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Obstacle and Dirichlet problems on arbitrary

nonopen sets in metric spaces, and fine topology

Anders Björn and Jana Björn

Abstract. We study the double obstacle problem for p-harmonic func-
tions on arbitrary bounded nonopen sets E in quite general metric spaces.
The Dirichlet and single obstacle problems are included as special cases.
We obtain the Adams criterion for the solubility of the single obstacle prob-
lem and establish connections with fine potential theory. We also study
when the minimal p-weak upper gradient of a function remains minimal
when restricted to a nonopen subset. Many of the results are new even for
open E (apart from those which are trivial in this case) and also on Rn.

1. Introduction

Sobolev spaces W 1,p(Ω) are usually defined for open sets Ω, and it may be difficult
to use the traditional approach to make reasonable sense of W 1,p(E) for nonopen
sets E. One possibility is to let f ∈ W 1,p(E) if f ∈ W 1,p(Ω) for some open
set Ω ⊃ E depending on f , but that defeats the purpose of the definition a bit.
A more fruitful approach is to consider Sobolev spaces on finely open sets, as
in Kilpeläinen–Malý [24] and Malý–Ziemer [31]. This is a part of fine potential
theory in Rn, which was begun in the linear case by Cartan in 1940 and has been
further developed also in the nonlinear case by various authors. See the survey
Lukeš–Malý [30], the notes to Chapter 12 in Heinonen–Kilpeläinen–Martio [21]
and Section 2.6 in Malý–Ziemer [31], especially for the early nonlinear history.

Since the 1990s, inspired by various applications, one has been studying Sobolev
spaces on metric measure spaces without any differentiable structure. Earlier,
Sobolev spaces had been extended to manifolds, Heisenberg groups and other sit-
uations with a vector-field differentiable structure. Haj�lasz [18] was the first to
give a definition of Sobolev spaces, the so-called Haj�lasz spaces, on general metric
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spaces, while Shanmugalingam [36] and Cheeger [13] a little later introduced the
so-called Newtonian spaces. We follow Shanmugalingam below but Cheeger’s defi-
nition is more or less equivalent. Let us point out that we only consider first order
Sobolev spaces in this discussion.

Since a measurable subset E of a metric measure space X can be considered
as a metric measure space in its own right, these new definitions are well suited
for defining Sobolev spaces on arbitrary nonopen measurable sets, e.g. of Rn and
other smooth spaces.

In many situations, in particular on (unweighted) Rn, both Haj�lasz and New-
tonian spaces coincide with the usual Sobolev space; see [36]. However on general
open subsets of Rn it is only the Newtonian space that coincides with the usual
Sobolev space. The Haj�lasz space is in general smaller and the Haj�lasz gradient
is not local, i.e., it need not vanish on sets where the function is constant; see e.g.
Shanmugalingam [36], Haj�lasz [19] and the discussion in Appendix B.1 in Björn–
Björn [6]. It therefore seems that the Newtonian approach is the most suitable, for
example for solving partial differential equations and variational problems on met-
ric spaces and on general subsets of Rn. Other advantages of Newtonian spaces
are that the equivalence classes are defined up to sets of capacity zero, rather
than measure zero, and that all Newtonian functions are absolutely continuous on
p-almost all curves. Under suitable assumptions, they are also finely continuous
outside sets of zero capacity (see J. Björn [12] and Korte [27]), which provides
another connection to the fine potential theory mentioned above.

In this paper we study the double obstacle problem on general bounded measur-
able subsets of a metric space X with a Borel regular measure μ, i.e., we minimize
the p-energy functional

(1.1)

∫
E

gpu,E dμ,

among all functions u lying (up to sets of capacity zero) between two obsta-
cles ψ1, ψ2 : E → R and with prescribed boundary values f from the Newto-
nian space N1,p(E) on E. The Dirichlet problem is included as the special case
with ψ1 ≡ −∞ and ψ2 ≡ ∞.

Here gu,E is the minimal p-weak upper gradient of u (with respect to E), which
is the metric space counterpart of the (modulus of) the usual gradient. It depends
on the underlying metric space and it is therefore important for us to understand
when a restriction of a minimal p-weak upper gradient from the underlying metric
space X remains minimal on E. This is studied in Section 3. In particular, we
show that gu,E = gu,X if E is p-path almost open, which in unweighted Rn holds
for all finely open sets E. In this case we have gu,E = gu,X = |∇u| a.e., where ∇u
is the distributional gradient of u. An interesting example of this phenomenon on a
nowhere dense set E ⊂ [0, 1]n ⊂ Rn with almost full measure in [0, 1]n is presented
in Examples 9.5 and 9.6.

Existence and uniqueness (up to sets of capacity zero) of solutions to the
above Kψ1,ψ2,f (E)-obstacle problem associated with (1.1) is proved in Section 4.
The assumptions under which these results hold, and possibilities for relaxing them,
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are discussed in Section 5. We have made an effort to consider the obstacle problem
under minimal assumptions. In particular, we do not assume that the measure μ
is doubling and we only use a very weak version of the Poincaré type inequal-
ity, namely the Friedrichs inequality, which moreover can be further relaxed in
many situations. Note that there are infinite-dimensional spaces with nondoubling
measures supporting a Poincaré inequality; see e.g. Rajala [34]. One existence
result that we obtain is the following theorem which follows from Theorem 4.2
and Remark 5.6.

Theorem 1.1. Let X be an arbitrary metric space, let E ⊂ X be a bounded mea-
surable set, whose complement has positive capacity, and let ψ1, ψ2 ∈ Lp(E), p > 1.
If f ∈ N1,p(E) is such that Kψ1,ψ2,f(E) 	= ∅, then the Kψ1,ψ2,f(E)-obstacle prob-
lem is soluble.

Moreover, if the p-Friedrichs inequality holds on X then the assumption that
ψ1, ψ2 ∈ Lp(E) can be omitted and the solution is unique (up to sets of capacity
zero).

The p-Friedrichs inequality holds for example if there is an increasing sequence
of balls Bj covering X such that for each j = 1, 2, . . ., and all u ∈ N1,p

0 (Bj),∫
Bj

|u|p dμ ≤ Cj

∫
Bj

gpu dμ.

This is usually easier to verify than the classical Poincaré inequality; see Exam-
ple 5.2.

Along the way, we also discuss alternative definitions of the obstacle problem
and relations between them. In particular, we compare our obstacle problem with
the obstacle problem defined by means of the global minimal p-weak upper gra-
dient gu,X and with the classical obstacle problem on open sets. Another novelty
here (apart from E being nonopen) is that we allow f to merely belong to the
Dirichlet space Dp(E) of measurable functions with an upper gradient in Lp(E).
A useful application of our theory to condenser capacities is given in Theorem 5.13.

In Section 6 we establish the Adams criterion for the solubility of the single
obstacle problem with ψ2 ≡ ∞. We also show by examples that the situation is
much more subtle for the double obstacle problem.

A natural question is when all the competing functions in Kψ1,ψ2,f(E) coincide
(up to sets of capacity zero). In this case they are of course all solutions of the
obstacle problem. This happens for example if N1,p

0 (E) is trivial (i.e., all functions
vanish outside a set of capacity zero). In Section 7 we characterize those sets where
this occurs. It turns out that this problem has close connections with fine potential
theory and that

N1,p
0 (E) = N1,p

0 (fine-intE).

We also give the following characterization of the fine interior, which is useful in
applications and examples, as it is easier and more explicit to verify the thinness
condition (7.2) for X \ E than for X \ fine-intE; see Examples 9.5 and 9.6.
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Theorem 1.2. Assume that X is complete and supports a (1, p)-Poincaré inequal-
ity, that μ is doubling and that p > 1. Let E ⊂ X be arbitrary. Then x ∈ fine-intE
if and only if x ∈ E and X \ E is thin at x.

A corresponding characterization in Rn (formulated in terms of the fine closure)
can be found in Theorem 2.136 in Malý–Ziemer [31], where it is obtained as a
consequence of the Cartan property. Our proof in metric spaces is based on more
elementary properties of the capacity and does not use any characterization of
thin sets by superharmonic functions. It may therefore be of interest also in the
classical setting.

On (unweighted) Rn, our theory comes together in an elegant way, which we
explain in Section 9. In particular, we have the following result, which is a special
case of Theorem 8.3 (in view of the results in Section 9).

Theorem 1.3. Let E ⊂ Rn (unweighted) be a bounded measurable set. Assume
that p > 1, that f ∈ Dp(E) and that Kψ1,ψ2,f (E) 	= ∅. Then the solutions of
the Kψ1,ψ2,f (E)-problem coincide with the solutions of the Kψ1,ψ2,f (E0)-problem,
where E0 is the fine interior of E.

Moreover, gu,E0 = gu,E a.e. in E0 and if the Lebesgue measure of E \ E0 is
zero, then also the p-energies (1.1) associated with these two problems coincide.

If f ∈ Dp(Ω) for some open set Ω ⊃ E, then gu,E0 = gu,E = |∇u| a.e. in E0

and the above solutions coincide with the solutions of the Kψ′
1,ψ

′
2,f

(Ω)-problem,
where ψ′

j = ψj in E and ψ′
j = f on Ω \ E, j = 1, 2.

These results in turn justify the earlier studies of finely open sets and the
fine obstacle problem on Rn in the literature, as in Kilpeläinen–Malý [24], Malý–
Ziemer [31] and Latvala [29]. We hope to use the results from this paper for further
development of fine potential theory in the setting of Newtonian spaces on metric
spaces (with Rn as an important special case). Some aspects of fine potential
theory in this setting have been studied by Kinnunen–Latvala [25], J. Björn [12]
and Korte [27].

Acknowledgement. We would like to thank Olli Martio for asking us when
N1,p

0 (E) is nontrivial. We would also like to thank an anonymous referee of the
book Björn–Björn [6] for pointing out the Adams criterion in [2].

2. Notation and preliminaries

We assume throughout the paper that X = (X, d, μ) is a metric space equipped
with a metric d and a measure μ such that

0 < μ(B) <∞
for all balls B = B(x0, r) := {x ∈ X : d(x, x0) < r} in X (we make the convention
that balls are nonempty and open). The σ-algebra on which μ is defined is obtained
by completion of the Borel σ-algebra. We also assume that 1 ≤ p < ∞ and
that Ω ⊂ X is a nonempty open set.
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The measure μ is doubling if there exists a constant C > 0 such that

0 < μ(2B) ≤ C μ(B) <∞
for all balls B ⊂ X , where λB = B(x0, λr).

A curve is a continuous mapping from an interval. We will only consider curves
which are nonconstant, compact and rectifiable. A curve can thus be parameterized
by its arc length ds.

We follow Heinonen and Koskela [22] in defining upper gradients as follows
(they called them very weak gradients).

Definition 2.1. A nonnegative Borel function g on X is an upper gradient of
an extended real-valued function f on X if for all (nonconstant, compact and
rectifiable) curves γ : [0, lγ] → X ,

(2.1) |f(γ(0)) − f(γ(lγ))| ≤
∫
γ

g ds,

where we make the convention that the left-hand side is ∞ whenever at least one
of its terms is infinite. If g is a nonnegative measurable function on X and if (2.1)
holds for p-almost every curve (see below), then g is a p-weak upper gradient of f .

Here and in what follows, we say that a property holds for p-almost every
curve if it fails only for a curve family Γ with zero p-modulus, i.e., there exists
0 ≤ ρ ∈ Lp(X) such that

∫
γ
ρ ds = ∞ for every curve γ ∈ Γ. It is easy to show that

a countable union of curve families with zero p-modulus also has zero p-modulus.
Moreover, if Modp(Γ) = 0 and Γ′ consists of all curves which have a subcurve in Γ,
then Modp(Γ

′) = 0.
Note that a p-weak upper gradient need not be a Borel function; it is only

required to be measurable. It is implicitly assumed that
∫
γ
g ds is defined (with a

value in [0,∞]) for p-almost every curve γ, although this is in fact a consequence
of the measurability; see Section 3 in Björn–Björn [4] (which is not in Björn–
Björn [5]).

The p-weak upper gradients were introduced in Koskela–MacManus [28]. It was
also shown there that if g ∈ Lploc(X) is a p-weak upper gradient of f , then one can
find a sequence {gj}∞j=1 of upper gradients of f such that gj − g → 0 in Lp(X).
If f has an upper gradient in Lploc(X), then it has a minimal p-weak upper gradient
gf ∈ Lploc(X) in the sense that for every p-weak upper gradient g ∈ Lploc(X) of f we
have gf ≤ g a.e.; see Shanmugalingam [37] and Haj�lasz [19]. The minimal p-weak
upper gradient is well defined up to an equivalence class in the cone of nonnegative
functions in Lploc(X).

For proofs of the various facts in this section we refer to Björn–Björn [6].
(Some of the references we mention here may not provide a proof in the gener-
ality considered here, but such proofs are given in [6].)

Note that upper gradients and in particular the minimal p-weak upper gradient
strongly depend on the underlying space. Any measurable E ⊂ X can be consid-
ered as a metric space in its own right, thus giving rise to upper gradients with
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respect to E. An upper gradient with respect to X is always an upper gradient with
respect to E, but the converse need not be true; see Example 3.6. We denote the
minimal p-weak upper gradient of u with respect to E by gu,E, whereas gu always
denotes the minimal p-weak upper gradient with respect to X (also denoted gu,X).

Following Shanmugalingam [36], we define a version of Sobolev spaces on the
metric space X .

Definition 2.2. The Newtonian space on X is

N1,p(X) = {u : ‖u‖N1,p(X) <∞},

where

‖u‖N1,p(X) =
(∫

X

|u|p dμ+

∫
X

gpu dμ
)1/p

,

if u : X → R := [−∞,∞] is an everywhere defined measurable function having an
upper gradient in Lploc(X).

We also say that an everywhere defined measurable function u on X belongs
to the Dirichlet space Dp(X) if it has an upper gradient in Lp(X).

The local spaces N1,p
loc (X) and Dp

loc(X) are defined by requiring that for ev-
ery x ∈ X there is a ball Bx ⊂ X such that u ∈ N1,p(Bx) or u ∈ Dp(Bx),
respectively. For a measurable set E ⊂ X , the spaces N1,p(E), Dp(E) and the
corresponding local spaces are defined by considering E as a metric space in its own
right. Note a subtle point here (recall that X is proper if all closed and bounded
sets are compact): If X is not proper, then the above definition of the local spaces
need not be equivalent to requiring that u ∈ N1,p(K) for all compact K ⊂ X .
(See A. Björn–Marola [10] for a related definition on noncomplete spaces.) Note
that if μ is doubling then X is proper if and only if it is complete.

