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Scalar oscillatory integrals in smooth spaces

of homogeneous type

Philip T. Gressman

Abstract. We consider a generalization of the notion of spaces of homoge-
neous type, inspired by recent work of Street (2011) on the multi-parameter
Carnot–Carathéodory geometry, which endows such spaces with differen-
tial structure. The setting allows one to formulate estimates for scalar
oscillatory integrals on these spaces which are uniform and respect the
underlying geometry of both the space and the phase function. As a
corollary we obtain a generalization of a theorem of Bruna, Nagel, and
Wainger (1988) on the asymptotic behavior of scalar oscillatory integrals
with smooth, convex phase of finite type.

1. Introduction

Given a manifold Ω and a measure of smooth density μ, a common problem in
analysis is to establish an estimate for scalar oscillatory integrals of the form

(1.1)

∫
Ω

eifψ dμ

where the phase f is real-valued and the amplitude ψ is supported on a set of finite
measure. We would like the estimates to be uniform in f and ψ and to effectively
reduce the problem of estimating this integral to a sublevel set problem for the
gradient of f (since the method of stationary phase dictates that there will be
substantial cancellation away from the critical points of f). Ideally, this objective
should be accomplished in a geometrically invariant way, if at all possible, although
to date this has proven to be a difficult task to accomplish, especially in dimension
greater than one. We would also like to assume as little as possible about ψ, as
it is generally regarded to be of secondary importance when contrasted with the
phase.

A tremendous amount of work has already been devoted to understanding in-
tegrals of the form (1.1) and related objects in higher dimensions. If one is willing
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to compromise somewhat on uniformity requirements (and, for example, restrict
attention to phases f which are scalar multiples of a single fixed phase function Φ
or simple perturbations of such phases), methods based on resolution of singulari-
ties provide extremely powerful tools for understanding (1.1). The seminal result
in this direction is due to Varčenko [25]. The history of this field is lengthy and
we will not try to summarize it here, but we will note that the emphasis of some
of the most recent work, due to Collins, Greenleaf, and Pramanik [6], as well as
Greenblatt [8], has been to produce resolution of singularities algorithms which are
much more concrete (and more easily applied by nonspecialists) than were those
previously available; these new algorithms are also able to handle phase functions
which fall outside the scope of earlier work for technical reasons. Despite the
power of these methods, answering questions of uniformity by means of resolution
of singularities is still generally a difficult task. It is also worth noting that, some-
what paradoxically, resolution of singularities methods tend to encounter added
difficulties when the decay rate of scalar oscillatory integrals is relatively high.
Work in the complementary direction, emphasizing uniformity of some form or
another (and sacrificing sharpness of the estimates when necessary) also abounds:
see, for example, Carbery, Christ, and Wright [3]; Carbery and Wright [4]; Green-
blatt [9]; Iosevich [13]; Ikromov, Kempe, and Müller [12]; Karpushkin [14]; Phong
and Stein [16]; Phong, Stein, and Sturm [17], [18]; Phong and Sturm [19]; Pra-
manik and Yang [20]; Rogers [21]; Seeger [22]; and the author’s [10], [11]. The
goals, ideas, and methods to be found in these results are numerous and diverse.

If we further narrow attention to uniform estimates of (1.1) which display some
degree of geometric invariance, one is quickly left with a rather short list of known
results. Of these we highlight the work of Bruna, Nagel, and Wainger [1], in which
they succeed in estimating the decay of the Fourier transform of a smooth, convex
surface of finite type in terms of the volume growth rates of surface caps. In a
similar spirit, the goal of the present paper is to establish a uniform estimate for
scalar oscillatory integrals in terms of some geometrically defined, nonoscillatory
quantity. In contrast to Bruna, Nagel, and Wainger, the nonoscillatory quantity
we identify is not subject to convexity or strict finite type assumptions.

When the phase is not convex, surface caps are not necessarily meaningful,
since sublevel sets of the phase can be much too large to be a useful substitute
for a sharp, uniform estimate (one can immediately check that the estimating the
oscillatory integral with phase xy on [0, 1]2 in terms of sublevel sets of xy gives
a superfluous factor of log 1

|λ| compared to the usual stationary phase argument).

Thus it is natural to look for some sharper substitute for the sublevel set which
reduces to the previous case when the phase is known to be convex. This paper
establishes such an estimate by generalizing the notion of spaces of homogeneous
type and estimating oscillatory integrals on such spaces in terms of nonoscillatory
integrals which play the role of the surface caps. The resulting estimate (1.9) can
be thought of as a self-contained, geometric reformulation of oscillatory integrals
into nonoscillatory integrals. Corollary 1.2 shows how the estimate (1.9) can func-
tion as a black-box replacement for the delicate integration-by-parts arguments
and estimates (e.g., stationary phase) of Bruna, Nagel, and Wainger. The broader
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hope of developing (1.9) is that it may serve the same sort of black-box role in
future estimates of more complicated objects as well, for example, oscillatory
integral operators in higher dimensions generalizing the work of Phong, Stein,
and Sturm [18].

The generalization of spaces of homogeneous type, a concept originally due to
Coifman and Weiss [5], introduced here endows them with a compatible differential
structure. That such a generalization is possible was already observed in some
sense by Bruna, Nagel, and Wainger; however, the important point here is that
the construction can be completely divorced from a fine-structure analysis of the
phase and does not, for example, require convexity. Using this new structure,
we establish a natural estimate of (1.1) which is both uniform and firmly tied
to the underlying geometry of the manifold and the phase. The new smoothness
hypotheses added to spaces of homogeneous type are intuitive and, for the most
part, have already been shown to hold in many of the familiar cases. In particular,
the smoothness hypotheses are satisfied in Carnot–Carathéodory geometries, as
is shown in the series of papers beginning with Nagel, Stein, and Wainger [15];
including Tao and Wright [24]; and culminating with Street [23].

We begin by assuming only that Ω is a topological space and μ is a Borel
measure on Ω. The familiar axioms associated with spaces of homogeneous type
begin with a family of balls Bj(x) ⊂ Ω. One’s intuition should be that the balls
are geometrically nice sets containing x, but note that we will explicitly avoid
the assumption they are open. Here x may be any point in Ω, and in this paper
the index j will be contained in Zd; this should be thought of as corresponding
to Street’s “multiparameter” setting for Carnot–Carathéodory geometry (although
the main theorems of this paper have interesting new consequences even in the case
d = 1 corresponding to single parameter geometry). For technical reasons, we will
allow the possibility that Bj(x) = ∅ for certain values of the parameter j; we will
say that such balls do not exist or are not defined. In all other cases, (i.e., when
Bj(x) �= ∅), it will be required that x ∈ Bj(x). Regarding the index j ∈ Zd

(referred to as the scale of the ball), we will use the standard notation that j′ ≤ j
when the corresponding inequality holds for each coordinate of j′ and j, and we
define |j−j′| to be the �∞-norm of j−j′ on Zd. We will also identify the integers Z
with the diagonal subset of Zd, i.e., n = (n, . . . , n).

The (mostly) familiar assumptions regarding the geometry of these balls are
recorded here. We suppose that for some open Ω0 ⊂ Ω, we have the following:

(i) (Compatibility) If Bj′(x
′) ∩ Bj(x) �= ∅ for some x, x′ ∈ Ω0 and j, j′ ∈ Zd,

then Bj−1(x
′) exists.

(ii) (Engulfing) Suppose Bj(x) is defined for some x ∈ Ω0 and j ∈ Z
d. If there

exist x′ ∈ Ω0 and j′ ≤ j − 1 such that Bj−1(x)∩Bj′(x
′) �= ∅, then Bj′(x

′) ⊂
Bj(x).

(iii) (Weak doubling) There is a finite constant C such that any distinct points
x1, ..., xN of Ω0 and any index j∈Zd with Bj(xk)∩Bj(xl)=∅ for all k �= l have
the property that at most C of these points satisfy Bj+1(x) ∩Bj+1(xk) �= ∅
for any fixed x ∈ Ω0.
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In particular, note that whenever a ball Bj(x) is defined, one automatically knows
that Bj−1(x) exists and is smaller than Bj(x). Next we impose additional smooth-
ness hypotheses. For each nonempty ball Bj(x), we assume that there is a homeo-
morphism Φj,x : Bdx → Bj(x) which maps 0 to x, where Bdx is the open Euclidean
unit ball in dimension dx. The dimension dx may depend on x, but we assume
that any two balls which intersect have the same dimension. We will also assume
that the supremum over x of dx is finite; it will be referred to as the dimension
when no confusion will arise. We will abuse notation and use B to refer to the unit
ball in Euclidean space of the appropriate dimension (depending on context). In a
nutshell, we will assume that these homeomorphisms are smooth with respect to
each other when compared on two comparable balls. Specifically we assume:

(iv) (Smooth nesting) For some universal c < 1,

sup
t∈B

|Φ−1
j,x ◦ Φj−1,x(t)| ≤ c.

(v) (Smooth engulfing) If Bj(x) ∩ Bj′ (x
′) �= ∅, then there is a constant C|j−j′|

depending only on |j − j′|, the dimension, and m, such that

(1.2)
∣∣∂αt [

Φ−1
j,x ◦ Φj′,x′(t)

]∣∣ ≤ C|j−j′|

uniformly as t ranges over Φ−1
j′,x′(Bj(x)∩Bj′ (x

′)) and α ranges over all multi-
indices of order at most m.

