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On the anticyclotomic Iwasawa theory of CM
forms at supersingular primes

Kâzım Büyükboduk

Abstract. In this paper, we study the anticyclotomic Iwasawa theory of
a CM form f of even weight w ≥ 2 at a supersingular prime, generalizing
the results in weight 2, due to Agboola and Howard. In due course, we
are naturally lead to a conjecture on universal norms that generalizes a
theorem of Perrin-Riou and Berger and another that generalizes a conjec-
ture of Rubin (the latter seems linked to the local divisibility of Heegner
points). Assuming the truth of these conjectures, we establish a formula
for the variation of the sizes of the Selmer groups attached to the central
critical twist of f as one climbs up the anticyclotomic tower. We also prove
a statement which may be regarded as a form of the anticyclotomic main
conjecture (without p-adic L-functions) for the central critical twist of f .

1. Introduction

The goal of this article is to study the anticyclotomic Iwasawa theory of an elliptic
newform f of even weight w ≥ 2 which has complex multiplication (CM) by an
imaginary quadratic field K, at a supersingular prime p and thereby extend the
results of Agboola and Howard [1] where the authors have studied the case w = 2.
The results of this paper also should be considered as the first steps towards an
anticyclotomic main conjecture for CM forms in the supersingular setting, where
the analogous results when p is an ordinary prime for f have been obtained by
Arnold [2].

There are two main ingredients that go into the proof of the results presented
in this article:

(1) The construction and analysis of ±-Selmer groups, in the spirit of Kobaya-
shi [18].

(2) The proof that a central critical twist of the elliptic unit Euler system along
the anticyclotomic Iwasawa tower is nonvanishing; and that this Euler system
controls the ±-Selmer groups constructed in step (1).
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Although, generally speaking, the approach here relies on the arguments of [1],
one runs into serious difficulty if one attempts to carry out steps (1) and (2) above
when w �= 2. We first explain the difficulties that one encounters and sketch how
we attempt to resolve them in this paper.

First, when the weight is 2, Agboola and Howard have the formal group of the
associated elliptic curve at their disposal to analyze the local cohomology groups.
Their approach does not apply in the general setting, and so one is led to appeal
to p-adic Hodge theory to carry out step (1) above; see Section 2 below. The
desired properties for the ±-subgroups of the local cohomology groups all then
follow from suitable generalizations (which unfortunately we are unable to prove)
of the following fundamental results. The first (Conjecture 2.5) is a statement
about the universal norms along the anticyclotomic tower and an extension of a
conjecture of Nekovář (on the universal norms along the cyclotomic tower) which
was proved by Perrin-Riou [27] and Berger [5]; it was also proved by Rubin [29]
along the anticyclotomic tower when the weight is 2. The second (Conjecture 2.13)
is a generalization of Conjecture 2.2 in [30], and Rubin proved his conjecture when
the weight is 2 under some assumptions on the prime p, by relating it to the local
divisibility of Heegner points. It would be interesting to know if Nekovář’s [22]
Heegner cycles on Kuga–Sato varieties could play a role along these line to prove
Conjecture 2.13 under hypotheses similar to those of Theorem 8.4 in [30].

In order to carry out step (2), as we do not have the nonvanishing results of [28]
for higher weight CM forms, we adapt instead the method of Arnold [2] to prove
the nontriviality of the twisted elliptic unit Euler system along the anticyclotomic
tower, which in turn is based on a nonvanishing theorem of Greenberg [13]. We then
relate the twisted elliptic unit Euler system to Kato’s Euler system of Beilinson
elements (see Section 15.16.1 of [17]) and make use of Kato’s explicit reciprocity
laws to calculate the image of Kato–Beilinson elements under the dual exponential
map in terms of the relevant L-values.

Once we overcome these difficulties to settle steps (1) and (2) above, the main
results of the paper follow as a standard application of the Euler system machinery.
Before we state our results more precisely, we introduce some notation.

1.1. Notation and hypotheses

Let f =
∑
anq

n ∈ Sw(N, ε) be a normalized eigenform of even weight w ≥ 2,
level N , and character ε, and let f̄ =

∑
anq

n be the dual form. Fix a prime p > 3
such that p � N and ap = 0. Let F = Q({an}) be the number field generated
by the Fourier coefficients of f (equivalently, by those of f̄). Fix a completion Φ
of F at a prime above p and let ρf denote the 2-dimensional Φ-representation of
GQ := Gal(Q/Q) attached to f by Deligne [10]. Let Vf denote the 2-dimensional
Φ-vector space that realizes ρf . Then for any integer r,

(1.1) Vf̄ (r)
∼= Hom(Vf (w − r),Φ(1))

as GQ-representations, where Φ(1) = Φ⊗Zp

(
lim←−μμμpn

)
and μμμpn denotes the group of

pn-th roots of unity; see [17], Section 14.10.
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Throughout, we will assume that F = Q (it should be possible to relax this
assumption with some work). Note in this case that f = f̄ and (1.1) implies
that the Qp-representation Vf (w/2) is self-dual (in the sense that Vf (w/2) ∼=
Hom(Vf (w/2),Qp(1))). Let Tf be a fixed Zp-lattice inside Vf .

The eigenform f is called a CM form if there exists an imaginary quadratic
field K and an algebraic Hecke character

ψ : AK/K
× −→ C×

such that f is the cusp form associated with ψ (see Section 15.10 of [17]). We
assume until the end of this article that f is a CM form and that K has class
number 1. The assumption on the class number is to ensure that the properties of
elliptic units which we rely on in Section 3 hold true. Let τ denote the involution
on GK = Gal(K/K) induced by complex conjugation. As in §2.1 of [2], we assume
further that ψ ◦ τ = ψ, so that the sign W (ψ) ∈ {±1} of the functional equation
of ψ (namely, the sign of the functional equation for the Hecke L-series attached
to f) makes sense.

