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Elliptic systems of variable order

Thomas Krainer and Gerardo A. Mendoza

Abstract. The general theory of boundary value problems for linear ellip-
tic wedge operators (on smooth manifolds with boundary) leads naturally,
even in the scalar case, to the need to consider vector bundles over the
boundary together with general smooth fiberwise multiplicative group ac-
tions. These actions, essentially trivial (and therefore invisible) in the case
of regular boundary value problems, are intimately connected with what
passes for Poisson and trace operators, and to pseudodifferential bound-
ary conditions in the more general situation. Here the part of the the-
ory pertaining to pseudodifferential operators is presented in its entirety.
The symbols for these are defined with the aid of an intertwining of the
actions. Also presented here are the ancillary Sobolev spaces, an index
theorem for the elliptic elements of the pseudodifferential calculus, and
essential ingredients for analyzing boundary conditions of Atiyah–Patodi–
Singer type in the more general theory.

1. Introduction

We introduce a calculus of pseudodifferential operators of variable order that act
on sections of vector bundles endowed with smooth multiplicative group actions
over a closed manifold. The need to develop such a calculus arose from work by the
authors in [12] aimed at developing a theory of boundary value problems for elliptic
wedge operators. In the next few paragraphs we briefly describe this problem in
order to motivate the present work.

Elliptic wedge operators are structurally modeled on the operators one obtains
by rewriting a regular linear differential operator in cylindrical coordinates along
a submanifold. Thus the general form for such an operator is

(1.1) A = x−m
∑

k+|α|+|β|≤m
ak,α,β(x, y, z)(xDx)

k(xDy)
αDβ

z

as one sees after some manipulation; x is the radial variable, valued in [0, ε) for
some ε > 0, y the axial variable, ranging over an open set in a manifold Y of
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dimension q and called the edge, and z the variable in a general compact mani-
fold Z, a sphere in the case of cylindrical coordinates. The coefficients akαβ are
smooth up to x = 0 (see Schulze [16]). Operators of the form P = xmA are called
edge operators (see Mazzeo [14]). In the general set-up for edge operators, the
boundary (here given by x = 0) of the manifold is the total space of a fiber bundle
over Y with compact fibers Zy. Ellipticity, assumed throughout this introduction,
means that ∑

k+|α|+|β|=m
ak,α,β(x, y, z) ξ

k ηα ζβ

is invertible when (ξ, η, ζ) �= 0.

Let Sy,σ be the set of finite sums

τ =
∑
�

φσ,� x
iσ log� x;

here y ∈ Y and σ ∈ C are arbitrary and φσ,� is a section along Zy of the vector
bundle on which A acts. The first link to A is the subspace Ey,σ ⊂ Sy,σ consisting
of those elements solving the equation

bPyτ = 0, bPy =
∑

k+|β|≤m
ak,0,β(0, y, z)(xDx)

kDβ
z .

This is a finite-dimensional space (and its elements have smooth coefficients φσ,�)
because of ellipticity. The set of elements σ for which Ey,σ �= 0 is the bound-
ary spectrum of bP (or A) at y (see Mazzeo [14], Melrose [15], and Krainer and
Mendoza [11]), denoted specb(

bPy). They are the complex numbers for which the
indicial family at y,

bP̂y(σ) =
∑

k+|β|≤m
ak,0,β(0, y, z)σ

kDβ
z ,

has nontrivial kernel. Fix some γ ∈ R and assume

specb(
bPy) ∩ {σ ∈ C : �σ = γ, γ −m} = ∅.

Then, as shown in [11],

(1.2) Ty =
⊕

γ−m<�σ<γ
Ey,σ

is the fiber over y of a smooth vector bundle T → Y, the trace bundle of A
(the number γ is implicit). We point out that the notion of smoothness of T is
not trivial because of the possible branching behavior of specb(

bPy).
In the case of a classical elliptic differential operator of order m, the bound-

ary spectrum is {−ik : k = 0, . . . ,m − 1} and the spaces Ey,−ik reduce to φσ,0x
k

with σ = −ik. To see this, suppose

A =
∑

k+|α|≤m
ak,α(x, y)D

k
xD

α
y
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is such an operator; the fibers Zy are just the points of Y and the coefficients are
smooth. As above, the boundary is x = 0 while the interior of the manifold lies
in x > 0. The operator P = xmA is given by

P =
∑

k+|α|≤m
ak,α(x, y)x

m−k−|α| pk(xDx + i|α|)(xDy)
α

with pk(σ) = (σ + i(k − 1))(σ + i(k − 2)) · · ·σ, and so

bPy = am,0(0, y) pm(xDx).

The solutions of bPyτ = 0 are just polynomials of degree ≤ m− 1,

(1.3) τ =

m−1∑
j=0

φj(y)x
j .

These spaces of polynomials are, in this case, the fibers (1.2) of the trace bun-
dle of the regular elliptic operator A. The powers j correspond to the numbers
of the form iσ with σ a root of the indicial family of A as claimed; the indicial
family is am,0(0, y)pm(σ). Observe that the ellipticity of A ensures that am,0(0, y)
is invertible. Here we do not enter further into details about this (the reader may
consult [11] and [12] for more information) except to point out that the polyno-
mials (1.3) are the terms forming the Taylor polynomials in x of degree m − 1
of putative solutions of Au = f at the boundary (in this case γ = −1/2), and
that classical boundary conditions are imposed on the coefficients φj as functions
(or sections if A is not a scalar operator) on Y.

The nature of Ty (and of the trace bundle) is rather more intricate in the gen-
eral case. Sections of T do play the same role in the general theory as polynomials
in the standard theory, therefore boundary conditions are pseudodifferential con-
ditions on sections of this trace bundle. One may attempt at first to take standard
operators at this stage. Note, however, that even if the boundary spectrum is
simple (but nonconstant), the pertinent distributional sections of T will naturally
have varying regularity in y depending on the factor xiσ . This explains why the
pseudodifferential operators need to be adapted. A second place where the theory
is needed is in the construction of Poisson and trace operators. However instead
of discussing this here we refer the reader to our forthcoming work [12].

Having introduced the motivating vector bundles, we now address the group
action. The operator x∂x acts on Sy,σ and since it commutes with bPy, it preserves
the spaces Ey,σ, hence acts on the fibers of T . The space Ey,σ is the generalized
eigenspace of x∂x in the fiber Ty associated with the eigenvalue iσ. That x∂x
acts smoothly as an endomorphism T → T requires an understanding of the
meaning of the C∞ structure of T which we again omit (we refer the reader
to [11]). In the classical case, where the fiber Ty consists of the polynomials (1.3),
the C∞ sections are those whose coefficients φj are smooth functions of y. In
this case x∂x acts on Ty quite trivially: the eigenvalues are the numbers j, the
corresponding eigenspace consist of monomials of degree j, and evidently x∂x gives
a smooth endomorphism of T . In the general case x∂x acts, as already asserted, on
each Eσ,y, but now these are generalized eigenspaces (the log terms may be present)
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corresponding to the eigenvalue iσ. As y varies, so may the eigenvalues. Even
so, the operator x∂x is a smooth endomorphism of T . The R+-action generated
by x∂x, κ� = 
x∂x ∈ C∞(Y; End(T )), is simply the one that is fiberwise based on
the formula (κ�f)(x) = f(
x).

Abstracting, we shall consider vector bundles E, E1, etc. over a smooth
manifold Y of dimension q together with endomorphisms a ∈ C∞(Y; End(E)),
a1 ∈ C∞(Y; End(E1)), etc. and build up a theory of pseudodifferential operators
based on symbol classes that intertwine the R+-actions generated by these endo-
morphisms. We do this by first observing, in Section 2, that over sufficiently small
open sets Ω the eigenvalues of the various infinitesimal generators cluster in sets
of small diameter δ < 1. This brings with it a decomposition of the part over Ω of
the vector bundle into a direct sum of subbundles on each of which the generator is
almost constant from fiber to fiber, giving us enough control on sizes of derivatives
of the action to allow us to define, in Section 3, symbols of Hörmander type (1, δ)
(see [9] and [10]) that are twisted by the actions. When the generators are con-
stant block-diagonal, the symbols become of Douglis–Nirenberg type, see [5]; the
discussion in this reference starting on page 295 and dealing with boundary value
problems is particularly illuminating.

In addition to the local definition of the symbols, Section 3 contains the basic
elements necessary to form a viable local theory of pseudodifferential operators.
The most fundamental result in connection with this is Proposition 3.3, one of
whose assertions relates our symbol classes with the standard Hörmander classes
of type (1, δ); this gives a considerable simplification of the proofs in Section 4
of composition, invariance under changes of coordinates, and existence of adjoints
and asymptotic summability in the class. The basis for the eventual globalization
is Corollary 3.12. Incidentally, the number δ, other than lying in the interval (0, 1),
is completely arbitrary and can be taken as small as one wishes in a particular
application. Its value is fixed throughout the paper.

The local definition of the pseudodifferential operators is given in Section 4.
The approach here is quite classical in that we take advantage of the relation with
Hörmander classes just mentioned. The proof of composition formulas, for in-
stance, requires almost no extra work. Under the natural notion of ellipticity we
prove existence of parametrices in the calculus. The section ends with Proposi-
tion 4.15 on changes of frame. This is necessary to account for coverings of the
original manifold by open sets for which the eigenvalues of the infinitesimal gen-
erators cluster in different ways over overlaps, and together with invariance under
diffeomorphisms this allows for globalization in Section 6.

The local versions of Sobolev spaces adapted to the action (elements in a given
space have, in addition to a constant shift in regularity, variable smoothness as
determined by the infinitesimal generator) are constructed in Section 5. We also
prove there mapping properties, including regularity results for the elliptic elements
in our calculus.

Section 6 deals with the global definition and some properties of operators
from the global perspective. We prove, in particular, the existence of an exactly
invertible operator that changes order (in the same vein as (1−Δ)s/2 for regular
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Sobolev spaces in Rn). This is a useful tool, in particular in the following section
on the global Sobolev spaces of variable smoothness.

We define global versions of Sobolev spaces in Section 7. Having the spaces at
hand we also prove here Fredholm properties and existence of parametrices, and
establish an Atiyah–Singer index theorem for elliptic elements.

Finally, in Section 8 we prove a theorem tailored for analyzing boundary con-
ditions of generalized Atiyah–Patodi–Singer type [1] in the general theory.

We end this introduction with some remarks. First, pseudodifferential opera-
tors of variable order and associated Sobolev spaces in the scalar case are classical;
see for example [4], [13], [17], [18]. However, vector-valued analogues of these
spaces are not suitable to capture the behavior of traces along the edge for func-
tions in domains of natural L2-based extensions of elliptic wedge operators. Second,
our calculus contains naturally, as a special case, the theory of Douglis–Nirenberg
elliptic systems, and our index theorem accordingly specializes to an index the-
orem for such systems. Third, in the special case that the generators are con-
stant (independent of the base variable y) our local theory recovers the calculus of
pseudodifferential operators with twisted operator valued symbols and W-Sobolev
spaces introduced by Schulze (when specialized to the finite-dimensional situation);
see [16].

2. δ-admissibility

Let Y be a smooth manifold, let E → Y be a smooth complex vector bundle of
rank M , and let a ∈ C∞(Y; End(E)). Fix δ ∈ (0, 1).

Definition 2.1. Let Ω ⊂ Y be open. A δ-admissible decomposition of E (relative
to a) over Ω is a decomposition of EΩ, the part of E over Ω, as a direct sum of
a-invariant trivial subbundles Ek → Ω for which the closures, Σk, of the sets⋃

y∈Ω

spec(a(y)|Ek)

are pairwise disjoint and of diameter less than δ. Here spec(a(y)|Ek) denotes the
spectrum of the part a(y)|Ek : Ek → Ek of a(y) in Ek. The sets Σk are referred to
as eigenvalue clusters.