Under these assumptions, it is possible to quantify the smoothness of a function f
at any particular point x and any given scale j. We define

(1.3) |dkxf |j := sup
1≤|α|≤k

∣∣∂αt [f ◦ Φj,x(t)]|t=0

∣∣

for any k = 1, . . . ,m. We also denote |d1xf |j by |dxf |j when no confusion will
arise. Under the assumptions above, the quantity |dxf |j satisfies a sort of weak
differential invariance property: namely, that compositions of f with quantitatively
“nice” diffeomorphisms (meaning, for example, that compositions Φj,x for each j
and x have uniformly bounded derivatives through some high order) will preserve
the magnitude of dxf at scale j up to a bounded factor. That this sort of weak
invariance is the best that can be hoped for can be seen by considering the effect of
a rough (in this case, C1) change of variables in the integral (1.1). If such a rough
transformation is made, the value of the integral will remain constant, but the
method of stationary phase will fail for technical reasons (because the integration
by parts argument in stationary phase cannot be justified unless the derivatives of
the phase are of bounded variation). Thus the only way to deduce decay for such
an integral would to understand the very precise coincidence of the irregularity
of both f and ψ. Typically for applications one would like to assume as little as
possible about the function ψ. Thus we are necessarily constrained to consider
only the effect of nice diffeomorphisms.

The final set of assumptions we make concern the (Borel) measure μ and its
regularity with respect to the balls Bj(x). To this end, a set L ⊂ Ω is called a leaf
when it has the following properties:
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1. Every ball Bj(x) with x ∈ Ω0 which intersects L is contained in L.

2. Every ball contained in L is relatively open in L.

3. L has a countable dense subset.

We will assume that Ω is equipped with a measure μ which may be “factored”
onto the leaves in the following sense:

(vi) (Regularity of measure) There is a collection of leaves F (i.e., a foliation)
with measure μF and Borel measures μL on each leaf L ∈ F such that

∫
Ω

f dμ =

∫
F

[∫
L

f dμL

]
dμF (L)

for all Borel measurable functions f on Ω. Each measure μL should have
smooth density, meaning that for any leaf L and any ball Bj(x) ⊂ L with
x ∈ Ω0 and μL(Bj(x)) �= 0, there is a nonvanishing function Jj,x such that

(1.4)
1

μL(Bj(x))

∫
Bj(x)

f dμL =

∫
B

f ◦ Φj,x(t)Jj,x(t) dt

with ||Jj,x||Cm(B) ≤ C and inft∈B Jj,x(t) ≥ c uniformly in j, x, and L.

We must make the technical assumption that the balls Bj(x) are Borel measurable
and the maps

x �→ Φj,x(u)

for fixed j and u are defined on a Borel measurable set and are Borel measurable
functions there. It is perhaps worth emphasizing once again that Street has verified
these axioms already in the Carnot–Carathéodory geometry (this will be discussed
in detail in the final section). The main theorem may can be stated as follows:

Theorem 1.1. Assume that (i) through (vi) hold. Fix any ε ∈ (0, 1), and suppose
m ≥ 2. Let E ⊂ Ω0 consist of those points where dxf �= 0, and suppose R : E → Zd

is some Borel measurable function such that BR(x)+1(x) is well defined for each
x ∈ E and the conditions

BR(x)(x) ∩BR(y)(y) �= ∅ ⇒ |R(x)−R(y)| � 1,(1.5)

|dmx f |R(x) �
m−1∑
k=1

εk−m|dkxf |R(x),(1.6)

sup
y∈BR(x)(x)

ε |dyf |R(y) � 1 + inf
y∈BR(x)(x)

ε |dyf |R(y),(1.7)

hold with implicit constants uniform with respect to x, y ∈ E and ε. Then for
any smooth, bounded ψ whose support has finite measure in Ω0, there is another
function ψm such that ∫

Ω0

eifψ dμ =

∫
Ω0

eifψm dμ
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and

(1.8) |ψm(x)| �
∑m−1

k=0 εk|dkxψ(x)|R(x)

(1 + ε |dxf(x)|R(x))m−1
.

In particular, one has the inequality

(1.9)

∣∣∣∣
∫
Ω0

eifψ dμ

∣∣∣∣ �
∫
Ω0

∑m−1
k=0 εk|dkxψ(x)|R(x)

(1 + ε |dxf(x)|R(x))m−1
dμ(x).

Informally, the theorem establishes a more geometric version of the method of
stationary phase, meaning that the usual gradient factor appears in the denom-
inator, but only when measured at the correct scale at each point. Specifically,
the reader should think of the right-hand side of (1.9) as measuring the volumes
of sublevel sets of |dxf(x)|R(x), i.e., the magnitude of the gradient when measured
at some appropriate scale at each point. The condition (1.5) can be thought of
as a sort of Lipschitz condition for the scales (meaning that if one measures on a
very fine scale at x, one must also measure at fine scales when relatively near x).
The inequality (1.6) plays the role of a finite-type condition, but it should not be
understood literally as such, since it only holds on balls away from the set where
dxf = 0. In particular, in most applications an ε is guaranteed to exist satisfy-
ing (1.6) uniformly provided only that the ball BR(x)(x) is sufficiently small at each
point. (Note that, when the derivatives of ψ satisfy some strong a priori bound,
one benefits the most in (1.8) by taking ε as large as possible, namely, comparable
to 1.) Elementary examples show that this can, in fact, be achieved in many cases
when f is not of finite type.

Although Theorem 1.1 may seem far-removed from the surface cap example for
convex phases, it will be shown that the original inequality of Bruna, Nagel, and
Wainger is, in fact, a rather straightforward corollary of (1.9). (When combined
with a uniform estimate of Carbery [2], Theorem 1.1 also generalizes earlier work
of Cowling and Mauceri [7] on weighted estimates, but the details of this argument
are left to the reader.) Moreover, Theorem 1.1 provides two key improvements of
this earlier work. The first is that we will have a slightly stronger sort of uniformity
than was originally available; we will explicitly identify quantities that determine
the values of the implicit constants and we will not, for example, assume that the
domain of integration is compact. We will also explicitly identify the number of
derivatives necessary for estimates to hold (so one need not actually assume that
the convex phase is C∞). The second (and perhaps more interesting) extension is
that the finite-type assumption will be replaced by a strictly weaker one which in
some cases includes convex functions which are not finite type (and even phases
not strictly convex). In particular, the relaxation of these two conditions includes
new phases (corresponding, for example, to new Fourier decay estimates for new
surfaces) which have not previously been treated elsewhere.

We begin by identifying the substitute notion of regularity we will employ.
Let f ∈ Cm([0, T ]) for somem ≥ 2 be a nonnegative convex function with f(0) = 0
and f ′(0) ≥ 0. We say that f is tame on [0, T ] to order m when there is a
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constant C <∞ such that for each k = 2, . . . ,m and each t ∈ [0, T ] we have

(1.10) |f(t)|k−1 |f (k)(t)| ≤ C |f ′(t)|k.

Although the tameness inequality may at first seem unusual, it is a natural way to
measure regularity of f in a way that is invariant under rescaling the magnitude of f
and rescaling the time parameter t; for any positive α and β, the same constant C
will be possible for the corresponding inequalities applied to the function g(t) :=
αf(β−1t) on the interval [0, βT ]. In fact, we may reinterpret (1.10) as follows: if
the horizontal and vertical axes of the graph of f are rescaled in such a way that
the rescaled function g satisfies g(t0) = g′(t0) = 1 at some point t0, then the higher
derivatives of g at t0 (and, hence, the coefficients of the Taylor polynomial at t0)
will be controlled by the constant C.

Two important features of (1.10) should be highlighted at this point. The
first is that for a polynomial f , the constant C appearing in (1.10) can be taken
to depend only on the degree of f (a fact which shall be addressed explicitly
in section 4.2). The second is that (1.10) does not imply that f is finite type
(or even strictly convex). For example, a trivial induction argument establishes

that f(t) := e−(1+α−1)t−α

is tame to any finite order on [0, 1], for any positive α.
Definitions now established, we have the following corollary of Theorem 1.1:

Corollary 1.2. Suppose f is a convex function on an open convex set Ω ⊂ Rd

containing the origin. Assume that f and its gradient vanish at the origin. If f is
uniformly radially tame to order m on Ω (meaning that f is tame with the same
constant on all rays beginning at the origin), then for any compactly supported
ψ ∈ Cm(Ω) and any real λ,

(1.11)

∣∣∣∣
∫
Ω

eiλf(x)(f(x))�ψ(x) dx

∣∣∣∣ �
∫
Ω

|f(x)|� ∑m−1
k=0 |(x · ∇)kψ(x)|

(1 + |λf(x)|)m−1
dx ,

with implicit constant depending only on m, d, the nonnegative integer �, and the
constant of uniform radial tameness.

The proof of the corollary is contained in Section 4.2 along with two different
propositions which establish stable estimates for the constant of uniform radial
tameness (the first proposition dealing with polynomials as promised, and the
second establishing finiteness of the constant for convex functions of finite type in
the sense of [1]). The final result in Section 4.2 demonstrates how estimates of the
sort established by Bruna, Nagel, and Wainger in terms of volumes of caps can be
deduced in the standard way from (1.11).

The structure of the rest of this paper is as follows. Section 2 establishes
a few immediate observations and is then devoted to a brief study of functions
of finite type on Euclidean balls. Though relatively elementary, this section in-
cludes a concrete construction on the Euclidean ball of analogues of the classical
Littlewood–Paley projections (which eliminates problems near the boundary that
occur in more straightforward approaches) which may be of independent interest.
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Theorem 2.1 in this section can be thought of as a sharp characterization of func-
tions of finite type on the ball. By sharp we mean that its main hypothesis (2.4)
is implied (with a slightly worse constant) by and substantially weaker than the
main conclusion (2.5). Section 3 contains the main covering lemma and the proof
of Theorem 1.1. Although the proof of Theorem 1.1 is admittedly technical, the
hope is that interested readers will be inclined to avoid such technicalities in the
future by appealing to the theorem itself rather than its proof and thereby have
the flexibility to think about oscillatory integrals in purely geometric terms rather
than thinking of these objects at the usual level of integration by parts arguments.
Finally, Section 4 is devoted to three topics. The first regards the choice of scale
function R in theorem 1.1. We show that, in many contexts, there is a natural
choice for R and that, roughly speaking, it can be thought of as simply the largest
scale on which the magnitude of the gradient looks roughly constant. The second
topic in Section 4 is the proof of Corollary 1.2 and an analysis of uniform radial
tameness. Finally we remind the readers of the relevant definitions, theorems, and
inequalities from Street [23] and present the final theorem, Theorem 4.3, which
illustrates how the structures behind Theorem 1.1 arise naturally in the context of
Carnot–Carathéodory geometry.

