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Projections of surfaces in R
4 to R

3

and the geometry of their singular images

Raúl Oset Sinha and Farid Tari

Abstract. We study the geometry of germs of singular surfaces in R
3

whose parametrisations have an A-singularity of Ae-codimension less than
or equal to 3, via their contact with planes. These singular surfaces occur
as projections of smooth surfaces in R

4 to R
3. We recover some aspects of

the extrinsic geometry of these surfaces in R
4 from those of the images of

their projections.

1. Introduction

Our investigation of singular surfaces is motivated by the study of the geometry of
smooth surfaces in R

4. Let Pv be the orthogonal projection in R
4 along the non

zero vector v ∈ R
4 to the 3-space v⊥. Given an embedded surface M in R

4, the
surface Pv(M) can be regular or, at any given point, can generically have one of the
local singularities in Table 1. We seek to extract geometric information about M
from Pv(M). We consider the geometric properties of Pv(M), as a surface in the
3-space v⊥, obtained via its contact with planes in v⊥.

We take R
3 as a model for v⊥. Parametrised surfaces in R

3 can have sta-
ble singularities of cross-cap (also called Whitney umbrella) type. The differen-
tial geometry of the cross-cap is studied, for instance, in [6], [8], [9], [18], [21],
and [24]. We study in this paper the geometry of singular surfaces S ⊂ R

3 de-
rived from the contact of S with planes. We shall suppose that S is parametrised
by φ : (R2, 0) → (R3, 0), where φ is A-equivalent to one of the normal forms in
Table 1. (Two germs f and g are said to be A-equivalent, written f ∼A g, if
g = k ◦f ◦h−1 for some germs of diffeomorphisms h and k of the source and target
respectively.) Of course we cannot take φ as one of the normal forms in Table 1 as
diffeomorphisms in the target do not preserve the geometry of the image of φ.

The singularities in Table 1 are of corank 1, so one can write φ in the form
(x, p(x, y), q(x, y)), with p and q having no constant or linear parts. We can then
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Table 1. Classes of A-map-germs of Ae-codimension less than or equal to 3, [16].

Name Normal form Ae-codimension

Immersion (x, y, 0) 0

Crosscap (x, y2, xy) 0

S±
k (x, y2, y3 ± xk+1y), k = 1, 2, 3 k

B±
k (x, y2, x2y ± y2k+1), k = 2, 3 k

C±
3 (x, y2, xy3 ± x3y) 3

Hk (x, xy + y3k−1, y3), k = 2, 3 k

P3 * (x, xy + y3, xy2 + ay4), a �= 0, 12 , 1,
3
2 3

* The codimension of P3 is that of its stratum.

associate to φ a pair of quadratic forms (j2p, j2q), given by the second degree Taylor
expansions of p and q at the origin. As the contact of a surface with a plane is
invariant under affine transformations, we classify the singular points of S accord-
ing to the G = GL(2,R)×GL(2,R)-class of (j2p, j2q) (Definition 2.1). We obtain
more geometric information about the cross-cap in Section 2. For instance, in
Theorem 2.3 we relate the singularities of the height functions on the cross-cap
to the torsion of the branches of its parabolic set. For the remaining singularities
in Table 1, we identify in Theorem 2.7 the singularities of the parabolic set of S
in the source (which we call the preparabolic set and denote by PPS) as well as
those of the height functions on S (Theorem 2.8). We explain in Remark 2.10 and
Table 4 the high degeneracy of the singularities of the PPS.

In Section 3 we apply the results in Section 2 to obtain geometric information
about surfaces inR

4. A point on a generic surface in R
4 is called elliptic, hyperbolic,

parabolic or an inflection point (see Section 3). One key observation we make here
is that this classification is precisely that of the G-classification of the singular
points of Pv(M) along any tangent direction v (Theorem 3.3). This explains a
result in [18] comparing the type of the cross-cap of Pv(M) at Pv(p) and that of
the point p.

It is worth observing that the results in this paper are independent of the
metric as they are derived from the contact of the surfaces with planes and lines.
They are valid, for instance, for projections of surfaces in projective 4-space to
projective 3-space.

2. The geometry of singular surfaces

We consider the local geometry of a singular surface S parametrised locally by
the germ of a smooth function φ : (R2, 0) → (R3, 0), where φ is A-equivalent to a
singularity of Ae-codimension less than or equal to 3 in Table 1. More specifically,
we consider the contact of these singular surfaces with planes. This contact is
measured by the K-singularities of the membersHv of the family of height functions
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on S, H : S × S
2 → R, given by

H(x, y, v) = Hv(x, y) = φ(x, y) · v,
where S

2 denotes the unit sphere in R
3. (Two germs, at the origin, of functions f

and g are K-equivalent if g(x, y) = k(x, y)f(h−1(x, y)), where h is the germ of
a diffeomorphism and k is the germ of a function not vanishing at the origin.)
The K-singularities we shall use in this paper are the simple singularities (below
left, [1]) and unimodal singularities (below right, [23]), having the following normal
forms:

A±
k : x2 ± yk+1, k ≥ 0 J10 : x3 + ax2y2 + y6, 4a3 + 27 �= 0

D±
k : x2y ± yk−1, k ≥ 4 X1,0 : x4 + ax2y2 + y4, a2 − 4 �= 0

E6 : x3 + y4 X1,0 : xy(x2 + axy + y2), a2 − 4 < 0
E7 : x3 + xy3

E8 : x3 + y5

(In the complex case, the singularity X1,0 has one normal form given by x4 +
ax2y2 + y4, a2 − 4 �= 0, but this form does not include the case of two real roots.)
The zero sets of the above singularities are drawn in Table 4. In this paper, the
singularity type of the zero set of the germ of a function refers to the K-singularity
type of the germ of the function.