The quotient space N1,p(X)/∼, where u ∼ v if and only if ‖u− v‖N1,p(X) = 0,
is a Banach space and a lattice; see Shanmugalingam [36]. Note that we assume
functions in Newtonian and Dirichlet spaces to be defined everywhere, and not just
up to an equivalence class in the corresponding function space. This is needed for
the definition of upper gradients to make sense. Shanmugalingam [36] also showed
that every u ∈ Dp

loc(X) is absolutely continuous on p-almost every curve γ in X ,
in the sense that u ◦ γ is a real-valued absolutely continuous function.

If u, v ∈ Dp
loc(X), then their minimal p-weak upper gradients coincide almost

everywhere in the set {x∈X : u(x) = v(x)}; in particular gmin{u,c}=guχ{u<c} a.e.
for c ∈ R. Moreover, guv ≤ |u|gv + |v|gu.

Definition 2.3. The capacity of a set E ⊂ X is the number

Cp(E) = inf ‖u‖pN1,p(X),

where the infimum is taken over all u ∈ N1,p(X) such that u = 1 on E.
We say that a property holds quasi-everywhere (q.e.) if the set of points for

which it fails has capacity zero.



Obstacle and Dirichlet problems on nonopen sets, and fine topology 167

This capacity was introduced and used for Newtonian spaces in Shanmugalin-
gam [36]. It is countably subadditive and the correct gauge for distinguishing be-
tween two Newtonian functions. If u ∈ N1,p

loc (X) and v : X → R, then u ∼ v if and
only if u = v q.e. Moreover, if u, v ∈ Dp

loc(X) and u = v a.e., then u = v q.e. See
also Appendix B where the variational capacity is defined. Note that if Cp(E) = 0,
then p-almost every curve in X avoids E, by e.g. Lemma 3.6 in Shanmugalin-
gam [36].

To be able to compare the boundary values of Newtonian functions we need a
Newtonian space with zero boundary values. We let

N1,p
0 (E) = {f |E : f ∈ N1,p(X) and f = 0 on X \ E}.

One can replace the assumption “f = 0 on X \ E” with “f = 0 q.e. on X \ E”
without changing the space N1,p

0 (E). Functions from N1,p
0 (E) can be extended by

zero quasi-everywhere in X \ E and we will regard them in that sense if needed.
Note that if Cp(X \ E) = 0, then N1,p

0 (E) = N1,p(E) = N1,p(X), since p-almost
every curve in X avoids X \ E.

The following lemma is useful for proving that certain functions belong to
N1,p

0 (E). For open E, it was obtained in Björn–Björn [5]. The proof of the general
case can be found in Björn–Björn [6].

Lemma 2.4.Assume that E⊂X is measurable. Let u∈N1,p(E) and v, w∈N1,p
0 (E)

be such that v ≤ u ≤ w q.e. in E. Then u ∈ N1,p
0 (E).

The following Poincaré inequality is often assumed in the literature. Because
of the dilation λ on the right-hand side, it is sometimes called a weak Poincaré
inequality.

Definition 2.5. We say that X supports a (q, p)-Poincaré inequality, q ≥ 1,
if there exist constants C > 0 and λ ≥ 1 such that for all balls B ⊂ X and all
integrable u ∈ Dp

loc(X),

(2.2)
(∫

B

|u− uB|q dμ
)1/q

≤ C (diamB)
(∫

λB

gpu dμ
)1/p

,

where uB :=
∫
B u dμ :=

∫
B u dμ/μ(B).

Using the above-mentioned results on p-weak upper gradients from Koskela–
MacManus [28], it is easy to see that (2.2) can equivalently be required for all
upper gradients g of u. If X supports a (1, p)-Poincaré inequality and μ is dou-
bling, then by Theorem 5.1 in Haj�lasz–Koskela [20], it supports a (q, p)-Poincaré
inequality for some q > p, and in particular a (p, p)-Poincaré inequality. Moreover,
under these assumptions, Lipschitz functions are dense in N1,p(X); see Shanmu-
galingam [36]. If X is also complete then functions in N1,p(X) as well as those
in N1,p(Ω) are quasicontinuous; see Björn–Björn–Shanmugalingam [9]. It also fol-
lows that N1,p

0 (Ω) for open Ω can be defined equivalently as the closure of Lipschitz
functions with compact support in Ω; see Shanmugalingam [37] or Theorem 5.45
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in Björn–Björn [6]. For a general set E this is not always possible and the above
definition of N1,p

0 (E) seems to be the natural one.
Moreover, if X is unweighted Rn and u ∈ Dp

loc(X), then gu = |∇u| a.e.,
where ∇u is the distributional gradient of u. This means that for open Ω ⊂ Rn,
N1,p(Ω) is the refined Sobolev space as in Heinonen–Kilpeläinen–Martio [21], p. 96.
See Haj�lasz [19] or Appendix A.1 in [6] for a full proof of this fact for unweightedRn,
and Appendix A.2 in [6] for a proof for weighted Rn (requiring p > 1).

For most results in this paper we will need some kind of Poincaré type in-
equality, but it is enough with a considerably weaker form than the one in Defini-
tion 2.5. Therefore we introduce the following Friedrichs inequality, which will be
useful when proving the existence and uniqueness of the solutions of our obstacle
problems. It is sometimes called the (p, p)-Poincaré inequality for N1,p

0 , and fol-
lows from, but does not imply, the usual Poincaré inequality as in Definition 2.5;
see Lemma 5.1 and Example 5.2. It is also in general easier to verify. Friedrichs
obtained it (for p = 2 on R2) in [16], p. 211, with an additional term on the right-
hand side which vanishes for functions in N1,p

0 . We have chosen this name to avoid
confusion with other Poincaré type inequalities, which are abundant in this field.

Definition 2.6. We say that X supports a p-Friedrichs inequality if for every
bounded E ⊂ X with Cp(X \ E) > 0 there exists CE > 0 such that for all

u ∈ N1,p
0 (E) (extended by 0 outside E),

(2.3)

∫
X

|u|p dμ ≤ CE

∫
X

gpu dμ.

A direct consequence is that ‖u‖pN1,p(X) ≤ C̃E‖gu‖pLp(X) for u ∈ N1,p
0 (E). If E

is measurable, then the integrals and the norms can equivalently be taken with
respect to E. As in (2.2), one can equivalently verify (2.3) for all upper gradients g
of u. If X is unbounded then the condition Cp(X \E) > 0 is of course redundant.

On the other hand, if X is bounded then it is essential, as otherwise 1 ∈ N1,p
0 (E)

violates (2.3).
We will also need the space

Dp
0(E) = {f |E : f ∈ Dp(X) and f = 0 on X \ E}.

As we shall now see, it will coincide with N1,p
0 (E) in most cases, and when it does

we prefer to write N1,p
0 (E).

Proposition 2.7. Assume that X supports the p-Friedrichs inequality (2.3) and
that E ⊂ X is bounded and Cp(X \ E) > 0. Then

Dp
0(E) = N1,p

0 (E).

Proof. Let u ∈ Dp
0(E) and extend u by 0 outside E. Let g ∈ Lp(X) be an upper

gradient of u, and let uk = max{min{u, k},−k}, k = 1, 2, . . ., be the truncations
of u at levels ±k. Then g is an upper gradient of uk as well. As E is bounded,
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uk ∈ Lp(X) and thus uk ∈ N1,p
0 (E). Hence, by monotone convergence and the

Friedrichs inequality,∫
X

|u|p dμ = lim
k→∞

∫
X

|uk|p dμ ≤ CE

∫
X

gp dμ <∞.

Thus u ∈ N1,p(X) and hence u ∈ N1,p
0 (E). This proves one inclusion, while the

converse inclusion is trivial. �

Finally, we make the convention that, unless otherwise stated, the letter C
denotes various positive constants whose exact values are not important and may
vary with each use.

3. Restrictions of minimal p-weak upper gradients

In Section 4, we will define and study the obstacle problem, in which we minimize
the p-energy functional (1.1) on general sets. Since the energy functional is defined
using the minimal p-weak upper gradient, it is natural to study how this notion
depends on the underlying set. This will be done in this section. We point out that
for this we do not impose any assumptions on X , such as the doubling property
of μ or the Poincaré inequality.

If Ω is open and f ∈ Dp
loc(X) then the minimal p-weak upper gradient of f with

respect to X remains minimal when restricted to Ω, i.e., with respect to Dp
loc(Ω).

This is folklore but the interested reader can find a proof in Björn–Björn [6],
Lemma 2.23. We will need a generalization of this result to p-path almost open
sets; see Proposition 3.5.

Definition 3.1. The set G ⊂ X is p-path open (in X) if for p-almost every
curve γ : [0, lγ ] → X , the set γ−1(G) is (relatively) open in [0, lγ ].

Furthermore, G ⊂ X is p-path almost open (in X) if for p-almost every
curve γ : [0, lγ ] → X, the set γ−1(G) is the union of an open set and a set with
zero one-dimensional Lebesgue measure.

The p-path open sets were introduced by Shanmugalingam [37], Remark 3.5.
The name “p-path almost open” is perhaps a little misleading, as we do not
allow γ−1(G) to be an open set minus a set of measure zero. For our purposes
there are counterexamples showing that we cannot allow this; see Example 3.6
below.

Clearly, every open set is p-path open, and every p-path open set is p-path
almost open. The following observation sheds some light on which sets are p-path
(almost) open.

Lemma 3.2. Let E,G ⊂ X.

If G is p-path open and Cp(E \G) = Cp(G \ E) = 0, then E is p-path open.

If G is p-path almost open and Cp(G \ E) = μ(E \ G) = 0, then E is p-path
almost open. In particular, if μ(E ∩ ∂E) = 0, then E is p-path almost open.
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Proof. First, assume that G is p-path open and that Cp(E \G) = Cp(G \E) = 0.
Then p-almost every curve γ avoids (E \G)∪ (G\E) and hence γ−1(E) = γ−1(G)
is (relatively) open for p-almost every curve γ, i.e., E is p-path open.

Next, assume that G is p-path almost open and Cp(G \ E) = μ(E \ G) = 0.
Then p-almost every curve γ avoids G\E and is such that γ−1(E\G) has zero one-
dimensional Lebesgue measure, by e.g. Lemma 1.42 in Björn–Björn [6]. For all such
curves we have γ−1(E) = γ−1(G) ∪ γ−1(E \G), i.e., E is p-path almost open. �

Remark 3.3. The collection of all p-path open sets does not (in general) form
a topology on X . Consider unweighted Rn with n > 1 and 1 ≤ p ≤ n, in which
case all singleton sets are p-path open since they have capacity zero. If the p-path
open sets formed a topology it would follow that any set on Rn would be p-path
open. However it is quite easy, using Lemma A.1 in Björn–Björn [6], to see that
Rn−1 ×Q is not p-path open. If singletons have positive capacity (e.g. if X = Rn

and p > n), then any p-path open set is open, and thus the family of p-path open
sets does form a topology in this case.

Similarly, the p-path almost open sets do not (in general) from a topology on X .
On Rn, any singleton set is p-path almost open (but not p-path open if p > n). The
set Rn−1 ×Q is p-path almost open, but Rn−1 × (R \Q) is not. Thus, the p-path
almost open sets do not form a topology on Rn.

If there are no nonconstant rectifiable curves in X , as for example on the
von Koch snowflake curve, then all sets are p-path open, and thus in this case
the p-path open sets form a topology, and so do the p-path almost open sets.
This also shows that p-path open sets need not be measurable.

A consequence of Lemma 3.2 is that the union of a p-path open set and a set
of measure zero is p-path almost open.

Open problem 3.4. Can every p-path almost open set be written as a union of
a p-path open set and a set of measure zero?

The following result shows that p-path almost open sets preserve the minimal
p-weak upper gradients in the same way as open sets do. Recall that by gu we
always mean the p-weak upper gradient of u with respect to X .

Proposition 3.5.Let G be a p-path almost open measurable set and let u∈Dp
loc(X).

Then gu,G = gu a.e. in G, i.e., gu|G is a minimal p-weak upper gradient of u with
respect to G.

Before proving this result it may be worth observing that some condition on G
is necessary.

Example 3.6. Let X = R and E = (0, 1) \ Q. Since E contains no rectifiable
curves, the minimal p-weak upper gradient taken with respect to E is zero for
every function on E. On the other hand, the minimal p-weak upper gradient with
respect to R is just the modulus of the distributional derivative. For example,
if u(x) = x, then gu = 1 a.e., while gu,E = 0 a.e. Note also that E has full measure
in the open interval I = (0, 1) for which gu,I = gu = 1 a.e.
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Proof of Proposition 3.5. Clearly, gu,G ≤ gu a.e. in G. We shall show that the
function

g =

{
gu,G in G,

gu in X \G,
is a p-weak upper gradient of u in X . Let Γ0 consist of all curves γ in X for
which γ−1(G) is not a union of an open set and a set with zero one-dimensional
Lebesgue measure. Also let Γ1 be the collection of all curves in G on which (2.1)
fails for u and gu,G. Similarly, let Γ2 consist of all those curves in X on which (2.1)
fails for u and gu. Finally, let Γ3 consist of all those curves in X for which∫
γ
gu ds = ∞. Then Modp(Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3) = 0.

Let γ : [0, lγ] → X be a curve having no subcurve in Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3.
By Lemma 1.34 in Björn–Björn [6], p-almost every curve in X has this property.
Then γ−1(G) = G′∪A, where G′ is open in (0, lγ) and A has zero one-dimensional
Lebesgue measure. The set G′ can be written as a countable pairwise disjoint
union

⋃∞
j=1 Ij of open intervals Ij = (aj , bj), j = 1, 2, . . . (Here we allow some of

the intervals Ij to be empty.) We then have

|u(γ(0)) − u(γ(lγ))| ≤ |u(γ(0)) − u(γ(a1))| + |u(γ(a1)) − u(γ(b1))|
+ |u(γ(b1)) − u(γ(lγ))| ≤

∫
γ|I1

gu,G ds+

∫
γ|[0,lγ ]\I1

gu ds.