2. Initial steps

2.1. Basic observations

When Bj′ (x
′) ⊂ Bj(x), the mapping Φ−1

j,x ◦Φj′,x′ is a smooth map from the ball B
into itself. The smooth engulfing property implies (via the Leibniz and chain rules)
that

(2.1) ||f ◦ Φ−1
j,x ◦ Φj′,x′ ||Cm(B) � (1 + C|j−j′|)m ||f ||Cm(B),

with an implied constant depending only on the dimension and m (where C|j−j′|
is the same constant appearing in (1.2)). More generally, suppose f is a smooth
function on Ω. Fix a point x0 ∈ Ω0. For any ball Bj(x) containing x0 with x also
in Ω0, we may measure the smoothness of f at x0 by means of the formula

|dkx0
f |Bj(x) := sup

1≤|α|≤k

∣∣∣∂αt [f ◦ Φj,x(t)]|t=Φ−1
j,x(x0)

∣∣∣ ,
that is, by taking the usual mixed partials on the Euclidean ball B and evaluating
at the appropriate point (note that the definition (1.3) corresponds to the case
x = x0, meaning |dkxf |j = |dkxf |Bj(x)). Although the magnitude of dfx0 depends
on the choice of the ball Bj(x), smooth engulfing will dictate the comparability
condition

(2.2) (1 + C|j−j′|)−m |dkx0
f |Bj′ (x′) � |dkx0

f |Bj(x) � (1 + C|j−j′|)m |dkx0
f |Bj′ (x′)

whenever |dkx0
f |Bj(x) and |dkx0

f |Bj′ (x′) are well defined (with an implicit constant

depending only on the usual suspects of dimension and m).
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One final elementary observation is that when x ∈ Ω0 and Bj(x) �= ∅, there is
a smooth, nonnegative function ηj,x supported on Bj(x) (meaning it is identically
zero outside this ball) and bounded above by one, that is identically one on Bj−1(x)
and satisfies

(2.3) ||ηj,x ◦ Φj′,x′ ||Cm(B) � (1 + C|j−j′|)m

for any ball Bj′(x
′). The function ηj,x is not necessarily smooth on Ω, but is

nevertheless Borel measurable. These assertions follow immediately from smooth
doubling: choose any C∞ function η on the ball B which is identically zero outside
the ball of radius (1+ c)/2 centered at the origin, identically one on the ball of ra-
dius c centered at the origin, and maps into [0, 1]. We define ηj,x(x0) := η◦Φ−1

j,x(x0)
when x0 ∈ Bj(x) and ηj,x(x0) = 0 when x′ �∈ Bj(x). By construction we have uni-
form control on |dkx0

ηj,x|Bj′ (x′) (as it depends only on η) when x0 ∈ Bj(x). In all

other cases, ηj,x(x0) and all its derivatives will vanish identically. The function ηj,x
is Borel measurable because it is continuous on the Borel set Bj(x).

2.2. An aside on functions of finite type

An important notion tied to the estimation of oscillatory integrals is that of func-
tions of finite type. While there are many variations and generalizations of this
notion appearing in the literature, at its core, a function of finite type is one
which is nearly polynomial. The principal benefit of restricting attention to these
functions is that they satisfy an inequality of the form

sup
|ω|<1

|∂αf(ω)| ≤ Cα,f sup
|ω|<1

|f(ω)|

for some constant Cα,f which is nearly independent of f (e.g., in terms of its degree
when f is a polynomial, or, more generally, in terms of the ratio of its Cm norm to
some lower bounds for the nonvanishing derivative, etc.). This inequality may be
thought of as bounding the high frequency components of f by the low frequencies
(and so we have the heuristic that functions which are locally like polynomials are
also locally like slowly varying complex exponential functions). A closely related
problem is to determine the maximal ε such that

sup
|ω|<1

|∂αf(ω)| ≤ ε−|α| sup
|ω|<1

|f(ω)|

holds for a given f and a certain range of derivatives α. The reader should note
that as f becomes more oscillatory, one expects the maximal ε to become smaller,
and there is a natural limit forbidding ε from ever being larger than roughly unit
size in any nontrivial situation (since, for example, one must have ε ≤ 1/2 when f
is merely a linear function vanishing at ω = 0). Theorem 2.1 gives a sharp answer
to this question of determining the optimal ε up to a universal constant depending
only on dimension and the degree of smoothness of f . It gives a quantitative
analogue of the finite-type condition which is useful in the proof of Theorem 1.1
and is hopefully interesting in its own right. The proof is accomplished by adapting
the usual real variable Littlewood–Paley methods to the setting of the unit ball.
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Theorem 2.1. Suppose f ∈ Cm(B) satisfies the inequality

(2.4) sup
|ω|<1

|α|=m

ε|α||∂αf(ω)| ≤ sup
|ω|<1

�≤|α|<m

ε|α||∂αf(ω)|

for some positive ε ≤ 1 and some integer � < m. Then there is an implicit constant
depending only on the dimension and m such that

(2.5) sup
|ω|<1

|∂αf(ω)| � ε−|α| sup
|ω|<1

|β|=�

ε|β||∂βf(ω)|

for all multi-indices � ≤ |α| ≤ m.

Note that (2.5) clearly implies (2.4) for some ε′ differing from ε by a uniform
constant. As such we essentially have a characterization of (2.5). The theorem,
however, is far from tautological, since (2.4) is easily verified while (2.5) is not. In
particular (2.4) is immediately true with ε = 1 when f is a polynomial of degree
at most m − 1. Likewise it is easy to see that an acceptable ε satisfying (2.4)
and proportional to ratio ||f ||Cm−1(B)/||f ||Cm(B) may be given (which is how the
theorem is typically applied to functions of finite type). A third example, relevant
to the Carnot–Carathéodory geometry, is given after the proof. Finally, we note
that, although the ε dependence in Theorem 2.1 can be removed by the transfor-
mation ω′ := ε−1ω, the hypotheses of the theorem are not actually scale invariant.
It is not necessarily the case, for example, that for fixed f

sup
|ω′|<R

|α|=m

|∂αf(ω′)| ≤ sup
|ω′|<R

�≤|α|<m

|∂αf(ω′)|

can be made true for any value of R, large or small, while (2.4) will clearly be
satisfiable for small ε for any fixed f (since the only possible obstruction occurs
when the right-hand side is identically zero, but then the left-hand side will be
identically zero as well).

Proof of Theorem 2.1. Let ϕ be a smooth function compactly supported in B.
We suppose that ϕ is even and satisfies the moment conditions∫

B

ϕ(x) dx = 1 and

∫
B

xαϕ(x) dx = 0 when 1 ≤ |α| ≤ m− 1.

Using this ϕ, we consider the following operator for each nonnegative integer j:

Pjf(x, h) := 2dj
∫
f(x− z)

m∑
k=0

2kj
((h · ∇)kϕ)(2jz)

k!
dz.

This is well defined for bounded, continuous functions on the ball provided that
|x| ≤ 1− 2−j. Note that the dependence on h is polynomial. In particular, with x
fixed, the h dependence is exactly the degree m Taylor polynomial of Pjf(x+h, 0)
at h = 0, so Pjf(x, h) = f(x+ h) when f is any polynomial of degree at most m.
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We may therefore reasonably think of Pjf(x, h) as an analogue of the Littlewood–
Paley projection of f onto frequencies 2j and below. Just as with Littlewood–Paley
projections, we have uniform estimates

(2.6) sup
|x|≤1−2−j

|∂βhPjf(x, h)| � 2j|β| (1 + (2j |h|)m−|β|) sup
|ω|<1

|f(ω)|

with an implied constant that is independent of f , h, and j (but may depend on
the multi-indices, m, and the dimension).

If f ∈ C�(B) for some � ≤ m, we may integrate by parts to conclude

Pjf(x, h) = 2dj
∫
ϕ(2j(x− z))

�−1∑
k=0

((h · ∇)kf)(z)

k!
dz

+ 2dj
∫
((h · ∇)�f)(x− z)

m−�∑
k=0

2kj
((h · ∇)kϕ)(2jz)

(k + �)!
dz.(2.7)

In particular, if |β| ≥ �, then the partial derivative ∂βh kills the first term on the
right-hand side of (2.7). Thus we have a slight improvement of (2.6):

(2.8) sup
|x|≤1−2−j

|h|≤2−j

|∂βhPjf(x, h)| � 2j(|β|−�) sup
|ω|<1

|γ|=�

|∂γf(ω)|.

Returning to (2.7), changing variables in the first integral on the right-hand side
gives

∫
ϕ(2j(x − z))

�−1∑
k=0

((h · ∇)kf)(z)

k!
dz =

∫
ϕ(2jz)

�−1∑
k=0

((h · ∇)kf)(x− z)

k!
dz.

By Taylor’s Theorem, we have the inequalities

∣∣∣
�−1∑
k=0

((h · ∇)kf)(x− z)

k!
− f(x− z + h)

∣∣∣ ≤ sup
|ω|<1

|(h · ∇)�f(ω)|
�!

,

∣∣∣
�−1∑
k=0

((−z · ∇)kf)(x+ h)

k!
− f(x− z + h)

∣∣∣ ≤ sup
|ω|<1

|(z · ∇)�f(ω)|
�!