Contact with planes is affine invariant, therefore we can make affine changes of
coordinates in the target (see [3]).

All the singularities in Table 1 are of corank 1, so we can make changes of
coordinates in the source and rotations in the target and write φ in the form

φ(x, y) = (x, p(x, y), q(x, y))

with p, q ∈ M2(x, y) where M(x, y) denotes the maximal ideal in the ring of germs
of functions in (x, y). We write Q1(x, y) = j2p(x, y) = p20x

2 + p21xy + p22y
2 and

Q2(x, y) = j2q(x, y) = q20x
2 + q21xy + q22y

2, where the k-jet jkf of a germ f at
the origin is its Taylor polynomial of degree k at the origin.

We consider the action of G = GL(2,R) × GL(2,R) on the pairs (Q1, Q2),
of binary forms given by linear changes of coordinates in the source and target.
The G-orbits (see for example [12]) are listed in Table 2.

Definition 2.1. A singular point of S is called hyperbolic, elliptic, or parabolic
or is said to be an inflection point if the G-class of (Q1, Q2) is as in Table 2.

At a singular point of S, dφ0(T0R
2) is a line, which we call the tangent line to S.

There is a plane of directions orthogonal to this tangent line. These directions are
called the normal directions to S at the singular point. The Gauss map of S is
not defined at a singular point. However, we can still define the closure of the
parabolic set of S as the image under φ of the zero set of

(2.1) K̃(x, y) = ((φx × φy · φxx)(φx × φy · φyy)− (φx × φy · φxy)2)(x, y).
Note that away from the singular point, K̃ vanishes if and only if the Gaussian

curvature of S vanishes. We call the zero set of K̃ the preparabolic set (abbrevi-
ated PPS) of S.
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Table 2. The G-classes of pairs of quadratic forms.

G-class Name

(x2, y2) hyperbolic point

(xy, x2 − y2) elliptic point

(x2, xy) parabolic point

(x2 ± y2, 0) inflection point

(x2, 0) degenerate inflection

(0, 0) degenerate inflection

Let X be one of the normal forms in Table 1. We define the subset

TX := {φ ∈ E(2, 3) : φ ∼A X}.
of the set E(2, 3) of all smooth map-germs (R2, 0) → (R3, 0).

We give TX the induced Whitney topology and say that a property (P) is
generic if it is satisfied in a residual subset of TX . Map-germs in such a residual
subset are referred to as generic map-germs.

Let W be a codimension k subset of TX . We can proceed as above and give W
the induced Whitney topology. Then φ ∈ W is said to be a generic codimension k
germ if it belongs to a residual subset of W .

2.1. The cross-cap

The study of the differential geometry of the cross-cap from the singularity theory
point of view was initiated in [6], [24]; see also [8], [9], [18], and [21] for other
studies of the geometry of the cross-cap. It is shown in [24] that, by a suitable
choice of a coordinate system in the source and an affine coordinate change in the
target, a parametrisation of a cross-cap can be taken to the form

(2.2) φ(x, y) = (x, xy + p(y), y2 + ax2 + q(x, y)),

where p∈M4(y) and q∈M3(x, y). The following is also shown in [24]. When a<0,
the height function along any normal direction at a cross-cap point has an A1-
singularity. Such a cross-cap is called hyperbolic cross-caps as all its points other
than the origin, have negative Gaussian curvature (Figure 1, left). When a > 0,
there are two normal directions (0,±2

√
a, 1) at the cross-cap point along which the

height function has a singularity more degenerate than A1 (that is, of type A≥2).
Such a cross-cap is called an elliptic cross-cap (Figure 1, right). The singularity of
the height function along the degenerate normal direction is precisely of type A2

if and only if q(∓ 1√
a
, 1) �= 0. When a = 0, there is a unique normal direction at

the cross-cap point where the height function has a singularity more degenerate
than A1. The singularity of its corresponding height function is of type A2 if and

only if ∂3q
∂x3 (0, 0) �= 0. Such a cross-cap is called a parabolic cross-cap.
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Figure 1. Hyperbolic and elliptic cross-caps.

We start with this simple but important observation.

Theorem 2.2. A cross-cap is hyperbolic, elliptic, or parabolic if and only if its
singular point is elliptic, hyperbolic, or parabolic (as in Table 2) respectively.

Proof. The pair of quadratic forms associated to φ in (2.2) is (xy, y2 + ax2). This
is G-equivalent to (xy, x2 − y2), (x2, y2), or (x2, xy) in Table 2 if and only if a < 0,
a > 0, or a = 0, and the result follows from the discussion above. �

We introduce a new notation and call an elliptic cross-cap where the height
function has an Ai-singularity along one degenerate direction and an Aj-singularity
along the other degenerate direction an elliptic cross-cap of type AiAj or an AiAj-
elliptic cross-cap. Likewise, we call an Ak-parabolic cross-cap one where the height
function has a degenerate singularity (of type Ak) along the unique degenerate
normal direction.

When a �= 0 above, the PPS has an A+
1 -singularity if a < 0 and A−

1 -singularity
if a > 0. The closure of the parabolic set on the cross-cap consists of two tangential
curves, and each branch of the parabolic set is linked to one of the two degenerate
normal directions at the cross-cap point.

Theorem 2.3. Let Pi(t), i = 1, 2, be parametrisations of the branches of the
parabolic set on an elliptic cross-cap (with Pi(0) being the cross-cap point) and
denote by τi(t) the torsions of these space curves. Then the height function along
the degenerate normal direction associated to the branch Pi has a singularity at the
cross-cap point of type

A2 ⇐⇒ τi(0) �= 0,
A3 ⇐⇒ τi(0) = 0, τ ′i(0) �= 0,
A4 ⇐⇒ τi(0) = τ ′i(0) = 0, τ ′′i (0) �= 0.

