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Fine gradings and gradings by root systems
on simple Lie algebras

Alberto Elduque

Abstract. Given a fine abelian group grading I': £ = @gec Ly on a
finite dimensional simple Lie algebra over an algebraically closed field of
characteristic zero, with G being the universal grading group, it is shown
that the induced grading by the free group G/ tor(G) on £ is a grading by
a (not necessarily reduced) root system.

Some consequences for the classification of fine gradings on the excep-
tional simple Lie algebras are deduced.

1. Introduction

Gradings by abelian groups on simple Lie algebras appear in many situations.
A systematic study of these gradings was started in [28]. For the classical simple
Lie algebras over an algebraically closed field of characteristic 0, the fine gradings
were classified in [18]. For the exceptional simple algebras they were classified
in [12] and [6] for Ga, in [13] for Fy, and in [14] for Eg. See also [20].

On the other hand, gradings by root systems were introduced by Berman and
Moody in [9], who used them as tools to study some classes of infinite-dimensional
Lie algebras.

The goal of this paper is to relate both types of gradings. It will be shown that
any fine grading with infinite universal grading group on a simple finite-dimensional
Lie algebra over an algebraically closed field of characteristic 0 induces a grading
by a (possibly nonreduced) root system. Some consequences for the classification
of fine gradings in the exceptional cases will be derived too.

The next two sections review gradings by abelian groups and gradings by root
systems respectively. The main result connecting fine gradings and gradings by
root systems is proved in the following two sections. This result shows that any
fine grading is determined by a grading by a root system and a special grading on
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the coordinate algebra of the root grading. This grading on the coordinate algebra
is studied in Section 6. The last section is devoted to deducing consequences for
the classification of the fine gradings on the simple exceptional simple Lie algebras.

2. Gradings

Let A be an algebra (not necessarily associative) over a field F and let G be an
abelian group (written additively).

Definition 2.1. A G-grading on A is a vector space decomposition

I: A=A,

geG

such that
AgAn C Agyp, forall g,heG.

If such a decomposition is fixed, we refer to A as a G-graded algebra. The nonzero
elements a € A, are said to be homogeneous of degree g; we write dega = g. The
support of I' is the set Supp I' := {g € G | A, # 0}.

Let
I A=A, and I': B=H B,

geG heH

be two gradings on algebras, with supports S and T, respectively.

Definition 2.2. We say that I" and I'V are equivalent if there exists an isomorphism
of algebras ¢: A — B and a bijection a: S — T such that 1)(A,) = B,y for all
s € 5. Any such 1 is called an equivalence of ' and I' (or of A and B if the
gradings are clear from the context).

Given a group grading I' on an algebra A, there are many groups G such
that T', regarded as a direct sum of subspaces such that the product of any two
lies in a third, can be realized as a G-grading, but among such groups, there is a
distinguished one [28].

Definition 2.3. Suppose that I' admits a realization as a U-grading for some
abelian group U. We say that U is a universal group of T if, for any other re-
alization of I' as a G-grading, there exists a unique homomorphism U — G that
restricts to the identity on Supp T.

One shows that the universal group, which we denote by U(I'), exists and
depends, up to isomorphism, only on the equivalence class of T'. Indeed, U(T)
is generated by S = Supp I' with defining relations s; + so = s3 whenever 0 #
Ag Asy, CAgy (85 €5).
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Given a G-grading I': A =
we obtain the induced H-grading

°T: A=EPA,

heH

A= P A,

g€a~t(h)

gEG‘Ag and a group homomorphism a: G — H,

by setting

Definition 2.4. Given gradings I': A = GBgEG Agand I'": A = Py Aj,, we
say that I is a coarsening of ', or that I' is a refinement of I, if for any g € G
there exists h € H such that A, C Aj. The coarsening (or refinement) is said to
be proper if the inclusion is proper for some g € Supp I'. (In particular, °T is a
coarsening of T', which is not necessarily proper.) A grading I is said to be fine if
it does not admit a proper refinement.

Any G-grading on a finite-dimensional algebra A is induced from some fine
grading I' by a homomorphism «: U(T') — G.

Over algebraically closed fields of characteristic zero, the classification of fine
gradings on A up to equivalence is the same as the classification of maximal
diagonalizable subgroups (i.e., maximal quasitori) of Aut(A) up to conjugation
(see e.g. [28]). More precisely, given a grading I" on the algebra A with universal
group G, let G be its group of characters (homomorphisms G — F*). Any y € G
acts as an automorphism of A by means of x.z = x(g)x for any g € G and x € A,.
This allows us to identify G with a quasitorus (the direct product of a torus and a
finite subgroup) of the algebraic group Aut(A). Conversely, given a quasitorus ) of
Aut(A), Q = G for G the group of homomorphisms (as algebraic groups) Q — F*.
Then @ induces a G-grading of A, where Ay = {z € A : x(2) = g(x)z} for any
g € G. In this way [28], the fine gradings on A, up to equivalence, correspond
to the conjugacy classes in Aut(A) of the maximal quasitori (or maximal abelian
diagonalizable subgroups) of Aut(A).

Fine gradings on simple Lie algebras belonging to the series A, B, C, and D
(including D) were classified in [18]. The classifications of the fine gradings on
simple Lie algebras of exceptional type were obtained, for type Gz in [12], [6], for
type Fy in [13] (see also [19]), and for type Eg in [14].

Definition 2.5. Let I': A = @gEG

e A subspace B of A is said to be graded if B = @geG(B NAg). (Equivalently,
B is graded by G with B, = BN A, for any g € G.)

e The type of I is the r-tuple (n1,...,n,), where r=max{dim A,:g € G} and n;

is the number of homogeneous components of dimension i, for i = 1,...,r.
. r .
Hence dimA =", in,.

Ag be a grading on the algebra A.

From now on, the ground field F will be assumed to be algebraically closed of
characteristic zero.
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3. Gradings by root systems

Berman and Moody [9] started the study of Lie algebras graded by root systems ®.
(See [3] and the references therein.)

Definition 3.1. A Lie algebra £ over F is graded by the reduced root system @,
or ®-graded, if:

(i) £ contains as a subalgebra a finite-dimensional simple Lie algebra g = h @

(®ae¢> ga) whose root system is ® relative to a Cartan subalgebra h = go;

(i) £ = Dacaufoy £(@), where L(a) = {X € £ : [H, X] = a(H)X for all
H € bh}; and

(i) £(0) = XaealLl@), £(=a)].