,

provided that x−z and x−z+h belong to the unit ball in the first case and x+h and
x− z+h belong to the ball in the second case. In particular, the second inequality
contains a polynomial in z of degree less than m; if multiplied by ϕ(2jz) and
integrated in z, all terms but the constant term would cancel. We conclude from
these estimates and (2.7) that the quantity |Pjf(x, h)− f(x+ h)| is dominated by

2dj
∫

|ϕ(2jz)|
[
sup
|ω|<1

|(h · ∇)�f(ω)|
�!

+ sup
|ω|<1

|(z · ∇)�f(ω)|
�!

]
dz

+ 2dj
∫ [

sup
|ω|<1

|(h · ∇)�f(ω)|
�!

]m−�∑
k=0

2kj
∣∣∣((h · ∇)kϕ)(2jz)

(k + �)!

∣∣∣ dz.



226 P.T. Gressman

From this it is easy to see that there must be an implicit constant depending only
on ϕ, the dimension, and m, so that |x| ≤ 1− 2−j and |x+ h| < 1 imply

(2.9) |Pjf(x, h)− f(x+ h)| � 2−j�(1 + (2j |h|)m) sup
|ω|<1

|β|=�

|∂βf(ω)|.

It should also be noted that the inequality (2.9) will also hold trivially when � = 0
by virtue of (2.6).

For fixed f , let gxj (y) := Pjf(x, y − x). Because the dependence of gxj (y) on y
is polynomial of degree at most m, we have that

Pj−1g
x
j (x+ δ, h− δ) = gx(x+ h) = Pjf(x, h).

Comparison with Pj−1f(x+ δ, h+ δ) yields

Pjf(x, h) = Pj−1f(x+ δ, h− δ) + Pj−1(g
x
j − f)(x+ δ, h− δ)

provided |x + δ| ≤ 1 − 2−j+1 and |x| ≤ 1 − 2−j . Now every point in the ball of
radius 1 − 2−j is within distance 2−j of a point in the ball of radius 1 − 2−j+1.
Let Ej be the set of pairs (x, h) where |x| ≤ 1− 2−j, |x+ h| < 1, and |h| < 2−j+1;
we have

sup
|x|≤1−2−j

|h|≤2−j

|∂αhPjf(x, h)| − sup
|x|≤1−2−j+1

|h|≤2−j+1

|∂αhPj−1f(x, h)|

� 2j|α| sup
(x,h)∈Ej

|Pjf(x, h)− f(x+ h)|

where the implicit constant comes from (2.6). In light of (2.8), summing j from
N + 1 to infinity and using the fact that ∂αhPjf(x, h) at h = 0 tends to ∂αf(x) as
j → ∞ when f ∈ Cm(B) and |α| ≤ m (shown by integration by parts as usual)
gives

sup
|ω|<1

|∂αf(ω)| � 2(|α|−�)N sup
|ω|<1

|β|=�

|∂βf(ω)|

+
∞∑

j=N+1

2|α|j sup
(x,y)∈Ej

|Pjf(x, y)− f(x+ y)|.
(2.10)

Now suppose that f satisfies the inequality (2.4) for some ε ≤ 1. Choose N
so that 2N = ε−1δ−1 for some δ < 1 to be chosen momentarily. Applying the
inequalities (2.9) (with � replaced by m) and (2.4) to the sum on the right-hand
side of (2.10) gives

sup
|ω|<1

|∂αf(ω)| � (εδ)�−|α| sup
|ω|<1

|β|=�

|∂βf(ω)|+ (εδ)m−|α| sup
|ω|<1

|β|=m

|∂βf(ω)|

� ε−|α|
[
δ�−|α| sup

|ω|<1

|β|=�

ε|β||∂βf(ω)|+ δm−|α| sup
|ω|<1

|β|<m

ε|β||∂αf(ω)|
]

(for |α| = � this inequality is trivially true).
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If we choose δ small enough that δ times the implicit constant is between 1/4
and 1/2 (this will always be possible since we can increase the magnitude of the
implicit constant as necessary), we may take a supremum over all such α with
� ≤ |α| < m and conclude

sup
|ω|<1

�≤|α|<m

ε|α||∂αf(ω)| � sup
|ω|<1

|β|=�

ε|β||∂βf(ω)|.

Combining this inequality with (2.4) itself handles the case of multi-indices α
with |α| = m. �

We now return to the issue of establishing the hypothesis (2.4) in a manner
relevant to Carnot–Carathéodory geometry. Suppose Y1, . . . , Yd are Cm vector
fields on Bd. We will say that a function f is of polynomial type with respect to
Y1, . . . , Yd if

Yi1 · · ·YiM f ≡ 0

for some fixedM and all choices (i1, . . . , iM ) ∈ {1, . . . , d}M . Any such function au-
tomatically satisfies (2.4) for some ε that depends only on the Cm norms of the vec-
tor fields Yi, the infimum of the absolute value of the determinant det(Y1, . . . , Yd),
and the constant M . This is because we may write

∂

∂xj
=

d∑
i=1

cji(x)Yi

for some functions cij ∈ Cm(B) whose norms depend only on the norms of the Yi
and the lower bound from the determinant; this fact is easily seen from Cramer’s
rule. In particular, we see that the mixed partial derivative ∂βf may be written
as a Cm linear combination of the derivatives Yi1 · · ·Yik for k ≤ M . Since these
expressions vanish identically when k =M , we see that the orderM partial deriva-
tives of f are smooth linear combinations of lower order partial derivatives, and
the coefficients do not depend on f .

3. Proof of Theorem 1.1

3.1. Covering lemma

The benefit of the smoothness assumptions is that they allow the passage from a
Vitali or Besicovitch-type covering lemma to a smooth partition of unity whose
derivatives are well controlled.

Lemma 3.1. Fix some positive integer N and some open subset E ⊂ Ω0. Suppose
R : E → Z is a bounded function such that BR(x)+1(x) is well-defined for each
x ∈ E and

BR(x)(x) ∩BR(x′)(x
′) �= ∅ =⇒ |R(x) −R(x′)| < N.

Then there is a special collection G of points x ∈ E and nonnegative functions ηx
for each x ∈ G which has the following properties. First, ηx is identically zero out-
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side BR(x)(x). Next, at every y ∈ E, there is a ball Bj(y) for which there is
at most a uniformly bounded number of points x ∈ G at which BR(x)(x) ∩ Bj(y)
�= ∅. The functions ηx are uniformly smooth in the sense that x ∈ G and ||ηx ◦
ΦR(x),x||Cm(B) � 1. Finally,

∑
x∈G ηx = 1 on E.

Proof. Let Ej ⊂ E be the set of points x for which R(x) = j. For each j, let
Gj ⊂ Ej be any maximal collection of points x such that Bj−2(x) ∩Bj−2(x

′) = ∅
for any two x, x′ ∈ Gj (all these balls must exist by virtue of the compatibility
condition). First we note that the union over all x ∈ Gj of the balls Bj−1(x)
will cover Ej ; for any y ∈ Ej , Bj−2(y) ∩ Bj−2(x) �= ∅ for some x ∈ Gj (if not, y
itself could be added to Gj to contradict maximality). The engulfing property
guarantees that Bj−2(y) ⊂ Bj−1(x). Next observe that the family of balls Bj(x)
for x ∈ Gj is locally finite in the following sense: for any x ∈ E, let S be the
set of centers x′ ∈ Gj such that Bj(x) ∩ Bj(x

′) �= ∅ (if Bj(x) is not defined, the
set S will be trivial). This set S must necessarily be finite with uniformly bounded
cardinality. To see this, let S1 be any maximal subset of S comprising disjoint
balls at scale j − 1, i.e., Bj−1(x

′) ∩ Bj−1(x
′′) = ∅ for any x′, x′′ ∈ S1. In general,

let Sk be a maximal subset of S \ ⋃k−1
l=1 Sl comprising disjoint balls at scale j − 1.

The weak doubling property dictates that SC+2 is empty for some universal C,
since maximality dictates that x′ ∈ SC+1 implies that Bj−1(x

′) ∩ Bj−1(xk) �= ∅
for k = 1, . . . , C + 1 and some xk ∈ Sk (which cannot happen because the balls
are all mutually disjoint at scale j − 2). By weak doubling again, the number of
points x′ ∈ Sk at which Bj(x)∩Bj(x

′) �= ∅ is also at most C for any fixed k. Thus
the total number of indices in S which produce balls at scale j meeting Bj(x) is at
most C(C + 1). We may strengthen this result by taking a union over scales. For
any point x ∈ E, the condition |R(x)−R(x′)| < N when BR(x)(x)∩BR(x′)(x

′) �= ∅
implies that there are boundedly many indices j′ for which BR(x)(x) intersects a
ball BR(x′)(x

′) with x′ ∈ Gj′ . If j is any index which is bounded above by j′−1 for
each index j′ identified above as well as bounded above by R(x)− 1 (at least one
such index, e.g., j = R(x)−N , is guaranteed to exist), then the number of points
x′ ∈ Gj′ for which Bj(x)∩BR(x′)(x

′) �= ∅ will be at most C(C+1) (because we will
have in particular that Bj(x) ⊂ BR(x′)(x) by engulfing). Uniform boundedness on
the cardinality of the possible values of j′ gives a uniform bound on the number
of nontrivial intersections Bj(x) ∩BR(x′)(x

′) �= ∅ when x′ is allowed to range over
all of G :=

⋃
j Gj .

As explained in (2.3), there is a natural choice of a smooth function subordinate
to Bj(x) for each x ∈ Gj , namely the function ηj,x. Furthermore we have ||ηj,x ◦
ΦR(y),y||Cm(B) � 1 for any y ∈ E simply because ηj,x ◦ ΦR(y),y will be identically
zero unless BR(x)(x) ∩ BR(y)(y) �= ∅, in which case we already have the uniform
bound |R(x) − R(y)| < N on the indices R(x) and R(y) (which finishes the job
when combined with (2.3)). Now by the distributive law we have

1 =
∏
x∈G

[
(1 − ηR(x),x) + ηR(x),x

]
=

∑
S⊂G

#S<∞

( ∏
x∈S

ηR(x),x

)( ∏
y∈G\S

(1 − ηR(y),y)
)
,

since on any ball BR(z)−N (z) with z ∈ E all but boundedly many choices of x will
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have (1 − ηR(x),x) which is identically one on this ball since ηR(x),x is identically
zero.