Proof. The proof follows from direct calculations (using Maple). We parametrise
the cross-cap as in (2.2) and set a = 1 with further affine changes of coordinates.

We write j5p = p44y
4 + p55y

5 and j5q = q3 + q4 + q5 with qi =
∑i

j=0 qijx
i−jyj .

The PPS is given by the zero set of K̃ in (2.1). The 2-jet of K̃ is 4(x− y)(x+ y).
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Consider for example the branch with tangent direction (1, 1), which is the
graph of the function y(x) = x+α2x

2+α3x
3+α4x

4+h.o.t, where the abbreviation
h.o.t. indicates higher order terms, with

α2 = q31 +
1
2q32 +

3
2q30,

α3 =− 3
4q31q33 +

3
8q

2
31 +

1
2q31q32 − 1

8q
2
32 +

3
4q30q32 − 9

8q
2
30 + 3q40 + 2q42

+ 3
2q43 +

5
2q41 + q44 − 9

8q
2
33 − 3

2q33q32 − 2p44,

α4 =
9
2q51 +

7
2q53 + 5q50 +

5
2q55 − 5p55 − 9

8q33q
2
31 + 4q52 − 3

2q41q33 + 9q33p44

+ 3
2q40q32 + 3q30q42 − 7q31p44 − 27

8 q33q31q32 − 9
2q33q30q32 − 9

8q30q31q33

+3q54 +
5
16q

2
31q32 + 3q31q42 − 3

16q30q
2
32 − 9

16q32q
2
30 − 3

2q32q44 − 9
16q30q

2
31

− 9
2q30q40 − 81

16q30q
2
33 +

1
16q

3
32 +

27
16q

3
30 +

45
16q

2
33q32 +

9
2q30q43 +

3
2q41q32

−12p44q30 − 9
2q33q43 + 2q41q31 + q42q32 + 3q31q43 +

9
2q30q44 + 2q31q44

−3q42q33 +
27
8 q

3
33 − 9

4q31q
2
33 − 6q33q44.

We calculate the torsion of the curve φ(x, y(x)) and its first two derivatives at
x = 0 (using Maple). Observe that τ(0), τ ′(0), and τ ′′(0) depend only on α2, α3,
and α4.

The height function along the degenerate normal direction v1 = (0,−2, 1),
which corresponds to the branch (x, y(x)) of the parabolic set is given by hv1 =
(y − x)2 + q(x, y) + 2p(y) and has a singularity at the origin of type

A2 ⇐⇒ q3(1, 1) �= 0,
A3 ⇐⇒ q3(1, 1) = 0 and (3q33 + q31 + 2q32)

2 − 4q4(1, 1) + 8p44 �= 0,
A4 ⇐⇒ q3(1, 1) = (3q33 + q31 + 2q32)

2 − 4q4(1, 1) + 8p44 = 0 and O �= 0

with
O= q5(1, 1)− 2p55 +

1
4 (q32 + 3q33)(q31 + 3q33 + 2q32)

2

− 1
2 (q41 + 2q42 + 3q43 + 4q44 − 8p44)(q31 + 3q33 + 2q32).

The result now follows by observing that the above conditions for the singular-
ities of the height function hv1 can be expressed in terms of τ(0), τ ′(0), and τ ′′(0)
and these are as in the statement of the theorem. �

Remark 2.4. Theorem 2.3 gives a geometric characterisation of AiAj-elliptic
cross-caps when i, j ≤ 4. The A2A2-cross-caps are generic, the A2A3-cross-caps
are of codimension 1, and the A2A4 and A3A3-cross-caps are of codimension 2.

2.2. Singularities more degenerate than a cross-cap

We turn now to the remaining singularities in Table 1. We shall describe the
singularities of the PPS and those of the height functions along normal directions.

When S has an Sk, Bk, or C3 singularity, we can make changes of coordi-
nates in the source and affine changes of coordinates in the target to give it a
parametrisation of the form

(2.3) φ(x, y) = (x, y2 + p(x), q(x, y)),
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where p ∈ M2(x) and q ∈ M2(x, y) ([7]; the result follows from the fact that p(x, y)
is an R-versal unfolding of y2, so is R+-equivalent to y

2 + p(x). The parametrisa-
tion (2.3) can also be used for the cross-cap). We set

p(x) = p20x
2 + p30x

3 + p40x
4 + . . .

q(x, y) = q20x
2 + q22y

2 +
∑3

j=0 q3jx
3−jyj +

∑4
j=0 q4jx

4−jyj + . . .

Note that q21 = 0, because the singularity of φ at the origin is more degenerate
than a cross-cap. The conditions for φ in (2.3) to have one the A-types in Table 1
are as follows:

B1=S1 : q31 �= 0, q33 �= 0;
B2 : q31 �= 0, q33 = 0, 4q31q55 − q243 �= 0;
B3 : q31 �= 0, q33 = 0, 4q31q55 − q243 = 0,

2q331q77 − (2q53q55 + q43q44)q
2
31 + (q43q53 − q41q55)q43q31 − q41q

2
43 �= 0;

S2 : q31 = 0, q33 �= 0, q41 �= 0;
S3 : q31 = 0, q33 �= 0, q41 = 0, q51 �= 0;
C3 : q31 = 0, q33 = 0, q41 �= 0, q43 �= 0.

At an Hk or P3-singularity, we can give S a parametrisation of the form

(2.4) φ(x, y) = (x, xy + p(x, y), q20x
2 + q(x, y)),

where p, q ∈ M3(x, y). The singularities of φ are identified as follows:

H2 : q33 �= 0, 3p55q
2
33 − (4p44 q44 + 3p33 q55) q33 + 4p33 q

2
44 �= 0

H3 : q33 �= 0, 3p55 q
2
33 − (4p44 q44 + 3p33 q55) q33 + 4p33 q

2
44 = 0, ξ �= 0

P3 : q33 = 0, p33 q32 q44 �= 0, q44 �= 0, 1/2, 3/2.