For a prime p � N , the condition that ap = 0 forces the prime p to remain
inert in K, for otherwise if p = ℘℘̄ split in K, then ap = ψ(℘) + ψ(℘̄) would be a
p-adic unit. Write p for the unique prime of K above p. Let Kp be its completion
at p and let Op be its ring of integers at p. Denote the conductor of ψ by f = fψ
and set K(fp∞) = ∪nK(fpn), where for an integral ideal a of K, K(a) denotes
the ray class field of K of conductor a. By the theory of complex multiplication,
the action of GQ on Vf factors through Gal(K(fp∞)/Q). The action of GK on the
one-dimensional Kp-vector space Vf is given by the p-adic avatar ψp : GK → O×

p

of the Hecke character ψ.
Set μμμp∞ = lim−→μμμpn . Following [17], let V = Vf (w/2) denote the central critical

twist of Vf and let T = Tf (w/2). Set W = V/T . Let V ∗ = Hom(V,Qp(1)),
T ∗ = Hom(W,μμμp∞) and W ∗ = Hom(T,μμμp∞). Observe that V ∼= V ∗ as GQ-
representations (since we assumed F = Q), however we choose to distinguish them
to avoid confusion in our arguments below.

Let D∞ denote the anticyclotomic Zp-extension of K and let Dn denote its
nth layer. Let Γ = Gal(D∞/K) and Λ = Op[[Γ]]. For a torsion Λ-module M , let
char(M) denote its characteristic ideal.

1.2. Statements of the results

In the statement of Theorem A and nowhere else in this paper, ϕ denotes the
Euler function. Let f be a CM-form as above and let Sel(f/Dn) denote the p-adic
Selmer group attached to central critical twist of Vf (see Section 2.5 below for the
precise definition) over Dn.

Theorem A. Assume the validity of Conjectures 2.5 and 2.13 (to which we have
also alluded above). There is an integer e independent of n such that, for all n� 0,

corankOp(Sel(f/Dn)) = e+
∑

1≤k≤n
(−1)k=ε

ϕ(pk).
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See Theorem 4.1 below for a proof of this statement, where we in fact prove
considerably more. This is a theorem of Agboola and Howard (and originally
a conjecture of Greenberg, [12], page 247) when f is of weight 2; it is proved
unconditionally in that case. We are unfortunately forced to impose the additional
hypotheses in order to prove Theorem A because:

• We lack a higher weight analogue of a nonvanishing result due to Rohrlich
and in order to circumvent this problem, we appeal to the main theorem
of [13]. This is precisely the point where we need Conjecture 2.13.

• The vanishing of the inverse limit of the Bloch–Kato subgroups along the
anticyclotomic tower has not been established. In fact, the author’s corre-
spondence with some experts in p-adic Hodge theory gave him the impression
that this vanishing problem has not been studied. The analogous question
along the cyclotomic Zp-tower has been answered by Perrin-Riou [27] and for
any Zp-tower, although only in the case when f is of weight 2 (by Rubin [29]).

Let ε denote the sign of W (ψ). Let Sel−ε(f/D∞) denote the Iwasawa theo-
retic ±-Selmer group attached to the central critical twist of Vf along the anti-
cyclotomic tower; see Section 2.5 for its definition. Let X−ε(f/D∞) denote its
Pontrygain dual, on which Λ acts according to our convention in Definition 3.3
below. Let H1

ε ⊂ lim←−H
1(Dn,p, T

∗) denote a certain submodule which defined in
Section 2.4. Let C(D∞) ⊂ H1

ε denote the submodule obtained from twisted elliptic
units, as defined in Section 3.

Theorem B. Under the assumptions of Theorem A,

char(X−ε(f/D∞)) = char
(
H1
ε/C(D∞)

)
.

This is Theorem 4.2 in the main text. One expects that the right side of the
equality in Theorem B relates to an appropriately defined anticyclotomic p-adic
L-function, via Kato’s explicit reciprocity law; see Theorem 4.3 in [1] for the rele-
vant discussion in the case w = 2.

Remark 1.1. In case the form f is nonCM, p-ordinary and has weight 2, see [3], [4],
[14], [15], and [21] for results on the anticyclotomic main conjecture for f (where
the work in [15], [21] concerns Hilbert modular forms of parallel weight). In [11],
Darmon and Iovita studied the anticyclotomic Iwasawa theory of a nonCM form
of weight 2 for a supersingular prime p. The recent work of Chida and Hsieh [9]
treats the anticyclotomic main conjecture for a nonCM p-ordinary form f of general
weight k.

Acknowledgements. I would like to express my gratitude to Denis Benois, Lau-
rent Berger, Brian Conrad, Antonio Lei, and Jan Nekovář for helpful conversations.
I also thank the anonymous referee for their suggestions to improve the exposition
and pointing out several inaccuracies in the text. Parts of this work has been car-
ried out during my repeated visits to the Pontificia Universidad Católica de Chile
in Santiago, whose faculty I thank heartily for their hospitality.
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2. Selmer groups

2.1. Some local analysis

Let V be a crystalline representation of GKp . For a finite extension F of Kp,
let kF denote its residue field and let F0 denote the fraction field of the Witt
vectors W (kF ) of kF . Let DF (V) := (Bcris ⊗ V)GF denote the Dieudonné module
of V . We write D(V) in place of the Kp-vector space DKp(V). Let {Di(V)} denote
the de Rham filtration on D(V) and let

expn,V : Dn,p ⊗D(V)/D0(V) −→ H1(Dn,p,V)

denote the Kp[Γn]-equivariant Bloch–Kato exponential map, defined as in [6].
If one assumes

the eigenvalues of the crystalline Frobenius ϕ on D(V) are not(2.1)
integral powers of p,

then as explained in Theorem 4.1 of [6], the exponential map

expn,V(j) : Dn,p ⊗D(V(j))/D0(V(j)) ↪→ H1(Dn,p,V(j))

is in fact an injection for every integer j, and its image is denoted H1
f (Dn,p,V(j)).