Every point of Y lies in an open set Ω over which there is a δ-admissible
decomposition of E. Namely, let {σk}Nk=1 be an enumeration of the points of
spec a(y0), pick numbers 0<δk<δ such that the disksD(σk, δk)={σ : |σ−σk|≤δk}
are pairwise disjoint, and let Ω be a neighborhood of y0 such that

spec(a(y)) ⊂
N⋃
k=1

D(σk, δk/2) for all y ∈ Ω.

Now let

Πk,y =
1

2πi

∫
|σ−σk|=δk

(σ − a(y))−1 dσ, y ∈ Ω.
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Then the spaces
Ek,y = Πk,yEy ,

which are a(y)-invariant, join to give smooth vector subbundles Ek of EΩ which
are trivial if Ω is a small enough.

Definition 2.2. Let Ω ⊂ Y be open. A δ-admissible trivialization of E over Ω
(relative to a) is a trivialization of the part of E over Ω that respects a δ-admissible
decomposition of EΩ.

In other words, the trivialization of EΩ is of the form φ =
⊕
φk where φk is

a trivialization of Ek. For such a trivialization φ, let aφ = φaφ−1, which we view
simply as a smooth map Ω → End(CM ). The following properties of aφ, listed for
convenience of reference, are a reflection of the δ-admissibility of φ:

(2.3)

1. There is a decomposition CM =
⊕N

k=1 Vk into aφ-invariant subspaces.

2. The eigenvalue cluster sets

Σk = Cl
( ⋃
y∈Ω

spec(aφ(y)|Vk)
)

are pairwise disjoint with diam(Σk) < δ.

The element a ∈ C∞(Y; End(E)) generates a multiplicative group

R+ 
 
 �→ 
a ∈ C∞(Y; Aut(E)),

expressed fiberwise as

(2.4) 
a(y) =
1

2πi

∫
Γ


σ(σ − a(y))−1 dσ

for all 
 > 0, where Γ is any fixed contour of integration that encloses spec(a(y)).

Recall that the multiplicative group property means that (
1
2)
a(y) = 


a(y)
1 


a(y)
2

for 
1, 
2 > 0, and 1a(y) = Id.
If φ is a δ-admissible trivialization of E over Ω then the formula holds for

every y ∈ Ω and fixed suitable Γ. In particular, this shows that the function

Ω× R+ 
 (y, 
) �→ 
aφ(y) ∈ Aut(CM )

is smooth. In this local context it is important to keep in mind that one can choose
the contour Γ to be of the form

Γ = Γ1 ∪ · · · ∪ ΓN ,

where for each k,

(2.5)
Γk encloses the compact set Σk, has winding number 0 with respect to
each point σ′ ∈ Σk′ , k

′ �= k, and has diameter less than δ.

The group 
aφ(y) is block-diagonal with respect to the decomposition (2.3), with
the block in Vk being the group generated by aφ(y)|Vk in Vk.
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If φ is a δ-admissible trivialization of E over some open set Ω⊂Y and aφ=φaφ
−1

then of course


a = φ−1
aφφ

over Ω, and if ψ is another δ-admissible trivialization over an open set Ω′ and
aψ = ψaψ−1, then the above formula coupled with the analogous formula for ψ
gives


aψ = (ψφ−1)
aφ(ψφ−1)−1

on Ω ∩ Ω′, equivalently,

(2.6) (ψφ−1) = 
−aψ(ψφ−1)
aφ .

This formula should be viewed as expressing a property of the transition functions
associated with δ-admissible trivializations in terms of the multiplicative actions
generated by aφ and aψ. It is a fundamental component in the globalization of our
theory whose analytic consequence is stated in Corollary 3.12.

In the following three sections, which deal with the local theory, we confine
ourselves to actions on various complex Euclidean spaces coming from δ-admissible
trivializations of various vector bundles E (or E1 and E2) and their respective
(given) infinitesimal generators of multiplicative actions. Omitting a reference to
the particular δ-admissible trivializations, infinitesimal generators of the actions
are still denoted a (or a1 and a2 as the case may be) and are simply smooth
maps Ω → End(CM ) (or C

M1 and C
M2). In all cases the underlying assumption

is that there is a δ-admissible decomposition of the respective Euclidean space as
described in (2.3).

3. The symbols in the local calculus

Let Ω ⊂ Rq be open and let aj ∈ C∞(Ω,End(CMj )), j = 1, 2. Fix δ ∈ (0, 1). We
assume throughout this and the next two sections that (2.3) holds in Ω both for a1
and a2, eventually also for any of the infinitesimal generators a ∈ C∞(Ω,End(CM ))
of the group actions we discuss. Of course the decomposition in part (1) of (2.3)
and what the eigenvalue cluster sets in part (2) are may depend on a or the aj .

Definition 3.1. Let μ ∈ R. We define

Sμ1,δ(Ω× R
q; (CM1 , a1), (C

M2 , a2))

to be the space of all p(y, η) ∈ C∞(Ω × Rq,Hom(CM1 ,CM2)) such that for every
compact subset K � Ω and all α, β ∈ N

q
0 there exists a constant CK,α,β > 0 such

that

‖〈η〉a2(y)(Dα
y ∂

β
η p(y, η)

)〈η〉−a1(y)‖ ≤ CK,α,β〈η〉μ−|β|+δ|α|

for all (y, η) ∈ K × R
q. Here and elsewhere 〈η〉 =√1 + |η|2.
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If the aj are constant, we may allow δ to be 0. Furthermore, if aj ≡ 0 for all
y ∈ Ω then 
aj ≡ Id is the trivial action on C

Mj , and in this case we will just
write CMj instead of the pair (CMj , aj).

Example 3.2. Let

aj(y) =

⎛⎜⎝μj,1 · · · 0
...

. . .
...

0 · · · μj,Mj

⎞⎟⎠
with μj,k ∈ R independent of y ∈ Ω. In this case


aj(y) =

⎛⎜⎝

μj,1 · · · 0
...

. . .
...

0 · · · 
μj,Mj

⎞⎟⎠ ,

and a function

p(y, η) =

⎛⎜⎝ p1,1(y, η) · · · p1,M1(y, η)
...

. . .
...

pM2,1(y, η) · · · pM2,M1(y, η)

⎞⎟⎠
belongs to S0

1,δ(Ω×Rq; (CM1 , a1), (C
M2 , a2)) if and only if the matrix entries satisfy

pk,l(y, η) ∈ S
μ1,l−μ2,k

1,δ (Ω×Rq). This just means that p(y, η) is a matrix that satisfies
the Douglis–Nirenberg order convention [6], [8].

Proposition 3.3. (a) Sμ1,δ(Ω × R
q; (CM1 , a1), (C

M2 , a2)) is a Fréchet space with
the topology induced by the seminorms

|p|K,α,β = sup
(y,η)∈K×Rq

〈η〉−μ+|β|−δ|α|‖〈η〉a2(y)(Dα
y ∂

β
η p(y, η)

)〈η〉−a1(y)‖,
where K � Ω is part of a suitable countable exhaustion of Ω by compact subsets,
and α, β ∈ N

q
0.

(b) Let aj , a
′
j ∈ C∞(Ω,End(CMj )), j = 1, 2. Then there exists μ′ > 0 such that

for every μ ∈ R we have

Sμ1,δ(Ω× R
q; (CM1 , a1), (C

M2 , a2)) ⊂ Sμ+μ
′

1,δ (Ω× R
q; (CM1 , a′1), (C

M2 , a′2)).

In particular,

S−∞(Ω× R
q,Hom(CM1 ,CM2)) =

⋂
μ∈R

Sμ1,δ(Ω× R
q; (CM1 , a1), (C

M2 , a2)).

(c) Let pj ∈ S
μj
1,δ(Ω × Rq; (CM1 , a1), (C

M2 , a2)) with μj → −∞ as j → ∞. Let

p ∈ Sμ
′

1,δ(Ω × Rq,Hom(CM1 ,CM2)) for some μ′ ∈ R such that p ∼ ∑∞
j=1 pj.

Note that such a symbol p must exist by (b). Then

p ∈ Sμ1,δ(Ω× R
q; (CM1 , a1), (C

M2 , a2)),

where μ = maxμj.



Elliptic systems of variable order 135

(d) Differentiation Dα
y ∂

β
η of symbols induces a map

Sμ1,δ(Ω×R
q; (CM1 , a1), (C

M2 , a2)) → S
μ−|β|+δ|α|
1,δ (Ω×R

q; (CM1 , a1), (C
M2 , a2)).

(e) Pointwise composition of symbols induces a map

Sμ1

1,δ(Ω× R
q; (CM2 , a2), (C

M3 , a3))× Sμ2

1,δ(Ω× R
q; (CM1 , a1), (C

M2 , a2))

−→ Sμ1+μ2

1,δ (Ω× R
q; (CM1 , a1), (C

M3 , a3)).

Proof. Assertions (a), (b), (d), and (e) can be proved in the usual manner. A key
component for proving (a) and (b) is that for any group action 
a(y) there ex-
ists m > 0 such that for every compact subset K � Ω we can find C > 0 such
that ‖〈η〉a(y)‖ ≤ C〈η〉m for all y ∈ K and all η ∈ Rq. That this is indeed the case
follows from the Dunford integral representation (2.4) of 
a(y).

To illustrate the argument we prove (b). Let

p ∈ Sμ1,δ(Ω× R
q; (CM1 , a1), (C

M2 , a2)).

Then

‖〈η〉a′2(y)(Dα
y ∂

β
η p(y, η)

)〈η〉−a′1(y)‖
= ‖〈η〉a′2(y)〈η〉−a2(y)[〈η〉a2(y)(Dα

y ∂
β
η p(y, η)

)〈η〉−a1(y)]〈η〉a1(y)〈η〉−a′1(y)‖
≤ ‖〈η〉a′2(y)‖‖〈η〉−a2(y)‖‖〈η〉a2(y)(Dα

y ∂
β
η p(y, η)

)〈η〉−a1(y)‖‖〈η〉a1(y)‖‖〈η〉−a′1(y)‖ .
Because of (2) of (2.3), each of the four group terms 〈η〉±a(y) on the outside can
be estimated locally uniformly in y by a constant times 〈η〉m for all η ∈ Rq and a
suitable m > 0. Consequently, with μ′ = 4m, we obtain

‖〈η〉a′2(y)(Dα
y ∂

β
η p(y, η)

)〈η〉−a′1(y)‖ ≤ CK,α,β 〈η〉μ+μ′−|β|+δ|α|

with a suitable constant CK,α,β > 0 for all y ∈ K � Ω, and all η ∈ Rq. This
proves (b).

Finally, (c) is a consequence of (b). �

Lemma 3.4. Let a ∈ C∞(Ω; End(CM )) satisfy (2.3). For every compact set
K � Ω and all αj , βj ∈ N

q
0, j = 1, 2, there exists a constant C > 0 such that

‖(Dα1
y ∂β1

η 〈η〉a(y))(Dα2
y ∂β2

η 〈η〉−a(y))‖ ≤ C〈η〉−|β1|−|β2|+δ

for all (y, η) ∈ K × Rq. If |α1| = |α2| = 0 we get the estimate

‖(∂β1
η 〈η〉a(y))(∂β2

η 〈η〉−a(y))‖ ≤ C〈η〉−|β1|−|β2|

for all (y, η) ∈ K × Rq.
In particular,

〈η〉a(y) ∈ S0
1,δ(Ω× R

q; (CM , a),CM ) ∩ S0
1,δ(Ω× R

q;CM , (CM ,−a)).
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Proof. For every β ∈ N
q
0 there exist symbols bβ, cβ ∈ S−|β|(Ω×Rq,End(CM )) such

that
∂βη 〈η〉a(y) = bβ(y, η)〈η〉a(y) and ∂βη 〈η〉−a(y) = 〈η〉−a(y)cβ(y, η).

