,∞) = log |z| − log t < log |z|, and it follows from (4.21) that∫
Dt

log |z| μ̂(dz) ≥
∫
Dt

GDt(z,∞) μ̂(dz) ≥ (t+ S)−q,

which implies

I+ ≥
∫
DS+1

dq+ ε(z) μ̂(dz) = +∞,

as claimed.
The domain Θx plays a key role in estimating I−. Let z ∈ Θx. Then for every

z0 ∈ E one has

|z − z0| ≥ d(z) > x,
|z − z0|

x
> 1,

so the function h(z) = log(|z − z0|/x) is harmonic on Θx and

h(z) ≥ 0, z ∈ Θx; h(z) = log |z|+O(1), z → ∞.

Hence by the maximum principle

(4.26) log
|z − z0|

x
−GΘx(z,∞) ≥ 0, z ∈ Θx.

Define Mx := B(0, S + 1) ∩ Ωx and Nx := B(0, S + 1) ∩ Θx ⊂ Mx. If z ∈ Nx

and x < 1, then (4.26) implies

(4.27) GΘx(z,∞) < log
2S + 1

x
< C3(E, ε)x

−ε.

We apply again the LCR theorem to obtain∫
M

dq− ε(z) μ̂(dz) = (q − ε)

∫ S+1

0

xq−ε−1dx

∫
Mx

μ̂(dz)

≥ (q − ε)

∫ 1

0

xq−ε−1dx

∫
Nx

μ̂(dz).

By (4.27),∫
M

dq− ε(z) μ̂(dz) ≥ C4(E, q, ε)

∫ 1

0

xq−1dx

∫
Nx

GΘx(z,∞) μ̂(dz).

Next,∫
Nx

GΘx(z,∞) μ̂(dz) =

∫
Θx

GΘx(z,∞) μ̂(dz)−
∫
Θx∩DS+1

GΘx(z,∞) μ̂(dz).

The first integral on the right-hand side equals x−q due to (4.19). For the second
one, we have, by (4.26), (4.22), and (4.23),∫

Θx∩DS+1

GΘx(z,∞) μ̂(dz) ≤
∫
Θx∩DS+1

log
|z − z0|

x
μ̂(dz) ≤

∫
DS+1

log
2|z|
x

μ̂(dz)

=

∫
DS+1

log |z| μ̂(dz) + log
2

x

∫
DS+1

μ̂(dz) ≤ C5(E)
(
1 + log

2

x

)
.
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Finally, ∫
Nx

GΘx(z,∞) μ̂(dz) ≥ x−q − C5(E)
(
1 + log

2

x

)
≥ C6(E)x−q

for sufficiently small x, and so

I− ≥
∫
M

dq− ε(z) μ̂(dz) = +∞.

The proof is complete. �

It follows from (4.24) (compare with Corollary 4.1) that∫
Ω

ϕ̂(d(z)) μ̂(dz) = +∞, ϕ̂(x) =

{
xq− ε, x ≤ 1 ;
xq+ ε, x > 1 .

It turns out that Corollary 4.1 is false for the function v̂ even for ε = 0 as long
as we consider particular sets E.

Example. Let E0 = [0, 1], v0(z) = d−2(z, E0), and μ0 = 1
2πΔv0. By Corollary 4.1,∫

Ω0

ϕ0(d(ζ))μ0(dζ) <∞, Ω0 = C\E0, ϕ0(x) =

{
x3+ε, x ≤ 1 ,
x2−ε, x > 1 ,

∀ε > 0.

To show that the integral diverges for ε = 0 we compute the Riesz measure μ0 of
v0 explicitly. Indeed, now Ω0 = C1 ∪ C2 ∪ C3, where

C1 = {z : 0 ≤ x ≤ 1, y = 0}, C2 = {z : x < 0}, C3 = {z : x > 1}, z = x+ iy.