The subalgebra g is said to be a grading subalgebra of L.

Berman and Moody [9] studied the simply laced cases A, (r >2), D, and E,,
and Benkart and Zelmanov [8] considered the remaining cases.

Under the adjoint action of g, a ®-graded Lie algebra £ decomposes as a sum of
finite-dimensional irreducible g-modules whose highest weights are the highest long
root, highest short root, or 0. By collecting isomorphic summands into “isotypic
components”, we may assume that there are F-vector spaces A, B, and D such
that

(3.1) L=@gA)d(We3B)®D,

where the grading subalgebra g is identified with g® 1 for a distinguished element
1eA; Wis 0if gis of type A, (r > 1), D, (r >4), or B, (r =6,7,8), while W
is the irreducible g-module whose highest weight is the highest short root if g is of
type B, (r > 2), C,. (r > 3), Fy, or Go; and D is the centralizer of g ~ g ® 1, and
hence it is a subalgebra of L.

The problem of classifying the ®-graded Lie algebras reduces to that of deter-
mining the possibilities for A, B, and D, and of finding the multiplication. The
bracket in £ is invariant under the adjoint action of g and this gives the sum
a = A ® B the structure of a unital algebra. Moreover, D acts as derivations on a,
with A and B being invariant under this action. The type of the algebra a depends
on the root system ®. This algebra a is called the coordinate algebra of L.

For instance (see [8]), assume that ® is the root system of type G3. Then g
is the Lie algebra of type G, which can be identified with the Lie algebra of
derivations of the Cayley (or octonion algebra) @, and W can be identified with
the subspace of trace zero octonions Qy. The Cayley algebra is endowed with
a nondegenerate quadratic form n (the norm) such that any element w satisfies
w? — t(w)w + n(w)1 = 0, where t(w) = n(w, 1) :=n(w + 1) — n(w) — 1.

Moreover, one has the following properties:

1. Homy(g ® g, g) is spanned by the bracket.

2. Homgy(g ® g,F) is spanned by the Killing form r, which is a scalar multiple
of the trace form relative to the representation provided by W.
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3. Homgy(g ® W, W) is spanned by the action of gon W (X @ W — X.W).

4. Homy(W®W, g) is spanned by the map w1 @wz — Day, w,, Where Doy, o, (W) =
[[wi, we], w] + 3((wiw)ws — wy (wws)).

5. Homg(W®W, W) is spanned by the bracket (inside O) wy @ wa — [w1, ws] =
w1Wo — W1 .

6. Homg(W ® W, F) is spanned by the trace form w; ® wy — t(wiws).
7. Homgy(g ® g, W), Homy(g ® W, g), and Homy(g @ W, F) are trivial.
Therefore, the bracket in £ is given by:

[D®a,D' ®d]=[D,D]®@a-d + rk(D,D"){ala’),
[D®a,w®b =Dw)a-b,
(3.2) [d.D®a] = D@ dla),
d, w®b]—w®d()
[w®b,w @] = Dy @ (b]V) + [w,w'] @bo b + 2t(wyws)(b]d),

for any D, D" € g; w,w’ € W; a,a’ € A; b,/ € B; and d,d" € D; and for linear
maps

e ARA—-A:a®d — a-d, which is symmetric;
e ARA —=D:a®d + (ala'), which is skew-symmetric;
e BRB A bV — (bV), which is symmetric;
e BRB—-B:b®b — bol, which is symmetric;
e BRB—=D:bxb — (b|b'), which is skew-symmetric;
e ARB—>B:a®br—a-b.
These linear maps satisfy the following properties:
1. A is a unital commutative algebra with the product a - a’.

2. a =A@ B with the multiplication given by
(a+b)-(d+bV)=(a-a + @)+ (a-b'+a -b+bol),

for a,a’ € A and b,b’ € B, is a Jordan algebra over A with normalized trace
given by trace(a + b) = a, which satisfies the Cayley—Hamilton equation of
degree 3.

3. The action of D on a = A @ B is an action by derivations. Moreover,
(ala’y(a) =0 = (b]V')(A) and (V'|b")(b) =b"-(b"-b)=b"- (V' -b), for a,a’ € A
and b, 0, 0" € B.

4. D = (A]A) + (B|B). (This is implied by condition (iii) in Definition 3.1)

Therefore, in this case, the coordinate algebra a is a Jordan algebra “of de-
gree 3”7 over the unital commutative associative algebra A (see [8]).

Note that (A|A) is a central ideal of £, so if £ is simple, then (A|A) is trivial,
and hence D = (B|B).
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Gradings by nonreduced root systems (type BC,.) will also appear attached to
fine gradings. Following [3] we recall the next definition:

Definition 3.2. Let ® be the nonreduced root system BC, (r > 1). A Lie
algebra £ over F is graded by ®, or ®-graded, if:

i contains as a subalgebra a finite-dimensional simple Lie algebra g = h @

i) £ tai balgeb finite-di ional simple Lie algeb
(®ae¢>’ ga) whose root system @’ relative to a Cartan subalgebra h = go is
the reduced subsystem of type B,., C,, or D, contained in ®;

(i) £ = Dacaufoy £(@), where L(a) = {X € £ : [H,X] = a(H)X for all
H € bh}; and

(ii)) £(0) = XaealLla), £(=a)].

Again, the subalgebra g is said to be a grading subalgebra of £, and £ is said to
be BC.,-graded with grading subalgebra of type X,., where X, is the type of g.

Only BC,.-graded subalgebras of type B, will occur in relation to fine gradings
on simple Lie algebras.

For r > 3, let W be the natural module for the Lie algebra g of type B,.
Thus W is endowed with a symmetric nondegenerate bilinear form (.|.), and

g = {z € Endp(W) : (zu|v) = —(u|av) for all u,v € W},
s = {s € Endp(W) : trace(s) = 0 and (su|v) = (u|sv) for all u,v € W}.

In this case, a BC,-graded subalgebra of type B, can be described, up to isomor-
phism, as follows (see (1.30) in [3]):

(3.3) L=@EA)D(EB)o W C)aD,

The bracket in £ gives b = A @ B @ C the structure of an algebra, which is termed
the coordinate algebra of £. Moreover (see [3] for details), for r > 3 we have:

e The sum a = A @ B is a unital associative algebra (the multiplication is
denoted by a - '), with 1 € A (the subalgebra g is identified with g ® 1),
with involution 7 whose subspace of symmetric elements is A and whose
subspace of skew-symmetric elements is B.