This follows by induction, noting that

∂ηj 〈η〉a(y) =
[
a(y)

∂ηj 〈η〉
〈η〉

]
〈η〉a(y) and ∂ηj 〈η〉−a(y) = 〈η〉−a(y)

[
a(y)

−∂ηj 〈η〉
〈η〉

]
.

In particular,
(∂β1
η 〈η〉a(y))(∂β2

η 〈η〉−a(y)) = bβ1(y, η)cβ2(y, η),

which proves the desired estimate in this case.
More generally, (Dα1

y ∂β1
η 〈η〉a(y))(Dα2

y ∂β2
η 〈η〉−a(y)) is a finite sum of terms of the

form
b(y, η) (Dγ1

y 〈η〉a(y))(Dγ2
y 〈η〉−a(y)) c(y, η)

with symbols b ∈ S−|β1|(Ω × R
q,End(CM )) and c ∈ S−|β2|(Ω × R

q,End(CM )),
and γ1, γ2 ∈ N

q
0. This effectively reduces showing the claimed estimate to the case

where both |β1| and |β2| vanish.
Now use the decomposition CM = V1⊕· · ·⊕VN into the generalized eigenspaces

corresponding to the eigenvalue clusters of a(y) over Ω (see (2.3)) and observe that
a is block-diagonal with respect to this decomposition. Let

ak = a|Vk ∈ C∞(Ω,End(Vk))

be the part of a in Vk, k = 1, . . . , N . For every y ∈ Ω the eigenvalues of ak(y) are the
eigenvalues of a(y) that are contained in the compact set Σk, and the generalized
eigenspaces of ak(y) are the generalized eigenspaces of a(y) corresponding to these
eigenvalues. We have

Dα
y 〈η〉±a(y) =

⎛⎜⎝D
α
y 〈η〉±a1(y) · · · 0

...
. . .

...

0 · · · Dα
y 〈η〉±aN (y)

⎞⎟⎠ ,

and consequently
(
Dα1
y 〈η〉a(y))(Dα2

y 〈η〉−a(y)) is given by the operator block matrix⎛⎜⎝
(
Dα1
y 〈η〉a1(y))(Dα2

y 〈η〉−a1(y)) · · · 0
...

. . .
...

0 · · · (
Dα1
y 〈η〉aN (y)

)(
Dα2
y 〈η〉−aN (y)

)
⎞⎟⎠ .

Now use (2.4) to write

Dα1
y 〈η〉ak(y) = 1

2πi

∫
Γk

〈η〉λDα1
y (λ− ak(y))

−1 dλ,

Dα2
y 〈η〉−ak(y) = 1

2πi

∫
Γk

〈η〉−σDα2
y (σ − ak(y))

−1 dσ,
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where the contour of integration Γk satisfies (2.5). Consequently(
Dα1
y 〈η〉ak(y))(Dα2

y 〈η〉−ak(y))
=

1

(2πi)2

∫∫
Γk×Γk

〈η〉λ−σDα1
y (λ− ak(y))

−1Dα2
y (σ − ak(y))

−1 dλ dσ.

The desired estimate in the case |β1| = |β2| = 0 follows from this integral repre-
sentation for each of the ak, k = 1, . . . , N . Note that in the integral |λ − σ| < δ
because diam(Γk) < δ. This finishes the proof of the lemma. �

Remark 3.5. From Proposition 3.3 and Lemma 3.4 we obtain that

p(y, η) ∈ Sμ1,δ(Ω× R
q; (CM1 , a1), (C

M2 , a2))

if and only if

〈η〉a2(y)p(y, η)〈η〉−a1(y) ∈ Sμ1,δ(Ω× R
q;CM1 ,CM2).

Lemma 3.6. Let b(y, η) ∈ S0(Ω × Rq) be a scalar elliptic symbol. Assume that
b(y, η) > 0 for all (y, η) ∈ Ω× Rq. Then

b(y, η)a(y) ∈ S0(Ω× R
q; End(CM )).

Proof. By (2.4) we have a Dunford integral representation

b(y, η)a(y) =
1

2πi

∫
Γ

b(y, η)σ(σ − a(y))−1 dσ

for all y ∈ Ω and all η ∈ Rq with a fixed contour Γ.
Let K � Ω be an arbitrary compact subset. Then there are constants c, C > 0

such that c ≤ b(y, η) ≤ C for all (y, η) ∈ K × Rq, and b−1(y, η) ∈ S0(Ω × Rq).
The derivatives ∂αy ∂

β
η b(y, η)

σ are sums of products of terms σkb(y, η)σ, k ∈ N0,
and derivatives of b−1(y, η) and b(y, η), where the sum of all orders of derivatives
of b(y, η) and b−1(y, η) with respect to η ∈ R

q that occurs in each of these products
is precisely |β|. Now

sup{|σkb(y, η)σ| : σ ∈ Γ, (y, η) ∈ K × R
q} <∞

for each k ∈ N0. This shows that

{b(y, η)σ : σ ∈ Γ} ⊂ S0(Ω× R
q)

is a bounded family of symbols. Because the function (σ − a(y))−1 depends
smoothly on (y, σ) ∈ Ω× Γ, we get that

{b(y, η)σ(σ − a(y))−1 : σ ∈ Γ} ⊂ S0(Ω× R
q; End(CM ))

is bounded, which in view of the Dunford integral representation implies the lemma.
�
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Definition 3.7. A function p ∈ C∞(Ω×(Rq\0),Hom(CM1 ,CM2)) is called twisted
homogeneous of degree μ ∈ R with respect to the actions 
aj(y) on C

Mj if

(3.8) p(y, 
η) = 
μ
−a2(y)p(y, η)
a1(y)

for all 
 > 0. A function p ∈ C∞(Ω × Rq,Hom(CM1 ,CM2)) is called twisted
homogeneous of degree μ ∈ R in the large with respect to these actions if for
every compact subset K � Ω there exists R > 0 such that (3.8) holds for all
y ∈ K, |η| ≥ R, and all 
 ≥ 1. Every such function uniquely determines a twisted
homogeneous function p(μ)(y, η) on Ω×(Rq\0) by requiring that p(μ)(y, η) = p(y, η)
for y ∈ Ω and |η| sufficiently large.

Remark 3.9. Let p(y, η)∈C∞(Ω×Rq,Hom(CM1 ,CM2)) be twisted homogeneous
of degree μ∈R in the large, and let p(μ)(y, η) be twisted homogeneous of degree μ

determined by p. Suppose there exists ε>0 such that p ∈ Sμ−ε1,δ (Ω×Rq; (CM1 , a1),

(CM2 , a2)). Then p(μ)(y, η) ≡ 0.

Example 3.10. Let [·] : Rq → R+ be C∞, and assume that [η] = |η| for |η| ≥ R
for some sufficiently large R > 0. If a ∈ C∞(Ω,End(CM )) then

[
η]a(y) = [η]a(y)
a(y)

for all |η| ≥ R and all 
 ≥ 1. Consequently, the function [η]a(y) is twisted homoge-
neous in the large of degree zero with respect to the action generated by a(y) in
the domain and the trivial action 
0 ≡ Id generated by the zero endomorphism
in the range. Assuming that (2.3) holds for a we get

[η]a(y) ∈ S0
1,δ(Ω× R

q; (CM , a),CM )

by Proposition 3.11 below. Writing instead

[
η]a(y) = 
−(−a(y))[η]a(y)

for |η| ≥ R and 
 ≥ 1 shows that we also have

[η]a(y) ∈ S0
1,δ(Ω× R

q;CM , (CM ,−a)).

Proposition 3.11. Let p ∈ C∞(Ω×R
q,Hom(CM1 ,CM2)) be twisted homogeneous

of degree μ ∈ R in the large. Then p ∈ Sμ1,δ(Ω× Rq; (CM1 , a1), (C
M2 , a2)).

Proof. Let K � Ω be any compact subset. Differentiating both sides of rela-
tion (3.8) and multiplying by the group actions gives


−μ+|β|
a2(y)
(
Dα
y ∂

β
η p
)
(y, 
η)
−a1(y)

=
∑

α1+α2+α3=α

α!

α1!α2!α3!

(

a2(y)

[
Dα1
y 
−a2(y)

])(
Dα2
y ∂βη p(y, η)

)([
Dα3
y 
a1(y)

]

−a1(y)

)
.

This holds for all y ∈ K, |η| ≥ R, and all 
 ≥ 1 for some sufficiently large R > 0.
By Lemma 3.4 there exists a constant C > 0 such that the norm of the right-hand
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side is bounded by C
δ|α| as (y, η) varies over K × {η ∈ Rq : |η| = R} and 
 ≥ 1.
Consequently,∥∥∥( |η|

R

)−μ+|β|−δ|α|( |η|
R

)a2(y)(
Dα
y ∂

β
η p
)
(y, η)

( |η|
R

)−a1(y)∥∥∥
is a bounded function of y ∈ K and |η| ≥ R. Now

〈η〉±aj(y) =
(R〈η〉

|η|
)±aj(y)( |η|

R

)±aj(y)
=
( |η|
R

)±aj(y)(R〈η〉
|η|

)±aj(y)
,

and the function
(
R〈η〉/|η|)±aj(y) is bounded as (y, η) ∈ K × {η ∈ Rq : |η| ≥ R}.

Consequently, ∥∥〈η〉−μ+|β|−δ|α|〈η〉a2(y)(Dα
y ∂

β
η p
)
(y, η)〈η〉−a1(y)∥∥

is bounded for all y ∈ K and all |η| ≥ R which implies the assertion. �

The following corollary is fundamental in the globalization of the pseudodiffer-
ential calculus associated with our symbol spaces. In its statement we revert to
the notation in Section 2; let φ and ψ be δ-admissible trivializations of E → Y
over open sets Ω and Ω′ and let aφ and aψ as defined in Section 2.

Corollary 3.12. The element ψφ−1 ∈ C∞(Ω ∩ Ω′,End(CM )) is twisted homoge-
neous of degree zero with respect to the actions 
aφ in the domain and 
aψ in the
range. Consequently,

ψφ−1 ∈ S0
1,δ(Ω ∩ Ω′; (CM , aφ), (CM , aψ)).

This is an immediate consequence of Proposition 3.11, together with formu-
la (2.6), which expresses the fact that ψφ−1 is twisted homogeneous of degree 0
with respect to the actions 
aφ and 
aψ on CM .

4. The operators in the local calculus

We continue our discussion under the assumptions stated in the first paragraph
of Section 3.

Remark 4.1. Let X be any Banach space. By Sμ1,δ(Ω×Rq, X) we denote as usual

the space of all p(y, η) ∈ C∞(Ω × Rq, X) such that for all α, β ∈ N
q
0 and every

compact subset K � Ω there exists a constant CK,α,β > 0 such that

‖Dα
y ∂

β
η p(y, η)‖ ≤ CK,α,β 〈η〉μ−|β|+δ|α|

for all (y, η) ∈ K×Rq. As is customary we omit the reference to the space X from
the notation if X = C.
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By Ψμ1,δ(Ω;C
M1 ,CM2) we denote the space of pseudodifferential operators

P : C∞
c (Ω;CM1) → C∞(Ω;CM2)

given by P = Op(p) +R with

Op(p)u(y) =

∫
Rq

eiyηp(y, η)û(η)d̄η,

Ru(y) =

∫
Ω

k(y, y′)u(y′) dy′

for u ∈ C∞
c (Ω;CM1), where p ∈ Sμ1,δ(Ω × Rq,Hom(CM1 ,CM2)), and k is a C∞-

kernel taking values in Hom(CM1 ,CM2). The class of the symbol p(y, η) modulo
S−∞(Ω × R

q,Hom(CM1 ,CM2)) is uniquely determined by P , and we will simply
refer to p(y, η) as the symbol of P with the understanding that symbols are equiv-
alence classes modulo S−∞.