We apply the well-known equality Δ|F |2 = 4|F ′|2, for an analytic function F to
obtain

v0(z) =

⎧⎨
⎩

y−2, z ∈ C1 ,
|z|−2, z ∈ C2 ,
|z − 1|−2, z ∈ C3 ,

Δv0 =

⎧⎨
⎩

6y−4, z ∈ C1 ,
4|z|−4, z ∈ C2 ,
4|z − 1|−4, z ∈ C3 .

For p > 0 we have ∫
Ω0

dp(z)μ0(dz) =
3∑

j=1

∫
Cj

dp(z)μ0(dz).

The first integral

I1 :=

∫
C1

dp(z)μ0(dz) =
6

π

∫ 1

0

dx

∫ ∞

0

dy

y4−p
= +∞

for p = 3. The second integral

I2 :=

∫
C2

dp(z)μ0(dz) =
4

π

∫ 0

−∞
dx

∫ ∞

0

dy

(x2 + y2)2−p/2
= +∞

for p = 2. The computation for I3 is similar.

We complete the section with the converse result for analytic functions (see [13]).
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Proposition 4.6. Let E be a compact subset of C and let Z = {zn} be a sequence
of points in Ω = C\E so that

K :=
∑
n≥1

dq(zn) <∞, q ≥ 1.

Then there is an analytic function f on Ω with zero set Z(f) = Z and f(∞) = 1,
such that

(4.28) log |f(z)| ≤ CqK

dq(z)
.

Proof. We begin with the well known Weierstrass prime factor of order p ≥ 0,

W (z, p) = (1− z) exp
( p∑

k=1

zk

k

)
, p ≥ 1, W (z, 0) = 1− z, z ∈ C,

and its bounds (see, e.g., Lemma 4.3.1 in [25])

(4.29) |W (z, p)− 1| ≤ |z|p+1, |z| ≤ 1,

(4.30) log |W (z, p)| ≤ Ap|z|p, |z| ≥ 1

3
, Ap = 3e(2 + log(p+ 1)).

Denote by en ∈ E one of the points closest to zn, i.e., such that d(zn) = |zn−en|.
Put

f(z) :=
∏
n≥1

W (un(z), p), un(z) =
zn − en
z − en

, z ∈ Ω,

where p ≥ 0 is chosen so that q − 1 ≤ p < q, and write

f(z) = Π1(z) · Π2(z), Πj(z) =
∏
n∈Λj

W (un(z), p), j = 1, 2,

where

Λ1 = Λ1(z) = {n : |un(z)| ≤ 1}, Λ2 = Λ2(z) = {n : |un(z)| > 1}.
Since un(z) → 0 for each z ∈ Ω, the product Π2 is finite. By (4.29)∑

n∈Λ1

|W (un(z), p)− 1| ≤
∑
n∈Λ1

|un(z)|p+1 ≤
∑
n∈Λ1

|un(z)|q ≤ K

dq(z)
,

so the product Π1 converges absolutely and uniformly in Ω. Moreover,

log |Π1(z)| ≤
∑
n∈Λ1

|W (un(z), p)− 1| ≤ K

dq(z)
.

For the second product, by (4.30),

log |Π2(z)| ≤ Ap

∑
n∈Λ2

|un(z)|p ≤ Ap

∑
n∈Λ2

|un(z)|q ≤ ApK

dq(z)
,

which proves (4.28). The equality Z(f) = Z is obvious by construction. �
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5. Applications to perturbation theory of linear operators

We recall some rudiments of the spectral theory of linear operators on Hilbert
space, related to the structure of the spectrum (see, e.g., Section IV.5.6 in [24]).
A bounded linear operator T on the infinite-dimensional Hilbert space H is said
to be a Fredholm operator if its kernel and cokernel are both finite-dimensional
subspaces. A complex number λ lies in the essential spectrum σess(T ) of the
operator T if T − λ is not a Fredholm operator. The essential spectrum is known
to be a nonempty closed subset of the spectrum σ(T ), and its complement F(T ) =
C\σess(T ) is called the Fredholm domain of T (it is not necessarily connected).
Clearly, the resolvent set ρ(T ) = C\σ(T ) ⊂ F(T ).