¢ The space C is an associative left a-module (the action is denoted by « - ¢),
and it is equipped with a hermitian form & relative to n, such that the mul-
tiplication in b is given by:

(a+c)-(+)=(a-d/ +&c, )+ (- +a"-c).
For r = 2, the grading subalgebra b = A ® B @ € is a bit more complicated,
and can be described in terms of structurable algebras. (See [3] for details.)

For r = 1, a BC-graded subalgebra of type By can be described, up to iso-
morphism, as follows:

(3.4) L=(gRA)D(s®B)dD.
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Here the natural module W for the simple Lie algebra g (isomorphic to sly(F))
of type Bj is three-dimensional, and hence isomorphic to the adjoint module g,
and the subspace of symmetric trace-zero endomorphisms s is the five-dimensional
irreducible module for g.

In this case, results of Allison [2] give that the coordinate algebra a = A @ B
is a structurable algebra whose involution is given by (a +b)" = a — b (so A is the
subspace of symmetric elements and B the subspace of skew-symmetric elements),
and the quotient of £ by its center Z(£) is a generalized Tits—Kantor—Koecher Lie
algebra constructed from the structurable algebra (a,n). (See Theorem 2.6 in [7].)

The arguments used in the proof of Theorem 7.5 in [21] give a more precise
picture in this situation. The Lie bracket in £, which is invariant under the action
of the subalgebra g ~ g ® 1, is given by:

e D is a subalgebra of £;

* [A®a,B®b| = [A,B|®@aob — (AB + BA — 2trace(AB)I5) ® [a,b] +
trace(AB)({a|b);

e [A®a, X ®a]=—(AX + XA)® i[a,2] + [A, X]®aow;

s X®z,Y®y =[X,Y]®zoy — (XY +YX — 2trace(XY)I3) ® 3[z,y] +
Ttrace(XY)(z|y);

e [d,A®a] =A®d(a);
e [d, X ®a] =X ®@d(x);
forany A,Be€g; X,)Y €b;a,b€ A; x,y € B; and d € D, where

e AxA — A: (a,b) — aob is a symmetric bilinear map with 1o0a = a for any

a € A;
e Ax A — B: (a,b) — [a,b] is a skew symmetric bilinear map with [1,a] =0
for any a € A;
e AxB — A: (a,x) — [a,x] is a bilinear map with [1,z] = 0 for any = € B;
e Ax B — B: (a,z) — aox is a bilinear map with 1 o2 = x for any x € B;
e BxB — A: (z,y) — x oy is a symmetric bilinear map;
e BxB — B: (v,y) — [z,y] is a skew symmetric bilinear map;
e AxA— D: (a,b) — (alb) is a skew symmetric bilinear map;

e BxB — D: (x,y) — (x]y) is a skew symmetric bilinear map;

e the bilinear maps D x A — A: (d,a) — d(a) and D x B — B: (d,z) — d(z),
give representations of the Lie algebra D.

Define x oa = aox and [z,a] = —[a, x| for any a € A and z € B, and define on
the vector space a = A @ B a multiplication by

1
u-v=uov+ §[u,v]
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for any u,v € AUB, souov = S(u-v+v-u)and [u,v] =u-v—0v-u. Define also
a linear map —: a — a such that a + x = a — « for any ¢ € A and x € B. Then
(Theorem 7.5 in [21]) the subspace a, with this multiplication and involution, is a
structurable algebra.

Condition (iii) in Definition 3.2 shows D = (A|A)+(B|B), and a straightforward
application of the Jacobi identity gives

(alb)(u) = Dap(u),  (2[y)(u) = Day(u),

for any a,b € A, 2,y € B, and u € AU B, where D, , is the derivation of the
structurable algebra a defined in equation (15) in [1]:

(3.5) Dy (w) = %[ [u,v] + [@, ], w] + (w,v,u) — (w, a, D),

for u,v,w € a, where (w,v,u) = (w-v)-u—w- (v-u) is the associator of the
elements w, v, and u.

4. Fine gradings on semisimple Lie algebras

The aim of this section is to show that any fine grading on a finite-dimensional
semisimple Lie algebra, with the property that the free rank of its universal group
is greater than 0, determines in a natural way a (possibly nonreduced) root system.
This root system is irreducible if the Lie algebra is simple.

The first two items of the next proposition were proved in [13] over the field of
complex numbers. Given a finitely generated abelian group G, let tor(G) denote
its torsion subgroup and let G be the quotient G/ tor(G), which is free. Its rank
is called the free rank of G.

Proposition 4.1. Let £ be a finite-dimensional semisimple Lie algebra and let
I': L= GBgEG Ly be a fine grading. Assume that G is the universal group of I'.
(Since the dimension of L is finite, G is a finitely generated abelian group.)

Then the following conditions hold:

(i) The zero homogeneous component Lg is a toral subalgebra of L (i.e., adLlg
consists of commuting diagonalizable operators in L).

(ii) The dimension of Lo coincides with the free rank of G.

(iii) Let tor(G) be the torsion subgroup of G. The induced grading T : L =
@gec/ tor(G) Lg is the weight space decomposition relative to L.

Proof. The Killing form of £ satisfies (L4, L) = 0 unless g + h = 0, and hence
the restriction of k to Lo is nondegenerate. This shows that Ly is reductive (see
Proposition 5 in section 6.4 of chapter I of [10]). Moreover, for any X € Z(Lg) (the
center of Lg), the semisimple and nilpotent parts of X also belong to Z(Lg) and
K(Xn, Lo) = 0, since ad X, is nilpotent, so we get X,, = 0. Therefore, the elements
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of Z(Ly) are semisimple and L is reductive in £ (see sections 6.4 and 6.5 in
chapter 1 of [10]).

Let b be a Cartan subalgebra of L. Hence Z(Lg) is contained in b and b is
maximal among the toral subalgebras of £ contained in £y. For any g € G, £ is
invariant under the adjoint action of £y. Therefore, I' can be refined by means of
the weight space decomposition relative to the toral subalgebra b.

Since I is fine, for any g € G there exists a linear form « € h* such that £ is
contained in the weight space

L(a):={X e L:[H,X]=a(H)X for all H € b}.