The expression ξ depends on the 7-jets of p and q.

We start with the identification of the type of the singular point of S.

Theorem 2.5. (1) Let φ be as in (2.3). Then the origin is either a hyperbolic point
(if and only if q20−p20q22 �=0) or an inflection point (if and only if q20−p20q22=0).

(2) Let φ be as in (2.4). Then the origin is either a parabolic point (if and only
if q20 �= 0) or an inflection point (if and only if q20 = 0).

Proof. For part (1), we make the affine change of coordinates k(X,Y, Z) = (X,Y ,
Z − q22Y ) in the target, so that j2(k ◦ φ) = (x, y2 + p20x

2, (q20 − p20q22)x
2). The

result follows by comparing (y2 + p20x
2, (q20 − p20q22)x

2) with the normal forms
in Table 2. Part (2) is immediate as j2φ = (x, xy, q20x

2). �

Remark 2.6. It is worth observing that it follows from Theorem 2.5 that a singular
point of a surface with a singularity of type Sk, Bk, or C3 is never an elliptic or a
parabolic point. Similarly, for a surface with a singularity of type Hk and P3, the
singular point is never an elliptic or a hyperbolic point.

In the following, the singularity type of the PPS refers to the K-singularity
type of the germ of the function K̃.
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Theorem 2.7. If the singular point of S is not an inflection point, the generic
singularities of the PPS are as shown in Table 3. If the singular point of S is an
inflection point, the PPS has generically an X1,0-singularity.

Table 3. The singularities of φ and of the PPS of φ(R2, 0).

φ B±
1 B2 B3 S2 S3 C3 H2 H3 P3

PPS D∓
4 D5 D5 E7 J10 X1,0 D5 D5 J10

Proof. The PPS is the zero set of the function K̃ in (2.1). For the Sk, Bk and
C3-singularities we take φ as in (2.3). Then,

j4K̃ =8(q20 − p20q22)(−q31x2y + 3q33y
3)− 4p20q

2
31x

4

− 8(q31(3q30 − p20q32 − 3p30q22) + q41(q20 − p20q22))x
3y

+ 8q31(2p20q33 − 3q31)x
2y2 + 8(3q33(3q30 − p20q32 − 3p30q22)

+ 3q43(q20 − p20q22)− 4q31q32)xy
3 + 16(4q44(q20 − p20q22)− q232)y

4.

The proof is an exercise in the recognition of singularities of functions. If
q20−p20q22 = 0 (that is, the origin is an inflection point, see Theorem 2.5), the 4-jet
of K̃ is generically a nondegenerate quartic, so the singularity is of type X1,0.

Suppose that q20 − p20q22 �= 0.
The map-germ φ has an S±

1 (=B±
1 )-singularity if and only if q31q33 �= 0, so

the PPS has a D∓
4 -singularity.

At an S2 singularity of φ, q31 = 0 and q41q33 �= 0. Then the coefficient of x3y
in K̃ becomes 8(q20 − p20q22)q41, so the PPS has an E7-singularity.

At an S3-singularity of φ, q31 = q41 = 0 and q51q33 �= 0. Working with the 6-jet
of K̃ we find that the PPS has a singularity of type J10.

If φ has a B2-singularity, then q33 = 0, q31 �= 0, and 4q31q55 − q243 �= 0. The co-
efficient of y4 in K̃ is not zero if and only if 4(q20−p20q22)q44−q232 �= 0. Therefore,
the PPS has generically aD5-singularity. (When 4(q20−p20q22)q44−q232 = 0, we get
a D6-singularity.) Observe that the condition to have a D5-singularity is distinct
from the condition 4q31q55−q243 = 0 for the map-germ φ to have a B≥3-singularity.
Therefore, at a B3-singularity the PPS also has generically a D5-singularity.

At a C3-singularity, q31 = q33 = 0 and q41q43 �= 0. The 3-jet of K̃ is identically
zero and its 4-jet is generically a nondegenerate quartic. Therefore the singularity
of the PPS is of type X1,0.

At an Hk-singularity of S, we can take φ as in (2.4). Then the singularity is of
type H≥2 if and only if q33 �= 0. The 4-jet of K̃ is given by

12q20q33yx
2 + 4q20q32x

3 − 9q233y
4 + 36p33q20q33y

3x
+ 4(3q33(p31q20 + 3q30) + 3q20(q43 − q31p33 + p31q33) + q32(q31 + 2p32q20))yx

3

+ 6(q33q31 + 2p33q20q32 + 2q20(2q44 − q32p33 + q33p32) + 2q33(q31 + 2p32q20))y
2x2

+ (−q231 + 4(p31q20 + 3q30)q32 + 4q20(p31q32 + q42 − q31p32))x
4.

We have a D5-singularity if q20q33 �= 0. Note that the condition q20 = 0 is
that for the origin to be an inflection point (Theorem 2.5), and if it holds, the
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singularity of the PPS is generically of type X1,0. Suppose that q20 �= 0. Then
the PPS has a D5-singularity at an H≥2-singularity of φ. If q33 = 0, we have a
P3-singularity of φ and the PPS has generically a J10-singularity. �

We consider now the height functions on S = φ(R2, 0).

Theorem 2.8. (1) Suppose that the origin is not an inflection point of S. When S
has an Sk, Bk, or C3-singularity, there are two distinct normal directions vi,
i = 1, 2, at its singular point along which the height function Hvi has a singularity
of type A≥2. We say that the surface is of type AkAl if Hv1 has an Ak-singularity
and Hv2 has an Al-singularity.