The set of all isolated eigenvalues of finite algebraic multiplicity is referred to
as the discrete spectrum σd(T ) = {λj}. Each eigenvalue is counted according to
its algebraic multiplicity. Although σess(T )∩σd(T ) = ∅, the entire spectrum is not
in general exhausted by their union. Indeed, write

F(T ) =
⋃

j≥0
Fj(T ),

where Fj(T ) are the connected components of F(T ) and F0 is the unbounded
component (the outer domain). Then either Fj ⊂ σ(T ), or Fj ∩ σ(T ) ⊂ σd(T )
(the latter always occurs for j = 0). That F(T ) is connected (F(T ) = F0(T ))
implies (the union is disjoint)

(5.1) σ(T ) = σess(T )
⋃̇
σd(T ).

The fundamental theorem of Weyl (see Theorem IV.5.35 in [24]) is an outstand-
ing result in perturbation theory. Its version for bounded operators states that the
essential spectrum is stable under compact perturbations, that is, for any bounded
operator A0 and compact operator B

(5.2) σess(A) = σess(A0), A = A0 +B.

Under certain conditions (see below) relation (5.1) holds for the spectrum σ(A)
of the perturbed operator as well, and all accumulation points of σd(A) belong to
σess(A0). We aim here to find the quantitative rate of convergence of the eigenval-
ues of A in the form∑

λ∈σd(A)

Φ(d(λ)) ≤ C ‖B‖qSq
, d(λ) = dist(λ, σ(A0)), q ≥ 1,

provided B is contained in Sq, the Schatten–von Neumann operator ideal.
Our main assumptions on the unperturbed operator A0 are:

(i) σess(A0) does not split the plane;

(ii) σ(A0) is an r-convex compact set;

(iii) The resolvent R(λ,A0) = (A0 − λ)−1 is subject to the bound

(5.3) ‖R(λ,A0)‖ ≤ Ψ(d(λ)), λ ∈ σ(A0),

where Ψ is a monotone decreasing function on R+ with Ψ(0) = ∞ and
Ψ(∞) = 0.
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Note that conditions (i) and (ii) are certainly fulfilled whenever σ(A0) ⊂ R or
σ(A0) ⊂ T and σ(A0) = T. Condition (iii) is not really a restriction, as one can
put

Ψ(x) = sup{‖R(λ,A0)‖ : d(λ) ≥ x}.
However such a choice of Ψ is very much implicit. There are many operators, for
which (5.3) holds with explicit function Ψ. These include hyponormal operators
(see Theorem 3.10.2 in [32]) and spectral operators (in the sense of Dunford) of
finite degree [11] (with Ψ(x) = x−s, s > 0). For normal operators A0 equality
holds in (5.3) with Ψ(x) = x−1. Another typical example is (see [30], [15])

(5.4) Ψ(x) =
C1

x
exp

(C2

x2

)
.

A key analytic tool in perturbation theory is the (regularized) perturbation
determinant

gq(λ) := det 
q�(I +BR(λ,A0)), B = A−A0 ∈ Sq,

where �q� = min{n ∈ N : n ≥ q}, thanks to its properties (see, e.g., [36], Sec-
tion XI.9 of [10] or Section IV.3 of [16]):

1. gq is analytic on C\σ(A0), gq(∞) = 1;

2. λ is a zero of gq of multiplicity k if and only if λ ∈ σd(A)\σ(A0) with algebraic
multiplicity k;

3. log |gq(λ)| ≤ Cq ‖B‖qSq
‖R(λ,A0)‖q , λ ∈ C\σ(A0).