In the following definition we take advantage of the fact that by (b) of Propo-
sition 3.3, there is μ′ such that

(4.2) Sμ1,δ(Ω× R
q; (CM1 , a1), (C

M2 , a2)) ⊂ Sμ+μ
′

1,δ (Ω× R
q;CM1 ,CM2).

Definition 4.3. Let aj ∈ C∞(Ω,End(CMj )) and μ ∈ R. We denote by

Ψμ1,δ(Ω; (C
M1 , a1), (C

M2 , a2))

the space of pseudodifferential operators P : C∞
c (Ω;CM1)→C∞(Ω;CM2) with sym-

bols of class Sμ1,δ(Ω×Rq; (CM1 , a1), (C
M2 , a2)). The principal symbol of P , denoted

by σσ(P ), is the class of the symbol p(y, η) of P modulo Sμ−1+δ
1,δ (Ω×Rq; (CM1 , a1),

(CM2 , a2)).

We say that P has twisted homogeneous principal symbol if σσ(P ) has a repre-
sentative that is twisted homogeneous of degree μ in the large; see Definition 3.7.
By Remark 3.9 there is a unique function

p(μ)(y, η) ∈ C∞(Ω× (Rq \ 0),Hom(CM1 ,CM2))

that is twisted homogeneous of degree μ such that p(y, η)=p(μ)(y, η) for every y∈Ω
and all sufficiently large |η|, and p(μ)(y, η) is independent of the choice of repre-
sentative p(y, η) of σσ(P ) that is twisted homogeneous in the large. In this case, we
identify σσ(P ) with that unique twisted homogeneous function p(μ) and call it the
twisted homogeneous principal symbol of P , i.e., σσ(P )(y, η) = p(μ)(y, η) is then
itself considered a twisted homogeneous function of degree μ ∈ R on Ω× (Rq \ 0).
Proposition 4.4. Let P1 ∈ Ψμ1

1,δ(Ω; (C
M2 , a2), (C

M3 , a3)) have symbol p1(y, η),

and let P2 ∈ Ψμ2

1,δ(Ω; (C
M1 , a1), (C

M2 , a2)) have symbol p2(y, η). We assume that
either P1 or P2 is properly supported.
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Then the composition P1◦P2 ∈ Ψμ1+μ2

1,δ (Ω; (CM1 , a1), (C
M3 , a3)) and has symbol

(4.5) p1#p2 ∼
∑
α∈N

q
0

1

α!

(
∂αη p1

)(
Dα
y p2
)
.

In particular, the principal symbols satisfy σσ(P1 ◦ P2) = σσ(P1)σσ(P2).

Proof. Using (4.2) we first view Pj as an element of Ψ
μj+μ

′

1,δ (Ω;CM3−j ,CM4−j ) and

conclude from the standard theory that P1 ◦ P2 ∈ Ψμ1+μ2+2μ′
1,δ (Ω;CM1 ,CM3) with

symbol p1#p2 satisfying (4.5). By parts (d) and (e) of Proposition 3.3,(
∂αη p1

)(
Dα
y p2
) ∈ Sμ1+μ2−(1−δ)|α|(Ω× R

q; (CM1 , a1), (C
M3 , a3)),

hence by part (c) of the same proposition,

p1#p2 ∈ Sμ1+μ2

1,δ (Ω× R
q; (CM1 , a1), (C

M3 , a3))

as claimed. Consequently, P1 ◦ P2 ∈ Ψμ1+μ2

1,δ (Ω; (CM1 , a1), (C
M3 , a3)) as claimed.

The formula for the principal symbol of the composition follows immediately
from (4.5). �

In the following proposition we shall make use of the following observation.
Let a ∈ C∞(Ω; End(CM )) satisfy the conditions in (2.3). Assume additionally that
the direct decomposition in part (1) there is orthogonal with respect to the stan-
dard inner product of CM . Then the adjoint endomorphism a� ∈ C∞(Ω,End(CM ))
satisfies both conditions in (2.3). More precisely, the eigenvalue clusters associated
with a� are the complex conjugates of the ones associated with a, and the decom-
position (2.3) is the same for both a and a�.

Proposition 4.6. Let P ∈ Ψμ1,δ(Ω; (C
M1 , a1), (C

M2 , a2)) have symbol p(y, η). If the
decompositions in part (1) of (2.3) are orthogonal, then the formal adjoint operator

P � : C∞
c (Ω;CM2) → C∞(Ω;CM1)

defined by ∫
Ω

〈Pu(y), v(y)〉CM2 dy =

∫
Ω

〈u(y), P �v(y)〉CM1 dy

for u ∈ C∞
c (Ω;CM1) and v ∈ C∞

c (Ω;CM2) belongs to

Ψμ1,δ(Ω; (C
M2 ,−a�2), (CM1 ,−a�1))

and has symbol

q(y, η) ∼
∑
α∈N

q
0

1

α!
Dα
y ∂

α
η p(y, η)

�.

In particular, we have σσ(P �) = σσ(P )�.
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Proof. This again follows from Proposition 3.3 and the standard theorem on formal
adjoints in pseudodifferential calculus. Note that

p(y, η)� ∈ Sμ1,δ(Ω× R
q; (CM2 ,−a�2), (CM1 ,−a�1))

by Definition 3.1 in view of the fact that
(〈η〉aj )� = 〈η〉a�j . �

Definition 4.7. A symbol p(y, η) ∈ Sμ1,δ(Ω × Rq; (CM1 , a1), (C
M2 , a2)) is called

elliptic if for every compact setK � Ω there exists R > 0 such that p(y, η) : CM1 →
C
M2 is invertible for all y ∈ K and all |η| ≥ R, and satisfies the estimate

‖〈η〉a1(y)p(y, η)−1〈η〉−a2(y)‖ ≤ C〈η〉−μ

for all y ∈ K and all |η| ≥ R for some suitable constant C > 0.

An operator P ∈ Ψμ1,δ(Ω; (C
M1 , a1), (C

M2 , a2)) is elliptic if its symbol p(y, η) is
elliptic.

Example 4.8. The symbol 〈η〉a(y) is trivially elliptic both as an element of
S0
1,δ(Ω× R

q; (CM , a),CM ) and S0
1,δ(Ω× R

q;CM , (CM ,−a)).

Remark 4.9. A symbol p(y, η) ∈ Sμ1,δ(Ω × Rq; (CM1 , a1), (C
M2 , a2)) is elliptic in

our sense if and only if the symbol

〈η〉a2(y)p(y, η)〈η〉−a1(y) ∈ Sμ1,δ(Ω× R
q;CM1 ,CM2)

is elliptic in the ordinary sense.
Moreover, p(y, η) is elliptic if and only if there exists

q(y, η) ∈ S−μ
1,δ (Ω× R

q; (CM2 , a2), (C
M1 , a1))

such that

p(y, η)q(y, η)− 1 ∈ S−ε
1,δ(Ω× R

q; (CM2 , a2), (C
M2 , a2)),

q(y, η)p(y, η)− 1 ∈ S−ε
1,δ(Ω× R

q; (CM1 , a1), (C
M1 , a1))

for some ε > 0. We can even arrange that the remainders be of order −∞.
Consequently, our notion of ellipticity of symbols is not affected by perturba-

tions of lower order, which implies that ellipticity for pseudodifferential operators
P ∈ Ψμ1,δ(Ω; (C

M1 , a1), (C
M2 , a2)) is well defined. Moreover, it makes sense to say

that P is elliptic if its principal symbol σσ(P ) is elliptic, which means that any
representative of σσ(P ) is elliptic.

Finally, if p(y, η) ∈ Sμ1,δ(Ω×Rq ; (CM1 , a1), (C
M2 , a2)) is twisted homogeneous of

degree μ in the large, then p(y, η) is elliptic if and only if the twisted homogeneous
function p(μ)(y, η) : C

M1 → C
M2 determined by p(y, η) is invertible for all y ∈ Ω

and all η ∈ Rq \ 0. Consequently, an operator P ∈ Ψμ1,δ(Ω; (C
M1 , a1), (C

M2 , a2))
that has a twisted homogeneous principal symbol is elliptic if and only if σσ(P )(y, η)
is invertible for all y ∈ Ω and all η �= 0.
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Example 4.10. Let

aj(y) =

⎛⎜⎝μj,1 · · · 0
...

. . .
...

0 · · · μj,M

⎞⎟⎠
with μj,k ∈ R independent of y ∈ Ω. Let

p(y, η) =

⎛⎜⎝ p1,1(y, η) · · · p1,M (y, η)
...

. . .
...

pM,1(y, η) · · · pM,M (y, η)

⎞⎟⎠ ∈ S0
1,δ(Ω× R

q; (CM , a1), (C
M , a2)),

i.e., all matrix entries satisfy pk,l(y, η) ∈ S
μ1,l−μ2,k

1,δ (Ω × Rq); see Example 3.2.
Suppose that all pk,l(y, η) have homogeneous principal symbols σσ(pk,l)(y, η) of
degree μ1,l − μ2,k, and let

σσ(p)(y, η) =

⎛⎜⎝σσ(p1,1)(y, η) · · · σσ(p1,N )(y, η)
...

. . .
...

σσ(pN,1)(y, η) · · · σσ(pN,N)(y, η)

⎞⎟⎠ .

Then σσ(p)(y, η) is twisted homogeneous of degree zero with respect to the actions
generated by a1 and a2, and an operator P with symbol p(y, η) is elliptic in our
sense if and only if σσ(p)(y, η) is invertible for all y ∈ Ω and all η �= 0. This is just
ellipticity in the sense of Douglis–Nirenberg ([6], [8]) for a system represented by
the symbol p(y, η).

Proposition 4.11. Let P ∈ Ψμ1,δ(Ω; (C
M1 , a1), (C

M2 , a2)) be elliptic. Then there

exists a properly supported Q ∈ Ψ−μ
1,δ (Ω; (C

M2 , a2), (C
M1 , a1)) such that

P ◦Q− 1 ∈ Ψ−∞(Ω;CM2 ,CM2) and Q ◦ P − 1 ∈ Ψ−∞(Ω;CM1 ,CM1).

If P has twisted homogeneous principal symbol so does Q, and we have

σσ(Q)(y, η) = σσ(P )(y, η)−1 on Ω× (Rq \ 0).
Proof. The standard proof based on symbolic inversion modulo lower order and
the formal Neumann series argument applies literally in this situation. The basic
symbol properties in Proposition 3.3, the composition theorem Proposition 4.4, and
the discussion of ellipticity in Remark 4.9 ensure that this is indeed the case. �

Proposition 4.12. Let χ : Ω′ → Ω be a C∞-diffeomorphism, and let

P ∈ Ψμ1,δ(Ω; (C
M1 , a1), (C

M2 , a2)).

Then the operator pullback

χ∗P : C∞
c (Ω′;CM1) → C∞(Ω′;CM2)

is an operator in Ψμ1,δ(Ω
′; (CM1 , χ∗a1), (CM2 , χ∗a2)).
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If P has symbol p(y, η), then χ∗P has symbol pχ(y
′, η′) that satisfies

pχ(y
′, η′) ∼

∑
α∈N

q
0

1

α!

(
∂αη p

)
(χ(y′), (dχ(y′)χ−1)tη′)Φα(y′, η′),

where Φα(y
′, η′) is a polynomial in η′ with coefficients in C∞(Ω′) of degree at

most |α|/2 that depends only on the diffeomorphism χ, and Φ0(y
′, η′) ≡ 1.

The principal symbols satisfy

σσ(χ∗P )(y′, η′) = σσ(P )(χ(y′), (dχ(y′)χ−1)tη′),

which in general needs to be interpreted as an identity of representatives modulo
Sμ−1+δ
1,δ (Ω × R

q; (CM1 , χ∗a1), (CM2 , χ∗a2)). If P has twisted homogeneous princi-
pal symbol so does χ∗P , in which case this identity becomes an identity for these
symbols.