The Sk-surfaces are always of type A2A≥2; the generic ones are of type A2A2

and the type A2A3 is of codimension 1.
The Bk and C3 surfaces are always of type A≥2A3. The generic ones are of

type A2A3 and the type A3A3 is of codimension 1.
If S has an Hk-singularity (respectively P3-singularity), there is a unique de-

generate normal direction at its singular point along which the height function has
a singularity of type A2 (respectively generically of type A3).

(2) If the singular point of S is an inflection point, there is a unique degener-
ate normal direction at this point along which the height function has generically
a D4-singularity.

Proof. (1) We take φ as in (2.3). If we set v = (α, β, γ), we get

Hv(x, y) = αx + β(y2 + p(x)) + γq(x, y).

This height function is singular at the origin if and only if α = 0, that is, if and
only if v is in the normal plane to S at the origin. For such v, the 2-jet of Hv is

(p20β + q20γ)x
2 + (β + q22γ)y

2.

The singularity of Hv is of type A1 if and only if (p20β + q20γ)(β + q22γ) �= 0.
It is of type Ak≥2 if p20β + q20γ = 0 and β + q22γ �= 0 or vice-versa. Therefore,
there are two distinct directions in the normal plane where the height function has
a degenerate singularity of type Ak≥2 unless p20β+ q20γ = β + q22γ = 0. The last
two equations are satisfied if and only if q20 − p20q22 = 0, i.e., if and only if the
origin is an inflection point. We suppose in this part of the proof that the origin
is not an inflection point and deal with each degenerate direction separately.

(i) Suppose that β + q22γ �= 0 and p20β + q20γ = 0. Then v is parallel to
v1 = (0,−q22, 1) and the 3-jet of Hv1 is given by

(q20 − p20q22)x
2 + (q30 − q22p30)x

3 + q31x
2y + q32xy

2 + q33y
3.

At an Sk-singularity of φ, q33 �= 0, so the height function Hv1 has a singularity
of type A2.

Suppose now that q33 = 0, i.e., φ has a Bk or a C3-singularity. The relevant
part of the 4-jet of Hv1 is

(q20 − q22p20)x
2 + q32xy

2 + q44y
4



42 R. Oset Sinha and F. Tari

and the singularity is of type A3 if and only if the above expression is not a perfect
square, that is, if and only if 4(q20 − q22p20)q44 − q232 �= 0. This is precisely the
condition in the proof of Theorem 2.7 for the PPS to have a D5-singularity when φ
has a Bk-singularity, and is distinct from the conditions determining k in the Bk

series or the C3-singularity. When 4(q20−q22p20)q44−q232 = 0, Hv1 has a singularity
of type A≥4.

(ii) We suppose now that p20β + q20γ �= 0 and β + q22γ = 0. We have a
degenerate direction parallel to v2 = (0,−q20, p20) and the 3-jet of Hv2 is given by

−(q20 − p20q22)y
2 + (p20q30 − q20p30)x

3 + p20q31x
2y + p20q32xy

2 + p20q33y
3.

Thus, Hv2 has an A2-singularity if and only if p20q30 − q20p30 �= 0.
If p20q30− q20p30 = 0, by analysing the 4-jet of Hv2 , we find that its singularity

is of type A3 if and only if p220q
2
31 − 4(q20 − q22p20)(q20p40 − p20q40) �= 0.

We turn now to the Hk and P3-singularities and take φ as in (2.4). Then,
j2Hv(x, y) = v2xy + v3q20x

2, so there is a unique direction v = (0, 0, 1) along
which Hv has a singularity more degenerate than A1. We have Hv(x, y) = q20x

2+
q(x, y). As it is assumed that the origin is not an inflection point, q20 �= 0, so the
singularity of Hv is precisely of type A2 when q33 �= 0, i.e. when φ has a singularity
of type Hk. It is generically of type A3 at a P3-singularity of φ.

(2) Suppose now that the origin is an inflection point, so q20 − p20q22 = 0, and
denote by v (= v1 = v2) the unique degenerate normal direction. Then the 3-jet
of Hv is given by

(−q22p30 + q30)x
3 + q33y

3 + q31x
2y + q32xy

2.

This is a singularity of type D4 unless the above cubic has a repeated root. �

When the height function on S is degenerate along two distinct normal direc-
tions (Theorem 2.8), we can split the PPS of S into two components, with each
component related to one of the degenerate normal directions. The following result
clarifies the high degeneracy of the singularities of the PPS in Theorem 2.7.

We denote by Li the component of the PPS associated to the height func-
tion Hvi , i = 1, 2, on S, where the vi are as in the proof of Theorem 2.8.

Theorem 2.9. The component L2 of the PPS is always a smooth curve.
The component L1 has a singularity of type Ak when S has an Sk-singularity,

k = 1, 2, 3. At a B≥2-singularity of S, the singularity of L1 is of type A2 (the sin-
gularity can be of type A3 in a codimension 1 Bk-surface), and at a C3-singularity
of S it is generically of type D4.

The smooth curve L2 is transverse to L1 at an S1, Bk, or C3 singularity.
The transversality fails at a S≥2-singularity.

Proof. We parametrise the directions near v1 = (0,−q22, 1) by (α, β − q22, 1), so
the (modified) family of height functions on S is given by

H1(x, y, α, β) = αx+ (−q22 + β)(y2 + p(x)) + q(x, y).
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The component L1 of the PPS is the set of points (x, y) for which there exists (α, β)
such that

H1
x = α+ 2(q20 − q22p20)x+ h.o.t = 0,

H1
y = 2βy + q31x

2 + 2q32xy + 3q33y
2 + h.o.t = 0,

(H1
xy)

2 −H1
xxH

1
yy = −4(q20 − q22p20)(q32x+ 3q33y + β) + h.o.t = 0.

We are assuming here that the origin is not an inflection point (see Theo-
rem 2.8). The first (respectively third) equation gives α (respectively β) as a
function of x and y. Substituting these in the second equation gives an equation
with the 2-jet q31x

2 − 3q33y
2.