We are in a position to present the main spectral consequences of Theorem 1.2
and Corollary 4.2.

Theorem 5.1. Given a bounded linear operator A0 subject to conditions (i)–(iii),
and B ∈ Sq, q ≥ 1, let Φ be a positive and absolutely continuous function on
[0,∞) such that Φ1(t) = t−1Φ(t) is monotone increasing in some neighborhood of
the origin, Φ1(0) = 0, and

(5.5)

∫
0

Φ′
1(t)Ψ

q
( t
3

)
dt+

∫ ∞
Φ′(t)Ψq

( t
3

)
dt <∞.

Then

(5.6)
∑

λ∈σd(A)

Φ (d(λ)) ≤ C(σ(A0),Ψ,Φ, q) ‖B‖qSq
.

Proof. Since σess(A0) = σess(A) does not split the plane, we see that

(5.7) σ(A0) = σess(A0)
⋃̇
σd(A0), σ(A) = σess(A)

⋃̇
σd(A),

and so both σ(A0) and σ(A) do not split the plane.
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We apply Theorem 1.2 with E = σ(A0) to the subharmonic function

v(z) = log |gq(z)|, z ∈ ρ(A0) ∪ {∞}.

In view of property (3) of perturbation determinants, and condition (iii), inequal-
ity (1.3) holds with Kv = Cq‖B‖qSq

and ψ = Ψq. The Riesz measure μ of v is now a

discrete and integer-valued measure supported on Z(gq), and μ{λ} equals the mul-
tiplicity of the zero of gq at λ (the algebraic multiplicity of the eigenvalue λ(A)).
The only problem is that in (5.7) σd(A0) is in general nonempty, and, what is more
to the point, the set σd(A0)∩σd(A) can be nonempty as well, and this part of σd(A)
is not controlled by the zero set of the perturbation determinant.2 Anyway, since
Φ(0) = 0, Theorem 1.2 yields∑

λ∈σd(A)

Φ (d(λ)) =
∑

λ∈σd(A)\σd(A0)

Φ (d(λ)) ≤ C(σ(A0),Ψ,Φ, q) ‖B‖qSq
,

as claimed. �

If σess(A0) splits the plane, then (see Remark 1.3 after Theorem 1.2) we can
argue as above, with the resolvent set ρ(A0) replaced by the outer domain F0(A0),
to obtain the inequality∑

λ∈σd(A)∩F0(A0)

Φ (d(λ)) ≤ C(σ(A0),Ψ,Φ, q) ‖B‖qSq
.

The question arises naturally, whether condition (i) can be relaxed to

(i’) σ(A0) does not split the plane.

The answer is in general negative. Indeed, assume that for A0 we have σ(A0) = D,
σess(A0) = ∂D (e.g., A0 is adjoint to the shift operator in H2). Then A can be
constructed in such a way that

σ(A) = ∂D ∪̇σd(A),

and the portion of σd(A) inside D cannot be controlled.
In the perturbation theory setting the support of the Riesz measure (the zero set

of the perturbation determinant) is bounded, suppμ ⊂ B(0, Rμ), so Corollary 4.2
applies. It implies that the second term in (5.5) can be dropped. On the other
hand, the constant C on the right-hand side depends now on Rμ. It is easy to see
that the value Rμ is controlled by the operator norm ‖B‖. Indeed, it is proved in
Lemma 8.4.2 of [15] that, under condition (5.3),

max
ζ∈σ(A)

d(ζ) ≤ x(Ψ, ‖B‖−1),

2As a matter of fact, the Weinstein–Aronszajn formula says that the order of a zero (pole)
of gp at the point λ ∈ σd(A) equals ν(λ(A)) − ν(λ(A0)) ∈ Z, the difference of the algebraic
multiplicities of the eigenvalue λ.
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where x(Ψ, a), a > 0, is the largest solution of the equation Ψ(x) = a. So one can
take

Rμ = sup
λ∈σ(A0)

|λ|+ x(Ψ, ‖B‖−1),

as needed. Hence∫
0

Φ′
1(t)Ψ

q
( t
3

)
dt <∞ =⇒

∑
λ∈σd(A)

Φ (d(λ)) ≤ C(σ(A0),Ψ,Φ, q, ‖B‖) ‖B‖qSq
<∞.