The operator χ∗P is elliptic if P is elliptic.

Proof. By the standard change of coordinates theorem in pseudodifferential cal-
culus and Proposition 3.3 we get that χ∗P is a pseudodifferential operator with
symbol pχ(y

′, η′) that has the stated asymptotic expansion. By the form of this
expansion, in order to complete the argument, it suffices to show that for every
p(y, η) ∈ Sμ1,δ(Ω× Rq; (CM1 , a1), (C

M2 , a2)) we have

p(χ(y′), (dχ(y′)χ−1)tη′) ∈ Sμ1,δ(Ω
′ × R

q; (CM1 , χ∗a1), (CM2 , χ∗a2)).

By Remark 3.5 we know that

〈η〉a2(y)p(y, η)〈η〉−a1(y) ∈ Sμ1,δ(Ω× R
q;CM1 ,CM2).

Consequently,

(4.13)
〈(dχ(y′)χ−1)tη′〉(χ∗a2)(y′)p(χ(y′), (dχ(y′)χ−1)tη′)〈(dχ(y′)χ−1)tη′〉−(χ∗a1)(y′)

∈ Sμ1,δ(Ω
′ × Rq;CM1 ,CM2).

Now let

b(y′, η′) =
〈η′〉

〈(dχ(y′)χ−1)tη′〉 ∈ S0(Ω′ × R
q).

Then b(y′, η′) > 0 for all (y′, η′), and b(y′, η′) is elliptic. By Lemma 3.6 we thus
have

b(y′, η′)±(χ∗aj)(y′) ∈ S0(Ω′ × R
q;CMj ,CMj ), j = 1, 2.

Multiplying (4.13) on the left and right with these terms then shows that

(4.14) 〈η′〉(χ∗a2)(y′)p(χ(y′), (dχ(y′)χ−1)tη′)〈η′〉−(χ∗a1)(y′) ∈ Sμ1,δ(Ω
′×R

q;CM1 ,CM2),

and consequently

p(χ(y′), (dχ(y′)χ−1)tη′) ∈ Sμ1,δ(Ω
′ × R

q; (CM1 , χ∗a1), (CM2 , χ∗a2))

by Remark 3.5.
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If p(y, η) is elliptic, then 〈η〉a2(y)p(y, η)〈η〉−a1(y) is elliptic of order μ in the
ordinary sense. Consequently, the symbol in (4.13) is also elliptic of order μ in the
standard sense. Because b(y′, η′)±(χ∗aj)(y′) is elliptic of order zero, we get that the
symbol in (4.14) is necessarily elliptic, and consequently p(χ(y′), (dχ(y′)χ−1)tη′)
is elliptic. �

Proposition 4.12 establishes invariance of the spaces

Ψμ1,δ(Ω; (C
M1 , a1), (C

M2 , a2))

under changes of coordinates. In conjunction with the following proposition we
will have paved the way for the global definition of these spaces in Section 6.
The setting and notation in the statement are those of Section 2.

Proposition 4.15. For j = 1, 2, let φj and ψj be δ-admissible trivializations
of the vector bundles Ej → Y over domains Ω and Ω′ of local charts of Y.
Let aj,φj = φjajφ

−1
j and aj,ψj = ψjajψ

−1
j . View Ω ∩ Ω′ as an open subset of Rq

by way of either of the local charts. Define

Θj : C
∞(Ω ∩Ω′,CMj ) → C∞(Ω ∩ Ω′,CMj ), Θj(u) = (ψjφ

−1
j )u.

Then
P �→ Θ2 ◦ P ◦Θ−1

1

is a bijection

Ψμ1,δ(Ω ∩Ω′; (CM1 , a1,φ1), (C
M2 , a2,φ2))

→ Ψμ1,δ(Ω ∩ Ω′; (CM1 , a1,ψ1), (C
M2 , a2,ψ2)).

Furthermore,
σσ(Θ2 ◦ P ◦Θ−1

1 ) = ψ2 φ
−1
2 σσ(P )φ1 ψ

−1
1 .

Proof. By Corollary 3.12,

Θj ∈ Ψ0
1,δ(Ω ∩ Ω′; (CMj , aj,φj), (C

Mj , aj,ψj )).

Evidently Θj is invertible, so the conclusions follow from Proposition 4.4. �

5. Sobolev spaces and local regularity

We remind the reader of our standing assumption, stated in the first paragraph
of Section 3.

Definition 5.1. Let s ∈ R, and let Λs be a properly supported pseudodifferential
operator on Ω with (total left) symbol 〈η〉s+a(y) = 〈η〉s〈η〉a(y). Define

Hs+a
loc (Ω;CM ) = {u ∈ D′(Ω;CM ) : Λsu ∈ L2

loc(Ω;C
M )},

Hs+a
comp(Ω;C

M ) = Hs+a
loc (Ω;CM ) ∩ E ′(Ω;CM ).
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Since the definition of Λs makes no reference to any specific δ, the spaces just
defined do not depend on δ. That in fact Λs ∈ Ψs1,δ(Ω; (C

M , a),CM ) because
of our assumption on δ-admissibility is of no consequence to the definition itself.
The following proposition and subsequent corollary show in particular that the
spaces are independent of the specific choice of operator Λs.

Proposition 5.2. Let P ∈ Ψμ1,δ(Ω; (C
M1 , a1), (C

M2 , a2)). Then

P : Hs+a1
comp(Ω;C

M1) → Hs−μ+a2
loc (Ω;CM2).

If P is properly supported, then

P :

{
Hs+a1

comp(Ω;C
M1) → Hs−μ+a2

comp (Ω;CM2),

Hs+a1
loc (Ω;CM1) → Hs−μ+a2

loc (Ω;CM2).

Proof. Let Λ
(1)
s ∈ Ψs1,δ(Ω; (C

M1 , a1),C
M1) be a properly supported pseudodifferen-

tial operator with symbol 〈η〉s+a1(y), and let Λ
(2)
s−μ ∈ Ψs−μ1,δ (Ω; (CM2 , a2),C

M2) be

properly supported with symbol 〈η〉s−μ+a2(y). Since Λ
(1)
s is elliptic there exists a

properly supported Q ∈ Ψ−s
1,δ(Ω;C

M1 , (CM1 , a1)) such that Q◦Λ(1)
s = 1+R, where

R ∈ Ψ−∞(Ω;CM1 ,CM1); see Proposition 4.11.
Now let P ∈ Ψμ1,δ(Ω; (C

M1 , a1), (C
M2 , a2)) be properly supported, and let u ∈

Hs+a1
loc (Ω;CM1). Then

Λ
(2)
s−μ(Pu) = (Λ

(2)
s−μ ◦ P )((Q ◦ Λ(1)

s )u −Ru)

= (Λ
(2)
s−μ ◦ P ◦Q)(Λ(1)

s u)− (Λ
(2)
s−μ ◦ P )(Ru).

The operator Λ
(2)
s−μ ◦ P ◦Q belongs to Ψ0

1,δ(Ω;C
M1 ,CM2) by Proposition 4.4 and

is properly supported, and consequently

Λ
(2)
s−μ ◦ P ◦Q : L2

loc(Ω;C
M1) → L2

loc(Ω;C
M2).

This shows that (Λ
(2)
s−μ ◦ P ◦Q)(Λ

(1)
s u) ∈ L2

loc(Ω;C
M2). On the other hand, Ru ∈

C∞(Ω;CM1), and thus (Λ
(2)
s−μ ◦ P )(Ru) ∈ C∞(Ω;CM2). In conclusion, we get

that Λ
(2)
s−μ(Pu) ∈ L2

loc(Ω;C
M2). Hence Pu ∈ Hs−μ+a2

loc (Ω;CM2) as claimed.
The remaining mapping properties stated in the proposition follow from what

we just proved by decomposing a general pseudodifferential operator as a sum
of a properly supported and a smoothing part, and from the fact that properly
supported pseudodifferential operators map compactly supported distributions to
compactly supported distributions. �

Corollary 5.3. (a) Hs+a
loc (Ω;CM ) ⊂ Ht+a

loc (Ω;CM ) for s ≥ t.

(b) There exist m,m′ ≥ 0 such that

Hs+m′
loc (Ω;CM ) ⊂ Hs+a

loc (Ω;CM ) ⊂ Hs−m
loc (Ω;CM )

for all s ∈ R.
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(c) Let P ∈ Ψs1,δ(Ω; (C
M , a),CM ) be properly supported and elliptic. Then

Hs+a
loc (Ω;CM ) = {u ∈ D′(Ω;CM ) : Pu ∈ L2

loc(Ω;C
M )}.

Proof. (a) follows from Proposition 5.2 because the identity map is an operator of
class Lμ1,δ(Ω; (C

M , a), (CM , a)) for all μ ≥ 0.

By Proposition 3.3 there exists m′ > 0 such that

Ψs1,δ(Ω; (C
M , a),CM ) ⊂ Ψs+m

′
1,δ (Ω;CM ,CM )

for all s ∈ R. Consequently, Λs : H
s+m′
loc (Ω;CM ) → L2

loc(Ω;C
M ), where Λs is as in

Definition 5.1, and therefore Hs+m′
loc (Ω;CM ) ⊂ Hs+a

loc (Ω;CM ). By Proposition 3.3
there exists an m ≥ 0 such that the identity map belongs to Ψm1,δ(Ω; (C

M , a),CM ).

Consequently, Id : Hs+a
loc (Ω;CM ) → Hs−m

loc (Ω;CM ) for all s ∈ R by Proposition 5.2.
This proves (b).

Now let P ∈ Ψs1,δ(Ω; (C
M , a),CM ) be properly supported and elliptic. By Propo-

sition 5.2 we have

Hs+a
loc (Ω;CM ) ⊂ {u ∈ D′(Ω;CM ) : Pu ∈ L2

loc(Ω;C
M )}.

To finish the proof of the corollary it remains to show the opposite inclusion.
By Proposition 4.11 there exists a properly supported Q ∈ Ψ−s

1,δ(Ω;C
M , (CM , a))

such that Q◦P = 1+R with R ∈ Ψ−∞(Ω;CM ,CM ). Let Λs be as in Definition 5.1,
and let u ∈ D′(Ω;CM ) be such that Pu ∈ L2

loc(Ω : CM ). Then

Λsu = (Λs ◦Q)(Pu)− Λs(Ru).

The operator Λs ◦Q ∈ Ψ0
1,δ(Ω;C

M ,CM ) is properly supported, and consequently

(Λs ◦ Q)(Pu) ∈ L2
loc(Ω;C

M ). Clearly also Λs(Ru) ∈ L2
loc(Ω;C

M ) because Ru ∈
C∞(Ω;CM ). This shows that Λsu ∈ L2

loc(Ω;C
M ), and so u ∈ Hs+a

loc (Ω;CM ). �

Corollary 5.4. Let P ∈ Ψμ1,δ(Ω; (C
M1 , a1), (C

M2 , a2)) be properly supported and

elliptic. Let u ∈ D′(Ω;CM1) be such that Pu=f ∈Hs+a2
loc (Ω;CM2) for some s∈R.

Then u ∈ Hs+μ+a1
loc (Ω;CM1).

Proof. Let Q ∈ Ψ−μ
1,δ (Ω; (C

M2 , a2), (C
M1 , a1)) be a properly supported parametrix

of P ; see Proposition 4.11. Then

Qf = Q(Pu) = u+Ru ∈ Hs+μ+a1
loc (Ω;CM1),

by Proposition 5.2, where R ∈ Ψ−∞(Ω;CM1 ,CM1) is properly supported. Hence
Ru ∈ C∞(Ω;CM1), and thus u ∈ Hs+μ+a1

loc (Ω;CM1) as asserted. �

Example 5.5. Let

aj(y) =

⎛⎜⎝μj,1 · · · 0
...

. . .
...