Continuing in this way, we obtain for all j = 1, 2, . . .,

|u(γ(0)) − u(γ(lγ))| ≤
∫
γ|⋃j

i=1
Ii

gu,G ds+

∫
γ|

[0,lγ ]\⋃j
i=1

Ii

gu ds.

Since
∫
γ gu ds <∞, letting j → ∞ and using monotone and dominated convergence

shows that

|u(γ(0)) − u(γ(lγ))| ≤
∫
γ|G′

gu,G ds+

∫
γ|[0,lγ ]\G′

gu ds

=

∫
γ|G′∪A

gu,G ds+

∫
γ|[0,lγ ]\(G′∪A)

gu ds =

∫
γ

g ds.

Thus, g is a p-weak upper gradient of u in X and hence gu ≤ g a.e. in X . It follows
that gu ≤ gu,G a.e. in G, which finishes the proof. �

Corollary 3.7. Let E ⊂ X be measurable and let G ⊂ E be a p-path almost open
(with respect to X) measurable set. If u ∈ Dp

loc(X), then

gu,G = gu,E = gu a.e. in G.

Proof. Clearly, gu,G ≤ gu,E ≤ gu a.e. in G. Since G is p-path almost open,
Proposition 3.5 shows that equality must hold almost everywhere in G. �
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Remark 3.8. Note that Corollary 3.7 can also be applied to E instead of X ,
giving that for u ∈ Dp

loc(E), gu,G = gu,E a.e. in G, whenever G ⊂ E is measur-
able and p-path almost open with respect to E, in particular if it is measurable
and p-path almost open with respect to X .

Another application of p-path open sets is the following sufficient condition
for when a function belongs to N1,p

0 (E). This generalizes Theorem 2.147 and
Corollary 2.162 in Malý–Ziemer [31]. See also Lemma 2.4 and Theorems 1.2 and 7.3
for related results, and Proposition 9.4 where this is combined with fine topology
on Rn.

Lemma 3.9.Let E1⊂E2⊂X with E1 and X\E2 being p-path open. If u∈N1,p(E2)
and u = 0 q.e. in E2 \ E1 then the zero extension of u belongs to N1,p(X) and in
particular u ∈ N1,p

0 (E1).

Note that “p-path open” in Lemma 3.9 cannot be replaced by “p-path almost
open”, as the example with E1 = E2 = (0, 1) ⊂ R = X and u = χE1 shows.
The most common use of Lemma 3.9 is perhaps when E1 and E2 are the interior
and the closure of some set, respectively.

Proof. We shall show that gu,E2 (extended by zero) is a p-weak upper gradient
of u (extended by zero) in X . Let Γ be the family of curves in E2 on which (2.1)
fails for u and gu,E2. Then Modp(Γ) = 0. Also let A = {x ∈ E2 \ E1 : u(x) 	= 0}.
Since Cp(A) = 0, we conclude that p-almost every curve γ : [0, lγ ] → X avoids A,
does not have a subcurve in Γ, and is such that both γ−1(E1) and γ−1(X \ E2)
are relatively open.

Let γ be such a curve. We can assume that γ passes through both E1 andX \E2.
Otherwise there is nothing to prove, since gu,E2 is a p-weak upper gradient in E2

and u = 0 outside E1 ∪ A. By splitting γ into two parts and reversing the orien-
tation, if necessary, we can assume that γ(0) ∈ E1 and γ(lγ) ∈ X \ E2.

Let c=inf{t∈ [0, lγ ] : γ(t)∈X\E2}. Since both γ−1(E1) and γ−1(X\E2) are rel-
atively open in [0, lγ ], we conclude that γ(c)∈(E2\E1)\A, i.e. u(γ(c))=0=u(γ(lγ)).
Hence

|u(γ(0)) − u(γ(lγ))| = |u(γ(0)) − u(γ(c))| ≤
∫
γ|[0,c]

gu,E2 ds ≤
∫
γ

gu,E2 ds. �

As N1,p
0 (E) is defined through N1,p(X), it is natural that the minimal p-weak

upper gradients of functions in N1,p
0 (E) are taken with respect to X . The following

result is therefore important for our considerations. This result holds for u ∈ Dp
0(E)

even in situations when N1,p
0 (E) � Dp

0(E) so we formulate it in this generality.
In fact it even holds for u ∈ Dp

loc,0(E) := {f |E : f ∈ Dp
loc(X) and f = 0 on X \E}.

Proposition 3.10. Let E ⊂ X be measurable and let u ∈ Dp
0(E) with a min-

imal p-weak upper gradient gu (with respect to X, and with u = 0 outside E).
Then gu,E = gu|E a.e. in E, i.e., gu|E is a minimal p-weak upper gradient of u
with respect to E.
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Note that the corresponding result for arbitrary u ∈ N1,p(X) is false; see
Example 3.6.

Proof. Clearly, gu|E is a p-weak upper gradient of u in E. To show that it is
minimal, we shall show that the function

g =

{
gu,E in E,

0 in X \ E,

is a p-weak upper gradient of u in X . Let Γ be the set of curves in E on which (2.1)
fails for u and gu,E . Then Modp(Γ) = 0.

Let γ : [0, lγ ] → X be a curve such that u is absolutely continuous along it
and γ does not have any subcurve in Γ. As u ∈ Dp

0(E) and Modp(Γ) = 0, p-almost
every curve in X has these properties. We can also assume that γ passes through
both E andX\E. Otherwise, there is nothing to prove, since gu,E is a p-weak upper
gradient in E and u = 0 outside E. By splitting γ into two parts and reversing
the orientation, if necessary, we can assume that γ(0) ∈ E and γ(lγ) ∈ X \ E.

Let c = inf{t ∈ [0, lγ ] : γ(t) ∈ X \E}. Since u = 0 in X \E, the continuity of u
along γ implies that u(γ(c)) = 0 = u(γ(lγ)). If c > 0, then

|u(γ(0)) − u(γ(lγ))| = |u(γ(0)) − u(γ(c))| = lim
t→c−

|u(γ(0)) − u(γ(t))|

≤ lim
t→c−

∫
γ|[0,t]

gu,E ds ≤
∫
γ

g ds,

by the continuity of u along γ. For c = 0, these estimates are trivial. Thus g
is a p-weak upper gradient of u in X , and hence g ≥ gu a.e. in X . It follows
that gu,E ≤ gu ≤ gu,E a.e. in E, which finishes the proof. �

4. The obstacle problem

Throughout this section we assume that p > 1 and that X supports the p-Friedrichs
inequality (2.3). We also assume that E ⊂ X is a bounded measurable set such
that Cp(X \ E) > 0.

In Section 5 we will discuss when these assumptions can be relaxed. Observe
that we do not assume that μ is doubling or that X is complete, although we will
need to add these assumptions for parts of the theory in Sections 7 and 8.

We shall now consider the obstacle and Dirichlet problems on general sets.
We start by formulating the obstacle problem studied in this paper.

Definition 4.1. Let A ⊂ X be a bounded measurable set such that Cp(X\A) > 0.
Let f ∈ Dp(A) and ψ1, ψ2 : A→ R. Then we define

Kψ1,ψ2,f (A) = {v ∈ Dp(A) : v − f ∈ N1,p
0 (A) and ψ1 ≤ v ≤ ψ2 q.e. in A}.
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Furthermore, a function u ∈ Kψ1,ψ2,f (A) is a solution of the Kψ1,ψ2,f(A)-
obstacle problem if

(4.1)

∫
A

gpu,A dμ ≤
∫
A

gpv,A dμ for all v ∈ Kψ1,ψ2,f(A).

If A = E we often omit the set from the notation and simply write Kψ1,ψ2,f :=
Kψ1,ψ2,f(E). Similarly, we often omit ψ2 from the notation when ψ2 ≡ ∞, i.e.,
when there is no upper obstacle. Such an obstacle problem is called a single obstacle
problem.

The Dirichlet problem is the special case of the obstacle problem with the
obstacles ψ1 ≡ −∞ and ψ2 ≡ ∞. Note that the boundary data f are only required
to belong to Dp(A) and need not be defined on ∂A.

Since we consider boundary values f ∈ Dp(A) rather than f ∈ N1,p(A),
it would be natural to consider the obstacle problem withDp

0(A) instead ofN1,p
0 (A).

By Proposition 2.7, this is exactly what we do, even though we prefer to write
N1,p

0 (A). On the other hand, in the more general situations discussed in Section 5
the equality Dp

0(A) = N1,p
0 (A) may not hold, and it will be essential to consider the

obstacle problem with N1,p
0 (A), at least for our proof of Theorem 4.2 (through the

use of Lemma A.2).

The p-weak upper gradients gu,A and gv,A in Definition 4.1 are taken with
respect to A, but quasi-everywhere is taken with respect to X . Below we comment
on obstacle problems with quasi-everywhere taken with respect to E and with
almost everywhere inequalities.

Obstacle and Dirichlet problems have traditionally been solved on open sets Ω,
in which case gu,Ω = gu a.e. See, however, Kilpeläinen–Malý [24] and Malý–
Ziemer [31], where they are studied on finely open sets in Rn. In metric spaces the
single obstacle problem was studied by Kinnunen–Martio [26], while the double
obstacle problem was studied by Farnana [15]. In both cases they studied the
obstacle problems for bounded open sets in a complete metric space X supporting
a (1, p)-Poincaré inequality and with a doubling measure μ (and with boundary
values in the Newtonian space).

The Dirichlet problem on metric spaces was first studied by Shanmugalin-
gam [37]. She studied it on bounded, not necessarily open, sets in a complete
metric space X with a doubling measure μ supporting a (1, p)-Poincaré inequality,
under the stronger requirement that f ∈ N1,p(X).

In all the above cases, the p-energy functional was defined by means of the
global minimal p-weak upper gradient gu. Thus, the Dirichlet problem studied
by Shanmugalingam [37] differs in general from the Dirichlet problem considered
here. Similarly, for a nonopen set E, another possible generalization of the obstacle
problem would be to require that the boundary data f belong to Dp(Ω) for some
open set Ω ⊃ E and to minimize the energy

∫
E g

p
v dμ among all v ∈ K′

ψ1,ψ2,f
, where

(4.2) K′
ψ1,ψ2,f = {v ∈ Dp(Ω) : v − f ∈ N1,p

0 (E) and ψ1 ≤ v ≤ ψ2 q.e. in E}.



Obstacle and Dirichlet problems on nonopen sets, and fine topology 175

As Ω is open, the minimal p-weak upper gradients and the notion of quasi-
everywhere are taken with respect to Ω or equivalently X . If we let

(4.3) ψ′
j =

{
ψj in E,

f in Ω \ E, j = 1, 2,

then K′
ψ1,ψ2,f

= Kψ′
1,ψ

′
2,f

(Ω), where we use our convention that v − f ∈ N1,p
0 (E)

can be extended by zero in Ω \ E. Moreover, for any v ∈ K′
ψ1,ψ2,f

,∫
Ω

gpv dμ =

∫
Ω\E

gpf dμ+

∫
E

gpv dμ,

as v = f q.e. in Ω \E. Hence the minimizers of the energies
∫
E
gpv dμ and

∫
Ω
gpv dμ

among v ∈ K′
ψ1,ψ2,f

= Kψ′
1,ψ

′
2,f

(Ω) coincide and the theory for this generalization
follows directly from the theory for open sets. Observe however that we study the
obstacle problem on more general metric measure spaces than have been considered
previously, also for open sets (see e.g. Example 5.2 and Section 10) and that we
require only that f belong to the Dirichlet space Dp.

Here we have ignored one subtle point, namely we require Cp(X \E) > 0, but
it is not clear if one can find an open set Ω ⊃ E such that Cp(X \ Ω) > 0. This is
always possible if X is unbounded, and also if μ(X \ E) > 0, by the regularity of
the measure and the measurability of E. Similarly, if E is a Gδ set, then Ω can be
found using an analogue for the Cp-capacity of the property (iii) in Theorem B.3.
Moreover, if X is a complete metric space supporting a (1, p)-Poincaré inequality,
μ is doubling, and X\E is Suslin (in particular if E is Borel), then the same follows
from the Choquet capacitability theorem; see Theorem 6.11 in Björn–Björn [6].

In our approach, we only assume that the boundary data belong to Dp(E) and
the minimal p-weak upper gradient is taken with respect to E. This leads to a
different obstacle problem since gu,E is in general smaller than gu; see Example 3.6.
The two definitions of obstacle problems will be further compared in Section 8.

Note that even though we take the gradients with respect to E, we require the
obstacle inequalities ψ1 ≤ u ≤ ψ2 to hold quasi-everywhere (taken with respect
to X). This may seem unnatural, but there are several reasons for this choice.
First, this is the natural condition for N1,p

0 (E) and means that the uniqueness we
obtain in Theorem 4.2 is precisely up to sets of capacity zero with respect to X
(not E). It also turns out to be essential for the Adams criterion (Theorem 6.1).

Second, we could actually have developed the theory with quasi-everywhere
taken with respect to E, which is a coarser condition, or with the even coarser
condition “almost everywhere”. The latter was used by Kinnunen–Martio [26]. See
also the discussion on quasi-everywhere and almost everywhere obstacle problems
in Farnana [15]. In particular, if Cp(A) > 0 = CEp (A), where CEp (A) is the capacity
of A with respect to E, then the zero function belongs to KχA,0 (and solves the
obstacle problem) with quasi-everywhere taken with respect to E, but not when
taken with respect to X . The E-quasi-everywhere theory would fall in between
the quasi-everywhere and almost everywhere theories, and it is easy to adapt most
of our results to this setting if need arises, but there is no direct counterpart of the
Adams criterion.
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We have the following existence and uniqueness theorem.

Theorem 4.2. Let f ∈ Dp(E) and ψ1, ψ2 : E → R. If Kψ1,ψ2,f 	= ∅, then there
is a unique solution (up to sets of capacity zero in X) of the Kψ1,ψ2,f -obstacle
problem.

Proof. Let

I = inf
v∈Kψ1,ψ2,f

∫
E

gpv,E dμ.

Since Kψ1,ψ2,f 	= ∅, we have 0 ≤ I <∞. Let {uj}∞j=1 ⊂ Kψ1,ψ2,f be a minimizing
sequence such that ∫

E

gpuj,E dμ↘ I, as j → ∞.