If q31q33 �= 0, i.e. φ has an S1-singularity, then L1 has an A1-singularity.
If q33 �= 0 and q31 = 0, i.e. φ has an Sk-singularity, the relevant part of the equa-

tion of L1 is given by −3q33y
2+q41x

3. Thus, this component has an A2-singularity
at an S2-singularity of φ and an A3-singularity at an S3-singularity of φ.

If q33 = 0 and q31 �= 0, i.e., φ has an Bk-singularity, then a calculation similar to
that above shows that L1 has an A2-singularity unless 4(q20− q22p20)q44− q232 = 0,
in which case the singularity has type A3 (or more degenerate).

When q33 = q31 = 0, φ has a C3-singularity and L1 has generically a singularity
of type D4.

For the component L2 of the PPS, we assume, without loss of generality,
that p20 �=0 and parametrise the directions near v2=(0,−q20, p20) by (α,β−q20, p20).
Thus, the (modified) family of height functions on S is given by

H2(x, y, α, β) = αx+ (−q20 + β)(y2 + p(x)) + p20q(x, y).

The component L2 of the PPS is the set of points (x, y) for which there exists (α, β)
such that

H2
x = α+ h.o.t = 0,

H2
y = −2(q20 − q22p20)y + h.o.t = 0,

(H2
xy)

2 −H2
xxH

2
yy = −4(q20 − q22p20)

· (3(p20q30 − q20p30)x+ p20q31y + βp20) + h.o.t = 0.

The first (respectively third) equation gives α (respectively β) as functions in (x, y).
Substituting these in the second equation gives y = f(x), with f(0) = f ′(0) = 0.
Therefore the component L2 is always a smooth curve. Its tangent direction at the
origin is in the direction of (1, 0) and this is transverse to the tangent direction of L1

at an S1, Bk, or C3-singularity. The transversality fails at an S≥2-singularity. �

Remark 2.10. The results in Theorem 2.9 explain the high degeneracy of the
singularities of the PPS when it has two components. Each component has a given
singularity type and the two components are transverse except for the S≥2-surfaces;
see Table 4 where “tg” stands for tangency and “�” stands for transversality
between the components L1 and L2. Note that the case of an isolated point X1,0-
singularity does not occur on the PPS.
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Table 4. The generic structure of the PPS and of its two components.

S B1 B2 B3

L1 A±
1 A2 A2

L2 A0 (�) A0 (�) A0 (�)
PPS D±

4 D5 D5

S S2 S3 C3

L1 A2 A±
3 D±

4

L2 A0 (tg) A0 (tg) A0 (tg)

PPS E7 J10 X1,0

3. Projections of surfaces in R
4 to 3-spaces

The geometry of surfaces in R
4 is studied, for instance, in [4], [5], [10], [11], [13],

[14], [15], [19], and [22]. Given a point p ∈ M consider the unit circle in TpM
parametrised by θ ∈ [0, 2π]. The curvature vectors η(θ) of the normal sections
of M by the hyperplane 〈θ〉 ⊕ NpM form an ellipse in the normal plane NpM ,
called the curvature ellipse [14]. Points on the surface are classified according to
the position of the point p with respect to the ellipse (NpM is viewed as an affine
plane through p). The point p is called elliptic, parabolic, or hyperbolic if it is
inside, on, or outside the ellipse.

The curvature ellipse is the image of the unit circle in TpM under a map formed
by a pair of quadratic forms (Q1, Q2). This pair of quadratic forms is the 2-jet
of the 1-flat map F : (R2, 0) → (R2, 0) (i.e. without constant or linear terms)
whose graph, in orthogonal coordinates, is locally the surface M. As the contact
of the surface with lines and planes is affine invariant [3], an alternative approach
for studying the geometry of surfaces in R

4 is given in [4]. It uses the pencil
of the binary forms determined by the pair (Q1, Q2). Each point on the surface
determines a pair of quadratics

(Q1, Q2) = (ax2 + 2bxy + cy2, lx2 + 2mxy + ny2).

A binary form Ax2+2Bxy+Cy2 is represented by its coefficients (A,B,C)∈R
3,

where the cone B2−AC = 0 corresponds to perfect squares. If the formsQ1 andQ2

are independent, they determine a line in the projective plane RP 2 and the cone
determines a conic. This line meets the conic in 0, 1, or 2 points if δ(p) is negative,
zero, or positive, where

δ(p) = (an− cl)2 − 4(am− bl)(bn− cm).

A point p is said to be elliptic, parabolic, or hyperbolic if δ(p) is negative, zero, or
positive. The set of points (x, y) where δ = 0 is called the parabolic set of M and
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is denoted by Δ. If Q1 and Q2 are dependent, the rank of the matrix
(
a b c
l m n

)
is 1

provided either of the forms is nonzero; the corresponding points on the surface
are referred to as inflection points. (All the above notions agree with those defined
using the curvature ellipse.)

We consider the action of G (see the introduction) on the pairs of binary
forms (Q1, Q2). The G-orbits and the characterisation of the corresponding point
on the surface are as those given in Table 2.

The geometrical characterisation of points of M using singularity theory was
first obtained in [15] using the family of height functions H : M × S3 → R, with
H(p, w) = p · w.

The height function Hw(p) = H(p, w) is singular if and only if w ∈ NpM . It is
shown in [15] that an elliptic point is a nondegenerate critical point of Hw for any
w ∈ NpM . At a hyperbolic point, there are exactly two directions in NpM , called
binormal directions, such that p is a degenerate critical point of the correspond-
ing height functions. The two binormal directions coincide at a parabolic point.
A hyperplane orthogonal to a binormal direction is called an osculating hyperplane.