Given a finite subset S ⊂ G, let M(S) be the subset of S drawn from the Gj ’s
with maximal indices; specifically, for each x ∈ S, x belongs to Gj for a unique
index j. We will take x ∈ M(S) if and only if S ∩ Gk = ∅ for all k > j. We will
say that two finite subsets S and S′ are equivalent when M(S) =M(S′). On any
equivalence class S, M(S) is well defined (since M(S) is constant for all represen-
tatives S). If we call the collection of equivalence classes E , we have

1 =
∏
x∈G

(1− ηR(x),x) +
∑

S∈E\{∅}

∑
S∈S

( ∏
x∈S

ηR(x),x

)( ∏
y∈G\S

(1− ηR(y),y)
)

(where we identify ∅ ∈ E with the equivalence class of the empty set). Since ηj,x
is identically one on Bj−1(x) and the union of the balls BR(x)−1(x) over x ∈ G
covers E, the first product on the right-hand side will be identically zero on E.

For a fixed equivalence class S, let I0S be the indices j such that Gj∩M(S) �= ∅,
and let I−S be the indices j such that j < k for some k ∈ I0S . By definition, the
representatives S of the equivalence class S are given by the union of M(S) with
any fixed subset of

⋃
j∈I−

S
Gj . In particular, if I+S is the complement of I0S ∪ I−S ,

then every representative S has S ∩ Gj = ∅ when j ∈ I+S . Consequently, the
distributive law guarantees that

∑
S∈S

( ∏
x∈S

ηR(x),x

)( ∏
y∈G\S

(1−ηR(y),y)
)

=
( ∏

x∈M(S)

ηR(x),x

)( ∏
y∈G+

S\M(S)

(1− ηR(y),y)
)

if we defineG0
S :=

⋃
j∈I0

S
Gj andG

+
S :=

⋃
j∈I+

S
Gj∪

⋃
j∈I0

S
Gj . Moreover,BR(x)(x)∩

BR(y)(y) = ∅ when |R(x)−R(y)| ≥ N , so the above formula remains true when G+
S

is replaced by the (substantially smaller) union of those Gj for which j ∈ I+S ∪ I0S
and |j − k| < N for all k ∈ I0S . Since this set has uniformly bounded cardinality,
we may conclude that, for any z ∈ E, there is some ball Bj′(z) on which the
set of equivalence classes S giving rise to a nontrivial (i.e., not identically zero)
product has uniformly bounded cardinality. This coupled with smooth compara-
bility guarantees that the composition of any such product with any ΦR(z),z will
have uniformly bounded norm in Cm(B) (since at each point of the ball the func-
tion is locally a product of bounded cardinality, and the definition of R implies
that each ball appearing in the product will have index uniformly near R(z) if the
product is not simply identically zero). Finally, if we set

ηx :=
∑

S : x∈M(S)

1

#M(S)
( ∏

z∈M(S)

ηR(z),z

)( ∏
y∈G+

S\M(S)

(1 − ηR(y),y)
)

(which again is well defined, since for fixed x only boundedly many choices of S
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will give a sum which is not identically zero on BR(x)(x)), we have that

1 =
∑
x∈G

ηx

on E and ||ηx ◦ ΦR(x),x||Cm(B) is uniformly bounded. That ηx is supported on
BR(x)(x) follows because the same is true of ηR(x),x. �

It is important to note that the setG constructed in the lemma is not necessarily
countable and so we have not technically constructed a partition of unity in the
usual sense. However, we have that G ∩ L is countable for any leaf L. This is
because the sets E ∩BR(x)(x) are contained and open in L for each x. Moreover,
no point y ∈ L is contained in more than boundedly many of these sets E∩BR(x)(x)
for x ∈ E. Since L has a countable dense subset, the pigeonhole principle forces
that there can be only countably many x for which E∩BR(x)(x)∩L is nonempty for
any particular leaf L (as x ranges over all of G). In the event that the function R
satisfies the condition (1.7) from the statement of Theorem 1.1, it is easy to see
that ∑

x∈G∩L

ψx = χL∩E

(where χ represents the characteristic function) for the simple reason that the
complement of E will be the set where df vanishes, and (1.7) guarantees that
BR(x)(x) does not contain any such points whenever x ∈ E. By the factorization
property of μ, then, we have that

(3.1)

∫
Ω

eifψ dμ =

∫
Ω\E

eifψ dμ+

∫
F

( ∑
x∈G∩L

∫
BR(x)(x)

eifψηx dμL

)
dμF (L)

(the assumption that ψ is bounded and supported on a set of finite measure in Ω0

guarantees that we trivially have dominated convergence on almost every leaf L).

3.2. Integral estimates and conclusion

We have thus successfully reduced the problem to the very classical one of a scalar
oscillatory integral on a Euclidean ball. The main result we will use in this context
is contained in the following lemma.

Lemma 3.2. Suppose f ∈ Cm(B) has nonvanishing gradient. Then for each
k = 1, . . . ,m− 1, there exist functions Fβ for all multiindices |β| ≤ k such that

(3.2)

∫
B

eifψ dx =

∫
B

eif
[ ∑
|β|≤k

∂βψ(x)Fβ(x)

]
dx

for any compactly supported ψ ∈ Cm(B). The functions Fβ satisfy the inequalities

(3.3) |Fβ(x)| � (ω(x))|β|

(ω(x)|∇f(x)|)k
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for any nonnegative function ω satisfying

1

ω(x)
≥ sup

2≤|γ|≤k+1

( |∂γf(x)|
|∇f(x)|

)1/(|γ|−1)

.

The implicit constant in (3.3) depend only on the dimension and m.

Proof. The proof is by the time-honored method of integration by parts. Suppose
that u : Rd → C is smooth and homogeneous of degree a. We integrate by parts
as follows:∫

B

eif(x)∂βψ(x)u(∇f(x))
n∏

j=1

∂γjf(x) dx

=

∫
B

∇f(x)
i|∇f(x)|2 · ∇(eif(x))∂βψ(x)u(∇f(x))

n∏
j=1

∂γjf(x) dx

= i

∫
B

eif∇ ·
(
∂βψ(x)

u(∇f(x))∇f(x)
|∇f(x)|2

n∏
j=1

∂γjf(x)

)
dx.

Now there are three cases to consider. If the derivatives present in the divergence
fall on ∂βψ, then we may write the resulting terms as

i

∫
B

eif
d∑

�=1

∂β+e�ψ(x)u�(∇f(x))
n∏

j=1

∂γjf(x)

where e� is the multi-index corresponding to differentiation with respect to x� and
u�(y) := u(y)y�|y|−2, which will be smooth and homogeneous of degree α − 1.
When the divergence falls on the ∇f terms, we get

i

∫
B

eif∂βψ(x)
d∑

�=1

d∑
k=1

(∂ku�) (∇f(x))∂2x�xk
f(x)

n∏
j=1

∂γjf(x) dx.

When this is expanded, we find that each term remains of the same form with u
being replaced by ∂ku� (which is smooth and homogeneous of degree a − 2) and
the cardinality of the product of higher derivatives increasing by one while the
total number of derivatives present in the product increases by two. Finally, if the
divergence falls on one of the higher derivatives of f , the only effect is to increase
the order of differentiation on that term by 1. By induction, we conclude that∫

B

eifψ dx =
∑
|β|≤k

∫
eif∂βψFβ dx

as desired (in the base case, u(∇f) ≡ 1 is homogeneous of degree 0), where each Fβ

is a linear combination (with universal coefficients depending only on the dimen-
sion, k, and β) of terms of the form

u(∇f(x))
n∏

j=1

∂γjf(x).
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The index n can be taken less than or equal to k (the case equalling zero meaning
no higher derivatives are present). Here u will be smooth and homogeneous of
degree no greater than −k. More precisely, an analysis of the three cases above
yields that

|β|+ deg u+

n∑
j=1

|γj | = 0, deg u+ n = −k, and k ≤ |β|+
n∑

j=1

|γj | ≤ 2k.

It is equally elementary to see that |γj | can be at most k+1 for any k. In particular,
given the definition of ω(x), we have that

n∏
j=1

|∂γjf(x)| ≤
n∏

j=1

|∇f(x)|(ω(x))−|γj |+1 = (ω(x)|∇f(x)|)n(ω(x))−
∑n

j=1 |γj|.

If we set s =
∑d

j=1 |γj |, then we can conclude that

|Fβ(x)| � max
s+|β|=k,...,2k

|∇f(x)|−s−|β|(ω(x)|∇f(x)|)−k+|β|+s(ω(x))−s

� (ω(x))|β|

(ω(x)|∇f(x)|)k ,

which finishes the proof. �

Now we return to the expression (3.1) and apply (3.2). Specifically we have

∫
BR(x)(x)

eifψηx dμL = μL(BR(x)(x))

∫
B

eif̃(t)ψ̃(t) dt(3.4)

where

f̃(t) := f ◦ ΦR(x),x(t),

ψ̃(t) := ψ ◦ ΦR(x),x(t)ηx ◦ ΦR(x),x(t)JR(x),x(t).

By design, the product ηx ◦ ΦR(x),x(t)JR(x),x(t) has uniformly bounded norm
in Cm(B) and so can (in essence) be neglected.