Then {guj ,E}∞j=1 is bounded in Lp(E). Remember that uj ∈ Dp(E) and that guj ,E
is taken with respect to E.

Using (2.3) and Proposition 3.10 we find that∫
E

|uj − f |p dμ ≤ C

∫
E

gpuj−f dμ = C

∫
E

gpuj−f,E dμ ≤ C

∫
E

gpuj,E dμ+ C

∫
E

gpf,E dμ.

Thus {uj− f}∞j=1 is bounded in N1,p(E). By Lemma A.2 (with X replaced by E),

we can find convex combinations vj =
∑Nj

k=j aj,kuk with p-weak upper gradients

gj =
∑Nj

k=j aj,kguk,E on E and limit functions v and g such that v − f ∈ N1,p(E),
both vj − v → 0 and gj → g in Lp(E), as j → ∞, and such that g is a p-weak
upper gradient of v with respect to E.

Furthermore, wj := vj − f ∈ N1,p
0 (E) and we can thus consider wj to be

identically zero outside of E. Let w = v − f , g′j = gj + gf,E and g′ = g + gf,E ,
all three considered to be identically zero outside of E. Proposition 3.10 implies
that

gwj = gwj,E ≤ gj + gf,E = g′j a.e. in E.

As gwj = 0 a.e. in X \ E, we see that g′j is a p-weak upper gradient of wj in X ,
j = 1, 2, . . . We also have that wj → w and g′j → g′ in Lp(X), as j → ∞.

Proposition A.1 yields that there exists w̃ ∈ N1,p(X) such that w = w̃ a.e. in X .
Then u := f + w̃ ∈ Dp(E) and u = v a.e. in E. Since u, v ∈ Dp(E), we have u = v
E-q.e. in E (i.e., quasi-everywhere with respect to E), and thus g is a p-weak upper
gradient of u as well, with respect to E.

Proposition A.1 also implies that a subsequence of {wj}∞j=1 converges quasi-
everywhere (with respect to X) to w̃. As ψ1 ≤ vj ≤ ψ2 q.e. in E, this implies
that ψ1≤u≤ψ2 q.e. in E. Moreover, it implies that w̃ = 0 q.e. in X \E and thus
u− f = w̃ ∈ N1,p

0 (E). Hence u ∈ Kψ1,ψ2,f . Since

I ≤
∫
E

gpu,E dμ ≤
∫
E

gp dμ = lim
j→∞

∫
E

gpj dμ = I,

we conclude that u is the desired minimizer.



Obstacle and Dirichlet problems on nonopen sets, and fine topology 177

To prove the uniqueness, assume that u1 and u2 are solutions. Then also
u′ = 1

2 (u1 + u2) ∈ Kψ1,ψ2,f and thus

I ≤ ‖gu′,E‖Lp(E) ≤
∥∥1
2 (gu1,E + gu2,E)

∥∥
Lp(E)

≤ 1
2‖gu1,E‖Lp(E) + 1

2‖gu2,E‖Lp(E) = I.

Hence gu1,E = gu2,E a.e. in E by the strict convexity of Lp(E). We shall show

that gu1−u2,E = 0 a.e. in E. Since u1 − u2 ∈ N1,p
0 (E), (2.3) and Proposition 3.10

then yield ‖u1 − u2‖Lp(E) = 0. From this it follows that u1 − u2 = 0 a.e. in E and

thus in X (when we set u1 − u2 := 0 in X \E). As u1 − u2 ∈ N1,p
0 (E) ⊂ N1,p(X),

we obtain u1 − u2 = 0 q.e. in X , and hence u1 = u2 q.e. in E. (Note that
since we consider quasi-everywhere with respect to X , we have to use the fact that
u1 − u2 ∈ N1,p(X) rather than u1 − u2 ∈ N1,p(E).)

To show that gu1−u2,E = 0 a.e. in E, let c ∈ R and

u = max{u1,min{u2, c}}.

Then u− f ∈ N1,p(E) and ψ1 ≤ u ≤ ψ2 q.e. in E. Also,

u− f ≤ max{u1, u2} − f = max{u1 − f, u2 − f} ∈ N1,p
0 (E)

and u− f ≥ u1 − f ∈ N1,p
0 (E). Lemma 2.4 shows that u− f ∈ N1,p

0 (E) and hence
u ∈ Kψ1,ψ2,f .

Let Vc = {x ∈ E : u1(x) < c < u2(x)} and note that Vc ⊂ {x ∈ E : u(x) = c}
and hence gu,E = 0 a.e. in Vc. The minimizing property of gu1,E then implies that

(4.4)

∫
E

gpu1,E
dμ ≤

∫
E

gpu,E dμ =

∫
E\Vc

gpu,E dμ =

∫
E\Vc

gpu1,E
dμ,

since gu,E = gu1,E = gu2,E a.e. in E \ Vc. From (4.4) we conclude that gu2,E =
gu1,E = 0 a.e. in Vc for all c ∈ R. Now,

{x ∈ E : u1(x) < u2(x)} ⊂ ⋃
c∈Q

Vc

and hence gu2,E = gu1,E = 0 a.e. in {x ∈ E : u1(x) < u2(x)}, and similarly in
{x ∈ E : u1(x) > u2(x)}. It follows that

gu1−u2,E ≤ (gu1,E + gu2,E)χ{x∈E:u1(x) �=u2(x)} = 0 a.e. in E,

and thus u1 = u2 q.e. by the above argument.
It remains to show that if u is a solution and v = u q.e., then v is also a solution.

Indeed, it follows directly that v ∈ Kψ1,ψ2,f . Moreover, v = u E-q.e., and thus
gu,E = gv,E a.e., so that ∫

E

gpv,E dμ =

∫
E

gpu,E dμ,

showing that v must also be a solution. �
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The following comparison principle follows from the uniqueness of the solu-
tions and is useful in various applications. Note again that the boundary data f
and f ′ are only defined on E. But if f, f ′ ∈ N1,p(E) and f ≤ f ′ q.e. on ∂E,
then Lemma 3.9 implies that the condition (f − f ′)+ ∈ N1,p

0 (E) is satisfied. Recall
that f+ = max{f, 0} and f− = max{−f, 0}.

Corollary 4.3. (Comparison principle) Assume that f, f ′ ∈ Dp(E) and ψj , ψ
′
j :

E → R, j = 1, 2, are such that Kψ1,ψ2,f and Kψ′
1,ψ

′
2,f

′ are nonempty. Let u
and u′ be solutions of the Kψ1,ψ2,f - and Kψ′

1,ψ
′
2,f

′-obstacle problems, respectively.

If ψj ≤ ψ′
j q.e. in E, j = 1, 2, and (f − f ′)+ ∈ N1,p

0 (E), then u ≤ u′ q.e. in E.

In the next section we discuss relaxations of the conditions imposed in this
section. For the comparison principle to hold it is enough that one of the obstacle
problems is quasi-everywhere uniquely soluble (and the other soluble). (In the
proof, the uniqueness of the Kψ1,ψ2,f -obstacle problem is used, but by symmetry
one can equally well use the uniqueness of the Kψ′

1,ψ
′
2,f

′-obstacle problem.)

Proof. Let w = min{u, u′} and h = u− f − (u′ − f ′) ∈ N1,p
0 (E). It follows that

−(f − f ′)+ − h− = −(f ′ − f)− − h− ≤ min{f ′ − f, h} ≤ h.

Lemma 2.4 then implies that min{f ′ − f, h} ∈ N1,p
0 (E) and hence

w − f = min{u′ − f, u− f} = u′ − f ′ + min{f ′ − f, h} ∈ N1,p
0 (E).

As ψ1 ≤ w ≤ ψ2 q.e. in E, we get w ∈ Kψ1,ψ2,f .

Similarly v = max{u, u′} ∈ Kψ′
1,ψ

′
2,f

′ . Let

A = {x ∈ E : u(x) > u′(x)}.

Since u′ is a solution of the Kψ′
1,ψ

′
2,f

′ -obstacle problem, we have∫
E

gpu′,E dμ ≤
∫
E

gpv,E dμ =

∫
A

gpu,E dμ+

∫
E\A

gpu′,E dμ.

Thus ∫
A

gpu′,E dμ ≤
∫
A

gpu,E dμ.

It follows that∫
E

gpw,E dμ =

∫
A

gpu′,E dμ+

∫
E\A

gpu,E dμ ≤
∫
A

gpu,E dμ+

∫
E\A

gpu,E dμ =

∫
E

gpu,E dμ.

Since u is a solution of the Kψ1,ψ2,f -obstacle problem, so is w. By uniqueness
u = w = min{u, u′} q.e. in E, and thus u ≤ u′ q.e. in E. �
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5. Assumptions and examples

Both in the existence and the uniqueness parts of the proof of Theorem 4.2 we used
the “extra” assumptions that p > 1 (through the use of Lemma A.2 and the strict
convexity of Lp), that Cp(X\E) > 0 and that X supports a p-Friedrichs inequality.
It is worthwhile discussing when these assumptions hold and whether they could
possibly be omitted or weakened. We start by discussing the p-Friedrichs inequal-
ity. By the following lemma it follows from the (p, p)-Poincaré inequality on large
balls.

Lemma 5.1. Assume that for every ball B ⊂ X there is a constant CB > 0 such
that for all u ∈ N1,p

0 (B),

(5.1)

∫
B

|u− uB|p dμ ≤ CB

∫
B

gpu dμ.

Then X supports the p-Friedrichs inequality (2.3).

Since gu = 0 outside B there is no reason to have a dilation constant λ in (5.1),
as in Definition 2.5. Note also that the doubling property of μ is not needed.
The proof of Lemma 5.1 was inspired by Theorem 10.1.2 in Maz′ya [32] and Propo-
sition 3.2 in J. Björn [11], but is slightly simpler and sufficient for our purpose.

For unbounded X we always have Cp(X \ B) > 0 and hence (5.1) follows
from (2.3) by means of the Hölder and Minkowski inequalities. Thus, the p-Frie-
drichs inequality and (5.1) are equivalent in unbounded spaces. The case when X
is bounded is more subtle, since we cannot take E = X in (2.3). We do not know
if the equivalence is true in this case.

It is also worth observing that contrary to the case of the classical Poincaré
inequalities, here it is enough to require (5.1) or (2.2) for large balls, i.e., that for
every ball B′ there is a ball B ⊃ B′ such that (5.1) or (2.2) holds. (If X is bounded
it suffices to assume that (5.1) or (2.2) holds for B = X .) The following example
shows that this is not equivalent to (2.2) holding for all balls.

Example 5.2. Let X ⊂ R2 be the graph of the function y = xα sin(π log2 x),
0 < α < 1, 0 ≤ x ≤ 1, with the R2-Euclidean metric and the arc length measure Λ1.
It is easily verified that L := Λ1(X) < ∞. Let γ : [0, L] → X be an arc length
parameterized curve such that γ(0) = (0, 0) and γ(L) = (1, 0). Since γ gives a
natural bijection between X and [0, L], every function in N1,p(X) = N1,p

0 (X) is
absolutely continuous on X with gu(γ(t)) = |(u ◦ γ)′(t)| a.e.

Let z = (2−k, 0) ∈ X and 2−k−1 < r < 2−k, k = 1, 2, . . . Then the ball
B =B(z, r) is not connected and B does not even belong to a single component
of λkB, where λk = 2k(1−α)−1. Letting k → ∞ shows that X cannot support any
Poincaré inequality with the same dilation constant λ for all balls. At the same
time, the p-Friedrichs inequality (2.3) holds on X , since∫
X

|u− uX |p dΛ1 =

∫ L

0

|u(γ(t)) − uX |p dt ≤ C

∫ L

0

|(u ◦ γ)′(t)|p dt = C

∫ L

0

gpu dΛ1,

by the (p, p)-Poincaré inequality for [0, L].
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Proof of Lemma 5.1. Let E ⊂ X be bounded and such that Cp(X \ E) > 0.

Let u ∈ N1,p
0 (E), extended by zero in X \ E. We can assume that the left-hand

side in (2.3) is nonzero.

If X is unbounded, let B ⊃ E be a ball such that μ(E) < μ(B). Then

(5.2)
(∫

B

|u|p dμ
)1/p

≤
(∫

B

|u− uB|p dμ
)1/p

+ |uB|μ(B)1/p.

The first term on the right-hand side is estimated using (5.1) and for the second
term we have, using the Hölder inequality and the fact that u vanishes outside E,
that

|uB|μ(B)1/p ≤ 1

μ(B)1−1/p

∫
B

|u| dμ ≤
(μ(E)

μ(B)

)1−1/p(∫
B

|u|p dμ
)1/p

.

Since μ(E) < μ(B), inserting this into (5.2) and subtracting the last term from
both sides of (5.2) proves (2.3) for unbounded X .

If X is bounded, let

ū =
(∫

X

|u|p dμ
)1/p

.

Then v := 1 − u/ū is admissible in the definition of Cp(X \ E) and hence

0 < Cp(X \ E) ≤
∫
X

vp dμ+

∫
X

gpv dμ ≤ 1

ūp

(∫
X

|u− ū|p dμ+

∫
X

gpu dμ
)
.(5.3)

The first integral on the right-hand side can be estimated as

‖u− ū‖Lp(X) ≤ ‖u− uX‖Lp(X) + ‖ū− uX‖Lp(X),

where for the second term we have

‖ū− uX‖Lp(X) =
∣∣‖u‖Lp(X) − ‖uX‖Lp(X)

∣∣ ≤ ‖u− uX‖Lp(X).

Inserting this into (5.3) and using (5.1) with B = X we obtain

ūp ≤ C

Cp(X \ E)

∫
X

gpu dμ. �

The following two examples show that neither the existence nor the unique-
ness of solutions remains valid for p = 1. Note that in Examples 5.3–5.7 we
have f ∈ N1,p(E) and E is open.

Example 5.3. Let X = R, p = 1, E = (0, 1), f(x) = x, ψ = −∞ and dμ = w dx,
where

w(x) =

{
1 + x, 0 < x < 1,

1, otherwise,
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i.e., we consider a weighted Dirichlet problem. Note that μ is a doubling mea-
sure supporting a (1, 1)-Poincaré inequality. Let uj(x) = min{jx, 1} ∈ Kψ,f ,
j = 1, 2, . . ., so that∫

E

guj dμ =

∫ 1/j

0

j dμ =

∫ 1/j

0

j(1 + x) dx = 1 +
1

2j
→ 1, as j → ∞.