The representation Vf attached to f is crystalline and its de Rham filtration is
given by

Di(Vf ) =

⎧⎨
⎩

D(Vf ), i ≤ 0,
Kp ω, 1 ≤ i ≤ w − 1,
0, i ≥ k,

where 0 �= ω ∈ D(Vf ). The action ϕ of the crystalline Frobenius satisfies ϕ2 +
ε(p)pw−1 = 0 (as ap = 0). Since we assumed that the weight w is even, we conclude
that Vf satisfies the hypothesis (2.1). In particular, the Bloch–Kato exponential
map induces a Kp[Γn]-isomorphism

expn,V : Dn,p ⊗D(V )/D0(V )
∼−→ H1

f (Dn,p, V )

for the central critical twist V . Fixing a choice of ω as above, we obtain an
isomorphism

exp
(ω)
n,V : Dn,p

∼−→ H1
f (Dn,p, V )

of Kp[Γn]-modules, where the corestriction map

corDm,p/Dn,p
: H1

f (Dm,p, V ) −→ H1
f (Dn,p, V )

for m ≥ n corresponds to the trace map

Trm/n : Dm,p −→ Dn,p

on the left.
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We define H1
f (Dn,p,W ) (respectively H1

f (Dn,p, T )) as the direct (respectively
inverse) image of H1

f (Dn,p, V ) under the natural map induced from the exact
sequence

0 −→ T −→ V −→W −→ 0.

Define H1
f (Dn,p, T

∗) (respectively H1
f (K,W

∗)) to be the orthogonal complement
of H1

f (Dn,p,W ) (respectively of H1
f (Dn,p, T )) under the local Tate pairing.

Lemma 2.1. H0(D∞,p,W ) = 0 = H0(D∞,p,W
∗).

Proof. The proof that H0(Kp,W ) = 0 = H0(Kp,W
∗) follows from the proof of

Lemma 4.4 in [20]. As Γn is a nontrivial p-group for n ≥ 1, we observe that

#H0(Dn,p, X) ≡ #H0(Kp, X) mod p

for X =W,W ∗. The proof of the lemma follows. �

2.2. A conjecture on universal norms

Let Kcyc denote the cyclotomic Zp-extension of K and let Kn be its nth layer.
It follows from Theorem 0.6 in [27] that

lim−→H1
f (Kn,p,W ) = lim−→H1(Kn,p,W ),

or equivalently, that
lim←−H

1
f (Kn,p, T

∗) = 0,

generalizing Theorem 2.1 in [29] (only along the cyclotomic Zp-tower); see also
Lemma 7.1 in [20]. The following could be thought of as a relative version of Lei’s
result and can be proved without much difficulty:

Lemma 2.2. For any integer m,

lim←−
n

H1
f (Dm,pKn,p, T

∗) = 0.

Proof. By the definition of Bloch–Kato subgroups, we have the commutative dia-
gram with exact rows,

0 �� H1
f (Dm,pKn,p, T

∗) �� H1(Dm,pKn,p, T
∗) ��

��

H1(Dm,pKn,p, Bcris ⊗ V ∗)

��
0 �� H1

f (Kn,p, T
∗) �� H1(Kn,p, T

∗) �� H1(Kn,p, Bcris ⊗ V ∗)

where the vertical arrows are corestriction maps. We therefore have an induced
map

(2.2) H1
f (Dm,pKn,p, T

∗) −→ H1
f (Kn,p, T

∗).
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Consider the map

(2.3) lim←−
s

H1(Ds,pKn,p, T
∗) −→ H1(Dm,pKn,p, T

∗),

whose cokernel isH2(Kn,p, T
∗⊗Λ)[γpm−1]. It follows from the proof of Lemma 4.4

in [20] that H0(Kn,p,W ) = 0. By local duality, this means H2(Kn,p, T
∗) = 0,

which by Nakayama’s Lemma (together with the fact that the cohomological di-
mension of GKn,p is 2) shows that H2(Kn,p, T

∗ ⊗ Λ) = 0. We have therefore
proved that the map (2.3) is surjective. This shows that the map (therefore also
the map (2.2))

H1(Dm,pKn,p, T
∗) −→ H1(Kn,p, T

∗)

is induced from reduction modulo γ − 1. Thus, the map (2.2) factors through

φn : H1
f (Dm,pKn,p, T

∗)/(γ − 1) −→ H1
f (Kn,p, T

∗).

The proof follows upon passing to the inverse limit with respect to n and making
use of Lei’s result that lim←−H

1
f (Kn,p, T

∗) = 0 together with Nakayama’s lemma. �

Remark 2.3. To give this rather simple proof of Lemma 2.2, we rely on the fact
that the GKp-representation V ∗ is irreducible and has a nonpositive Hodge–Tate
weight. More generally, one can compute lim←−nH

1
f (Dm,pKn,p, T

∗) using [5] even in
the absence of this strong assumption.