Let C be a constant to be chosen momentarily. If |dyf |R(y) ≤ Cε−1 for all
points y ∈ BR(x)(x), then observe that we have the trivial identity

∫
B

eif̃(t)ψ̃(t) dt =

∫
B

eif̃(t)ψ̃(t) dt

and the trivial inequality

(3.5) |ψ̃(t)| � |ψ ◦ ΦR(x),x(t)|
(1 + ε |dyf |R(y))m−1

for any y ∈ BR(x)(x) (with an implicit constant depending on C).
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If |dyf |R(y) ≥ Cε−1 at some point y ∈ BR(x)(x), then the assumption (1.7)
implies a uniform bound from below at every point in the ball when C is chosen
sufficiently large relative to the implicit constant in (1.7). In this case we will apply
Lemma 3.2 to the oscillatory integral. Observe that when y = ΦR(x),x(t), we have

(3.6) sup
1≤|γ|≤k

|∂γ f̃(t)|
|∇f(t)| ≈ |dkyf |BR(x)(x)

|dyf |BR(x)(x)

(with universal constants depending only on dimension). Since y ∈ BR(x)(x) and
consequently |R(x)−R(y)| < N , by (2.2) we have that

|dkyf |BR(x)(x) ≈ |dkyf |BR(y)(y) = |dkyf |R(y)

uniformly for any k = 1, . . . ,m (with implied but uninteresting dependence onN as
well as the usual constants). By (1.6) and Theorem 2.1, now, we can conclude that
the ratio (3.6) is bounded above, uniformly in y, by ε−k and thus the function ω
from Lemma 3.2 can be taken equal to some uniform constant times ε. We can
conclude that ∫

B

eif̃(t)ψ̃(t) dt =

∫
B

eif̃(t)ψ̃m(t) dt

and

(3.7) |ψ̃m(t)| �
∑m−1

k=0 εk|dkyψ|R(y)

(1 + ε |dyf |)m−1

uniformly when ΦR(x),x(y) = t (by virtue of (3.3) and the fact that |dyf | ≈ 1+|dyf |
on this particular ball).

Next take either (3.5) or (3.7) and transform back to the measure μL; in the
case of (3.5), we define the function ψx by ψx := ψηx, and in the case of (3.7) we
take

(3.8) ψx :=
( ψ̃m

JR(x),x

)
◦ Φ−1

R(x),x.

Since J−1
R(x),x is uniformly bounded above, we may conclude that (in both cases)

we have an equality ∫
eifψ ηx dμL =

∫
eifψx dμL

where ψx is zero outside BR(x)(x) and

|ψx(y)| �
∑m−1

k=0 εk|dkyψ|R(y)

(1 + ε |dyf |)m−1

when y ∈ BR(x)(x) (with a constant uniform in x and y). We now invert the in-
terchange of summation and integration in (3.1). Because the balls chosen in
Lemma 3.1 were locally finite on E, the uniform bound just established for |ψx(y)|
continues to hold when summed over x ∈ G ∩ L on any choice of leaf L. This es-
tablishes Theorem 1.1, the main theorem and, in particular, the desired inequal-
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ity (1.8). We also note that everything here is Borel measurable so the inversion
of (3.1) is justified. This concludes the proof of Theorem 1.1.

It is possible to to remove the assumption that the Jacobian from (1.4) is
bounded below if one is willing to pay a price in terms of the amplitude ψ. Instead
of (3.8), the equalities∫

B

eif̃(t)ψ̃m(t) dt =

∫
B

JR(x),x(s)ds

∫
B

eif̃(t)ψ̃m(t) dt

=

∫
B

eif̃(s)
[ ∫

B

ei(f̃(t)−f̃(s))ψ̃m(t) dt
]
JR(x),x(s)ds

mean that one could alternately define

ψx(·) :=
∫
B

e
i(f̃(t)−f̃◦Φ−1

R(x),x
(·))
ψ̃m(t) dt.

One would no longer need the Jacobian to be bounded below, but one would pay
for it by selecting an amplitude ψx (and hence an amplitude ψm in Theorem 1.1)
which is only bounded above by a sort of maximal function of the derivatives of the
original phase as opposed to a simpler pointwise supremum of those derivatives.

4. Applications and extensions

4.1. A canonical construction of scale function R(x)

The selection of the scale function R may be, in the general case when scales are
understood in the multiparameter sense, more of an art than a science. However,
in the single scale case (corresponding to scales parametrized by the integers Z),
it is relatively easy to see that there is always, in some sense, a “best” choice of R.
Fix an ε and some implicit constants, and let I be the subcollection of balls Bj(x),
as (j, x) ranges over pairs Z× Ω, for which

|dmx |j �
m−1∑
k=1

εk−m|dkxf |j and sup
y∈Bj(x)

|dyf |j−1 � inf
y∈Bj(x)

|dy|j−1.

Let I denote this subset of Z×Ω. We will define RI(x) to be the supremum over
those indices j such that Bj+1(x) exists and Bj′ (x

′) ∈ I for any ball Bj′(x
′) ⊂

Bj+1(x) with j
′ ≤ j.

The claim is that this mapping RI satisfies the necessary regularity condi-
tion (1.5). Specifically, let E be the set of points x ∈ Ω at which RI(x) is well
defined and finite. For any x, x′ ∈ E, suppose that BRI(x)(x) ∩ BRI(x′)(x

′) �= ∅.
By compatibility and nesting, BRI(x)(x

′) exists and is contained in BRI+1(x), and
by the definition of RI(x), it must therefore be the case that all balls of scale at
most RI(x)− 1 which are contained in BRI(x)(x

′) must also belong to I. We thus
conclude that RI(x′) ≥ RI(x) − 1. By symmetry we have |RI(x′) − RI(x)| ≤ 2.
BecauseBRI(x)(x) belongs to I, it is also an immediate consequence that both (1.6)
and (1.7) hold. Thus we have established in a very explicit way that the scale
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function can simply be taken to measure the largest scale on which (1.6) and (1.7)
hold. If the phase f is finite type in the sense mentioned at the end of section 2.2
(which will happen when f is polynomial or, in the Carnot–Carathéodory context,
when f is annihilated by applying any sufficiently long sequence of distinguished
vector fields), then the scale function will simply measure the largest scale on which
the magnitude of the derivative is constant.

4.2. Quantitative results for convex phases

In this section we establish several results relating Theorem 1.1 to the earlier
theorem of Bruna, Nagel, and Wainger. Specifically we consider the question of
establishing uniform radial tameness for an appropriate phase or phases and then
give the proof of Corollary 1.2. We begin with two propositions which establish
uniform radial tameness, first for polynomial convex phases and then for convex
phases of finite type (in the sense of Bruna, Nagel, and Wainger).

Proposition 4.1. Suppose f is a convex function on a convex open set Ω ⊂ Rd

containing the origin and that f and its gradient vanish at the origin. If f is a
polynomial then it is uniformly radially tame to order m with a constant depending
only on the degree and m.

Proof. It suffices to restrict attention to a single ray emanating from the origin.
Suppose f(t) is a convex polynomial on [0, T ] with f(0) = f ′(0) = 0. Rescal-
ing (2.5) to the interval (0, t0), we have that

(4.1) tk0 sup
0<t<t0

|f (k)(t)| � sup
0<t<t0

|f(t)|

for any k, with an implicit constant depending only on k and the degree of f .
Convexity implies that, for all t,

f ′(t) ≥ t−1f(t)

so we conclude from (2.5) and monotonicity of f that

t0f
′(t0) ≈ f(t0)

for all t0 ∈ (0, T ), and so we can additionally conclude that

|f(t0)|k−1|f (k)(t0)| � |f ′(t0)|k
for any t0 ∈ (0, T ) with an implicit constant depending only on the degree of f
and on k. �

Proposition 4.2. Let f be a smooth convex function on a convex open set Ω ⊂ Rd.
Suppose that f is finite type in the sense of Bruna, Nagel, and Wainger, namely,
that every tangent line to f has only finite order of contact. For x0 belonging to
any compact convex subset Ω′ ⊂ Ω, the convex functions

fx0(x) := f(x)− f(x0)− (x− x0) · ∇f(x0)
are uniformly radially tame on Ω′ to any finite order m with respect to the origin x0,
and the constant is bounded over all x0 ∈ Ω′.
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Proof. The finite type condition guarantees that for every point x0 and unit vec-
tor ω, there is a finite k ≥ 2 such that

k∑
i=2

|(ω · ∇)if(x0)| �= 0.

Since this sum (for fixed k) is a continuous function of x0 and ω, by compactness
we can assume that there is a single k such that

k∑
i=2

|(ω · ∇if(x0)| ≥ CΩ′ > 0

for any pair (x0, ω) ∈ Ω′ × Sd−1. Now we can conclude that

sup
1≤i≤k

sup
0<t<1

|x− x0|i
∣∣∣ di
dti

f(x0 + t(x− x0))
∣∣∣ ≥ CΩ′

whenever x0 and x belong to Ω′. Now

sup
0<t<1

|x− x0|m
∣∣∣ dm
dtm

f(x0 + t(x− x0))
∣∣∣ � ||f ||Cm(Ω′)

�
||f ||Cm(Ω′)

CΩ′
sup

1≤i≤k
sup

0<t<1
|x− x0|i

∣∣∣ di
dti

f(x0 + t(x− x0))
∣∣∣.