On the other hand, for any v ∈ Kψ,f we have that

1 = v(1) − v(0) =

∫ 1

0

v′ dx ≤
∫ 1

0

|v′| dx =

∫ 1

0

gv dx <

∫ 1

0

gv dμ,

since gv cannot vanish almost everywhere. This shows that the minimum is not
attained and thus there are no minimizers. Hence the assumption p > 1 cannot be
removed for the existence part.

Example 5.4. Let X = R (unweighted), p = 1, E = (0, 1), f(x) = x and ψ = −∞.
In this case any increasing absolutely continuous function u : [0, 1] → [0, 1] with
u(0) = 0 and u(1) = 1 will be a solution of the Kψ,f -obstacle problem (i.e., of the
Dirichlet problem with f as boundary values). Thus the assumption p > 1 cannot
be omitted for the uniqueness part either.

It is more complicated to see when the Friedrichs inequality is essential. First we
consider the question of existence of solutions.

Example 5.5. Let 1 < p < 2 and

X = {(x, y) ∈ [−2, 2]2 : xy ≥ 0},
X+ = {(x, y) ∈ X : x ≥ 0} \ {(0, 0)} = [0, 2]2 \ {(0, 0)},
X− = {(x, y) ∈ X : x ≤ 0} = [−2, 0]2.

Then there are p-almost no curves between X+ and X− (since Cp({(0, 0)}) = 0)
which means that in this context they can be thought of as disconnected; see
Example 5.6 in Björn–Björn [6]. In particular, u = χX+ ∈ N1,p

0 (X+) with gu = 0,
showing that the p-Friedrichs inequality (2.3) is violated. (This also shows that
the zero p-weak upper gradient property, introduced below, fails at (0, 0).)

Let f = 0, 1 − 2/p < α < 0, E = X+,

ψ(x, y) =

{
|(x, y) − (1, 1)|α, (x, y) ∈ X+,

0, (x, y) ∈ X−,

and uj = max{ψ, j}χX+ .

Then ψ ∈ N1,p(X) and uj − f ∈ N1,p
0 (X+), i.e., uj ∈ Kψ,f (X+). Moreover,∫

X+

gpuj dμ→ 0, as j → ∞.

On the other hand, if N1,p(X) � v ≥ ψ q.e. in X+ then necessarily
∫
X+

gpv dμ > 0,

and there does not exist any minimizer for the Kψ,f (X+)-obstacle problem.
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A problem with Example 5.5 is that Cp(∂X+) = 0 even though Cp(X \X+) > 0,

allowing for uj ∈ N1,p
0 (X+). Similarly, the same functions uj show that the

Kψ,f (Ω)-obstacle problem with Ω = {(x, y) ∈ X : x > −1} is also not soluble.
Here, the problem is that Ω is essentially disconnected and thus the boundary
values f have no influence in X+, even though Cp(∂Ω) > 0. (In fact, Ω need not
be connected, but it should not have a component which is essentially disconnected
from X \ Ω.)

A Poincaré inequality of some kind prevents these difficulties and guarantees
solubility of the obstacle problem. The above Kψ,f (Ω)-obstacle problem also shows
that it is not enough to just replace the assumption Cp(X \E)>0 with Cp(∂E)>0.
Under a Poincaré inequality and for open E, these two conditions are equivalent by
Lemma 4.5 in Björn–Björn [6]. For open E in general spaces, the latter condition
is stronger, as seen above. On the other hand, the former condition can be stronger
for nonopen sets. We have therefore chosen to use the condition Cp(X \ E) > 0,

as it is closely related to N1,p
0 (E).

Remark 5.6. On the other hand, if the data f , ψ1 and ψ2 are bounded then
we can omit both the assumption of a Friedrichs inequality and the assumption
Cp(X \E) > 0. This will be important for Theorem 5.13. In the existence part of
the proof, they were only used to deduce that {uj − f}∞j=0 is bounded in Lp(E),
and this can be deduced more directly if the data are bounded. More precisely,
consider the following two cases:

(a) ψj ∈ Lp(E), which in particular holds if ψj ∈ L∞(E), j = 1, 2;

(b) there exists M < ∞ such that |f | ≤ M a.e. in E, ψ1 ≤ M q.e. in E and
ψ2 ≥ −M q.e. in E.

In case (a), the Lp-boundedness of {uj}∞j=1 follows directly since ψ1 ≤ uj ≤ ψ2

a.e. In case (b) we may replace uj by the truncations

u′j := max{min{uj,M},−M}
at levels M and −M . Then gu′

j ,E
≤ guj ,E and the sequence {u′j}∞j=1 is bounded

in N1,p(E). (In both cases one uses the Lp-boundedness of {uj}∞j=1 (or {u′j}∞j=1)
rather than the Lp-boundedness of {uj − f}∞j=1, in the proof of Theorem 4.2.
This also makes the proof a little easier.)

We now turn to the question of uniqueness. The following example shows that
we cannot drop the Friedrichs inequality entirely.

Example 5.7. Let X be the von Koch snowflake curve. For a, b ∈ X , a 	= b,
let E be one of the two components of X \ {a, b}. Set f = 0 and ψ = −∞. Since
there are no rectifiable curves in X , we have N1,p

0 (E) = Lp(E) and gu ≡ 0 for all
u ∈ N1,p

0 (E), which means that any u ∈ Lp(E) is a solution of the Kψ,f -obstacle
problem (i.e., of the Dirichlet problem with f as boundary values). Thus the
assumption that X supports some kind of Poincaré or Friedrichs inequality cannot
be omitted for the uniqueness part. Similar arguments apply to other spaces
without rectifiable curves, or with p-almost no rectifiable curves.
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Remark 5.8. Even though the Poincaré or Friedrichs inequality cannot be omitted
for the uniqueness part, it can be weakened. In the uniqueness part of the proof,
it was only used to deduce that v := u1−u2 = 0 a.e. in E from the fact that gv = 0
in X and v = 0 outside E.

In A. Björn [3] the following weaker property was introduced: X has the zero
p-weak upper gradient property if every measurable function f , which has 0 as a
p-weak upper gradient in some ballB(x, r), is essentially constant in some (possibly
smaller) ball B(x, δ), which can depend both on f and B(x, r). By considering the
bounded function h = arctan f with gh = gf/(1 + f2), we easily conclude that one
can equivalently consider only bounded measurable functions in the definition of
the zero p-weak upper gradient property.

Thus, Lemma 3.2 in [3] shows that, when proving uniqueness of the solutions,
we may replace the Friedrichs inequality by the zero p-weak upper gradient prop-
erty, together with the fact that Cp(G \ E) > 0 for every component G of X .
The latter is essential since there are nonconnected spaces having the zero p-weak
upper gradient property, e.g. X = [0, 1]2 ∪ [2, 3]2 in R2 and X = [0, 1]∪ [2, 3] in R.

The zero p-weak upper gradient property is a weaker assumption than
a (1, p)-Poincaré inequality (as the two examples above show). On the other hand,
the following example shows that X can support a p-Friedrichs inequality and at
the same time fail to have the zero p-weak upper gradient property.

Example 5.9. Let 1 < p ≤ 2 and let

X = {(x, y) ∈ R2 : xy ≥ 0},
X+ = {(x, y) ∈ X : x ≥ 0},
X− = {(x, y) ∈ X : x ≤ 0}.

As in Example 5.5, the function χX+ shows that the zero p-weak upper gradient
property fails for all balls centred at the origin.

On the other hand, as both X+ and X− support (p, p)-Poincaré inequalities,
they support the p-Friedrichs inequality (2.3), by Lemma 5.1. Considering u|X+

and u|X− separately shows that for all bounded E ⊂ X and all u ∈ N1,p
0 (E) we

have ∫
X±

|u|p dμ ≤ CE±

∫
X±

gpu dμ,

where E± = E ∩X±. The p-Friedrichs inequality on X then follows by adding the
Lp-norms on X+ and X−.

Finally, we discuss the assumption Cp(X \E) > 0. If it fails (and thus necessar-
ily X is bounded) then we lose existence in general. This is easily seen by letting
X = [0, 2]2 ⊂ R2 and using the construction in Example 5.5. However, we do have
solubility if we assume boundedness of the data as in (a) or (b) of Remark 5.6.
Moreover, the Dirichlet problem (i.e., the obstacle problem without obstacles) is
always soluble if Cp(X \ E) = 0 since the zero function is a solution with any
boundary data.
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On the other hand, uniqueness always fails if Cp(X \ E) = 0 in the single
obstacle problem (when it is soluble), by the following result. In particular it fails
for the Dirichlet problem.

Proposition 5.10. Let X be bounded and let E ⊂ X be measurable and such that
Cp(X \ E) = 0. Let f ∈ N1,p(E) and ψ : E → R. Let u be a solution of the
Kψ,f -obstacle problem and let a ∈ R. Then v := max{u, a} is also a solution of
the Kψ,f -obstacle problem.

Proof. As N1,p
0 (E) = N1,p(X) we see that v ∈ Kψ,f . Moreover, gv ≤ gu a.e. in E,

and thus v must also be a solution. �

In fact it follows from this proof that the Kψ,f (X)-obstacle problem for bounded
X has a solution only if there is some function u ∈ Kψ,f (X) with gu = 0 a.e.
If X supports the p-Friedrichs inequality (2.3), then this happens if and only if
there is some constant (real-valued) function u ∈ Kψ,f (X), which in turn happens
(independently of f) if and only if there exists M <∞ such that ψ ≤M q.e.

We end this discussion with a comment on the case when E is unbounded.
In this case we may also lose existence, as the following example shows.

Example 5.11. Let X = R (unweighted), p > 1, E = (0,∞), f(x) = (1 − x)+

and ψ = 0. Set fj(x) = (1 − x/j)+, j = 1, 2, . . . Then fj ∈ Kψ,f and∫
E

gpfj dμ =

∫ j

0

1

jp
dx = j1−p → 0, as j → ∞.

This shows that a solution of the Kψ,f -obstacle problem must have zero energy,
and thus must be constant almost everywhere. The boundary condition would
require a solution u to satisfy u = 1 a.e., but then u /∈ Kψ,f .

We conclude this section with an application of our theory to condenser capac-
ities. On metric spaces, such capacities have been used and studied under various
assumptions; e.g. by Heinonen–Koskela [22], Kallunki–Shanmugalingam [23] and
Adamowicz–Björn–Björn–Shanmugalingam [1].

Definition 5.12. Let Ω ⊂ X be a nonempty bounded open set, and let A0, A1 ⊂ Ω
be disjoint. Then the capacity of the condenser (A0, A1,Ω) is

capp(A0, A1,Ω) = inf
u

∫
Ω

gpu dμ,

where the infimum is taken over all u ∈ N1,p(Ω) satisfying 0 ≤ u ≤ 1 in Ω, u = 0
in A0 and u = 1 in A1.

Note that capp(A0, A1,Ω) = capp(A1, A0,Ω). Since the equivalence classes in
N1,p(Ω) are defined up to sets of capacity zero, we can equivalently require the
equalities in A0 and A1 to hold quasi-everywhere. This is thus a double obstacle
problem in Ω but without boundary values. We obtain the following consequences
of the results in this and the previous section.
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Theorem 5.13. Assume that p > 1. Let Ω ⊂ X be a nonempty bounded open
set, and let A0, A1 ⊂ Ω be disjoint sets such that capp(A0, A1,Ω) < ∞ (which in
particular happens if dist(A0, A1) > 0).

Then there is a minimizer for the condenser (A0, A1,Ω), i.e., a function u ∈
N1,p(Ω) such that 0 ≤ u ≤ 1 in Ω, u = 0 in A0, u = 1 in A1 and

(5.4) capp(A0, A1,Ω) =

∫
Ω

gpu dμ.

If X has the zero p-weak upper gradient property, Cp(A0 ∪ A1) > 0, and Ω is
connected, then the minimizer is unique (up to sets of capacity zero).

By Lemma 3.4 in A. Björn [3], the zero p-weak upper gradient property for X
holds e.g. if X supports a (1, p)-Poincaré inequality. For the uniqueness in Theo-
rem 5.13 it is actually enough that Ω have the zero p-weak upper gradient property,
as can be seen from the proof below.

Observe that if Cp(A0) = Cp(A1) = 0, then any constant function with a value
in [0, 1] is a minimizer (after redefinition on A0 ∪ A1), which is thus not unique.

Proof. Existence. Let f = 0, ψ1 = χA1 and ψ2 = χΩ\A0
. It is then easy to

see that every solution of the Kψ1,ψ2,f(Ω)-obstacle problem taken with respect
to the ambient space Ω is a minimizer for the condenser (after redefinition on a
subset of A0 ∪ A1 of capacity zero). The existence thus follows from Theorem 4.2
and Remark 5.6.

Uniqueness. By symmetry, we may assume that Cp(A0) > 0. Assume that u
and u′ are two minimizers of the condenser and let

Z = {x ∈ Ω : u(x) = u′(x) = 0},

which is a measurable set containing A0. Let E = Ω \ Z, f = 0 and ψ = χA1 .
It is again easy to see that both u|E and u′|E are solutions of the Kψ,f (E)-obstacle

problem taken with Ω as the ambient space. (Recall that for u ∈ N1,p
0 (E; Ω)

we have gu,E = gu,Ω = gu a.e., by Proposition 3.10, and hence the energies consid-
ered for the condenser (A0, A1,Ω) and in the Kψ,f (E)-obstacle problem coincide.

Here N1,p
0 (E; Ω) is N1,p

0 (E) taken with respect to the ambient space Ω.) Since X
has the zero p-weak upper gradient property, so does Ω, as this is a local property.
Since Cp(Ω \ E) = Cp(Z) ≥ Cp(A0) > 0 and Ω is connected, the uniqueness thus
follows from Remark 5.8. �

Observe that in the existence part of the proof f plays no role as the boundary
is empty. This is allowed by Remark 5.6. The uniqueness, however, cannot be
deduced using the obstacle problem without boundary values, and hence a different
obstacle problem needs to be considered in the second part of the proof.