Note that Lemma 2.2 is essential for the definition of a Kummer pairing as
in §7.3 of [20], based on which one can prove the following explicit reciprocity law.
Let Φ be any finite extension of Qp. By Kummer theory, H1(Φ,Op(1)) can be
identified with Φ̂×⊗Zp Op where M̂ stands for the p-adic completion of an abelian
group M . Let UΦ ⊂ Φ̂×⊗ZpOp denote the submodule generated by the completion
of units. There is a twisting isomorphism

lim←−
Φ

H1(Φ,Op(1))
∼−→ lim←−

Φ

H1(Φ, T ∗)

where the inverse limit is taken over finite subextensions Φ of the unique Z2
p-

extension of Kp; see Section 6 of [32]. Denote the image of lim←−UΦ under this
isomorphism by U . Let F be a finite subextension of D∞,p and let Fcyc be the
cyclotomic Zp-extension of F . Let

UFcyc ⊂ lim←−
L⊂Fcyc

finite over F

H1(L, T ∗)

be the image of U under the natural projection. Set H1
f (Fcyc,W ) := lim−→H1

f (L,W ).

Lemma 2.4. (i) There is a Kummer pairing 〈 , 〉 : H1
f (Fcyc,W )×UFcyc → Kp/Op .
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(ii) For any character χ of Δ = Gal(F/Kp) and x ∈ H1
f (F, T ), any nonnegative

integer m and y = {yL} ∈ UFcyc , we have
∑
δ∈Δ

χ(δ)〈x⊗ p−m, yF 〉 = p−m
[∑
δ∈Δ

χ(δ) exp−1
F,V (x

δ) ,
∑
σ∈Δ

χ−1(σ) exp∗
F,V ∗(yδF )

]
,

where [ , ] is the natural pairing on (F ⊗D(V )) × (F ⊗D(V ∗)) and exp−1
F,V is the

inverse of the Bloch–Kato exponential

expF,V : F ⊗D(V )/D0(V )
∼−→ H1

f (F, V ).

Proof. See the proof of Proposition 7.8 in [20]. �

Conjecture 2.5. lim−→H1
f (Dn,p,W ) = lim−→H1(Dn,p,W ). Equivalently,

lim←−H
1
f (Dn,p, T

∗) = 0.

When the weight of f is 2, this is a theorem of Rubin [29]. The proof of this
conjecture would follow from the following extension of a conjecture of Nekovář
(proved by Perrin-Riou [27] in the crystalline case, and by Berger [5] in general)
to the anticyclotomic Zp-extension (which was originally formulated for the cyclo-
tomic Zp-tower):

Conjecture 2.6. Let V be a crystalline representation of GKp and let T be a
GKp-stable lattice. Assume that (2.1) holds, as well as that

(2.4) H0(Kp,V/T ) = 0

Then there is an isomorphism

lim←−H
1(Dn,p,Fil1T ) ∼−→ lim←−H

1
f (Dn,p, T ),

where Fil1V denotes the largest subrepresentation of V with strictly positive Hodge–
Tate weights and Fil1T = T ∩Fil1V. In particular, if V is irreducible with at least
one nonpositive Hodge–Tate weight then lim←−H

1
f (Dn,p, T ) = 0.

As a consequence of the proof of Nekovář’s conjecture alluded to above, Perrin-
Riou (see Theorem 0.7 in [27]) deduces the following twisting result (with the
notation of Conjecture 2.6):

lim←−H
1
f (K(μμμpn)p, T )⊗ Zp(1) ↪→ lim←−H

1
f (K(μμμpn)p, T (1))

As a generalization of this result to anticyclotomic setting, we propose the following
(which in turn could be used to reduce Conjecture 2.5 to weight 2, which is known
thanks to Rubin’s work [29]):

Conjecture 2.7. For any character φ of Γ,

lim←−H
1
f (Dn,p, T

∗)⊗ φ ∼−→ lim←−H
1
f (Dn,p, T

∗ ⊗ φ).

Note that for any φ as above, both GKp -representations V ∗ and V ∗ ⊗ φ are
irreducible and both have a nonpositive Hodge–Tate weight.
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2.3. Plus-minus subgroups

In this section, we give the definitions of the plus-minus subgroups, slightly mod-
ifying Lei’s definition. For n ≥ 0, let Ξ−

n (respectively Ξ+
n ) denote the set of

characters of Γn of exact order pk with k odd (respectively k even), together with
the trivial character (respectively without the trivial character). Set

H1
±(Dn,p, V ) =

{
x ∈ H1

f (Dn,p, V ) :
∑
σ∈Γn

χ(σ)xσ = 0, for any χ ∈ Ξ∓
}
.

Set
D±
n,p =

{
x ∈ Dn,p :

∑
σ∈Γn

χ(σ)xσ = 0, for any χ ∈ Ξ∓
}
,

so that H1
±(Dn,p, V ) is the isomorphic image of D±

n,p under exp
(ω)
n,V .

Remark 2.8. Lei defines his plus-minus subgroups by setting

D+,Lei
n,p = {x ∈ Dn,p : Trn/m+1(x) ∈ Dm,p, for 0 < m ≤ n even}

=
{
x ∈ Dn,p :

∑
σ∈Γn

χ(σ)xσ = 0, for nontrivial χ ∈ Ξ−
}
,

D−,Lei
n,p = {x ∈ Dn,p : Trn/m+1(x) ∈ Dm,p, for 0 < m ≤ n odd}

=
{
x ∈ Dn,p :

∑
σ∈Γn

χ(σ)xσ = 0, for nontrivial χ ∈ Ξ+
}
.

In particular, note that D−,Lei
n,p = D−

n,p and that D+
n,p � D+,Lei

n,p .

Lemma 2.9. D+
n,p ∩D−

n,p = 0 and D+
n,p +D−

n,p = Dn,p .