This inequality guarantees that (2.4) will hold uniformly on (0, 1) for the functions
t �→ f(x0+ t(x−x0))−f(x0)− t(x−x0) ·∇f(x0) with x, x0 ∈ Ω′ provided that ε is
chosen to be a suitably small constant multiple of |x− x0|. Thus we can conclude

sup
0<t<1

|x− x0|k
∣∣∣∣ d

k

dtk
fx0(x0 + t(x− x0))

∣∣∣∣ � |f(x)− f(x0)− (x− x0) · ∇f(x0)|

uniformly for x, x0 ∈ Ω′ for any fixed choice of k. The rest of the proof follows as
for Proposition 4.1. �

Now we can now prove Corollary 1.2. Recall that, for uniformly radially tame f ,
we seek to establish the inequality∣∣∣∣

∫
Ω

eiλf(x)(f(x))�ψ(x) dx

∣∣∣∣ �
∫
Ω

|f(x)|� ∑m−1
k=0 |(x · ∇)kψ(x)|

(1 + |λf(x)|)m−1
dx

with implicit constant depending only on m, d, the nonnegative integer �, and the
constant of uniform radial tameness. Under the circumstances, it suffices to assume
λ = 1 since uniform radial tameness is invariant under scalar multiplication of f
as are the conditions (1.5)–(1.7). Following the proof, we record how to establish
the inequality

(4.2)

∫
Ω

|f(x)|�
(1 + |λf(x)|)�+d+1

dx ≤ Cd|λ|−�
∣∣{x ∈ Ω

∣∣ |f(x)| < |λ|−1
}∣∣

for the convex phase f (where d is the dimension: Ω ⊂ Rd), which brings (1.11) in
line with the results of Bruna, Nagel, and Wainger (when we requirem ≥ d+�+2).
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Proof of Corollary 1.2. In this case, we apply the machinery of Theorem 1.1 when Ω
is equal to R

d. We let the indices j belong to Z and define

(4.3) Φj,x(t) := e3
jtx.

for x �= 0 and Φj,0(0) = 0 for all j; in other words, the balls Bj(x) are intervals
in the ray from the origin through x when x �= 0 and are simply points when
x = 0. These rays and the point {0} are exactly the leaves. The basic conditions
of Theorem 1.1 are easily checked (the homogeneous space structure on the real line
given by dyadic intervals centered at x is well known, and the present construction
is only a trivial variation). In this case, regularity of the measure is established by
means of the polar coordinates formula:∫

f =

∫
Sd−1

[ ∫ ∞

0

f(rω)rd−1dr
]
dσ(ω)

(so we take the measure on the point {0} to be zero). In particular, the smoothness
conditions on the Jacobian hold as long as we restrict j ≤ C at every point for
some fixed C (which is an acceptable restriction from the point of view of the
compatibility condition).

Now suppose that the phase f is uniformly radially tame on the domain Ω ⊂ Rd

containing the origin. Convexity implies the inequalities

(4.4) f(x) ≤ x · ∇f(x)
for all x ∈ Ω. Momentarily restrict attention to a single ray emanating from the
origin (and if f is not strictly convex on this ray, assume that we are far enough
from the origin that f �= 0). Now assuming that f is uniformly radially tame to
order m ≥ 2 with constant C, we have

∣∣∣(x·∇)
( f(x)

x·∇f(x)
)∣∣∣ = ∣∣∣1−f(x)(x · ∇)2f(x)

(x · ∇f(x))2
∣∣∣ = ∣∣∣1−f(x)

[|x|2 d2

dr2 f(x)+|x| d
drf(x)

]
|x|2( d

drf(x))
2

∣∣∣

=
∣∣∣1− f(x) d2

dr2 f(x)

( d
drf(x))

2
− f(x)

x · ∇f(x)
∣∣∣ ≤ C.

Integrating along rays gives that
∣∣∣ f(ρx)

ρx · ∇f(ρx) −
f(x)

x · ∇f(x)
∣∣∣ ≤ C ln ρ

for any ρ > 1 (with a similar inequality when ρ < 1). We define R(x) (when
∇f(x) �= 0) to be the largest integer j such that

3j ≤ 1

4C

f(x)

x · ∇f(x) .

By (4.4), this upper bound is at most 1/(4C), so R(x) is uniformly bounded above

for each x. Fix an x and take ρ := e3
R(x)t for −1 < t < 1. We conclude that

(4.5)
∣∣∣ f(ρx)

ρx · ∇f(ρx) −
f(x)

x · ∇f(x)
∣∣∣ ≤ C 3R(x) ≤ 1

4

f(x)

x · ∇f(x) ,
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from which we conclude that R(x) and R(y) differ by at most 1 when y belongs
to BR(x)(x). The hypothesis (1.5) now follows immediately with N = 2 by the
triangle inequality (since R(x) and R(z) both differ by at most one from R(z)
when z belongs to the intersection).

Next we compute:

|dkxf |R(x) := sup
1≤k′≤k

∣∣∣ dk
′

dtk′ f(e
3R(x)tx)

∣∣∣
t=0

∣∣∣ = sup
1≤k′≤k

∣∣3k′R(x)(x · ∇)k
′
f(x)

∣∣

≈ sup
1≤k′≤k

∣∣∣ (f(x))k
′

(x · ∇f(x))k′ (x · ∇)k
′
f(x)

∣∣∣.
By virtue of the assumption of uniform radial tameness to orderm (and the Leibniz
rule), we can therefore conclude that |dkxf |R(x) ≈ f(x) provided k ≤ m. The con-
dition (1.6) follows immediately. Finally, since (4.5) implies that

3

4

f(x)

x · ∇f(x) ≤ f(y)

x · ∇f(y) ≤ 5

4

f(x)

x · ∇f(x)
for any y ∈ BR(x)(x), it must be the case that

ρ
d

dρ
ln f(ρx) ≤ 4

3

x · ∇f(x)
f(x)

for any ρ with ρx ∈ BR(x)(x), so we again integrate with respect to the variable ρ
to conclude that

|ln f(ρx)− ln f(x)| ≤ 4

3

x · ∇f(x)
f(x)

|ln ρ| ≤ 1

3C
.

Since we know |dyf |R(y) ≈ f(y), we have thus established the final hypothesis (1.7).
Having established (1.5)–(1.7), we may apply the conclusion (1.8):

∣∣∣∣
∫
Ω

eiλf(x)(f(x))�ψ(x) dx

∣∣∣∣ �
∫
Ω

∑m−1
k=0 |dkxf �ψ|R(x)

(1 + λf(x))m−1
dx

(where we have already simplified the denominator since |dxf |R(x) ≈ f(x)). By the

Leibniz rule and our estimates for |dkxf |R(x) we will have

m−1∑
k=0

|dkxf �ψ|R(x) � (f(x))�
m−1∑
k=0

|dkxψ|R(x)

(with a constant depending on m and �). The only remaining modification is that

m−1∑
k=0

|dkxψ|R(x) �
m−1∑
k=0

|(x · ∇)kψ(x)|

since R(x) is bounded uniformly above. �
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Lastly we turn our attention to (4.2). Assume λ > 0 and let

F0 :=
{
x ∈ Ω

∣∣ f(x) < λ−1
}
,

Fk :=
{
x ∈ Ω

∣∣ 2k−1λ−1 ≤ f(x) < 2kλ−1
}
, k > 0.

We have
∫
Ω

(f(x))�

(1 + λf(x))d+�+1
dx ≤ λ−�

∞∑
k=0

∫
Fk

1

(1 + λf(x))d+1
dx.

Convexity of f (and f(0) = 0 and ∇f(0) = 0) implies that f(αx) ≥ αf(x) when
α ≥ 1. In particular this means that Fk ⊂ 2kF0 for each k. Consequently

∞∑
k=0

∫
Fk

1

(1 + λf(x))d+1
dx ≤ |F0|+

∞∑
k=1

(2−(k−1))d+1 2dk |F0|.

This geometric series converges and yields a finite constant for (4.2).

4.3. Carnot–Carathéodory

In this section we recall the framework of Street [23] and several of the results
proved there. The main purpose of doing so is to establish Theorem 4.3, which
exploits these results to show that Street’s Frobenius theorem produces a family
of balls satisfying compatibility, engulfing, weak doubling, smooth nesting, and
smooth engulfing (properties (i) through (v) from the introduction). Moreover, it
establishes that leaves as defined in the introduction coincide with the leaves in
the Frobenius theorem. Finally, it provides an estimate for the smoothness of the
Jacobian when integrating Lebesgue measure on a leaf. This does not explicitly
prove the regularity of measure hypothesis, since we will need a global measure μ
which factors as Lebesgue measure (up to smooth density) on the leaves. It appears
that such a measure may not exist in certain exceptionally pathological cases.
However, if the dimension of the leaves is constant on some neighborhood, then
the classical coarea formula combines with the Jacobian estimate in Theorem 4.3
to guarantee that the d-dimensional Lebesgue measure factors locally in exactly
the way required by regularity of measure. Beyond this, as was already seen in
the previous section (near the origin), it is often possible to establish regularity of
measure directly even when the dimension of the leaves is not constant.

We now recall the framework of Street [23]. Begin with a finite collection
X1, . . . , Xq of C1 vector fields on Ω. Each vector field has a nonzero “formal
degree” d1, . . . , dq belonging to [0,∞)d. Fix some compact subset K ⊂ Ω and
ξ ∈ (0, 1]d. Suppose that for any x0 ∈ K and any a = (a1, . . . , aq) ∈ (L∞([0, 1]))q

with ||√∑q
i=1 |ai|2||L∞ < 1, the ordinary differential equation

γ′(t) =
q∑

i=1

ξdiai(t)Xi(γ(t))

has a (weak) solution on [0, 1] with initial condition γ(0) = x0.
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Next fix a set A ⊂ {
δ ∈ [0, 1]d | δ �= 0, δ ≤ ξ

}
. This set A represents the

allowable multiscales δ (where “allowable” is in principle determined by the con-
text in which the Carnot–Carathéodory machinery is being applied). For present
purposes, we add a constraint to the collection A of allowable δ; we assume that
δ = (δ1, . . . , δd) ∈ A implies (εδ1, . . . , εδd) ∈ A for any ε ∈ (0, 1). Note that
this isotropic dilation condition on A will generally be true in applications of in-
terest; in particular it holds in the case of “weak comparability.” The Carnot–
Carathéodory ball B(X,d)(x0, δ) is defined as the set y ∈ Ω such that there exists

an a ∈ (L∞([0, 1]))q with ||√∑q
i=1 |ai|2||L∞ < 1 as before such that the necessarily

unique solution of

γ′(t) =
q∑

i=1

δdiai(t)Xi(γ(t))

with γ(0) = x0 has γ(1) = y.
The assumptions begin with the integrability condition: for every δ ∈ A

and x ∈ K, it must be the case that

[δdiXi, δ
di′Xi′ ] =

q∑
k=1

ck,δ,xi,i′ δdkXk

at every point y ∈ B(X,d)(x, δ). Next assume that for some m ≥ 2, the vector fields

are Cm on B(X,d)(x, ξ) for every x ∈ K, that Xαck,δ,xi,i′ is continuous on this same
ball whenever |α| ≤ m, and

sup
x∈K

||Xi||Cm(B(X,d)(x,ξ)) <∞,(4.6)

sup
δ∈A
x∈K

∑
|α|≤m

||(δX)α ck,δ,xi,i′ ||C0(B(X,d)(x,ξ)) <∞.(4.7)

(Note that the norms are taken with respect to some implicit, fixed coordinate
system on Ω.) For each x ∈ K, let n0(x) be the dimension of the span ofX1, . . . , Xq

at x. For each δ ∈ A, Street (in agreement with Nagel, Stein, and Wainger)
identifies an appropriate subcollection J(x, δ) ⊂ {1, . . . , q} and defines a mapping
on a neighborhood of the origin in R

J(x,δ) by

Φx,δ(u) := exp
( ∑

i∈J(x,δ)

ui δ
diXi

)
x.