Next, we prove another application of our results, and in particular of Theo-
rem 5.13. It turns out to be useful in connection with ends and prime ends on metric
spaces in the paper Adamowicz–Björn–Björn–Shanmugalingam [1]; cf. Lemma A.11
therein.
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Proposition 5.14. Assume that X is complete and supports a (1, p)-Poincaré
inequality, that μ is doubling and that p > 1. Let Ω be a nonempty bounded
connected open set, and let {Ek}∞k=1 be a decreasing sequence of subsets of Ω such
that

⋂∞
k=1 Ek ⊂ ∂Ω.

Then limj→∞ capp(Ej ,K,Ω) = 0 for every compact K ⊂ Ω if and only if
limj→∞ capp(Ej ,K0,Ω) = 0 for some compact K0 ⊂ Ω with Cp(K0) > 0.

Proof. Assume that limj→∞ capp(Ej ,K0,Ω) = 0 for some compact set K0 ⊂ Ω
with positive capacity, and let K ⊂ Ω be compact. By Lemma 4.49 in Björn–
Björn [6], there is an open connected set G � Ω such that K0 ∪K ⊂ G. We can
also find k0 such that Ek0 ∩G = ∅.

For k ≥ k0, let uk be a minimizer for capp(Ek,K0,Ω), which exists and is unique
(up to sets of capacity zero) by Theorem 5.13. Note that uk = 0 on Ek and uk = 1
on K0. Moreover, uk is a superminimizer in Ω\Ek ⊃ G (see Kinnunen–Martio [26]
or [6] for the definitions of superminimizers and superharmonic functions). Indeed,
if 0 ≤ ϕ ∈ N1,p(X) and ϕ = 0 outside Ω\Ek, then v = min{uk+ϕ, 1} is admissible
for capp(Ek,K0,Ω) and hence∫

Ω\Ek
gpuk dμ ≤

∫
Ω\Ek

gpv dμ ≤
∫
Ω\Ek

gpuk+ϕ dμ.

By Theorem 5.1 in [26] (or Theorem 8.22 in [6]),

u∗k(x) := lim
r→0

ess inf
B(x,r)

uk

equals uk quasi-everywhere in G, and by Proposition 7.4 in [26] (or Proposition 9.4
in [6]) u∗k is superharmonic in G. As u∗k is lower semicontinuous, the minimum
δk := minK uk is attained at some point in K. Since u∗k(x) = 1 for some x ∈ K0

(as Cp(K0) > 0) we see that u∗k 	≡ 0 in G. Hence, as G is connected, the strong
minimum principle in G (Theorem 9.13 in [6]) shows that δk > 0.

By Corollary 4.3, we have uk ≥ uk0 q.e., and thus δk ≥ δk0 > 0. It follows
that min{uk/δk0 , 1} is admissible for capp(Ek,K,Ω) as uk/δk0 ≥ 1 on K. The
monotonicity of capp then yields that

capp(Ek,K,Ω) ≤ 1

δpk0

∫
Ω

gpuk dμ =
1

δpk0
capp(Ek,K0,Ω) → 0, as k → ∞.

The converse implication is trivial. �

6. The Adams criterion for Kψ,f �= ∅

As in Section 4, we assume that p > 1 and that X supports the p-Friedrichs
inequality (2.3). We also assume that E ⊂ X is a bounded measurable set such
that Cp(X \ E) > 0.

In this section, we study when the single obstacle problem is soluble, i.e., when
Kψ,f is nonempty. In the characterization, we shall use the variational capacity
with respect to nonopen sets; see Appendix B.
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Theorem 6.1. (The Adams criterion) Let f ∈ Dp(E) and ψ : E → R. Then
Kψ,f 	= ∅ if and only if

(6.1)

∫ ∞

0

tp−1 capp({x : ψ(x) − f(x) > t}, E) dt <∞.

In the linear case on unweighted Rn and with E open and f ∈ N1,2(E)
(or rather f ∈ W 1,2(E) quasicontinuous) this result was obtained by Adams [2].
For open E in metric spaces and f ∈ N1,p(E), it is included in Björn–Björn [6].

By the Cavalieri principle, if f : X → [0,∞] is a ν-measurable function then∫
X

fp dν = p

∫ ∞

0

tp−1ν({x : f(x) > t}) dt.

By analogy, it is natural to write (6.1) as∫
E

(ψ − f)p+ d capp( · , E) <∞,

even though capp( · , E) is not a measure. Such integrals are called Choquet inte-
grals and their study goes back to Choquet [14].

Note that for Theorem 6.1 to hold it is important that the obstacle problem is
defined by requiring the obstacle inequality to hold quasi-everywhere (with respect
to X). If the inequality is only required to hold almost everywhere, as e.g. in
Heinonen–Kilpeläinen–Martio [21] or Kinnunen–Martio [26], only one implication
in Theorem 6.1 is true. To see this let E = B(0, 1) ⊂ Rn, f ≡ 0 and ψ = ∞χF ,
where F ⊂ E is a set such that μ(F ) = 0 < Cp(F ). By Lemma B.2, capp(F,E) > 0,
and thus by the Adams criterion, Kψ,f = ∅. On the other hand, 0 is a solution of
the almost everywhere obstacle problem.

The same is true if we had used E-quasi-everywhere in the definition of the
obstacle problem. In this case, we let E = B(0, 1) \Q ⊂ R, f = 0 and ψ = ∞χF ,
where F is a nonempty set with CEp (F ) = 0 < Cp(F ), which is easily accom-

plished, as in this case CEp (A) = μ(A) for all sets A ⊂ E. Again, capp(F,E) > 0,
by Lemma B.2, and thus Kψ,f = ∅, by the Adams criterion, while 0 is a solution
of the E-quasi-everywhere (and also the almost everywhere) obstacle problem.

For the double obstacle problem it is much more difficult to obtain a charac-
terization of when Kψ1,ψ2,f 	= ∅. The following two examples demonstrate this.

Example 6.2. Let X = R, p > 1, E = (0, 1) and f(x) = x. Let ψ1, ψ2 : R → R

be defined by

ψ1 =

{
x1−1/p, 0 < x < 1,

−∞, otherwise,
and ψ2 =

{
x1−1/p, 0 < x < 1,

∞, otherwise.

Then Kψ1,ψ2,f = ∅, as the function x �→ x1−1/p does not belong to N1,p(E).

In the above example, we have ψ1 = ψ2 on a large set. Next we shall see that
it is possible to have Kψ1,ψ2,f = ∅ even if ψ2 − ψ1 ≡ ∞.
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Example 6.3. Let X = R, p > 1, Ω ⊂ R be open,

ψ1 = −∞χQ and ψ2 = ∞(1 − χQ).

Note that ψ2 − ψ1 ≡ ∞. Let u ∈ N1,p(Ω) be such that ψ1 ≤ u ≤ ψ2 q.e. Since
every function in N1,p(Ω) is (absolutely) continuous, this implies that u ≥ 0 a.e.
(and hence everywhere) in Ω. On the other hand, as Q is dense in Ω, the continuity
of u and the fact that u ≤ 0 on Q ∩ Ω yield that u ≤ 0 in Ω.

Hence u = 0 in Ω and Kψ1,ψ2,f = ∅ whenever f /∈ N1,p
0 (Ω). Moreover, similar

arguments show that if ψ′
1 = ψ1 + 1, then Kψ′

1,ψ2,f = ∅ for all f ∈ Dp(Ω).

To prove Theorem 6.1 we will use the following lemma.

Lemma 6.4. Let a > 1, u ∈ N1,p
0 (E) and Et = {x ∈ E : |u(x)| > t}, t > 0. Then

(6.2)

∫ ∞

0

tp−1 capp(Eat, Et) dt ≤
log a

(a− 1)p

∫
E

gpu dμ.

Equivalently, with b = 1/a ∈ (0, 1),

(6.3)

∫ ∞

0

tp−1 capp(Et, Ebt) dt ≤
− log b

(1 − b)p

∫
E

gpu dμ.

Proof. As gu = g|u| a.e., we may assume that u ≥ 0. For t > 0, let

ut = min{(u− t)+, (a− 1)t}
be the truncations of u at levels t and at, t > 0. Then the function vt := ut/(a−1)t
is admissible in the definition of capp(Eat, Et) and gvt = guχ{t<u<at}/(a− 1)t a.e.
Using the Fubini theorem we get that∫ ∞

0

tp−1 capp(Eat, Et) dt ≤
∫ ∞

0

( 1

(a− 1)t

)p
tp−1

∫
X

gpuχ{t<u<at} dμ dt

=
1

(a− 1)p

∫
X

gu(x)p
∫ u(x)

u(x)/a

dt

t
dμ(x)

=
log a

(a− 1)p

∫
X

gpu dμ,

which proves (6.2). To get the last equality we used the fact that gu = 0 a.e. in
{x : u(x) = 0}.

The inequality (6.3) follows from (6.2) by the substitution s = bt. �

It follows directly from the definition that capp(Et, E) ≤ capp(Et, Ebt) and
hence the capacity on the left-hand side of (6.3) can be replaced by capp(Et, E).
Letting b = 1/p yields the following result.

Corollary 6.5. (The Maz′ya capacitary inequality) If u ∈ N1,p
0 (E), then

(6.4)

∫ ∞

0

tp−1 capp({x : |u(x)| > t}, E) dt ≤ pp log p

(p− 1)p

∫
E

gpu dμ.
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Using the notation introduced above, (6.4) can be written as∫
E

|u|p d capp( · , E) ≤ pp+1 log p

(p− 1)p

∫
E

gpu dμ.

By minimizing the constant on the right-hand side in (6.3) for b ∈ (0, 1) one
can optimize the result. An easy calculation shows that the minimum is attained
when 1/b− 1 = −p log b.

In Section 2.3.1 in Maz′ya [32], the inequality (6.4) was proved with the optimal
constant pp−1/(p− 1)p−1 (for unweighted Rn). See also Maz′ya [33].

Proof of Theorem 6.1. As Kψ,f = f + Kψ−f,0 we can assume, without loss of gen-
erality, that f ≡ 0.

Assume that there is some ũ ∈ Kψ,0. Then u := max{ũ, ψ} = ũ q.e. in E, and
thus also u ∈ Kψ,0. Hence, by Corollary 6.5 we have∫ ∞

0

tp−1 capp({x : ψ(x) > t}, E) dt ≤
∫ ∞

0

tp−1 capp({x : u(x) > t}, E) dt

≤ C

∫
E

gpu dμ <∞.

Conversely, assume that (6.1) holds. As capp({x : ψ(x) > t}, E) is nonincreas-
ing with respect to t, it follows that capp({x : ψ(x) > t}, E) < ∞ for all t > 0.

Thus we can find uk ∈ N1,p
0 (E), for k ∈ Z, such that χ{ψ>2k} ≤ uk ≤ 1 and

(6.5)

∫
E

gpuk dμ < capp({x : ψ(x) > 2k}, E) + 2−|k|−(k+1)p.

Let

vN = sup
k≤N

2k+1uk, gN = sup
k≤N

2k+1guk , N ∈ Z,

v = sup
k∈Z

2k+1uk = sup
N∈Z

vN , g = sup
k∈Z

2k+1guk = sup
N∈Z

gN .

(Here we take the same representative of guk in all expressions.) Then v ≥ 2k+1

when ψ > 2k, in particular when 2k < ψ ≤ 2k+1, k ∈ Z, from which it follows that
v ≥ ψ in E.

By Lemma 1.52 in Björn–Björn [6], gN is a p-weak upper gradient of vN .
Moreover ∫

E

gp dμ =

∫
E

(
sup
k∈Z

2k+1guk

)p
dμ

≤
∫
E

∞∑
k=−∞

(2k+1guk)p dμ =
∞∑

k=−∞
2(k+1)p

∫
E

gpuk dμ.
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Using (6.5) we obtain∫
E

gp dμ <

∞∑
k=−∞

2(k+1)p(capp({x : ψ(x) > 2k}, E) + 2−|k|−(k+1)p)

≤ 3 +
∞∑

k=−∞
2(k+1)p

∫ 2k

2k−1

( t

2(k−1)

)p−1

capp({x : ψ(x) > t}, E) dt

= 3 + 4p
∫ ∞

0

tp−1 capp({x : ψ(x) > t}, E) dt.

The assumption (6.1) now yields that
∫
E g

p dμ <∞. Since gN ↗ g pointwise in X ,
dominated convergence implies that gN → g in Lp(X). Monotone convergence
and (2.3) then yield

(6.6)

∫
E

|v|p dμ = lim
N→∞

∫
E

|vN |p dμ ≤ CE

∫
E

gpvN dμ ≤ CE

∫
E

gp dμ <∞.

Thus vN → v both pointwise and in Lp(X), by dominated convergence. Proposi-
tion A.1 shows that v ∈ N1,p(X). As v = 0 in X \ E, we get v ∈ N1,p

0 (E) and
therefore v ∈ Kψ,0. �

If the obstacle ψ ∈ N1,p(E), then there is a much easier criterion for when
Kψ,f 	= ∅.

Proposition 6.6. Let f, ψ ∈ N1,p(E) (or, more generally, let f, ψ ∈ Dp(E) be
such that f − ψ ∈ N1,p(E)). Then Kψ,f 	= ∅ if and only if (ψ − f)+ ∈ N1,p

0 (E).

Proof. Assume that there is u ∈ Kψ,f . Then

0 ≤ (ψ − f)+ ≤ (u − f)+ q.e.

Hence, (ψ − f)+ ∈ N1,p
0 (E), by Lemma 2.4.

Conversely, assume that (ψ − f)+ ∈ N1,p
0 (E) and let u = max{ψ, f}. Then

u− f = (ψ − f)+ ∈ N1,p
0 (E). As u ≥ ψ in E, it follows that u ∈ Kψ,f . �

Remark 6.7. In this section, we only used the Friedrichs inequality and the as-
sumption Cp(X \E) > 0 in the proof of Theorem 6.1 (apart from some examples).
More precisely, these assumptions were used in (6.6), where it is enough if (2.3)
holds for the specific E under consideration. Neither of these two assumptions can
be omitted in Theorem 6.1, which is seen by letting ψ ≡ ∞ and f ≡ 0 and consid-
ering either E = X+ in Example 5.5 or an arbitrary E such that Cp(X \ E) = 0
(and μ(X) > 0). Note that in both cases capp(E,E) = 0 so that the integral
in (6.1) converges even though Kψ,f = ∅.