Proof. Remark 2.8 and the proof of Lemma 4.9 in [20]) shows that D+
n,p ∩ D−

n,p

⊂ Kp. Since Ξ−
n contains the trivial character, we see that Kp ∩ D+

n,p = 0. This
proves the first statement.

Let ω±
n be the two distinguished polynomials in Λ defined as in Section 5 of [1].

Then,

dimKp(D
+
n,p +D−

n,p) = dimKp(D
+
n,p) + dimKp(D

−
n,p)

= deg(ω+
n ) + deg(ω−

n ) = dimKp(Dn,p),

where the second equality is explained in Remark 2.10 below. �

Remark 2.10. It is straightforward to see that ω∓
n (γ)Dn,p ⊂ D±

n,p. In this remark
we explain why this inequality is in fact an equality. Set ωn(γ) := ω+

n (γ)ω
−
n (γ) =

γp
n − 1. Using the the fact that ω±

n are both distinguished in the unique factor-
ization domain Λ, we conclude that

ω∓
n (γ)Dn,p = ω∓

n (γ)Kp[Γn] = Kp ⊗ ω∓
n Λ/ωn = Kp ⊗ Λ/ω±

n .
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Thus dimD±
n,p ≥ deg(ω±

n ), which shows by the first part of Lemma 2.9 that

dimDn,p ≥ dimD+
n,p + dimD−

n,p ≥ deg(ω+
n ) + deg(ω−

n ) = pn

Hence we have proved

ω∓
nDn,p = D±

n,p
∼= Kp ⊗ Λ/ω±

n .

Corollary 2.11. We have:

(i) H1
+(Dn,p, V ) ∩H1

−(Dn,p, V ) = 0,

(ii) H1
+(Dn,p, V ) +H1

−(Dn,p, V ) = H1
f (Dn,p, V ).

We define the plus-minus subgroup H1
±(Dn,p, T ) (respectively H1

±(Dn,p,W ))
as the inverse (respectively the direct) image of H1±(Dn,p, V ). We also define
H1

±(Dn,p, T
∗) to be the orthogonal complement of H1

±(Dn,p,W ) with respect to
the local Tate pairing.

2.4. Local ranks of universal norms

We define H1 = lim←−H
1(Dn,p, T

∗) and let H1
± = lim←−H

1
±(Dn,p, T

∗). In this section,
we first prove the following proposition which is analogous to Proposition 8.1 in [30]:

Proposition 2.12. H1 is a free Λ-module of rank 2. Assuming Conjecture 2.5,
both H1± are free of rank 1, and H1

+ ∩H1− = {0}.

Proof. We first verify that the Λ-module H1 is free, using an argument identical
to that of Remark 2.8 in [8]. It follows from Proposition 4.2.9 in [23] that the co-
homology H•(Kp, T

∗ ⊗ Λ) is represented by a perfect complex of Λ-modules (i.e.,
projective, hence free, Λ-modules of finite type) concentrated in degrees 0, 1 and 2.
In particular, since we have H2(Kp, T

∗ ⊗ Λ) = 0 by Lemma 2.1, this complex
may be taken in degrees 0 and 1. Similarly, the cohomology H•(Kp, T ⊗ Λ) is
represented by a perfect complex of Λ-modules concentrated in degrees 0 and 1.
As the coefficient ring Λ is Gorenstein, the two complexes H•(Kp, T

∗ ⊗ Λ) and
H•(Kp, T ⊗ Λ) are related by the duality functor RHomΛ(−,Λ)[−2] (see Propo-
sition 5.2.4 in [23]). As a result, each of these two complexes is also represented
by a perfect complex concentrated in degrees 2− 1 = 1 and 2− 0 = 2, hence by a
single projective (hence free) Λ-module of finite type in degree 1. This completes
the proof that the Λ-module H1 ∼= H1(Kp, T

∗ ⊗ Λ) is free.
It further follows from Lemma 2.1 that the natural projectionH1 → H1(Kp, T

∗)
is surjective. One can verify (as in Theorem A.8 of [7]) that the Op-module
H1(Kp, T

∗) is free of rank 2 and thus the first assertion of the proposition fol-
lows.

Let ε = + or −. AsH1
ε (Dn,p, T

∗) is the orthogonal complement ofH1
ε (Dn,p,W )

which is contained in the module H1
f (Dn,p,W ), we see at once that H1

f (Dn,p, T
∗)
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annihilates H1
ε (Dn,p,W ) and therefore it is contained in H1

ε (Dn,p, T
∗). Consider

the exact sequence

0 −→ H1
f (Dn,p, T

∗) −→ H1
ε (Dn,p, T

∗) −→ Qn −→ 0

where Qn = H1
ε (Dn,p, T

∗)/H1
f (Dn,p, T

∗). Passing to the limit in the sequence
above (using Proposition B.1.1 in [32]), we conclude that

H1
ε

∼−→ lim←−
n

Qn∼=lim←−
n

Hom
(H1

f (Dn,p,W )

H1
ε (Dn,p,W )

,Qp/Zp

)
∼=Hom

(
lim−→

H1
f (Dn,p,W )

H1
ε (Dn,p,W )

,Qp/Zp

)

since we assumed Conjecture 2.5 and where the second isomorphism follows from
local duality. Furthermore,

lim−→H1
f (Dn,p,W )

lim−→H1±(Dn,p,W )
∼=

lim−→H1(Dn,p,W )

lim−→H1
ε (Dn,p,W )

∼=
lim−→

(
H1

+(Dn,p,W ) +H1
−(Dn,p,W )

)
lim−→H1

ε (Dn,p,W )

∼= lim−→H1
−ε(Dn,p,W )

where the first isomorphism follows from Conjecture 2.5 and the second and third
from Lemma 2.9. That H1

ε is free of rank one now follows from Remark 2.10.
To finish the proof of the proposition, observe that, by local duality,

H1
+(Dn,p, T

∗) ∩H1
−(Dn,p, T

∗) ∼= Hom
( H1(Dn,p,W )

H1
+(Dn,p,W ) +H1−(Dn,p,W )

,Qp/Zp

)

∼= Hom
(H1(Dn,p,W )

H1
f (Dn,p,W )

,Qp/Zp

)
.