The direction of the kernel of the Hessian of a height function along a binormal
direction is an asymptotic direction associated to the given binormal direction [15].
The asymptotic directions are called conjugate directions in [14], and are defined
as the directions along θ such that the curvature vector η(θ) is tangent to the
curvature ellipse (see also [10], [15]). Thus, if p is not an inflection point, there
are 0, 1, or 2 asymptotic directions at p depending on p being an elliptic, parabolic,
or hyperbolic point. If p is an inflection point, then every direction in TpM is
asymptotic [15]. The configurations of the asymptotic curves at inflection points
of imaginary type (where the parabolic set Δ has an A+

1 -singularity) are given
in [10], and the configurations at inflection points of real type (where Δ has an
A−

1 -singularity) and at other points on the curve Δ are given in [5].
Asymptotic directions can also be described as in [17] and [4] via the singulari-

ties of the members of the family of projections P ofM on hyperplanes. The family
of orthogonal projections in R

4 is given by P : R4 × S3 → TS3 with

P (p, v) = (v, p− (p · v)v).
We denote the second component of P by Pv(p) = p− (p ·v)v. For v fixed, the pro-
jection can be viewed locally at a point p ∈M as a map-germ Pv : (R2, 0) → (R3, 0).
For a generic surface, the germ Pv has only local singularities of Ae-codimension
less than or equal to 3 in Table 1. (This is why in Section 2 we considered only
surfaces with singularities as in Table 1.)

The projection Pv is singular at p if and only if v ∈ TpM . The singularity is a
cross-cap unless v is an asymptotic direction at p. The codimension 2 singularities
occur generically on curves on the surface and the codimension 3 ones at special
points on these curves (see Figure 2 for their configurations at noninflection points).
The H2-curve coincides with the Δ-set [4]. The B2-curve of Pv, with v asymptotic,
is also the A3-set of the height function along the binormal direction associated
to v [4]. The A3-set is called a flat ridge in [20]. This curve meets the Δ-set
tangentially at isolated points [5], [15]. At inflection points the Δ-set has a Morse
singularity and the configuration of the B2 and S2-curves there is given in [4].
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Elliptic

Hyperbolic

Parabolic (  )

B2

S2

S3C3

H3 H2

B3

B1 S1=

P3Δ

Figure 2. Special curves and points on generic surfaces in R
4 away from inflection points.

Let M be a smooth surface in R
4 and let ψ : U ⊂ R

2 → R
4 be a local

parametrisation of M . To simplify notation, we write M = ψ(U) and denote
also the restriction of P to M by P . Thus, the family of orthogonal projections
P : U × S3 → TS3 on M is given by P ((x, y), v) = (v, Pv(ψ(x, y))).

Let w be a unit vector in TvS
3, so w · v = 0 and w · w = 1. We write

D = {(v, w) ∈ S3 × S3 | v · w = 0}.
Given (v, w) ∈ D, the height function on the projected surface Pv(M) along

the vector w is given by

H(v,w)(x, y) = Pv(x, y) · w = (ψ(x, y)− (ψ(x, y) · v)v) · w = ψ(x, y) · w.
This is precisely the height function on M along the direction w. It particular, it
follows that:

Remark 3.1. The height function H(v,w) on Pv(M) along the direction w has the
same singularities as the height function Hw on M along w.

The family H : U×D → R has parameters in D which is a 5-dimensional mani-
fold. However, it is trivial along the parameter v. Thus, the generic singularities
that can appear in H(v,w) are those of Ke-codimension less than or equal to 3.

For v fixed, w varies in a 2-dimensional sphere, so for a genericM and for most
directions v, the height function on Pv(M) has K-singularities of types A±

1 , A2,
and A±

3 , and these are versally unfolded by varying w. For isolated directions v,
we expect the following singularities: A4, D

±
4 and an A2 or an A3 singularity

which is not versally unfolded by the family Hv. We denote the latter by NVA2

or NVA3.
We recover in this section geometric information about the surfaceM from the

geometry of the surface Pv(M). In [18] we considered the K-singularities of the
pre-image onM of the parabolic set of Pv(M). We called this pre-image the v-PPS.
The generic singularities that appear on the v-PPS can be of high codimension.
The results in Section 2 explain the source of this high degeneracy (Theorem 2.9
and Table 4).

We take the point p of interest onM to be the origin in R
4, and take the surface

locally at p to have the Monge form ψ(x, y) = (x, y, f1(x, y), f2(x, y)), with

f1(x, y) =Q1(x, y) +
∑3

i=0 c3ix
3−iyi +

∑4
i=0 c4ix

4−iyi + h.o.t.,

f2(x, y) =Q2(x, y) +
∑3

i=0 d3ix
3−iyi +

∑4
i=0 d4ix

4−iyi + h.o.t.,

where the pair (Q1, Q2) of quadratics is one of the normal forms in Table 2.
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3.1. Projecting along a nontangential direction

Suppose that v ∈ S3 is not a tangent direction at p ∈ M . We write v = vT + vN
where vT is the orthogonal projection of v on the tangent space TpM and vN is its
orthogonal projection on the normal space NpM . Since vN �= 0, the surface Pv(M)
is smooth at Pv(p).

Proposition 3.2. The height function H(v,w) on Pv(M) is singular at Pv(p) if
and only if w ∈ NpM . For a generic surface, the singularity of H(v,w) at Pv(p)
has the type

• A2 if p is a hyperbolic or parabolic point and w = v⊥N is a binormal direction,
where v⊥N is the orthogonal direction to vN in NpM .

• A3 if w = v⊥N is a binormal direction, p is on the B2-curve, and v does not
lie on a circle of directions C in the sphere w⊥ ∈ D. Then the v-PPS is a
regular curve.

• NVA3 if w = v⊥N is a binormal direction, p is on the B2-curve and v ∈ C. For
generic v ∈ C the singularity of the v-PPS is an A1-singularity. For isolated
directions in C the singularity becomes an A2-singularity, and for special
points on the B2-curve it becomes an A3-singularity.