All other results in this section hold without the Friedrichs or Poincaré inequal-
ities.
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7. Nontriviality of the obstacle problem and of N1,p
0

In this section we assume that X is complete and supports a (1, p)-Poincaré in-
equality, that μ is doubling and that p > 1.

These assumptions are needed to be able to use some results from fine potential
theory.

In the obstacle problem it is natural to ask when the obstacle problem is trivial,
i.e., when all functions v ∈ Kψ1,ψ2,f agree quasi-everywhere. This happens in par-

ticular when N1,p
0 (E) is trivial. In the double obstacle problem it can happen also

in other cases, e.g. if ψ1 ≡ ψ2 or in Examples 6.2 and 6.3. For the single obstacle
problem the situation is simpler and we have the following characterization.

Proposition 7.1. Let E ⊂ X be a bounded measurable set with Cp(X \ E) > 0,
f ∈ Dp(E) and ψ : E → R. Then Kψ,f is trivial (in the sense that u = v q.e.

whenever u, v ∈ Kψ,f ) if and only if either Kψ,f = ∅ or N1,p
0 (E) is trivial (i.e.,

u = 0 q.e. for all u ∈ N1,p
0 (E)).

Observe that the Adams criterion (Theorem 6.1) shows when Kψ,f = ∅. Note
also that if Kψ,f is nonempty but trivial, then Kψ,f = {u : u = f q.e.}.

Proof. If Kψ,f = ∅, then the equivalence is clear. Assume therefore that Kψ,f 	= ∅.

IfN1,p
0 (E) is trivial, then all v ∈ Kψ,f agree with f quasi-everywhere, and thus Kψ,f

is trivial.
Conversely assume that N1,p

0 (E) is nontrivial. Then there is u ∈ N1,p
0 (E) such

that Cp({x : u(x) 	= 0}) > 0. Let v ∈ Kψ,f and w = v + |u|. Then w ∈ Kψ,f and
as w and v do not agree quasi-everywhere, the nontriviality of Kψ,f follows. �

Our aim is now to characterize when N1,p
0 (E) is trivial. We get the following

result. (Definitions of the involved concepts are given below.)

Theorem 7.2. Let E ⊂ X be arbitrary. Then the following are equivalent :

(a) N1,p
0 (E) is nontrivial ;

(b) E contains a nonempty finely open set, or in other terms fine-intE 	= ∅;

(c) there is a point x ∈ E such that X \ E is thin at x;

(d) there are a point x ∈ E and a number s > 0 such that

capp(B(x, s) \ E,B(x, 2s)) < capp(B(x, s), B(x, 2s)).

Note that if μ(E) = 0 then all the statements are false, since in this case
f ∈ N1,p

0 (E) implies that f = 0 a.e. in X , and hence f = 0 q.e. in X , i.e., N1,p
0 (E)

is trivial.
The following result gives a more precise description of N1,p

0 (E) and will be
used to establish Theorem 7.2.

Theorem 7.3. Let E ⊂ X be arbitrary. Then

N1,p
0 (E) = N1,p

0 (fine-intE).
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Here we follow our convention that functions in N1,p
0 can be extended by zero

quasi-everywhere. Observe that we do not require E to be measurable in Theo-
rems 7.2 and 7.3. See also Section 9 for some further consequences of Theorem 7.3
in the special case X = Rn.

Corollary 7.4. Let E,E0 ⊂ X be measurable sets such that

fine-intE ⊂ E0 ⊂ E.

If f ∈ Dp(E) and Kψ1,ψ2,f (E) 	= ∅, then

Kψ1,ψ2,f(E) = Kψ1,ψ2,f (E0).

Of course, the main interest is when E0 = fine-intE, but here, contrary to
Theorem 7.3, we also need measurability and we do not know in general if fine-intE
is always measurable; cf. Section 9.

Remark 7.5. Note that it is possible to have Kψ1,ψ2,f (E) = ∅ 	= Kψ1,ψ2,f (E0).
Indeed, this happens exactly if Kψ1,ψ2,f (E0) 	= ∅ and

(7.1) Cp({x ∈ E \ E0 : ψ1(x) > f(x) or ψ2(x) < f(x)} > 0.

To see this, note that since N1,p
0 (E) = N1,p

0 (E0) it follows that any function
in N1,p

0 (E) is 0 quasi-everywhere in E \E0. Hence, if u ∈ Kψ1,ψ2,f(E), then u = f
q.e. in E \ E0 which is impossible if ψ1 ≤ u ≤ ψ2 q.e. at the same time as (7.1)
holds. Conversely, if u ∈ Kψ1,ψ2,f (E0) and (7.1) fails, then we extend u as f
in E \ E0, so that u ∈ Kψ1,ψ2,f (E), showing that Kψ1,ψ2,f (E) is nonempty.

To make the above results precise we need a few more definitions. See Ap-
pendix B for the definition and some properties of the variational capacity capp.

Definition 7.6. A set A is thin at x if

(7.2)

∫ 1

0

(capp(A ∩B(x, r), B(x, 2r))

capp(B(x, r), B(x, 2r))

)1/(p−1) dr

r
<∞.

A set A is finely open if X \ A is thin at all x ∈ A. Using the monotonicity
and subadditivity of the capacity, it is easy to verify that the finely open sets
form a topology on X ; see Proposition 11.36 in Björn–Björn [6]. The fine interior
fine-intE of E is the largest finely open set contained in E.

Since our variational capacity is the same as the one in Heinonen–Kilpeläinen–
Martio [21] (see Björn–Björn [7] for a proof of this fact), we see that this defi-
nition coincides with the definition in [21], p. 221, when X is weighted Rn with
a p-admissible weight. If X = Rn (unweighted) then it is also equivalent to Defi-
nition 2.47 in Malý–Ziemer [31].

In the definition of thinness we make the convention that the integrand is 1
whenever capp(B(x, r), B(x, 2r)) = 0. This happens for example if X = B(x, 2r)

is bounded, but never if r < 1
2 diamX . Note that thinness is a local property, i.e.,

if δ > 0, then E is thin at x if and only if E ∩B(x, δ) is thin at x.
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To prove Theorem 7.3, we shall use the following result which was obtained
by J. Björn (see Theorem 4.6 in [12]), and independently by Korte (Corollary 4.4
in [27]) (the result can also be found in Björn–Björn [6], Theorem 11.40).

Theorem 7.7. Every u ∈ N1,p(X) is finely continuous at quasi-every x ∈ X.

A function u, defined on a finely open set U , is finely continuous at x ∈ U if
for every ε > 0 there exists a finely open set V � x such that |u(y) − u(x)| < ε for
all y ∈ V (in particular u(x) ∈ R).

Proof of Theorem 7.3. Let u ∈ N1,p
0 (E) and extend u by 0 on X \ E, so that

u ∈ N1,p(X). Let G = {x ∈ E : u(x) 	= 0}. By Theorem 7.7, there exists a
set F with Cp(F ) = 0 such that u is finely continuous at every x ∈ X \ F . Hence,
for every x ∈ G \ F , there exists a finely open neighbourhood Vx of x such that
|u− u(x)| < |u(x)| in Vx. Note that u 	= 0 in Vx and hence Vx ⊂ G ⊂ E.

Letting V =
⋃
x∈G\F Vx, we obtain a finely open set V such that G \ F ⊂

V ⊂ E. As X \ V ⊂ (X \ G) ∪ F , we see that u = 0 q.e. in X \ V , and hence
u ∈ N1,p

0 (V ) ⊂ N1,p
0 (fine-intE). Since u ∈ N1,p

0 (E) was arbitrary, this shows that
N1,p

0 (E) ⊂ N1,p
0 (fine-intE).

The converse inclusion is obvious. �

Proof of Theorem 7.2. ¬ (b) ⇒ ¬ (a) By Theorem 7.3,

N1,p
0 (E) = N1,p

0 (fine-intE) = N1,p
0 (∅),

and thus N1,p
0 (E) is trivial.

(b) ⇒ (c) Let G ⊂ E be a nonempty finely open set. Then X \ E ⊂ X \G is
thin at every x ∈ G.

(c) ⇒ (d) For simplicity, let Br = B(x, r). Since∫ 1

0

(capp(Br \ E,B2r)

capp(Br, B2r)

)1/(p−1) dr

r
<∞,

we see that

lim inf
r→0+

capp(Br \ E,B2r)

capp(Br, B2r)
= 0

and (d) follows. (Actually the limit exists and equals 0, but we will not need that
here.)

(d) ⇒ (a) For simplicity, let Br = B(x, r). Theorem B.3 (iii) implies that

capp(Bs, B2s) = sup
t<s

capp(Bt, B2s).

Hence, there exists t < s such that

capp(Bs \ E,B2s) < capp(Bt, B2s).
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Thus there exists a function h ∈ N1,p(X) such that 0 ≤ h ≤ 1, h = 1 on Bs \ E,
h = 0 on X \ B2s and ‖gh‖pLp(X) < capp(Bt, B2s). Let F = {x ∈ Bt : h(x) < 1}.

If Cp(F ) were 0, then we would have

capp(Bt, B2s) ≤ ‖gh+χF ‖pLp(X) = ‖gh‖pLp(X) < capp(Bt, B2s),

a contradiction. Thus Cp(F ) > 0.
Now let f be a Lipschitz function such that 0 ≤ f ≤ 1, f = 1 on Bt and f = 0

on X \ Bs. Set k = (f − h)+ ∈ N1,p(X). It follows directly that k = 0 on
(Bs \E)∪ (X \Bs) ⊃ X \E, and thus k ∈ N1,p

0 (E). Since F = {x ∈ Bt : k(x) > 0}
and Cp(F ) > 0, we see that k 	∼ 0, i.e., N1,p

0 (E) is nontrivial. �

We conclude this section by proving the characterization of fine interior stated
in the introduction.

Proof of Theorem 1.2. Let E0=fine-intE⊂E. If x∈E0 then by definition, X \ E0

(and hence also X \ E) is thin at x.
Conversely, assume that X \ E is thin at x ∈ E, i.e.,∫ 1

0

(capp(Br \ E,B2r)

capp(Br, B2r)

)1/(p−1) dr

r
<∞,

where we abbreviate Br = B(x, r). For 0 < r < 1, let Fr be the fine closure
of Br \ E, i.e., the smallest finely closed set containing Br \ E. Then Br \ Fr is
finely open and contained in E. To conclude the proof, it suffices to show that Fr
is thin at x, as then (Br \ Fr) ∪ {x} is also finely open and contained in E, which
implies that

(Br \ Fr) ∪ {x} ⊂ E0,

and in particular x ∈ E0.
We shall show that Br ∩ Fr is thin at x. Since X \E is thin at x, it suffices to

show that

capp(Bρ ∩ Fr, B2ρ) ≤ capp(Bρ \ E,B2ρ) for 0 < ρ ≤ r.

First, we note that Bρ∩Fr ⊂ Fρ. Indeed, Fρ∪(X \Bρ) is finely closed and contains
X \ E (and hence also Fr). It follows that

Bρ ∩ Fr ⊂ Bρ ∩ (Fρ ∪ (X \Bρ)) ⊂ Fρ.

This and Corollary 4.5 in J. Björn [12] (or Corollary 11.39 in Björn–Björn [6]) now
yield that

capp(Bρ ∩ Fr, B2ρ) ≤ capp(Fρ, B2ρ) = capp(Bρ \ E,B2ρ).

From this and the thinness of X \ E at x we conclude that Fr is thin at x, which
finishes the proof. �

The following direct consequence of Theorem 1.2 characterizes fine closures and
fine boundaries; cf. the first half of Theorem 2.136 in Malý–Ziemer [31].
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Corollary 7.8. Let E ⊂ X be arbitrary. Then the fine closure of E is the set

E ∪ {x ∈ X \ E : E is not thin at x}
and the fine boundary of E is

{x ∈ E : X \ E is not thin at x} ∪ {x ∈ X \ E : E is not thin at x}.
In particular, the fine boundary of E is a subset of ∂E.

8. Comparing obstacle problems

In this section we assume that E ⊂ X is a bounded measurable set such that
Cp(X \ E) > 0.

If the boundary data belong to Dp(Ω) for some open Ω ⊃ E, then we have two
possible definitions of obstacle problems on E, namely Definition 4.1 and (4.2).
We begin by comparing the admissible sets in these two definitions.

Lemma 8.1. If f ∈ Dp(Ω) for some open set Ω ⊃ E, then K′
ψ1,ψ2,f

= Kψ1,ψ2,f .

Recall that K′
ψ1,ψ2,f

was defined in (4.2). By saying that K′
ψ1,ψ2,f

= Kψ1,ψ2,f

we really mean that
{f |E : f ∈ K′

ψ1,ψ2,f} = Kψ1,ψ2,f ,

and that every f ∈ Kψ1,ψ2,f corresponds to a unique (up to sets of capacity

zero) f̃ ∈ K′
ψ1,ψ2,f

. Note that already in Section 4 we observed that K′
ψ1,ψ2,f

=
Kψ′

1,ψ
′
2,f

(Ω), where ψ′
1 and ψ′

2 are given by (4.3).

Proof. Clearly, K′
ψ1,ψ2,f

⊂ Kψ1,ψ2,f . To prove the other inclusion, let v ∈ Kψ1,ψ2,f ,

i.e., v ∈ Dp(E) and v − f = w ∈ N1,p
0 (E). Then w (extended by zero outside

of E) belongs to N1,p(Ω) and hence v = f + w ∈ Dp(Ω), from which the result
follows. �

Note that even though K′
ψ1,ψ2,f

= Kψ1,ψ2,f for f ∈ Dp(Ω), the minimal p-weak
upper gradients considered in these two obstacle problems are different. The min-
imal p-weak upper gradient in the Kψ1,ψ2,f -obstacle problem is taken with respect
to E and is in general smaller than the minimal p-weak upper gradient with respect
to Ω or X , considered in the K′

ψ1,ψ2,f
-obstacle problem.

Example 8.2. As in Example 3.6, let X = R and E = (0, 1) \ Q, and recall
that the minimal p-weak upper gradient (and thus the p-energy integral) taken
with respect to E is zero for every function on E, while the minimal p-weak upper
gradient with respect to R is just the modulus of the distributional derivative.