Passing to the limit, the final assertion of the proposition now follows from Con-
jecture 2.5. �

As in [30] (see Conjecture 2.2), we conjecture that the following holds.

Conjecture 2.13. H1 ∼= H1
+ ⊕H1

−.

It would be interesting to know if Conjecture 2.13 follows from the known cases
(see Theorem 8.4 in [30]) in weight 2 via a variant of Conjecture 2.7.

2.5. Definitions of the Selmer groups

For every finite extension F of K and for every v � p of F , let F ur
v be the maximal

unramified extension of Fv. Define

H1
f (Fv, T

∗) = ker
(
H1(Fv, T

∗) −→ H1(F ur
v , V ∗)

)
,

and let H1
f (Fv,W ) be the orthogonal complement of H1

f (Fv, T
∗) with respect to

the local Tate pairing. We then define the following Selmer groups for X =W,T ∗:
• The relaxed Selmer group

Selrel(F,X) = ker
(
H1(F,X) −→

∏
v�p

H1(Fv, X)

H1
f (Fv, X)

)
.
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• The true Selmer group

Sel(F,X) = ker
(
H1(F,X) −→

∏ H1(Fv, X)

H1
f (Fv, X)

)
.

• The strict Selmer group

Selstr(F,X) = ker
(
H1(F,X) −→

∏
v�p

H1(Fv , X)

H1
f (Fv , X)

×
∏
v|p

H1(Fv ,W )
)
.

• For fields F where the plus-minus subgroups are defined, the ±-Selmer group

Sel±(F,X) = ker
(
H1(F,X) −→

∏
v�p

H1(Fv, X)

H1
f (Fv, X)

×
∏
v|p

H1
±(Fv, X)

)
.

Note the obvious inclusions

Selstr(F,W ) ⊂ Sel±(F,W ) ⊂ Sel(F,W ) ⊂ Selrel(F,W ),

and similarly with W replaced by T ∗. If F/K is an infinite extension, we define

Sel∗(F,W ) = lim−→ Sel∗(F ′,W ), Š∗(F, T ∗) = lim←−Sel∗(F ′, T ∗),

where limits are taken with respect to the restriction and corestriction maps (over
all finite subfields F ′ of F/K) respectively.

We remark that the Selmer group denoted by Sel(f/Dn) in the statement
of Theorem A (respectively Sel±(f/D∞) in Theorem B) in the introduction is
Sel(Dn,W ) (respectively Sel±(D∞,W )) above.

3. Elliptic units and a nontrivial anticyclotomic Euler system

Let a be an integral ideal of OK coprime to 6pf, and write Ka for the union of all
ray class fields of K of conductor prime to a. Let cell,a denote the Euler system of
elliptic units for (Zp(1), fp,Ka) as in [32]. Let

ψp : GK −→ AutOK (Vf/Tf) ∼= O×
p

be the p-adic avatar of the Hecke character associated to f by the theory of CM
and let

ψ
(w/2)
p = ψp ⊗ χω/2cyc : GK −→ AutOK (W )

be its central critical twist as in Theorem 14.2 of [17]. Following [32], §6, one may
twist the Euler system cell,a by the character ψ−1

p ⊗χ−ω/2
cyc to obtain an Euler system

for (T ∗, fp,Ka). Then ca(F ) ∈ Selrel(F, T ∗) for every finite extension F ⊂ Ka of K.
Let K∞ denote the unique Z2

p-extension of K. Set

ca(L) = {ca(F ′)} ∈ Šrel(L, T
∗)

for any extension L ⊂ K∞, where the inverse limit is over all subfields F ′ of L that
are finite over K. Let Ca(F ) denote the Op[[Gal(F/K)]]-submodule of Selrel(F, T ∗)
generated by ca(F ) and C(F ) the submodule generated by Ca(F ) as a varies over
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all ideals of OK coprime to 6pf. Recall that ψ = ψ ◦ τ (where τ ∈ Gal(K/Q) is
the nontrivial automorphism) so that the sign of the functional equation for the
Hecke L-function of ψ makes sense and equals W (ψ) = ±1. Note that this is the
sign of the functional equation for L(f, s) as well.

The following is the analogue of Proposition 3.1 in [1] in our setting. Note how-
ever that since the higher-weight versions of the nonvanishing results of Rohrlich [28]
are not available, we adapt Arnold’s approach (see [2]) in order to verify the non-
vanishing of C(D∞):

Proposition 3.1. The image of C(D∞) in H1 is nontrivial. Furthermore, assum-
ing the truth of Conjecture 2.13, the image of C(D∞) in H1 is contained in H1

ε if
and only if ε is the sign of W (ψ).

Proof. For a character φ of Γ, let the composition

Twφ : lim←−H
1(Dn, T

∗) ∼−→ lim←−H
1(Dn, T

∗ ⊗ φ) −→ H1(K,T ∗ ⊗ φ)

denote the twisting map. We will choose φ suitably so that Twφ(ca(D∞)) has
nontrivial image in H1(Kp, T

∗ ⊗ φ).
By mimicking the the proof of Proposition 2.3 in [2] (which in turn relies

on [13]), one may find an integer d so that:

• The character (ψp/ψ̄p)
d factors through Γ,

• ifW (ψ) = 1, then for ψ∗ = ψ2d+1 and ω∗ = (2d+1)(ω−1)+1 = 2d(ω−1)+ω,
we have L(ψ∗, ω∗/2) �= 0.