In particular, Lo = £(0) N Ly = b is a toral subalgebra. This proves the first part.
(Note that 0 denotes both the zero component of G and the trivial linear form,
but this should cause no confusion.)

Therefore, I' is a refinement of the grading given by the weight space decompo-
sition relative to the toral subalgebra h = Lo: T': £ = @ L(«). Denote by ®
the set of nonzero weights in the decomposition

ach*

(4.1) O :={aech”\0:L(a) #0}.

Then Z® is a free abelian subgroup of h* and we can view [asa grading by the
group ZP.

Since G is the universal group of I' and T' is a coarsening of T', there is a
surjective homomorphism

(4.2) m: G = Zd

such that 7(g) = « if £L; C L(«). And since Z® is torsion free, 7 induces a
surjective homomorphism 7: G := G/ tor(G) — Z®. In particular, the rank of the
free group G is greater than or equal to the rank of Z®.

However, F® is the whole dual vector space h*, as otherwise there would exist
an element 0 # X € h such that a(X) = 0 for any o € @, and then X would
belong to the center of £, and this is trivial since £ is semisimple. In particular,
this shows that the rank of the free abelian group Z® is greater than or equal to
the dimension of the vector space F® = h*. Hence we obtain rank(Z®) > dim b,
and thus rank G > dim b.

Since the universal group G is generated by the support of I', G is generated
by the support of I'. But G is a finitely generated free abelian group, so there are
elements g1, ..., Gm € Supp I such that G = Zg, @ - - - ® Zg,, (here g denotes the
class of g modulo tor(G)).

The Lie algebra £ is semisimple, and hence any derivation is inner. In particu-
lar, for any i = 1,...,m, there is a unique element H; € £ such that [H;, X] = n; X
for any X € £y,5, 4 +n,gn- Moreover, we may replace H; by its component in
Lo = b for any i, so, by uniqueness, we obtain Hi,..., H, € Ly. Since the sum
Lg @ ---® Ly, is direct, the elements Hy,..., H,, are linearly independent, and
hence we get m = rank G < dim . This proves the second part: rank G = dim b.
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The argument above shows that h = FH, & --- & FH,,, and for any g =
nigi + -+ + NmGm we have L5 = L(a), where « is the linear form on h such that
a(H;) = n; for any i. This proves the last part. O

Remark 4.2. The zero component of the grading I' in Proposition 4.1 is L5 =
D cior(c) L9 = £(0), and this is the centralizer Centz (Lo).

Using the arguments in the proof above, £(0) is shown to be reductive in
L, s0 £L(0) = Z(£(0)) ® [£(0),£(0)] and Lo € Z(£(0)). In particular, the zero
component of the restriction of I" to [£(0), £(0)] is trivial: [£(0), £(0)]o = 0.

Therefore, I" induces a grading on [£(0), £(0)] by the finite group tor(G) whose
homogeneous component of degree 0 is trivial. These gradings are called special.
(See [23] for properties of these gradings.)

Remark 4.3. Condition (ii) in Proposition 4.1 does not suffice to ensure that the
grading I" is fine. As an example, let V' be a five-dimensional vector space with
a basis {e1, ea, €3, €4,€5}, endowed with the symmetric bilinear form b such that
bei,ej) = 0;; for any ¢ and j. Consider the associated orthogonal Lie algebra
s0(V, b) comprising endomorphisms skew-symmetric with respect to b. The vector
space V is graded by Z3, with dege; = (1,0,0), deges = (0,1,0), deges = (0,0, 1),
deges = (1,1,1), and deges; = 0. This induces a grading by Z3 on so(V,b),
of type (4,3), with the basic elements E;; — Ej;, i # j, being homogeneous of
degree dege; + dege;. Here E;; denotes the endomorphism that takes e; to e;
and annihilates the other basic elements. Then s[(V,b)y = 0, the free rank of the
finite grading group is also 0, but this grading is not fine, as it can be refined
to get a grading of type (10) by Zi with dege; = (1,0,0,0), deges = (0,1,0,0),
deges = (0,0,1,0), deges = (0,0,0,1), and deges = 0.

Theorem 4.4. Let L be a finite dimensional semisimple Lie algebra and let
Ir: L= @geG Lg be a fine grading. Assume that G is the universal group of T'.
Let @ be as in (4.1). Then, ® is a (possibly nonreduced) root system in the FEu-
clidean vector space E = R ®q Q®. If £ is simple, then ® is an irreducible root
system.

Proof. The proof requires several steps:

1. By Proposition 4.1, the set of weights ® is precisely w(Supp I' \ tor(G)),
with 7 in (4.2). For any g € Supp I'\ tor(G), let o = 7w(g) and take an element
0# X € L, C L(a). Then £_, is contained in L(—a). Since « is not 0, adX
is nilpotent. By the Jacobson-Morozov Theorem (see Theorem 17 in Chapter IIT
of [26]), there are elements H,Y € £ such that [H,X] = 2X, [H,Y] = -2V
and [X,Y] = H (ie, X,H,Y form an sly-triple). We have H = ), - Hj, and
Y =) cq Yn for homogeneous elements Hy, Yy € Ly, h € G. Then [H, X]| =2X
implies [Ho, X| = 2X, so a(Hy) = 2, and hence [Hy,Y_,] = —2Y_,. Also, from
[X.Y] = H we get [X,Y_,] = Hy. Therefore, we may take H € Ly = § and
Yel_,.

2. The restriction of the Killing form x to h = £ is nondegenerate, so it induces
a nondegenerate symmetric bilinear form (. | .) on h* = F®. For any « € P, take
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an element g € G with 7(g) = a, and an sly-triple X € L4, H € Lo, and Y € L_
as above. For any € ®, the sum @,_, £( + ia) is a module for the subalgebra
s = span{X, H,Y} (isomorphic to slp(IF)). With standard arguments we obtain
B(H) =r—q € Zand f— f(H)a € ¢, where ¢ = max{n € Z : § + na € D},
r=max{n € Z: f—n«a € ®}. In particular, H, := H does not depend on g or X,
only on «a. Also, we get

K(Ho, Ho) =Y (dim £(8)) B(Ha)? € Zso.

BeP®

3. For any « € h* there is a unique T, € h such that «(H) = (T, H) for any
H € b. If the element T € h = Ly satisfies k(Tn,T) = a(T) = 0, then for any
B € ® we have

trace((adHaadTﬂEBieZ La+m) = p(T) trace(adHakBiGZ La+m) =0.