0 · · · μj,M

⎞⎟⎠
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with μj,k ∈ R independent of y ∈ Ω, j = 1, 2. In this case,

H
s+aj
loc (Ω;CM ) =

M⊕
k=1

H
s+μj,k
loc (Ω).

Let

p(y, η) =

⎛⎜⎝ p1,1(y, η) · · · p1,M (y, η)
...

. . .
...

pM,1(y, η) · · · pM,M (y, η)

⎞⎟⎠ ∈ S0
1,δ(Ω× R

q; (CM , a1), (C
M , a2))

be elliptic, and let P be properly supported with symbol p(y, η). By Example 4.10
this means that P is elliptic in the sense of Douglis–Nirenberg. Corollary 5.4 in
this case reduces to the following standard statement about regularity of solutions
of Pu = f : if

f = (f1, . . . , fM ) ∈
N⊕
k=1

H
s+μ2,k

loc (Ω),

then

u = (u1, . . . , uM ) ∈
N⊕
k=1

H
s+μ1,k

loc (Ω).

6. The global calculus

Throughout this and the remaining sections of this paper let Y be a smooth com-
pact manifold without boundary of dimension q. We consider complex vector
bundles E → Y that are equipped with an endomorphism a ∈ C∞(Y; End(E)),
and will typically denote the pair by (E, a). The multiplicative group generated
by a is denoted by 
a ∈ C∞(Y; Aut(E)), 
 > 0, and π denotes the canonical
projection T ∗Y \ 0 → Y.
Definition 6.1. Let (Ej , aj), j = 1, 2, be vector bundles over Y equipped with
endomorphisms, let 0 < δ < 1, and let μ ∈ R. By Ψμ1,δ(Y; (E1, a1), (E2, a2)) we
denote the space of all pseudodifferential operators

P : C∞(Y;E1) → C∞(Y;E2)

of type (1, δ) with the following property: Let Ω ⊂ Y be the domain of a local
chart over which there are δ-admissible trivializations φj : Ej,Ω → Ω×CMj relative
to aj ; see Section 2. Via the chart we view Ω as an open subset of Rq and require
then that P be represented over Ω by an operator

PΩ : C∞
c (Ω;CM1) → C∞(Ω;CM2)

of class Ψμ1,δ(Ω; (C
M1 , a1,φ1), (C

M2 , a2,φ2)).
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We noted in Section 2 that every y0 ∈ Y is contained in the domain of a local
chart Ω such that both bundles E1 and E2 have δ-admissible trivializations over Ω.
Proposition 4.12 (change of variables) and Proposition 4.15 (change of δ-admissible
trivializations) ensure that the class Ψμ

1,δ(Y; (E1, a1), (E2, a2)) is well defined.

The class Ψμ1,δ(Y; (E1, a1), (E2, a2)) is also well defined when Y is just an open
manifold, and basic properties and notions such as composition (under the usual
support condition), ellipticity, existence of parametrices, and so on, are valid. How-
ever, as indicated above, we restrict our attention here to the case where Y is
closed.

Let P ∈Ψμ1,δ(Y; (E1, a1), (E2, a2)). By Section 2 and compactness, Y has a finite

covering Y =
⋃L
k=1 Ωk by domains of local charts Ωk ⊂ Y over which there exist

δ-admissible trivializations of both (E1, a1) and (E2, a2). Let {ϕk : k = 1, . . . , L}
be a partition of unity subordinate to the covering of Y, and choose functions
ψk ∈ C∞

c (Ωk) such that ψk ≡ 1 in a neighborhood of the support of ϕk. Write

(6.2) P =

L∑
k=1

ϕkPψk +R,

where R =
∑L

k=1 ϕkP (1 − ψk) ∈ Ψ−∞(Y;E1, E2). The operators ϕkPψk have
Schwartz kernels with compact supports in Ωk ×Ωk, and in view of Definition 6.1
their structure is described by the local calculus discussed in the previous sections.
Conversely, using charts, the partition of unity, and δ-admissible trivializations of
the bundles, operators in Ψμ1,δ(Y; (E1, a1), (E2, a2)) can be patched out of operators

in the local calculus modulo Ψ−∞(Y;E1, E2).

Definition 6.3. Let P ∈ Ψμ1,δ(Y; (E1, a1), (E2, a2)). We say that P has twisted
homogeneous principal symbol if every y0 ∈ Y is contained in the domain Ω of a
local chart such that there exist δ-admissible trivializations φj : Ej,Ω → Ω × CMj

relative to aj over Ω such that the induced operator

PΩ : C∞
c (Ω;CM1) → C∞(Ω;CM2)

of class Ψμ1,δ(Ω; (C
M1 , a1,φ1), (C

M2 , a2,φ2)) has twisted homogeneous principal sym-
bol.

The local twisted homogeneous principal symbols join and invariantly define
a function σσ(P ) on T ∗Y \ 0 taking values in Hom(π∗E1, π

∗E2) that satisfies the
twisted homogeneity relation

(6.4) σσ(P )(
ηy) = 
μ
−(π∗a2)|π∗E2,y σσ(P )(ηy)

(π∗a1)|π∗E1,y

for all ηy ∈ T ∗
yY \ 0 and 
 > 0. The global σσ(P ) on T ∗Y \ 0 is called the twisted

homogeneous principal symbol of P .

Let p∈C∞(T ∗Y\0;Hom(π∗E1, π
∗E2)) be twisted homogeneous of degree μ∈R,

i.e., relation (6.4) is satisfied. Then there exists an operator

P ∈ Ψμ1,δ(Y; (E1, a1), (E2, a2))
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such that σσ(P ) = p. The standard argument applies here to see this: In local
coordinates and with respect to δ-admissible trivializations of the bundles, we
can define P as the quantization of ξ(η)p(y, η), where ξ ∈ C∞(Rq) is an excision
function of the origin. The global P is obtained by patching the local operators
using a partition of unity.

Theorem 6.5 (Composition theorem). Let P1 ∈ Ψμ1

1,δ(Y; (E2, a2), (E3, a3)) and

P2 ∈ Ψμ2

1,δ(Y; (E1, a1), (E2, a2)). Then

P1 ◦ P2 ∈ Ψμ1+μ2

1,δ (Y; (E1, a1), (E3, a3)).

If both P1 and P2 have twisted homogeneous principal symbols, so does P1 ◦P2 and
we have σσ(P1 ◦ P2) = σσ(P1)σσ(P2) on T

∗Y \ 0.
Proof. Let Ω⊂ Y be the domain of a local chart such that all bundles admit δ-
admissible trivializations ψj :Ej,Ω→Ω×CMj relative to aj over Ω. Let ϕj∈C∞

c (Ω),
j = 1, . . . , 4, be such that ϕj+1 ≡ 1 in a neighborhood of the support of ϕj . Write

ϕ1(P1 ◦ P2)ϕ2 = (ϕ1P1ϕ3)(ϕ4P2ϕ2) + ϕ1P1(1− ϕ3)P2ϕ2.

The operator ϕ1P1(1 − ϕ3)P2ϕ2 is of class Ψ−∞(Y;E1, E3), and both operators
(ϕ1P1ϕ3) and (ϕ4P2ϕ2) have Schwartz kernels supported in Ω×Ω, and with respect
to the trivializations ψj of the bundles these operators are represented by operators
in the classes

Ψμ1

1,δ(Ω; (C
M2 , a2,ψ2), (C

M3 , a3,ψ3)) and Ψμ2

1,δ(Ω; (C
M1 , a1,ψ1), (C

M2 , a2,ψ2)),

respectively. From the local composition theorem (Proposition 4.4) we obtain that
(ϕ1P1ϕ3)(ϕ4P2ϕ2) is locally represented by an operator of class

Ψμ1+μ2

1,δ (Ω; (CM1 , a1,ψ1), (C
M3 , a3,ψ3)).

If both P1 and P2 have twisted homogeneous principal symbols, so does the op-
erator (ϕ1P1ϕ3)(ϕ4P2ϕ2), and by our choices of the cut-offs ϕj ∈ C∞

c (Ω) we see
that

σσ(ϕ1(P1 ◦ P2)ϕ2) = σσ((ϕ1P1ϕ3)(ϕ4P2ϕ2)) = ϕ1 σσ(P1)σσ(P2).

Covering Y with suitable coordinate neighborhoods Ω and using a subordinate
partition of unity proves the claim. �

Theorem 6.6 (Formal adjoints). Let P ∈Ψμ1,δ(Y; (E1, a1), (E2, a2)). Fix a smooth
positive density m on Y, and let

[·, ·]j,y : Ej,y × Fj,y → C, y ∈ Y, j = 1, 2,

be nondegenerate sesquilinear forms depending smoothly on y ∈ Y. Let a�j ∈
C∞(Y; End(Fj)) be the adjoint endomorphism of aj ∈ C∞(Y; End(Ej)) with re-

spect to [·, ·]j, j = 1, 2, i.e., a�j satisfies

[ajej , fj ]j = [ej , a
�
jfj]j
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for all sections ej ∈ C∞(Y;Ej) and fj ∈ C∞(Y;Fj). Then

P : C∞(Y;E1) → C∞(Y;E2)

has a formal adjoint P � : C∞(Y;F2) → C∞(Y;F1) given by∫
[Pu(y), v(y)]2,y dm(y) =

∫
[u(y), P �v(y)]1,y dm(y)

for u ∈ C∞(Y;E1) and v ∈ C∞(Y;F2), and P
� ∈ Ψμ1,δ(Y; (F2,−a�2), (F1,−a�1)). If

P has twisted homogeneous principal symbol σσ(P ), then P � has twisted homoge-
neous principal symbol σσ(P �) = σσ(P )�, where σσ(P )� : π∗F2 → π∗F1 is the fiberwise
formal adjoint of σσ(P ) : π∗E1 → π∗E2 with respect to the lifted pairings [·, ·]j on
π∗Ej × π∗Fj, j = 1, 2. This means that

[σσ(P )e1, f2]2 = [e1, σσ(P )
�f2]1

for all sections e1 ∈ C∞(T ∗Y \ 0, π∗E1) and f2 ∈ C∞(T ∗Y \ 0, π∗F2).

Proof. Let Ω⊂Y be the domain of a local chart, and let φj :Ej,Ω→Ω×CMj be δ-
admissible trivializations relative to aj over Ω. We equip CMj with the standard
inner product 〈·, ·〉

C
Mj , and note that the trivializations are such that the decom-

positions (2.3) of CMj associated with aj,φj are orthogonal with respect to 〈·, ·〉
C
Mj .

Now let φ�j : Ω × CMj → Fj,Ω be the adjoint with respect to the pairing [·, ·]j,y
on Ej,y × Fj,y and the standard inner product on CMj , i.e.,

〈φj,y(e), v〉CMj = [e, φ�j,yv]j,y

for e ∈ Ej,y and v ∈ CMj , where φj,y : Ej,y → CMj is the restriction of φj to the

fiber over y ∈ Ω, and likewise for φ�j . Let ψj = (φ�j)
−1 : Fj,Ω → Ω × CMj .

Then ψj is a δ-admissible trivialization of Fj,Ω relative to a�j over Ω, and we have

a�j,ψj = (aj,φj )
� ∈ C∞(Ω,End(CMj )), where � represents the standard adjoint

operation in End(CMj ).
Now assume that P ∈ Ψμ1,δ(Y; (E1, a1), (E2, a2)) has Schwartz kernel that is

compactly supported in Ω× Ω. Hence P is represented by an operator

PΩ : C∞
c (Ω;CM1) → C∞(Ω;CM2)

in the class Ψμ1,δ(Ω; (C
M1 , a1,φ1), (C

M2 , a2,φ2)). Proposition 4.6 is applicable here,
and we get that the formal adjoint

P �Ω : C∞
c (Ω;CM2) → C∞(Ω;CM1)

with respect to the standard inner products on CMj is an operator in the class
Ψμ1,δ(Ω; (C

M2 ,−a�2,ψ2
), (CM1 ,−a�1,ψ1

)). While Proposition 4.6 refers to Lebesgue
measure in coordinates, a change of the density to m only results into a conjugation
with a multiplication operator by a positive scalar function, and Proposition 4.4
then shows that this stays in the local operator class without changing the principal
symbol.
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The operator P �Ω is the local representation of the desired operator

P � ∈ Ψμ1,δ(Y; (F2,−a�2), (F1,−a�1)).