• if W (ψ) = −1, then for ψ∗ = ψ2d−1 and ω∗ = (2d − 1)(ω − 1) + 1 =
2d(ω − 1) + 2− ω, we have L(ψ∗, ω∗/2) �= 0.

Assume first that W (ψ) = 1 and let Ψ = ψ∗, ωωω = ω∗ and φ = (ψp/ψ̄p)
d). Note

that φ factors through Γ by our choices and running assumptions. Define TΨ
(respectively T ∗

Ψ) to be the free Op-module of rank one on which GK acts by
Ψp ⊗ χcyc (respectively Ψ−1

p ). As in [20], let zKato ∈ lim←−H
1(K(μμμpn)p, T

∗
Ψ) be the

element obtained from Kato’s Euler system. Then,

Col±(zKato) = L±
p ,

where Col± are the plus-minus Coleman maps defined in Section 3.4 of [20] and L±
p

are the plus-minus cyclotomic p-adic L-functions attached to the theta series of
the Hecke character Ψ, defined as in the displayed equations (4) and (5) of [20].
The interpolation property of the p-adic L-function (see [20] and [24]) then shows
that

(3.1) χωωω/2−1
cyc (Col+(zKato)) = χωωω/2−1

cyc (L+
p ) = Ω−1

Ψ L(Ψ,ωωω/2) �= 0.

where ΩΨ is a nonzero complex number whose exact value we need not know.
Let VΨ = TΨ ⊗ Qp (similarly V ∗

Ψ) be the associated two dimensional Qp-vector
space. For η+ ∈ D(V ∗

Ψ) defined as in [20], §3.5.1, one constructs the extended
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logarithm Lη+ (see Section 3.2 of [20] for a precise definition) making use of Perrin-
Riou’s map [26] as well as a logarithm map log+p,ωωω defined in [24]. Then

Col+(zKato) = Lη+(zKato)/ log+p,www ,

which in turn shows, thanks to (3.1), that χωωω/2−1
cyc

(
Lη+(zKato)

)
�= 0.

To simplify notation (and facilitate the comparison of our arguments to those
of Lei), we set r = ωωω/2− 1. Let z−r be the image of zKato under the composition

lim←−nH
1(K(μμμpn)p, T

∗
Ψ)

(−1)r Tw
χ
−r
cyc �� H1(Kp, T

∗
Ψ(−r)) .

Let MD = Hom(M,Qp) (respectively M∗ = MD(1)) stand for the linear dual
(respectively Cartier dual) of a Qp-vector space M . Note then that V ∗

Ψ(−r) ∼=
VΨ(r + 1)D(1) ∼= VΨ(r + 1)∗. Let

exp∗r+1 : H1(Kp, VΨ(r + 1)∗) −→ D0(VΨ(r + 1)∗)

be the dual exponential map and let [ , ] be the natural pairing on D(VΨ(r+1))⊗
D(VΨ(r + 1)∗). Kurihara’s calculation [19] yields

(3.2) χrcyc
(
Lη+(zKato )

)
= r!

[(
1− ϕ−1

p

)
(1− ϕ)−1(η+r+1) ,,, exp

∗
r+1(z−r)

]
,

where η+r+1 is the image of η+ under the canonical map D(VΨ) → D(VΨ(r + 1)).
This shows that z−r �= 0, as we have verified above that the expression on the left
of (3.2) is nonzero.

Similarly to above, we define cΨa (K(μμμp∞)) ∈ Šrel(K(μμμp∞), T ∗
Ψ) and observe that

the image of cΨa (K(μμμp∞)) under the composition
(3.3)

lim←−H
1(K(μμμpn), T

∗
Ψ)

�� lim←−H
1(K(μμμpn)p, T

∗
Ψ)

(−1)r Tw
χ
−r
cyc �� H1(Kp, TΨ(ωωω/2)

∗)

agrees with the image of ca(D∞) under the composition

(3.4) lim←−H
1(Dn, T

∗) �� lim←−H
1(Dn,p, T

∗)
(−1)r Twφ �� H1(Kp, TΨ(ωωω/2)

∗) .

Furthermore, 15.6.1 in [17] shows that the image of cΨa (K(μμμp∞)) under (3.3) agrees
with z−r (up to a nonzero factor), in particular the image of ca(D∞) inside H1

is nonzero. This completes the proof of the first part of the proposition when
W (ψ) = 1. In case W (ψ) = −1, we replace φ by φ ◦ τ and reduce similarly to the
nonvanishing of L(ψ∗, w∗/2).

The second part may be now proved mimicking the proof of Proposition 3.1
in [1]. Let ε denote the sign of W (ψ). For any positive integer n,

(a) Greenberg’s formula (see [12], page 247) for the sign of the functional equa-
tion W (χψ) shows that L(χψ, ω/2) = 0 for all characters χ ∈ Ξεn. We remark
that Greenberg verifies his formula only for weight 2 modular forms in [12],
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but his proof easily generalizes to the case of interest here using Weil’s formula
for root numbers, stated as in Proposition 2.4 of [2].