Consequently, k(H,,T) = 0 also, and hence H, € FT,,. Since a(H,) = 2, we get

2 2
Ho = ™™= ey ™
Define, as usual,
_ 2(8la)
<B|Oé> T (Oé|05) - ﬁ(HOC)

Therefore we have for any «, 8 € ® that
(Blay € Z and B — (Blaya € ®.

Als? we ha.ve K(Huo, Hy) = @;a)zn(Ta,Ta) = ((;‘La), so (ala) = m is a
positive rational number.

4. Take a basis {aq, ..., an } of b* contained in @, and let g1, .. ., g be elements
of G such that m(g;) = a; for any i = 1,...,m. For any v € Q® (C h*), there are
rational numbers ry, ..., r,, such that v =riay + -+ + rpayy, and we get

(V) = w(Ty, Ty) = > (dim £(8)) B(T)?
ped
= Z dim £(8 (Zﬁﬂ( > Z dim £(8 (Zrl (Bla) )
ped BED i=1
. - n(azlaz) 2
= > (@im£(®) (3 TG Blar))” € Qs
Be® =1

Hence £ = R ®q Q@ is a Euclidean vector space with inner product determined
by (. | .); ® is a finite subset of E not containing 0, that spans E and such that
(o] B) = 2((5"‘5)) € Z; and 8 — (Blaya € @, for any «, 5 € . Therefore, ® is a root
system.

5. If £ is simple, then ® must be irreducible, as otherwise ® would split as
a disjoint union ® = ®;UP,, with (®1|P2) = 0. But then (@aeq,lﬁ(a)) &)
(Yaca, [£(@), £(—a)]) would be a proper ideal of L. O
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5. The main result

With the same hypotheses as in the previous section, take a system of simple roots
A of the root system ® in (4.1). Hence A is a basis of h* contained in ® and
¢ =0TUP™, with @ C 3 A Zsoa, @~ = —®*. For any o € A choose g, € G
such that m(g,) = a. Since G is generated by Supp T, we have

G = (@ Zga) @ tor(G).

acEA
Let B
G = @ Zga
aEA
and let
(5.1) g=EPL,
el

The arguments in the proof of Proposition 4.1 show that g is a reductive subal-
gebra of £. Also, any 0 # X € g4, g # 0, is contained in a slo-triple, so the center
Z(g) is contained in Ly = h. As the dimension of § coincides with the rank of Z®,
we conclude that Z(g) = 0 and g is semisimple.

Also, any weight of h on g belongs to i(@aeA Zzoa), so A is a system of
simple roots for g relative to its Cartan subalgebra h. We conclude that g is, up
to isomorphism, the semisimple Lie algebra with A as a system of simple roots.

Now the main result of the paper, relating fine gradings and gradings by root
systems, follows easily.

Theorem 5.1. Let £ be a finite dimensional simple Lie algebra and let T': L =
@geG Ly be a fine grading. Assume that G is the universal group of I'. Let @ be
as in (4.1). Then L is graded by the irreducible (possibly nonreduced) root system
O with grading subalgebra g as in (5.1). Moreover, if ® is nonreduced (type BC,.),
then g is simple of type B;..

Proof. The Lie algebra £ contains the semisimple subalgebra g with Cartan sub-
algebra h and system of simple roots A. Since £ is simple, ® (or A) is irreducible,
and the ideal (@ ,cq £()) & (3 coll(@), L(—a)]) is all of L. Hence £ is graded
by the root system ® with g as a grading subalgebra. Moreover, any root in ® is
a sum of roots in g. Hence for ® of type BC,, g is of type B,.. O

6. Grading on the coordinate algebra

LetT': £L=6p e L4 be a fine grading on a finite-dimensional simple Lie algebra,
with G being the universal group of I'. As in the proof of Proposition 4.1, let ®
be the set of weights of the adjoint action of Ly, and let m: G — Z® be the
surjective group homomorphism with 7(g) = a if £; € L(«). Then 7 induces an
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isomorphism 7: G = G/ tor(G) — Z® by item (iii) of Proposition 4.1. Let g be
the grading subalgebra in Theorem 5.1, obtained after fixing a system of simple
roots A and preimages g, under 7 of the elements in A. Also, consider the free
abelian group G' = @, ca Zga, such that G = G @ tor(G). The restriction of 7
to G is bijective.
If @ is reduced, then we have a decomposition as in equation (3.1). Then:
e g=g®1is, by its construction, a graded subalgebra of £, and hence so is its
centralizer D = Centc (g). Moreover, D is contained in £(0) = B cior(c) Lo
and hence D is graded by tor(G). Moreover, Dy C Ly = go, so Dy = 0.
Therefore, the grading of D by tor(G) is a special grading. (See Remark 4.2.)

e Let A be the highest root of g (relative to A), then A is not a weight of W,
and hence £L(\) = gy ® A. On the other hand, if gy is the preimage in G

of A, then
LA)=B{Ly:m(g) =At= D Log
g€etor(G)

so the vector space A is graded by tor(G), where Ay, is defined by
(6.1) Lga+h = 0x @ Ap,

for any h € tor(G).

* Since g ® A is the g-submodule of £ generated by gy @ A (A is the highest
root of g), it follows that g ® A is a graded subspace of £ and for any g € G
and h € tor(G) we have

(9@ A)g+h = Gn(g) ® An.

e By invariance under the adjoint action of g, the subspace W ® B is the
orthogonal complement of (g ® .A) @ D relative to the Killing form of L.
Since this subspace is a graded subspace of £, so is W ® B.

Let p1 be the highest weight of the g-module W relative to A (p is the highest
short root). Let g, be the preimage under = of y in G. Then, as for A, we
also get that B is graded by tor(G) if we define B, by

(W ® B)g,ﬁh = Wu ® Bp,

for any h € tor(G). Since W is generated, as a module for g, by W, (= {w €
W: Hw = p(H)w for all H € h = go}), it follows that the subspace W ® B
is a graded subspace of £ and, for any g € G and h € tor(G), we have

(W& B)grn = Wag) @ B

On the other hand, if ® is nonreduced of type BC1, then we have a decompo-
sition as in equation (3.4), and the same arguments show that D inherits a special
grading by tor(G), that if y is the highest weight then £(u) = W, ® B, and this
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shows that B is graded by tor(G) as above. Finally, g ® A is the orthogonal com-
plement to (W ® B) @ D relative to the Killing form, and we conclude that A is
graded also by tor(G) as above.