Example 1. Let A0 be a bounded linear operator with a real spectrum, σ(A0) ⊂ R,
and such that condition (5.3) holds with Ψ(x) = x−p, p > 0. Now both σess(A0)
and σ(A0) are compact subsets of the real line, so they are r-convex and do not
split the plane. So for A = A0 +B, B ∈ Sq, and each ε > 0, the bounds

(5.8)
∑

λ∈σd(A)

Φ (d(λ)) ≤ C(σ(A0), p, q, ε) ‖B‖qSq
, Φ(x) =

{
xpq+1+ε, x ≤ 1 ;
xpq−ε, x > 1 ,

and

(5.9)
∑

λ∈σd(A)

dpq+1+ε(λ) <∞

hold. In particular, if W is a bounded linear operator with imaginary component
from Sq, relations (5.8) and (5.9) are true with p = 1 and

A0 =WR =
W +W ∗

2
, B =WI =

W −W ∗

2i
.

A stronger result for self-adjoint A0 is in [20]. Its direct application to opera-
tors A0 similar to a self-adjoint operator, that is, A0 = T−1A1T , A1 = A∗

1, would
lead to a constant C on the right-hand side and depending on the transform T .
In (5.8) this constant depends only on the spectrum of A0.

Example 2. The same argument works for unitary (or similar to unitary) opera-
tors A0 such that there is ζ ∈ T∩ρ(A0). In particular, let V be an Sq-quasiunitary
operator, that is, I − V ∗V ∈ Sq, and ζ ∈ T ∩ ρ(V ). Then its Cayley transform
W = i(ζ + V )(ζ − V )−1 satisfies

WI = (ζ̄ − V ∗)−1{I − V ∗V }(ζ − V )−1 ∈ Sq.

Note that W + i = 2iζ(ζ − A)−1 is invertible, and V = ζ(W + i)−1(W − i). It is
easy to see that

V = U +B, B ∈ Sq, U = ζ(WR + i)−1(WR − i)

is a unitary operator with σ(U) = T, so the bound similar to (5.9) holds with
A0 = U and A = V .
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Example 3. In the Hilbert space L2[0, 1] consider an operator

[Af ](x) = a0(x)f(x) +

∫ 1

0

K(x, y)f(y) dy

with the Hilbert–Schmidt kernel K, i.e., K ∈ L2([0, 1] × [0, 1]). We assume that
the function a0 is complex valued, continuous on [0, 1], and the arc γ = {a0(x) :
0 ≤ x ≤ 1} is Jordan and either a BC-arc (see Definition 2.7) or has finite global
curvature (in particular, C2-smooth). The multiplication operator A0f = a0f is
normal, and its spectrum σ(A0) = γ is the r-convex compact set with connected
complement (see Propositions 2.4 and 2.8). As in (5.8) we have

(5.10)
∑

λ∈σd(A)

Φ (d(λ, γ)) ≤ C(γ, ε) ‖K‖2S2
, Φ(x) =

{
x3+ε, x ≤ 1;
x2−ε, x > 1.
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r-convexity.
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[7] Danzer, L., Grünbaum, B. and Klee, V.: Helly’s theorem and its relatives. In
Proc. Symp. Pure Math., vol. 7, 101–180. Amer. Math. Soc., Providence, 1963.

[8] Demuth, M., Hansmann, M. and Katriel, G.: On the discrete spectrum of
non-selfadjoint operators. J. Funct. Anal. 257 (2009), no. 9, 2742–2759.
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