The operator P � has compactly supported Schwartz kernel in Ω×Ω, and we have
σσ(P �) = σσ(P )� if P (and then necessarily also P �) has twisted homogeneous
principal symbol.

The general case reduces to considering operators with compactly supported
Schwartz kernels and smoothing operators, using a partition of unity. Since any
smoothing operator has a formal adjoint operator that is smoothing, the theorem
is proved. �

Definition 6.7. An operator P ∈ Ψμ1,δ(Y; (E1, a1), (E2, a2)) is called elliptic if
every point y0 ∈ Y is contained in the domain of a local chart Ω such that there exist
δ-admissible trivializations φj : Ej,Ω → Ω×CMj such that the local representation
PΩ ∈ Ψμ1,δ(Ω; (E1, a1,φ1), (E2, a2,φ2)) of P is elliptic.

The notion of ellipticity in Definition 6.7 is independent of the choices of neigh-
borhoods Ω, charts, and δ-admissible trivializations. This is a consequence of the
local theory and its invariance properties from Section 4.

If P ∈ Ψμ1,δ(Y; (E1, a1), (E2, a2)) has twisted homogeneous principal symbol,
then P is elliptic if and only if σσ(P ) is invertible everywhere on T ∗Y \ 0.
Theorem 6.8 (Parametrix theorem). For P ∈ Ψμ1,δ(Y; (E1, a1), (E2, a2)) the fol-
lowing are equivalent:

(a) P is elliptic.

(b) There exists Q ∈ Ψ−μ
1,δ (Y; (E2, a2), (E1, a1)) such that

P ◦Q− 1 ∈ Ψ−∞(Y;E2, E2) and Q ◦ P − 1 ∈ Ψ−∞(Y;E1, E1).

If P has twisted homogeneous principal symbol so does the parametrix Q, and
we have σσ(Q) = σσ(P )−1 on T ∗Y \ 0.
Proof. If P is elliptic then Y has a finite covering by open subsets such that the
local representations of the restrictions of P are elliptic. Proposition 4.11 applies
to these representations and gives local parametrices, and we then patch a global
parametrix together out of the local ones in the usual way. The converse follows
from the composition theorem and the multiplicative behavior of the principal
symbol in coordinates (see Proposition 4.4). �

Theorem 6.9. Let S∗Y be the cosphere bundle with respect to some choice of Rie-
mannian metric on Y. Let E be a vector bundle, and let a1, a2 ∈ C∞(Y; End(E))
be endomorphisms. Let r be the identity in C∞(S∗Y; End(π∗E)), extended by
twisted homogeneity of degree μ ∈ R with respect to the actions generated by a1
and a2 to all of T ∗Y \ 0. Then there exists R ∈ Ψμ1,δ(Y; (E, a1), (E, a2)) with

σσ(R) = r such that R : C∞(Y;E) → C∞(Y;E) is invertible with inverse R−1 ∈
Ψ−μ

1,δ (Y; (E, a2), (E, a1)).
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Before giving the proof, we note the following. As in the standard calculus of
pseudodifferential operators, our calculus allows adding a dependence on a parame-
ter λ ∈ Λ to the construction. For our purposes it suffices to consider Λ = R. In the
local calculus in open sets Ω ⊂ Rq, the symbols of order μ in Definition 3.1 are
replaced in the parameter-dependent calculus by functions p(y, η, λ) that satisfy
the estimates

‖〈η, λ〉a2(y)(Dα
y ∂

β
(η,λ)p(y, η, λ)

)〈η, λ〉−a1(y)‖ ≤ CK,α,β〈η, λ〉μ−|β|+δ|α|

for all (y, η, λ)∈K ×Rq+1, where K�Ω is any compact subset. Pseudodifferential
operators with parameters in the local calculus are families

P (λ) = Op(p)(λ) +G(λ) : C∞
c (Ω;CM1) → C∞(Ω;CM2),

where Op(p)(λ) is the quantization of a symbol p(y, η, λ) of the kind just described,
and G(λ) belongs to S (Λ,Ψ−∞(Ω;CM1 ,CM2)), the space of Schwartz functions
on Λ with values in Ψ−∞(Ω;CM1 ,CM2). All constructions and results about the
local calculus in Section 4 hold for the operator class with the added parameter,
in particular Proposition 4.4 on composition of operator families, and Proposi-
tion 4.11 on the existence of parameter-dependent parametrices for operators that
are elliptic with parameter. Ellipticity with parameter on the symbolic level means
that for every compact set K � Ω there exists R > 0 such that p(y, η, λ) is invert-
ible for all y ∈ K and all |(η, λ)| ≥ R, and the inverse satisfies the estimate

‖〈η, λ〉a1(y)p(y, η, λ)−1〈η, λ〉−a2(y)‖ ≤ C〈η, λ〉−μ

for all y ∈ K and all |η, λ| ≥ R for some suitable constant C > 0. The notion of
twisted homogeneity of degree μ ∈ R makes sense as well, and includes scaling in
the parameter along with the covariables,

p(μ)(y, 
η, 
λ) = 
μ
−a2(y)p(μ)(y, η, λ)
a1(y) for 
 > 0 and (η, λ) �= (0, 0);

see Definition 3.7. For operator families P (λ) with parameter-dependent twisted
homogeneous principal symbol ellipticity with parameter is equivalent to the invert-
ibility of that symbol. The parameter-dependent calculus is also defined globally
by following the same approach as in the case without parameters that is presented
in this section.

Proof of Theorem 6.9. Let r(λ) be the identity in End(π∗E) on S∗(Y ×Λ), where
Y × Λ carries the product metric obtained from the given metric on Y and the
standard metric on Λ = R, extended by twisted homogeneity of degree μ ∈ R

to all of (T ∗Y × Λ) \ 0. Observe that the restriction r(0) of r(λ) to λ = 0 is
precisely the function r in the statement of the theorem. With r(λ) we associate
a family of operators R(λ) of order μ ∈ R in the parameter-dependent calculus
such that r(λ) is the parameter-dependent twisted homogeneous principal symbol
of R(λ). Then R(λ) is elliptic with parameter λ ∈ R, and consequently there exists
a parameter-dependent parametrix Q(λ) in the calculus of order −μ such that

R(λ) ◦Q(λ)− 1, Q(λ) ◦R(λ)− 1 ∈ Ψ−∞(Y,Λ;E).
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In particular, if with pick λ = λ0 with |λ0| sufficiently large, then R(λ0) is in-
vertible with inverse R(λ0)

−1 = Q(λ0) +G for some appropriate G ∈ Ψ−∞(Y;E).
The pseudodifferential operator R(λ0) is an element of order μ ∈ R in the calculus
without parameters, and its inverse R(λ0)

−1 is an element of order −μ. By con-
struction of the operator R(λ0) we see that it does have a twisted homogeneous
principal symbol on T ∗Y \ 0 that is simply given by r. Hence the assertion of the
theorem holds with R = R(λ0). �

7. Sobolev spaces and Fredholm theory

We continue our investigation with the definition of the global Sobolev spaces on Y,
the mapping properties of the operators in the calculus in the Sobolev space scale,
and the Fredholm theory of elliptic operators.

Definition 7.1. Let (E, a) be a vector bundle equipped with an endomorphism a.
For s ∈ R let

Hs+a(Y;E)

be the space of all u ∈ D′(Y;E) such that over domains Ω ⊂ Y of local charts over
which there exists a δ-admissible trivialization φ : EΩ → Ω×CM relative to a, the
restriction u|Ω is a distribution in H

s+aφ
loc (Ω;CM ).

By the comment following Definition 5.1 and by Proposition 5.2, Corollary 5.3,
and the invariance properties of the local calculus we see that the spaceHs+a(Y;E)
is well defined and is independent of the choice of 0 < δ < 1.

Theorem 7.2. (a) Let P ∈ Ψμ1,δ(Y; (E1, a1), (E2, a2)). Then

(7.3) P : Hs+a1(Y;E1) → Hs−μ+a2(Y;E2)

for every s ∈ R.

(b) Fix a smooth positive density on Y and a Hermitian metric on E. Let Λs ∈
Ls1,δ(Y; (E, a), E) be invertible with inverse Λ−1

s ∈ Ψ−s
1,δ(Y;E, (E, a)); see The-

orem 6.9. Then Hs+a(Y;E) is a Hilbert space with respect to the inner product

〈u, v〉 = 〈Λsu,Λsv〉L2(Y;E).

The topology induced on Hs+a(Y;E) by the norm associated to this inner prod-
uct is independent of the choice of density on Y and Hermitian form on E,
and independent of the choice of Λs. The map (7.3) is continuous with respect
to this topology.

(c) C∞(Y;E) ↪→ Hs+a(Y;E) ↪→ D′(Y;E) continuously, and C∞(Y;E) is dense
in Hs+a(Y;E) for every s ∈ R.

(d) Hs+a(Y;E) ↪→ Ht+a(Y;E) continuously for s ≥ t, and this embedding is
compact for s > t.
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Proof. Write P =
∑L
k=1 ϕkPψk + R as in (6.2). The operators ϕkPψk are pull-

backs of operators in the local calculus with compactly supported Schwartz ker-
nels, and consequently Proposition 5.2 implies that ϕkPψk : Hs+a1(Y;E1) →
Hs−μ+a2(Y;E2) for each k = 1, . . . , L. On the other hand, R is smoothing and
thus trivially has the desired mapping properties. This proves (a).

(b) follows from the continuity of all pseudodifferential operators acting in
distributions, the composition theorem (Theorem 6.5) for the calculus, and the
boundedness of pseudodifferential operators of order zero and type (1, δ) in L2.
(c) is evident, and, by utilizing Theorem 6.9, the proof of part (d) reduces to the
familiar result that pseudodifferential operators of order less than 0 and type (1, δ)
are compact in L2. �

Theorem 7.4. Fix a smooth positive density m on Y, and let

[·, ·]y : Ey × Fy → C, y ∈ Y,
be a nondegenerate sesquilinear form depending smoothly on y ∈ Y. The map

{u, v} =

∫
[u(y), v(y)]y dm(y)

for u ∈ C∞(Y;E) and v ∈ C∞(Y;F ) extends by continuity to a nondegenerate
sesquilinear form

{·, ·} : Hs+a(Y;E) → H−s−a�(Y;F ) → C

that induces an antilinear isomorphism Hs+a(Y;E)′ ∼= H−s−a�(Y;F ). Here a� ∈
C∞(Y; End(F )) is the adjoint endomorphism of a ∈ C∞(Y; End(E)) with respect
to [·, ·]y.
Proof. By Theorem 6.9 there exists an invertible Λs ∈ Ψs1,δ(Y; (E, a), E) with

inverse Λ−1
s ∈ Ψ−s

1,δ(Y;E, (E, a)). By Theorem 6.6 we have(
Λ−1
s

)� ∈ Ψ−s
1,δ(Y; (F,−a�), F ).

For u ∈ C∞(Y;E) and v ∈ C∞(Y;F ) we have

{u, v} =

∫
[Λ−1
s Λsu(y), v(y)]y dm(y) =

∫
[Λsu(y),

(
Λ−1
s

)�
v(y)]y dm(y).

Theorem 7.2 shows that the right-hand side extends by continuity to all u ∈
Hs+a(Y;E) and v ∈ H−s−a�(Y;F ), and the extension {·, ·} has the desired prop-
erties. �

Theorem 7.5 (Elliptic regularity). Let P ∈ Ψμ1,δ(Y; (E1, a1), (E2, a2)) be elliptic.