Theorem 6.4 (Street [23]). There are m-admissible constants ρ and r2 < r1 such
that the following hold for all δ ∈ A and x ∈ K:

• B(X,d)(x, ρδ) ⊂ Φx,δ(B
n0(x)(r2)) ⊂ Φx,δ(B

n0(x)(r1)) ⊂ B(X,d)(x, δ).

• Φx,δ(u) is one-to-one on Bn0(x)(r1)

• If Yi is the pullback of δdiXi under the map Φx,δ on the ball Bn0(x)(r1), then
||Yi||Cm � 1. Furthermore,

(YJ(x,δ)1 , . . . , YJ(x,δ)n0(x)
) = (I +B(x, u))∇u

for some Cm matrix B(x, u) of norm at most 1/2.
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• For all u ∈ Bn0(x)(r1), | detn0(x)×n0(x) dΦx,δ(u)| ≈ | detn0(x)×n0(x) δX(x)|.
Here δX is the matrix with columns δdiXi and detk×k is the vector whose

entries are the determinants of all k × k minors of that matrix. An m-admissible
constant is one which depends only on upper bounds of (4.6), (4.7), the dimension
of Ω, q, d, lower bounds for the coordinates of ξ, and upper and lower bounds for
the coordinates of

∑
d := (

∑d
i=1 d

i
1, . . . ,

∑d
i=1 d

i
q).

We now come to the final theorem, which is essentially a repackaging of a num-
ber of Street’s definitions and estimates to illustrate that he implicitly constructed
a space of exactly the sort we have defined in the present work.

Theorem 4.3. Under the same hypotheses as those (described above) for The-
orem 6.4 of [23], define balls Bj(x) := Φx,Mj (Bn0(x)(r1)) and homeomorphisms

Φj,x(u) := Φx,Mj (r−1
1 u) when M j ∈ A. There is a choice of constant M such that

the hypotheses (i) through (v) of Theorem 1.1 are satisfied when the indices j are
restricted to have M j ∈ A and each component of j sufficiently negative. Further-
more, the leaves of the foliation given by the Frobenius theorem are leaves in the
sense of Theorem 1.1, and

1

Vol(Bj(x))

∫
Bj(x)

f dμL =

∫
B

f ◦ Φj,x(t)Jj,x(t) dt

when μL is the induced Lebesgue measure on the leaf L for some nonnegative
function Jj,x with Jj,x ≈ 1 and ||Jj,x||Cm � 1.

Proof. Let M be some constant greater than one to be determined momentar-
ily. For suitable j ∈ Zd we define Bj(x) := Φx,Mj (Bn0(x)(r1)) and Φj,x(u) :=

Φx,Mj (r−1
1 u). We will first show that this system satisfies the axioms (i) through (vi).

In this case, the compatibility condition (i) is trivially satisfied because the set A
of admissible δ has not been taken to depend on x and it has explicitly been as-
sumed to be closed under contractions δ �→ M−1δ. It is essentially a matter of
understanding definitions to show that when δ′ ≤ δ

B(X,d)(y, δ
′) ∩B(X,d)(x, δ) �= ∅ =⇒ B(X,d)(y, δ

′) ⊂ B(X,d)(x, 2
pδ)

for any p with p
∑d

i=1 d
i
k ≥ 1 for all k = 1, . . . , q. This follows easily from con-

catenating paths and rescaling; note that p is an admissible constant in Street’s
terminology. As long as M−1 ≤ 2−pρ we have

Bj(x) ∩Bj′ (y) �= ∅ =⇒ B(X,d)(x,M
j) ∩B(X,d)(y,M

j′) �= ∅
=⇒ Bj′(y) ⊂ B(X,d)(y,M

j′) ⊂ B(X,d)(x, 2
pM j)

⊂ B(X,d)(x, ρM
j+1) ⊂ Bj+1(x).

To establish weak doubling, we use the doubling condition from Corollary 6.4
of [23]; namely,

Vol(B(X,d)(x, 2δ)) � Vol(B(X,d)(x, δ))

for δ sufficiently small, where Vol represents the n0(x)-dimensional Hausdorff mea-
sure.
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We know explicitly from Street’s paper that the measure of such a ball is never
zero nor infinity when the entries of δ are nonzero. It is straightforward to see that
the nesting property guarantees that the doubling property holds for the dyadic
balls Bj(x) as well. Now suppose Bj(x1), . . . , Bj(xN ) are mutually disjoint and
that some ball Bj+1(x) intersects all of the balls Bj+1(xk). Then we have the
containments Bj(x) ⊂ Bj+2(xk) and Bj(xk) ⊂ Bj+2(x) for each k. But now the
observations

N∑
k=1

Vol(Bj(xk)) ≤ Vol(Bj+2(x)),

Vol(Bj+2(x)) ≈ Vol(Bj(x)) ≤ Vol(Bj+2(xk)) ≈ Vol(Bj(xk))

combine to give the uniform inequality

N Vol(Bj+2(x)) � Vol(Bj+2(x))

which, in turn, gives a uniform upper bound on N because the volume is known
to be nonzero.

Now we analyze the smooth structures. The smooth nesting property follows
immediately from Theorem 6.4 of [23] with c := r2/r1. Smooth engulfing is almost
equally immediate. Given two balls Bj(x) and Bj′(x

′) of comparable scale with
a nontrivial intersection, there will be a third ball Bj′′(x

′′) of another comparable
scale that contains them both. Now

Φ−1
x,δ ◦ Φx′,δ′ = (Φ−1

x′′,δ′′ ◦ Φx,δ)
−1 ◦ (Φ−1

x′′,δ′′ ◦ Φx′,δ′).

On this third ball, we have by pullbacks that

Φ−1
x,δ ◦ Φx′,δ′(u) = exp

( ∑
i∈J(x′,δ′)

ui(δ
′)di(δ′′)−diY ′′

i

)
Φ−1

x,δ(x
′).

We know that the pullback vector fields Y ′′
i of (δ′′)diXi via Φx′′,δ′′ are uniformly

in Cm, so the mapping Φ−1
x,δ ◦Φx′,δ′(u) must be uniformly Cm as well. Moreover, if

we choose x′′ = x, we will have that (Φ−1
x′′,δ′′ ◦Φx,δ)

−1 will also be uniformly in Cm

because of the comparability of Jacobians:∣∣∣ det
n0(x)×n0(x)

dΦx,δ(u)
∣∣∣ ≈

∣∣∣ det
n0(x)×n0(x)

δX(x)
∣∣∣ ≈

∣∣∣ det
n0(x)×n0(x)

δ′′X(x)
∣∣∣

≈
∣∣∣ det
n0(x)×n0(x)

dΦx,δ′′(u
′′)
∣∣∣;

this implies that the Jacobian determinant of Φ−1
x′′,δ′′ ◦ Φx,δ is bounded uniformly

above and below, and Cramer’s rule then implies that the inverse mapping will be
uniformly in Cm depending on the Cm norm of the mapping Φ−1

x′′,δ′′ ◦ Φx,δ itself.
Finally, regarding the foliations, leaves, and measures, see appendices B and C

of [23]. In particular, we have the formula∫
Bj(x)

f dμL =

∫
f ◦ Φj,x(t)

∣∣ det
n0(x)×n0(x)

(dΦ(t))
∣∣ dt ,
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where | · | is the usual Euclidean length. The magnitude of | detn0(x)×n0(x)(dΦ(t))|
is shown by Street to be uniformly bounded above and below by the volume of the
ball. To show smoothness, we use Lemma 4.16 and Proposition 4.17 of [23], which
together show that

| detn0(x)×n0(x) dΦx,δ(u)|
| detn0(x)×n0(x) δX(Φx,δ(u))|

is uniformly in Cm on the ball. Since the pullback vector fields Yi are uniformly
in Cm and uniformly span (meaning that there is an n0(x)-tuple which when
grouped into a matrix is uniformly close to the identity matrix, and in particular,
has determinant uniformly bounded below), it suffices to show that

∣∣(δX)i1 · · · (δX)ik det
n0(x)×n0(x)

(δX)(x)
∣∣ � ∣∣ det

n0(x)×n0(x)
(δX)(x)

∣∣

uniformly for any choice of i1, . . . , ik with k ≤ m. From the proof of Lemma 4.6
in [23], we see that we can write

(δX)ik det
n0(x)×n0(x)

(δX)(x)

as some smooth matrix with admissible norm times detn0(x)×n0(x)(δX)(x) itself
(admissible because the smooth functions appearing are literally those bounded
by (4.6) and (4.7)). The final result follows by induction on k. �
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