• A4 if w = v⊥N is a binormal direction and p is an A4-point on the B2-curve.

• D4 if w = v⊥N is a binormal direction and p is an inflection point.

Proof. The identification of the singularities of H(v,w) follows from Remark 3.1.
To analyse the structure of the v-PPS, we follow the method in [2] (see also [3])
and consider (locally) the family of Monge–Taylor maps θ :M×S3 → Vk, where Vk
denotes the vector space of polynomials in x and y of degree at least 2 and at most k.
The family θ is constructed as follows. Given a point q on M near p, we choose
an orthonormal coordinate system in v⊥ ⊂ R

4 so that θv(M) is given locally
at Pv(q) in the Monge form (x, y, fv(x, y)). We take θ(q, v) to be the degree k
Taylor polynomial of fv at the origin.

The singularities of interest are determined by the 3-jet of fv, so we shall work
in V3. The set of functions in V3 that have an A≥2-singularity form a smooth
variety of codimension 1, called the A2-set. Following similar arguments in [2],
there is a residual set of embeddings of M in R

4 such that the map θ is transverse
to the A2-set. The intersection of the image of θ with the A2-set is then a smooth
manifold of dimension 4. Therefore, near (p, v0) its preimage is a smooth mani-
fold W of dimension 4 in M × S3. The v-PPS are the sections of this manifold by
the sets where v is constant. By the Thom transversality theorem, for a generic
set of embeddings of M in R

4, the projection π :W ⊂ (M ×S3, (p, v0)) → (S3, v0)
is A-stable. Thus, the models of the v-PPS are obtained by considering the fi-
bres of A-stable map-germs (R4, 0) → (R3, 0). These are (x, y, z); (x, y, z2 ± w2);
(x, y, z3 + xz + w2); and (x, y, z4 + xz2 + yz ± w2), where (x, y, z, w) denote the
coordinates in R

4. The fibres of these maps (which are models of curves on M ,
so are plane curves) have singularities of type A0, A1, A2, and A3 respectively.
The specific conditions for these to occur can be found in [18]. �
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3.2. Projecting along a tangent direction

Theorem 3.3. Suppose that v is a tangent direction at p ∈M . Then the point p
on M is an elliptic, hyperbolic, parabolic, or an inflection point if and only if the
singular point Pv(p) of Pv(M) is an elliptic, hyperbolic, parabolic, or an inflection
point, respectively.

Proof. Suppose that v = aψx + bψy, with b �= 0. We make the affine change
of coordinates (X,Y, Z,W ) → (bX − aY, aX + bY, Z,W ) in the target so that
Pv(x, y) = (bx− ay, 0, f1(x, y), f2(x, y)), which we simplify to

Pv(x, y) = (bx− ay, f1(x, y), f2(x, y)).

The result follows by observing that (j2f1(1b (x + ay), y), j2f2(1b (x + ay), y))
is G-equivalent to (j2f1(x, y), j2f2(x, y)). (The case b = 0 follows similarly.) �

It follows from Theorems 2.2 and 3.3 that if v is a tangent but not an asymptotic
direction at p ∈M , the surface Pv(M) has a hyperbolic, elliptic, or parabolic cross-
cap at Pv(p) if and only if p is an elliptic, hyperbolic, or parabolic point (see also [18]
for an alternative proof). We have more information on such cross-caps.

Proposition 3.4. Suppose that v ∈ TpM is not an asymptotic direction at p.

(i) If p is a hyperbolic point, then Pv(M) is a surface with an elliptic cross-cap
of type A2A2 if p is not on the B2-curve. If p is on the B2-curve, the elliptic
cross-cap becomes of type A2A3 and at isolated points on this curve it can be
of type A2A4 or A3A3.

(ii) If p is a parabolic point, then Pv(M) is in general an A2-parabolic cross-cap
and becomes an A3-parabolic cross-cap if p is the point of tangency of the
B2-curve with the parabolic set Δ.

Proof. The type of the cross-cap is determined by the singularities of the height
function H(v,wi) on Pv(M) at Pv(p) along the binormal directions wi, i = 1, 2.
It follows from Remark 3.1 that these are the same as the singularities of the
height function Hwi on M at p.

In (i) the A2A4 cross-cap occurs at special points on the B2-curve where the
height function has an A4-singularity and these are distinct in general from the B3

and C3-points. The A3A3 cross-cap occurs at the point of intersection of two
B2-curves associated to the two binormal directions. �

Remark 3.5. With the conditions of Proposition 3.4, the v-PPS has a Morse sing-
ularity of type A−

1 when p is a hyperbolic point. When p is on the Δ-curve,
the v-PPS has anA2-singularity if p is not on the B2-curve and has anA3-singularity
if it is. The v-PPS is studied in [18] by considering the singularities of the func-
tion K̃ in (2.1). We observe that the normal to the surface Pv(M) does not have a
limit as its singular point is approached. It is of interest to find a way of extending
the Monge–Taylor map ([2]) in the proof of Proposition 3.2 to such cases.
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When projecting along an asymptotic direction at p (so p is not an elliptic
point), the generic singularities of Pv are as those in Table 1 which are more
degenerate than a cross-cap. Suppose that p is not an inflection point. The generic
singularities of the PPS in Table 3 also occur in the v-PPS. However, when p is on
the B2-curve, there are isolated points where a D6-singularity occurs on the v-PPS
(with v the binormal direction associated to the B2-curve). These points are
precisely those where the height function along v has an A4-singularity. For the
remaining singularities of Pv(M) of a genericM , the singularities of the v-PPS are
as in Table 3 (see also Table 4 for the components of the v-PPS).
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Raúl Oset Sinha: Departament de Geometria i Topologia, Universitat de València,
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