(b) Kato’s generalized explicit reciprocity law (see [16], [17] and Proposition 7.8
in [20], where the latter may be generalized using Lemma 2.4 to cover
characters of Γ) relates the localization of the elliptic units to the special
value L(χψ, ω/2). For every character χ ∈ Ξεn, the reciprocity law and
the vanishing of L(χψ, ω/2) shows that the image C(Dn,p) ⊂ H1(Dn,p, T

∗)
of C(D∞) annihilates the χ-part of H1

f (Dn,p,W ). We therefore infer that
C(Dn,p) annihilates H1

ε (Dn,p,W ). Hence C(Dn,p) ⊂ H1
ε (Dn,p, T

∗). (Note
that H1

ε (Dn,p, T
∗) is the orthogonal complement of H1

ε (Dn,p,W ) by its very
definition.) This shows that the image of C(D∞) in H1 belongs to H1

ε and the
the proof of the proposition follows since we assumed Conjecture 2.13. �

Remark 3.2. The proof of Proposition 3.1 is the only place where we need
Conjecture 2.13 in an essential way in order to prove our main result (that is,
Theorem 4.1). If the nonvanishing results of Rohrlich were available in our set-
ting, we could then follow the proof of Proposition 3.1 in [1] and show directly
that the image of C(D∞) in H1 does not belong to H1−ε, without any need of
Conjecture 2.13.

Definition 3.3. We define X∗(D∞,W ) = HomZp(Sel∗(D∞),Qp/Zp) for ∗ =
{rel, str,±,∅}. We adopt the convention of [1] that Λ acts on X∗(D∞,W ) by the
rule λ ·f(x) = f(λιx), where ι : Λ→ Λ is the involution on Λ induced by inversion
on group-like elements.

Proposition 3.4.

(i) The Λ-module Šrel(D∞, T ∗) (respectively Xstr(D∞,W )) is torsion-free of
rank one (respectively torsion).

(ii) The Λ-module Xrel(D∞,W ) has rank one.

(iii) We have

char (Xstr(D∞,W )) = char(Šrel(D∞, T ∗)/C(D∞)).

Proof. (i) can be proved using the Euler system machinery as in [32], Section II.3,
and the nontriviality of C(D∞). (ii) follows from Poitou–Tate global duality as in
Proposition 4.2.3 of [25], and Lemma 2.1. Part (iii) follows from the 2-variable main
conjecture for K (see Theorem 4.1 (i) in [31]) exactly as in Section 3.3 of [2]. �

Theorem 3.5.

(i) rankΛ(Š±(D∞, T ∗)) = rankΛ(X±(D∞,W )).

(ii) Assuming that Conjecture 2.13 holds true, Xε(D∞,W ) has Λ-rank one and
X−ε(D∞,W ) is Λ-torsion, where ε is the sign of W (ψ).
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Remark 3.6. Note in particular that, it follows from Theorem 3.5 and the fact that
Šrel(D∞, T ∗) is torsion-free (Proposition 3.4) that Šstr(D∞, T ∗)= Š−ε(D∞, T ∗)=0,
assuming Conjecture 2.13.

Proof of Theorem 3.5. Poitou–Tate global duality yields an exact sequence

0→ Š±(D∞, T ∗)→ Šrel(D∞,T ∗)→ H1/H1
±(3.5)

→ X±(D∞,W )→ Xstr(D∞,W )→ 0,

which proves (i) using Propositions 2.12 and 3.4. Assuming the truth of Conjec-
ture 2.13, we note that C(D∞) ⊂ Šε(D∞, T ∗) by Proposition 3.1. The rest can be
proved following the proof of Theorem 3.6 in [1] verbatim. �

4. Applications

4.1. The variation of Selmer ranks

In [1], §5, the authors obtain the anticyclotomic analogues of Kobayashi’s control
theorems (Theorem 9.3 in [18]). These extend without further difficulty to apply in
our setting and may be used along with Theorem 3.5 to prove the following result
on the variation of the ranks of Selmer ranks along the anticyclotomic tower.

Let Y± denote the Λ-torsion submodule of X±(D∞,W ).

Theorem 4.1. Let ε denote the sign of W (ψ). We assume the truth of Conjec-
tures 2.5 and 2.13. Then, for all n,

corankOp (Sel(Dn,W )) = rankOp (Λ/ω
ε
n) + rankOp(Y+/ω

+
n ) + rankOp(Y−/ω

−
n )

4.2. An anticyclotomic main conjecture

The theorem we state next may be thought of as a form of an anticyclotomic
main conjecture (without the p-adic L-function). The assumptions under which
Theorem 4.1 holds are in effect here as well.

Theorem 4.2. Let ε be the sign of W (ψ). We then have an equality of character-
istic ideals

char(X−ε(D∞,W )) = char
(
H1
ε/C(D∞)

)
.

Proof. The exact sequence (3.5) yields an injection

Šrel(D∞, T ∗)/Šε(D∞, T ∗) ↪→ H1/H1
ε
∼= H1

−ε.

Since both Šrel(D∞, T ∗) and Šε(D∞, T ∗) are Λ-modules of rank one (Theorem 3.5)
and H1−ε is Λ-torsion free, it follows that Šrel(D∞, T ∗) = Šε(D∞, T ∗). Further-
more, as Š−ε(D∞, T ∗) = 0 (Remark 3.6), the exact sequence (3.5) reduces to the
exact sequence

0 −→ H1
ε/Šε(D∞, T ∗) −→ X−ε(D∞,W ) −→ Xstr(D∞,W ) −→ 0.
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This combined with the exact sequence

0 −→ Šε(D∞, T ∗)/C(D∞) −→ H1
ε/C(D∞) −→ H1

ε/Šε(D∞, T ∗) −→ 0

along with Proposition 3.4 (iii) proves the theorem. �

One expects that the right side of the equality in Theorem 4.2 would relate
to an appropriately defined anticyclotomic p-adic L-function, via Kato’s explicit
reciprocity law; see Theorem 4.3 in [1] for the relevant discussion in the case w = 2.
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