Finally, if ® is nonreduced of type BC,., r > 2, then we have a decomposition
as in equation (3.3) and one checks as before that D inherits a special grading by
tor(G), that if 1 is the highest weight of s, then £(p1) = s, ®B, and hence it follows
that B is tor(G)-graded. Then (g ® A) & (W ® C€) is the orthogonal complement
of (s®@B)@® D, so it is a graded subspace too. Here, if A is the highest root, then
(g2 A)®(W®C))NL(A) = gr®A, so again we conclude that A is tor(G)-graded,
and from this we deduce that so is C.

These arguments prove most of the next result.

Proposition 6.1. Under the conditions above, with ® being an irreducible root
system, the coordinate algebra a = A @ B (in the reduced case or for BCy) or
b =a®C (in the BCy.-case, r > 2) inherits a fine grading by tor(G), where A
and B, and C in the BC,-case, r > 2, are graded subspaces.

Moreover, Ag = F1 while By = 0, and also Cop = 0 (in the BC,-case, r > 2),
tor(G) is the universal group, and this grading on a, or b, induces a special grading
on D by tor(G).

Proof. The fact that a inherits a grading by tor(G) is clear from the earlier argu-
ments. Also Lo = go = go ® 1, so Ag = F1 and By = 0 (and €y = 0 too in the
BC, case, r > 2). Hence ap = F1. Moreover, any refinement of this grading on a
would give a refinement of T', as the grading by tor(G) of D is determined by the
grading on a, because of condition (iii) in Definition 3.1. The last part is a direct
consequence of G being the universal group of T'. O

7. Applications

The results in the previous sections will be used to classify the fine gradings on the
simple exceptional Lie algebras whose universal groups have free rank > 2. Quick
proofs of the classification of fine gradings, up to equivalence, on the simple Lie
algebras of types G2 and F; will be given too.

Table 25 in [15] gives a list of the simple subalgebras of rank at least two of
the exceptional simple Lie algebras, together with the decomposition of any such
simple Lie algebra as a sum of irreducible modules for the simple subalgebra. This
immediately gives the different possibilities, up to conjugation, for the gradings of
an exceptional simple Lie algebra by an irreducible (not necessarily reduced) root
system of rank at least two. The different possibilities are summarized in Table 1,
where g, 5, W, A, B, C, and D are as in equations (3.1) or (3.3).

In many cases, this corresponds (see [8] and [29]) to the well-known Tits con-
struction T(C,J), for a unital composition algebra € and a degree three simple
Jordan algebra J, which we recall now (see also [21]).

Let H be a unital composition algebra (or Hurwitz algebra) with norm n and
trace t. The unital composition algebras are, up to isomorphism, F, K = F @ F,
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H = Maty(F) (the quaternion algebra), and the Cayley algebra O (recall that the
ground field F is assumed to be algebraically closed). Let J be a unital simple
Jordan algebra of degree 3, so that J is the Jordan algebra Hz(H') of hermitian
3 x 3 matrices over another unital composition algebra H’'. Denote by Hy and Jg
the subspaces of trace zero elements in H and .

For a,b € I, the linear map D, : 3 — I defined by

Da,b(c) = [[a’b],c] + 3(0'7 ) b)v

where [a,b] = ab — ba is the commutator, and (a,c,b) = (ac)b — a(cb) is the
associator, is a derivation of H. These derivations span the Lie algebra Der(3).
Similarly, for z,y € J, the linear map d, ,: J — J defined by

(71) dm,y(z) = m(yz) - y(iCZ),

is the inner derivation of J determined by the elements x and y. These derivations
span the Lie algebra Der(J) of derivations.
Given H and J as before, consider the space

(7.2) T(H,J) = Der(H) & (Ho @ Jo) @ Der(d),

with the anticommutative multiplication [.,.] specified by:
e Der(H) and Der(J) are Lie subalgebras, and [Der(H), Der(d)] = 0;
e [D,a®z] =D(a)®@x, [da®z] =a®d(z);
e [a®z,b®y] = trace(zy)Day + ([a,b] ® @ x y) + 2t(ab)dy,y;

for all D € Der(H), d € Der(d), a,b € Hy, and x,y € Jo, where

1
TRy =1aY — gtrace(my)l.

Looking at equation (7.2) from the left, in the case 3 is the Cayley algebra O
(i.e., dim H = 8), then Der(Q) is the simple Lie algebra of type G2 and (7.2) gives
a decomposition as in equation (3.1), thus proving that T(0,J) is graded by the
root system of type G2 with coordinate algebra J = F1 & J.

Looking at equation (7.2) from the right, we obtain:

e If J is the Albert algebra A (i.e., J is the algebra of hermitian 3 x 3-matrices
over the Cayley algebra), then Der(A) is the simple Lie algebra of type Fy,
and (7.2) proves that T(J, A) is graded by the root system of type Fj with
coordinate algebra H = F1 @& Hj.

e If J is the Jordan algebra Hs(H), then Der(d) is the simple Lie algebra of
type Cs, and T(3, J) is graded by the root system of type Cs with coordinate
algebra JH.

e If J is the Jordan algebra Matz(F)™ = H3(K), then Der(d) is the simple Lie
algebra of type As, and then T(H, J) is graded by the root system of type As
with coordinate algebra J.



260 A. ELDUQUE

Lie Root coordinate
algebra | system | dim A | dim B | dim € | dim D model algebra
L G [ G [t [ o [ [ 0| [ F |

F, Gs 1 5 - 3 T(0, H3(F)) | Hs(F)

Fy Fy 1 0 - 0 F

Es Ay 8 - - 14 | 7(0, H3(K)) (0)

Eg BC, 5 1 2 4

Ee G2 1 8 8 ‘T(@, H3 (K)) Mat3(F)+

Eg Fy 1 1 - 0 T(K,A) K

FEg FEg 1 0 — 0 F

Er BCy 7 1 8 9

Er Go 1 14 - 21 |TJ(0,Hs(H))| Hs(H)

Er Cs 1 7 - 14 | T(0, Hs(H)) (@)

Er Fy 1 3 - 3 T(H, A) H

Er Er 1 0 - 0 F

Eg BC, 11 20 24

Es Go 1 26 - 52 T(0, A) A

Eg Fy 1 7 - 14 T(0,A) (©)

Es Es 1 0 - 0 F

TABLE 1. Gradings of the exceptional simple Lie algebras by root systems of rank at least
two.