Let u ∈ D′(Y;E1) be such that Pu = f ∈ Hs+a2(Y;E2) for some s ∈ R. Then
u ∈ Hs+μ+a1(Y;E1).

Proof. This follows from the parametrix theorem (Theorem 6.8) and Theorem 7.2
in the usual way. The argument is the same as in Corollary 5.4 for the local
calculus. �
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Theorem 7.6 (Fredholm theorem). Let P ∈ Ψμ1,δ(Y; (E1, a1), (E2, a2)). The fol-
lowing are equivalent:

(a) P is elliptic.

(b) P : Hs+a1(Y;E1) → Hs−μ+a2(Y;E2) is a Fredholm operator for every s ∈ R.

(c) P : Hs0+a1(Y;E1) → Hs0−μ+a2(Y;E2) is a Fredholm operator for some s0∈R.

Proof. Let R1 ∈ Ψ0
1,δ(Y;E1, (E1, a1)) and R2 ∈ Ψ0

1,δ(Y; (E2, a2), E2) be elliptic

and invertible, and suppose that the inverses satisfy R−1
1 ∈ Ψ0

1,δ(Y; (E1, a1), E1)

and R−1
2 ∈ Ψ0

1,δ(Y;E2, (E2, a2)), respectively. Such operators exist according to
Theorem 6.9. Then each of the stated properties for P is equivalent to the corre-
sponding property for the operator R2PR1 ∈ Ψμ1,δ(Y;E1, E2). Consequently, the
proof of Theorem 7.6 reduces to the standard result where both a1 and a2 are the
zero endomorphisms, and P is an operator of order μ and type (1, δ). �

Corollary 7.7 (Spectral invariance). Let P ∈ Ψμ1,δ(Y; (E1, a1), (E2, a2)), and sup-
pose that

P : Hs0+a1(Y;E1) → Hs0−μ+a2(Y;E2)

is invertible for some s0 ∈ R. Then P−1 ∈ Ψ−μ
1,δ (Y; (E2, a2), (E1, a1)).

Proof. By Theorem 7.6, P is elliptic. Let Q ∈ Ψ−μ
1,δ (Y; (E2, a2), (E1, a1)) be a

parametrix such that P ◦Q = 1 + Rr and Q ◦ P = 1 + Rl, where Rl and Rr are
smoothing; see Theorem 6.8. Then

P−1 = Q−Q ◦Rr +Rl ◦ P−1 ◦Rr,

and Rl ◦ P−1 ◦ Rr is smoothing because it extends to an operator that maps
distributions to C∞-functions. Consequently, P−1 ∈ Ψ−μ

1,δ (Y; (E2, a2), (E1, a1)) as
desired. �

Corollary 7.8 (Functional calculus). Let P ∈ Ψ0
1,δ(Y; (E, a), (E, a)). Then the

spectrum Σ of the bounded operator P : Hs+a(Y;E) → Hs+a(Y;E) is independent
of s ∈ R.

If f is a holomorphic function in a neighborhood of Σ, then the operator f(P )
defined via the holomorphic functional calculus belongs to Ψ0

1,δ(Y; (E, a), (E, a)).

Proof. Independence of the spectrum of s ∈ R follows at once from Corollary 7.7.
Moreover, Ψ0

1,δ(Y; (E, a), (E, a)) carries a natural Fréchet topology such that

Ψ0
1,δ(Y; (E, a), (E, a)) ↪→ L (Hs+a(Y;E)),

and whenever P ∈ Ψ0
1,δ(Y; (E, a), (E, a)) is invertible in L (Hs+a(Y;E)) the in-

verse belongs to Ψ0
1,δ(Y; (E, a), (E, a)). Consequently, Ψ0

1,δ(Y; (E, a), (E, a)) is

a Ψ-algebra in L (Hs+a(Y;E)) in the sense of [7], and therefore invariant with
respect to the holomorphic functional calculus. �
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Theorem 7.9 (Index theorem). Let P ∈ Ψμ1,δ(Y; (E1, a1), (E2, a2)) be elliptic, and
suppose that P has twisted homogeneous principal symbol σσ(P ) on T ∗Y \ 0. Then

0 → π∗E1
σσ(P )−−−→ π∗E2 → 0

is a short exact sequence outside the zero section on T ∗Y and consequently induces
an element [σσ(P )] in the K-group K(T ∗Y) with compact support. The Fredholm
index ind(P ) of the operator P : Hs+a1(Y;E1) → Hs−μ+a2(Y;E2) is given by

ind(P ) = t-ind([σσ(P )]),

where t-ind : K(T ∗Y) → Z is the topological index map; see [2], [3].

Proof. Let S∗Y be the cosphere bundle with respect to some Riemannian metric,
and let h be the restriction of σσ(P ) to S∗Y. Then σσ(P ) is obtained from h via
extension by twisted homogeneity of degree μ with respect to the pullbacks of the
actions 
aj on Ej , j = 1, 2; see (6.4). For 0 ≤ t ≤ 1 define H(t, ·) by extending h by
twisted homogeneity of degree μ with respect to the actions 
taj on Ej , j = 1, 2, to
all of T ∗Y \ 0. Then H(1, ·) = σσ(P ), and q = H(0, ·) is an ordinary homogeneous
bundle isomorphism of degree μ. By construction,

0 → π∗E1
H−→ π∗E2 → 0

is exact on [0, 1]×T ∗Y away from [0, 1]×0, and consequently [q]=[σσ(P )]∈K(T ∗Y).
Now pick

R1 ∈ Ψ0
1,δ(Y;E1, (E1, a1)) with R

−1
1 ∈ Ψ0

1,δ(Y; (E1, a1), E1)

such that σσ(R1)|S∗Y = Idπ∗E1 , and likewise

R2 ∈ Ψ0
1,δ(Y; (E2, a2), E2) with R

−1
2 ∈ Ψ0

1,δ(Y;E2, (E2, a2))

with σσ(R2)|S∗Y = Idπ∗E2 ; the existence of such operators is guaranteed by Theo-
rem 6.9. Then

Q = R2 ◦ P ◦R1 ∈ Ψμ1,δ(Y;E1, E2),

and
σσ(R2 ◦ P ◦R1) = σσ(R2)σσ(P )σσ(R1) = q.

The last relation holds because the restriction of σσ(R2)σσ(P )σσ(R1) to S
∗Y equals h,

and σσ(R2)σσ(P )σσ(R1) is homogeneous of degree μ (without twisting). The Atiyah–
Singer Index Theorem [2] now implies that the Fredholm index of the operator
Q : Hs(Y;E1) → Hs−μ(Y;E2) is given by

ind(Q) = t-ind([q]) = t-ind([σσ(P )]).

On the other hand, since both

R1 : Hs(Y;E1) → Hs+a1(Y;E1) and R2 : Hs−μ+a2(Y;E2) → Hs−μ(Y;E2)

are isomorphisms, we see that

ind
(
Q : Hs(Y;E1) → Hs−μ(Y;E2)

)
= ind

(
P : Hs+a1(Y;E1) → Hs−μ+a2(Y;E2)

)
.

This finishes the proof of the theorem. �
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8. Toeplitz operators

The following lemma utilizes standard arguments from K-theory of operator alge-
bras. The results on spectral invariance and holomorphic functional calculus from
the previous section ensure that they are applicable here.

Lemma 8.1. Let ℘ : π∗E → π∗E be a projection on T ∗Y \ 0 that is twisted homo-
geneous of degree zero with respect to the action generated by a ∈ C∞(Y; End(E)).
Then there is a projection Π = Π2 ∈ Ψ0

1,δ(Y; (E, a), (E, a)) such that σσ(Π) = ℘.

Proof. Let P ∈ Ψ0
1,δ(Y; (E, a), (E, a)) with σσ(P) = ℘. Then P2−P is an operator

in L−1+δ
1,δ (Y; (E, a), (E, a)), and consequently

P2 −P : Ha(Y;E) → Ha(Y;E)

is compact. By analytic Fredholm theory, the spectrum of P ∈ L (Ha(Y;E)) is
discrete in C \ {0, 1}, and consequently there exists 0 < ε < 1 such that spec(P)∩
∂Bε(1) = ∅. Define

Π =
1

2πi

∫
∂Bε(1)

(σ −P)−1 dσ ∈ L (Ha(Y;E)).

Then Π = Π2, and by Corollary 7.8 we have Π ∈ Ψ0
1,δ(Y; (E, a), (E, a)), and

σσ(Π) = ℘. �

Lemma 8.1 guarantees that the projections Πk with prescribed twisted homo-
geneous principal symbols alluded to in the assumptions of the following theorem
exist in the calculus.

Theorem 8.2. Fix a Riemannian metric on Y, and let

P ∈ Ψμ1,δ(Y; (E1, a1), (E2, a2))

have twisted homogeneous principal symbol σσ(P ) : π∗E1 → π∗E2. Suppose that
there are subbundles J1 ⊂ π∗E1

∣∣
S∗Y and J2 ⊂ π∗E2

∣∣
S∗Y such that σσ(P ) : J1 → J2

is invertible over S∗Y. Let ℘k ∈ C∞(S∗Y;π∗Ek
∣∣
S∗Y) be bundle projections

π∗Ek
∣∣
S∗Y → Jk, k = 1, 2, and let Πk = Π2

k ∈ Ψ0
1,δ(Y; (Ek, ak), (Ek, ak)) with

σσ(Πk) = ℘k on S∗Y. Then there exists Q ∈ Ψ−μ
1,δ (Y; (E2, a2), (E1, a1)) having

twisted homogeneous principal symbol such that(
Π2PΠ1

) ◦ (Π1QΠ2

)
= Π2 +

(
Π2R2Π2

)
,(

Π1QΠ2

) ◦ (Π2PΠ1

)
= Π1 +

(
Π1R1Π1

)
,

with Rk ∈ Ψ−∞(Y;Ek, Ek), k = 1, 2. In particular,

Π2PΠ1 : Π1H
s+a1(Y;E1) → Π2H

s−μ+a2(Y;E2)

is Fredholm for every s ∈ R, and Π1QΠ2 is a Fredholm inverse.
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Proof. Let

P =

(
P1,1 P1,2

P2,1 P2,2

)
∈ Ψμ1,δ

(
Y;
( E1

⊕
E2

,

(
a1 0
0 a2

))
,

( E1

⊕
E2

,

(
a1 0
0 a2

)))

with Pi,j : C
∞(Y;Ej) → C∞(Y;Ei) have twisted homogeneous principal symbol

σσ(P) such that the restriction of σσ(P) to S∗Y is given by

σσ(P) =

(
1− ℘1 ℘1[σσ(P ) : J1 → J2]

−1℘2

℘2 σσ(P )℘1 1− ℘2

)
:
π∗E1

⊕
π∗E2

→
π∗E1

⊕
π∗E2

.

We further pick the lower left corner of P to be P2,1 = Π2PΠ1, and Pk,k =
(1−Πk)Pk,k(1−Πk) for k = 1, 2.

With this definition, our assumption on σσ(P ) implies that P is elliptic, and
by Theorem 6.8 there exists a parametrix

Q =

(
Q1,1 Q1,2

Q2,1 Q2,2

)
∈ Ψ−μ

1,δ

(
Y;
( E1

⊕
E2

,

(
a1 0
0 a2

))
,

( E1

⊕
E2

,

(
a1 0
0 a2

)))

of P modulo smoothing remainders. The operator Q = Q1,2 has the asserted
properties. �
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[9] Hörmander, L.: Pseudo-differential operators and hypoelliptic equations. In Sin-
gular integrals (Proc. Sympos. Pure Math., Vol. X, Chicago, Ill., 1966), 138–183.
Amer. Math. Soc., Providence, RI, 1967.



160 T. Krainer and G.A. Mendoza
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