Theorem 7.1. The fine gradings, up to equivalence, of the exceptional simple Lie
algebras whose universal group has free rank at least three are the following:

e The Cartan gradings of Fy, Fg, Fr, and Es. The universal group is Z" with r
the rank of the algebra.

e The gradings of E,., r=06,7, 8 induced by gradings by the root system of type F}.
The universal groups are Z* x Z£_5, r=06,7,8, and the respective types are
(72,1,0,1), (120,0,3,1), and (216,0,0,8).

e A grading of E; induced by a grading by the root system of type Cs. The
universal group is 72 x 73 and its type is (102,0,1,7).

Proof. In Table 1 the only gradings by root systems of rank at least three are the
Cartan gradings, the gradings by the root system of type Fy of E,., r = 6,7,8, and
the grading by the root system of type C5 of F7. In the second case, the coordinate
algebra is H = K, H, or O, respectively, and the only grading on these algebras
with zero component equal to F1 are the gradings obtained by the Cayley—Dickson
doubling process (see [16] or [19]), whose universal groups are Zs, Z3, and Z3,
respectively. The computation of the types is straightforward using the model
T(H,A). Finally, these gradings are fine as the zero component is the Cartan
subalgebra of the subalgebra Der(A) of type Fy, and the grading induced in this
subalgebra is the Cartan grading, which is fine. Hence, if any of these gradings



FINE GRADINGS AND GRADINGS BY ROOT SYSTEMS 261

could be refined, the refinement would be attached to a grading by a root system
of rank at least four, which is impossible.

Finally, the coordinate algebra for the grading by the root system of type Cs
of E7 is ©. The only grading of O whose zero component is F1 is its Z3-grading.
The resulting grading by Z3 x Z3 of E7 is fine and its type is easily computed using
the model T(O, Hs(H)). O

We finish with the promised short proofs of the classification of fine gradings
for Gy and Fy. For Go this was proved independently in [12] and [6], and for F}
in [13] (see also [11] and [19]). The arguments here are very different in nature.

Theorem 7.2. Up to equivalence, the simple Lie algebra of type Ga is endowed
with two different fine gradings: the Cartan grading by Z2, and a special grading
by Z3 in which the seven nonzero homogeneous spaces are all Cartan subalgebras.

Proof. Let I': £ = @QGG L4 be a fine grading of the simple Lie algebra £ of
type Ga, with G its universal group. By Theorem 5.1 and Table 1, T" is the Cartan
grading, the free rank of G is one, or G is a finite group.

If the free rank is one, then £ is graded by the root system BC; (this includes
gradings by A;) and hence £ is given by the generalized Tits—Kantor—Koecher Lie
algebra constructed from a structurable algebra and I' is obtained by combining
the Z-grading given by the rank one root system, and a grading of the coordi-
nate algebra as in Proposition 6.1. A look at the possibilities in section 8 of [2]
shows that the coordinate algebra is the structurable algebra a = Mats(FF) with
multiplication given by

a B (o B\ aa’ + 357 af’ + Bo" + 2vv
vy 6)\y &) \yd +6y +288 00" + 3vp ’

G 9-G2)

Consider the basis {1 = (§9),e=(38),f=(93),s=(§ %)} of a, so that A =
span{l,e, f} and B = Fs. Since s> = 1 and By = 0, s € a, with 29 = 0. The
subspace Fe+Ff = {x € a: sx+xs = 0} is graded. For any nonzero homogeneous
element ae + [ f, the elements

and involution

s(ae + Bf) = —ae+ Bf,
(e + Bf)? =2(B%e+ a?f) +3aBl and
(ae + Bf)(~ae + Bf) = 2(F% + o’ f) + 3afs

are homogeneous too, and this forces the nonzero element 8%e + o f to be homo-
geneous of degree 0 and g at the same time, a contradiction.

Finally, if G is finite, consider the finite quasitorus @ of the algebraic group
Aut (L) which is the image of the character group G (isomorphic to G). Since T is
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fine, @ is a maximal quasitorus. Also, since £ is of type Ga, Aut(£) is a connected
and simply connected semisimple algebraic group. For any y € @, x is semisim-
ple and Aut(£) is connected and semisimple, so its centralizer Centayg(c)(X)
is reductive (see Theorem 2.2 in [25]), and since Aut(L) is simply connected,
Centaye(c)(x) is connected (Theorem 2.11 in [25]). Hence the solvable radi-
cal coincides with the connected component of its center, Z (CentAut(L)(x))o,
and this is a torus (Lemma 19.5 in [24]). As Z(CentAut(L)(X))o is contained
in any maximal quasitorus of Centa,c)(X), it is contained in Q. As @Q is fi-
nite, Z(CentAut(L)(X))o = 0, and hence Centp(¢)(x) is semisimple, so that the
subalgebra of £ of elements fixed by x is semisimple.

The automorphisms of finite order of the simple Lie algebras are well known (see
Chapter 8 in [27]). They are determined, up to conjugation, by a subset of nodes
of the extended Dynkin diagram and some coefficients. Those automorphisms of
finite order whose subalgebra of fixed elements is semisimple, correspond to the
automorphisms attached to a single node. For Ga, the extended Dynkin diagram
(with coefficients) is:

O—O—F0

1 2 3

Therefore, the order of a nontrivial finite order automorphism of £ whose sub-
algebra of fixed elements is semisimple is 2 or 3. Thus @ is a maximal nontoral
elementary p-subgroup of Aut(£), with p = 2 or 3. According to [22], there is just
one possibility, up to conjugation, where @, and hence G, is isomorphic to Z3. O

Theorem 7.3. Up to equivalence, the simple Lie algebra L of type Fy is endowed
with four different fine gradings, whose universal groups and types are as follows:

e the Cartan grading by Z*, of type (48,0,0,1);
e a grading by 7 x 73, of type (31,0,7);
* a grading by 73 of type (24,0,0,7); and

* a grading by Z3 of type (0,26), such that for any 0 # a € Z3, Lo ®L_4 is a
Cartan subalgebra of L.

Proof. Let I': £ = @QGG L4 be a fine grading of the simple Lie algebra £ of
type Fy, with G its universal group. By Theorem 5.1 and Table 1, one of the
following is true: I' is the Cartan grading, the free rank of G is two and I is
associated to a grading by the root system of type Ga, the free rank of G is one,
or (G is a finite group.

If the free rank of G is 2, the the coordinate algebra (see Table 1) is the Jordan
algebra H3(F) of symmetric 3 x 3 matrices. However, the results of [5] show that
the zero component of any grading on H3(IF) by any group has dimension at least 3,
and this contradicts Proposition 6.1.

If the free rank of G is one, then £ is graded by the root system BC} (this
includes gradings by A;) and hence £ is given by the Tits-Kantor-Koecher Lie
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algebra constructed from a structurable algebra and I' is obtained by combining
the Z-grading given by the rank one root system and a grading of the coordinate
algebra as in Proposition 6.1. A look at the possibilities in section 8 of [2] shows
that the coordinate algebra is either the Cayley algebra O, with its standard in-
volution, or a structurable algebra defined on the vector space of matrices (% 3 ),
with o, 8 € F and a,b € H3(F).

For the Cayley algebra, there is a unique grading, up to equivalence, whose zero
component is F1, with universal group Z3, and this yields the grading by Z x Z3.

In the second case, the coordinate algebra a = A ® B has dimension 14, with
dimB = 1. Moreover, B = Fs for an element s with s?> = 1, and hence B = B, for
an element 0 # g € tor(G) with 2g = 0. The Lie algebra £ decomposes as in (3.4),
and the zero component of the associated grading by the root system of type BCh
decomposes as

(7.3) LO)~ADBOD~adD.

This is a reductive Lie algebra with one-dimensional center (corresponding to F1)
and derived subalgebra simple of type Cs. (Actually £(0) is isomorphic to the
structure Lie algebra Str(a,—), see section 1 in [2].) On the other hand, D is
isomorphic to the Lie algebra of derivations of a, which is simple of type As. The
results in [18] show that the simple Lie algebra of type C3 is endowed with a
unique grading with trivial zero component, with universal group Z3j and type
(12,0,3). On the other hand, the simple Lie algebra of type A has a unique
grading, up to equivalence, with trivial zero component and whose universal group
is 2-elementary. Its type is (6,1). It occurs that tor(G) is 2-elementary and that
at least two of the three homogeneous components of [£(0),£(0)] of dimension 3
intersect the graded subspace a in (7.3) with dimension at least 2. We conclude
that there is an element 0 # h € tor(G) such that dim A, > 2, and h # g (recall
B = B,). Since a is a simple structurable algebra, the form (z,y) = trace(Lyj+yz)
is nondegenerate [4]. However, (a4, ,0a4,) = 0 unless g1 + g2 = 0. Therefore,
the restriction of this form to Aj is nondegenerate. Now, for any two elements
z,y € Ap, zy € ag = F1, so zy = al =Ty = yT = yx and (z,y) = trace(Lan1) =
2adima. We can then find elements z,y € Aj with 22 = 0 = y? and zy = 1.
Then the derivation D, in (3.5) satisfies D, ,(z) # 0, so 0 # Dy, € Dy, a
contradiction with Dy = 0.

We are left with the case in which G is finite. As in the proof of Theorem 7.2,
we consider the extended Dynkin diagram

O O omBENe O
1 2 3 1 2

and check that either GG is an elementary 2-group or 3-group, or the associated
quasitorus Q(~ G‘) contains an automorphism y of order 4.

In the latter case, the subalgebra of elements fixed by x is isomorphic to
s[(V) @ sl(W) with dimV = 4; dimW = 2 (see Chapter 8 in [27]); and the
other eigenspaces of x are, as modules for s[(V) @ sl{(WW), isomorphic to V @ W,
N2V ®S2W, and V* @ W, with respective eigenvalues v/—1, —1, —/—1. The action
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of any automorphism in the connected subgroup Centa(c)(X) is determined by
its restriction to V' @ W. Now, it is not difficult to check that Centayec)(x) is
isomorphic to SL(V) x SL(W)/{(£(Iv,Iw)) (Ix denotes the identity map on the
vector space X). For f € SL(V) and g € SL(W), denote by ¢, the automor-
phism of £ such that ¢ g |vew = f ® g. Moreover, I' induces gradings on s{(V')
and on sl(W) with trivial zero components, induced by the projections

my: SL(V) x SLW)/{£(Iv, Iw)} — PSL(V) = SL(V)/(~/~1Iy)
(contained, up to isomorphism, in Aut(sl(V))), and
mw: SL(V) x SLIW)/{x(Iv,Iw)} - PSL(W) = SL(W)/{£Iw}.

There is [18], up to equivalence, only one possibility for such a grading on
sl(W), where mw (Q) = (g1, g2), with g1,92 € SL(W) of order 2, gigo = —gagn
and g; denotes the class of g; in PSL(W). With gy = Iw, g3 = g192, and Q}, =
{feSL(V) 54 € Q} we have Q = Ufzo'z/)Q%ﬂgj. Since Q is abelian, ¥ g5 o =
Ve gt,g, and it follows from g1g» = —gog1 that the elements of )}, anticommute
with the elements of Q{, for 1 <i# j <3, and that the elements of @Y, commute
with the elements in any Q.

Now, there are [18], up to equivalence, only two possibilities for gradings
on sl(V) whose associated quasitorus is contained in PSL(V) and whose zero
component is trivial. In the first of these possibilities, 7y (Q) = (f1, fo) with
fifa = V/—1faf1 but since, by the preceding, any two elements of 7y (Q) must
either commute or anticommute, this is not possible. In the other possibility
7 (Q) = (f1, f2, f1, f3), with f1, fo, f1, and f} order two elements of SL(V) such
that fife = —fafr, fifs = —fofi and fif; = fifi for any i,j = 1,2. We can
assume, scaling the elements if necessary, that f; € Q%/ and fo € Q%, Then, up to
scalars, f] and f} must belong to QY, since they commute with both f; and fo.
This is a contradiction, since f] and f} anticommute.

We conclude that, if G is finite, the maximal quasitorus cannot contain an
automorphism of order 4, and hence G is an elementary 2-group or 3-group, and
the results in [22] prove that either G = Z3 or G = Z3. The description of the
gradings (with the exception of the Cartan grading) and their types appear, for
instance, in [17]. O
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