However, since (0, 1) \ E is dense in (0, 1) and all functions in N1,p(X) are
absolutely continuous, the space N1,p

0 (E) is trivial and so is Kψ1,ψ2,f ; cf. Propo-
sition 7.1. Hence, the only solution (if it exists) of both the Kψ1,ψ2,f - and the
K′
ψ1,ψ2,f

-obstacle problem is f itself.

The last observation in Example 8.2 holds in much more generality, as we shall
now see. Recall that p-path almost open sets were introduced in Definition 3.1.
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Theorem 8.3. Assume that X is complete and supports a (1, p)-Poincaré inequal-
ity, that μ is doubling and that p > 1. Let E0 be a p-path almost open measurable
set such that fine-intE ⊂ E0 ⊂ E, and let f ∈ Dp(E) and ψj : E → R, j = 1, 2,
be such that Kψ1,ψ2,f(E) 	= ∅. Then the solutions of the Kψ1,ψ2,f (E)-problem
coincide with the solutions of the Kψ1,ψ2,f (E0)-problem.

Moreover, if μ(E \ E0) = 0 then also the p-energies associated with these two
problems coincide. In particular, this holds if μ(∂E) = 0.

If f ∈ Dp(Ω) for some open set Ω ⊃ E, then the above solutions coincide with
the solutions of the K′

ψ1,ψ2,f
(E)-problem.

Of course, the main interest is when E0 = fine-intE, but as we do not know
whether fine-intE is always measurable and p-path almost open, we have given the
formulation above. See, however, Section 9 and Theorem 1.3 for an improvement
in the case X = Rn.

Note that even if the solutions coincide, the corresponding p-energies can in
general be different for these obstacle problems. Indeed, even though

gu,E0 = gu,E a.e. in E0

for every u ∈ Kψ1,ψ2,f (E), by Corollary 3.7, we only get∫
E0

gpu,E0
dμ =

∫
E0

gpu,E dμ ≤
∫
E

gpu,E dμ

with strict inequality unless gu,E = 0 a.e. in E \ E0 (which holds in particular
if μ(E \ E0) = 0).

If f ∈ Dp(Ω) for some open Ω ⊃ E, then

gu,E0 = gu,E = gu a.e. in E0

for every u ∈ Kψ1,ψ2,f (E), by Corollary 3.7, but we have only

gu,E = gf,E ≤ gf = gu a.e. in E \ E0

for those u, and the inequality in the middle can be strict; see Example 8.2 whereE0

is empty. Thus, the two p-energies
∫
E g

p
u,E dμ and

∫
E g

p
u dμ will coincide only

if gf,E = gf a.e. in E \E0, in particular if μ(E \ E0) = 0.

Proof of Theorem 8.3. To simplify the notation, we omit the subscripts ψ1, ψ2

and f and write only K(E), K(E0) and K′(E) in this proof.
By Corollary 7.4, we have K(E) = K(E0). Since E0 is p-path almost open,

Corollary 3.7 (with X replaced by E) yields that for all v ∈ K(E) = K(E0),

(8.1) gv,E = gv,E0 a.e. in E0.

Moreover, as v − f ∈ N1,p
0 (E0), we have v = f q.e. in E \ E0 and hence

gv,E = gf,E a.e. in E \ E0.
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Similarly, if f ∈ Dp(Ω) for some open Ω ⊃ E, then K′(E) = K(E), by Lemma 8.1,
and for all v ∈ K(E),

(8.2) gv,E = gv a.e. in E0 and gv = gf a.e. in Ω \ E0,

again by Corollary 3.7 (with X replaced by Ω).
Let u be a solution of the K(E0)-problem. Then (8.1) implies that for all

v ∈ K(E0) = K(E),∫
E0

gpu,E dμ =

∫
E0

gpu,E0
dμ ≤

∫
E0

gpv,E0
dμ =

∫
E0

gpv,E dμ.(8.3)

Similarly, if f ∈ Dp(Ω) for some open Ω ⊃ E, and u′ is a solution of the K′(E)-
problem, then (8.2) implies that for all v ∈ K′(E) = K(E),∫

E0

gpu′,E dμ =

∫
E0

gpu′ dμ =

∫
E

gpu′ dμ−
∫
E\E0

gpf dμ(8.4)

≤
∫
E

gpv dμ−
∫
E\E0

gpf dμ =

∫
E0

gpv dμ =

∫
E0

gpv,E dμ.

Adding
∫
E\E0

gpf,E dμ to both sides in (8.3) and (8.4) shows that both u and u′ are

solutions of the K(E)-problem (the latter assuming that f ∈ Dp(Ω)). By unique-
ness, they coincide quasi-everywhere in E and are the only (up to sets of capacity
zero) solutions of the K(E)-obstacle problem. �

9. The Euclidean case

The situation simplifies in Rn (unweighted). In this case Theorem 2.144 in Malý–
Ziemer [31] (which goes back to Fuglede [17]) shows that every finely open set G
is quasi-open, i.e., for every ε > 0 there exists an open set V with Cp(V ) < ε such
that G ∪ V is open. In particular, the fine interior fine-intE of every set E ⊂ Rn
is quasi-open.

Remark 9.1. If p > n, then quasi-open sets are open in Rn, and thus the quasi-
open, finely open and open sets coincide. There are immediate consequences of
this for the results in Section 8 which we leave to the reader to formulate explicitly.

If 1 < p ≤ n, then for every x > 0 and ε > 0 there is an open set V � x
with Cp(V ) < ε, and thus {x} is quasi-open. Since not all sets are quasi-open,
by Lemma 9.2 and Remark 3.3, it follows that the quasi-open sets do not form a
topology.

To be able to state Theorem 8.3 without additional assumptions on E0, we recall
the following results which hold in general metric spaces.

Lemma 9.2 (Shanmugalingam, Remark 3.5 in [37]). Every quasi-open set is p-path
open.
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Lemma 9.3. Every quasi-open set G is measurable.

Proof. For every j = 1, 2, . . ., there is an open set Vj such that Cp(Vj) < 1/j
and Gj := G ∪ Vj is open. Let Aj = Gj \ Vj ⊂ G, A =

⋃∞
j=1 Aj ⊂ G and

E =
⋂∞
j=1Gj ⊃ G, all of which are Borel sets. Then A ⊂ G ⊂ E and

μ(E \A) ≤ μ(Gj \Aj) = μ(Vj) ≤ Cp(Vj) < 1/j for j = 1, 2, . . .

Letting j → ∞ shows that G is measurable. �

Hence, if E ⊂ Rn then fine-intE is measurable and p-path open, and Theo-
rem 8.3 turns into Theorem 1.3 in the introduction. We also have the following
consequence of Lemma 3.9 and Theorem 7.3, which generalizes Theorem 2.147 in
Malý–Ziemer [31]. See also Remark 2.148 in [31] for another description of W 1,p

0 (Ω)
in Rn.

Proposition 9.4. Let E ⊂ Rn be arbitrary and let u ∈ N1,p(E
p
), where E

p
is the

fine closure of E. Then u ∈ N1,p
0 (E) if and only if u = 0 q.e. on the fine boundary

E
p \ fine-intE of E.

Proof. By the discussion at the beginning of this section, both fine-intE andRn\Ep
are p-path open. Lemma 3.9 with E1 = fine-intE and E2 = E

p
then yields

that u ∈ N1,p
0 (fine-intE) if and only if u = 0 q.e. on the fine boundary of E.

Theorem 7.3 concludes the proof. �

In general metric spaces, the missing link is the implication that finely open
sets are quasi-open. This is a part of fine potential theory on metric spaces which
we plan to develop further in the future.

The following two examples illustrate some of the results in this paper, in
particular the special situation in Rn. They provide us with a closed nowhere
dense set E ⊂ [0, 1]n ⊂ Rn with almost full measure in [0, 1]n, but whose fine
interior has full measure in E. In particular, the fine boundary of E has zero
measure even though the Euclidean boundary ∂E = E. This implies that for
every u ∈ Dp(Rn),

gu,fine-intE = gu,E = gu,Rn = |∇u| a.e. in E,

where ∇u is the distributional gradient of u, and that the energies and obstacle
problems on E and its fine interior coincide. Examples 9.5 and 9.6 are for 1 < p < n
and p = n, respectively. By Remark 9.1 there are no similar examples for p > n.

Recall that for q, x ∈ Rn and r, s > 0,

(9.1) capp(B(q, s) ∩B(x, r), B(x, 2r)) ≤
⎧⎨⎩C(n, p)sn−p, if 1 < p < n,

C(n)
(

log
2r

s

)1−n
, if p = n,

and that

(9.2) capp(B(x, r), B(x, 2r)) = C(n, p)rn−p, 1 < p ≤ n;

see Example 2.12 in Heinonen–Kilpeläinen–Martio [21].
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Figure 1. The set E in Examples 9.5 and 9.6.

Example 9.5. Let Qk = ((0, 1)∩ 2−kN)n be a bounded lattice in unweighted Rn,
n ≥ 2, k = 1, 2, . . . Also let ak = 2−k and rk = δaαk , k = 1, 2, . . ., for some
0 < δ < 1/2 and α > n/(n − p), where 1 < p < n. Note that for a fixed k, the
balls {B(q, rk)}q∈Qk are disjoint. Finally, let

E = [0, 1]n \
∞⋃
k=1

⋃
q∈Qk

B(q, rk);

see Figure 1. Then E ⊂ Rn is a closed set with empty interior and

m([0, 1]n \ E) ≤ C
∞∑
k=1

(2k − 1)n rnk ≤ C δn
∞∑
k=1

2kn(1−α) ≤ C δn,

where m denotes the Lebesgue measure in Rn. Thus, for small δ > 0, E has almost
full measure in [0, 1]n. We shall show that the set E has nonempty fine interior,
and that m(E \ fine-intE) = 0.

For a fixed 0 < θ < 1 − 1/α and all 0 < ε < δ, we define

Eε = [0, 1]n \
∞⋃
k=1

⋃
q∈Qk

B(q, rk + εa1+θk ).
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Note that by the mean value theorem,

m(E \ Eε) ≤
∞∑
k=1

2knm(B(0, rk + εa1+θk ) \B(0, rk))

≤ C

∞∑
k=1

2kn rnk

((
1 +

εa1+θk

rk

)n
− 1

)
≤ C

∞∑
k=1

2kn rnk
εa1+θk

rk
n
(

1 +
εa1+θk

rk

)n−1

.

As ε < 1/2 and a1+θk /rk > 1, the last estimate can be simplified as

m(E \ Eε) ≤ C ε

∞∑
k=1

2kn rn−1
k a1+θk

(2a1+θk

rk

)n−1

= C ε
∞∑
k=1

2kn a
n(1+θ)
k = C ε

∞∑
k=1

2−knθ → 0, as ε→ 0.

It follows that m(E \⋃ε>0 Eε) = 0.
We claim that

⋃
ε>0Eε ⊂ fine-intE. For this, it suffices to show that for

every x ∈ Eε, the set X \ E is thin at x, in view of Theorem 1.2. Therefore,
let 0 < ε < δ and x ∈ Eε be fixed. We need to show that

(9.3)

∞∑
j=jε

(capp(B(x, 2−j) \ E,B(x, 21−j))
capp(B(x, 2−j), B(x, 21−j))

)1/(p−1)

<∞

for some jε (possibly depending on x, α, θ and ε). Therefore, we let r = 2−j and
estimate capp(B(x, r) \ E,B(x, 2r)).

We shall first estimate how many balls B(q, rk), with q ∈ Qk and k < j (i.e.,
ak ≥ 2r), can intersect B(x, r). Since for every q ∈ Qk, k = 1, 2, . . ., we have

dist(x,B(q, rk)) ≥ εa1+θk ,

the intersection will be nonempty only if ε2−k(1+θ) < 2−j . This is equivalent to

(9.4) k >
1

1 + θ
(j + log2 ε) ≥

(1 − θ2)j

1 + θ
= (1 − θ)j,

provided that

(9.5) j ≥ 1

θ2
(− log2 ε).

In particular, for each ε and θ there exists jε such that (9.5) holds for all j ≥ jε.
Moreover, for each k < j as in (9.4), there are at most 2n balls B(q, rk),

q ∈ Qk, intersecting B(x, r), since ak ≥ 2r. By (9.1) their total capacity is at
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most C 2nrn−pk . Summing over all k ∈ N such that (1 − θ)j < k < j, yields the
estimate for the capacity∑

(1−θ)j<k<j
C rn−pk = C δn−p

∑
(1−θ)j<k<j

2−kα(n−p) ≤ C δn−p 2−jα(1−θ)(n−p).(9.6)

Now let k ≥ j, i.e., ak ≤ r. For each such k, there are at most (4r/ak)n balls
B(q, rk), q ∈ Qk, intersecting B(x, r). Their total capacity is at most

C
(4r

ak

)n
rn−pk ≤ C 2n(k−j) δn−p 2−kα(n−p).

Summing over k ≥ j and combining this with (9.6) yields for r = 2−j with j ≥ jε,

capp(B(x, r) \ E,B(x, 2r)) ≤ Cδn−p
(

2−jα(1−θ)(n−p) + 2−jn
∞∑
k=j

2−k(α(n−p)−n)
)
.

As α > n/(n− p), the last series sums to C 2jn−jα(n−p) and we conclude that

capp(B(x, r) \ E,B(x, 2r)) ≤ C δn−p 2−jα(1−θ)(n−p).

Inserting this and (9.2) into (9.3) shows that for each x ∈ Eε the sum in (9.3) is
bounded from above by

∞∑
j=jε

(Cδn−p2−jα(1−θ)(n−p)
2−j(n−p)

)1/(p−1)

= Cδ(n−p)/(p−1)
∞∑
j=jε

2−j(α(1−θ)−1)(n−p)/(p−1),

which is finite since α(1 − θ) > 1.
Thus, X \ E is thin at each x ∈ Eε and Theorem 1.2 shows that⋃

ε>0
Eε ⊂ fine-intE.

Hence m(E \ fine-intE) = 0 and Theorem 1.3 implies that the minimal p-weak
upper gradients with respect to E and Rn coincide, i.e., for every u ∈ Dp(Rn),

gu,fine-intE = gu,E = gu,Rn = |∇u| a.e. in E.

Moreover, by Theorem 7.2, N1,p
0 (E) is nontrivial and solutions of obstacle and

Dirichlet problems on E are in general not equal to their boundary data. By The-
orem 1.3 again, the solutions of the Kψ1,ψ2,f (E)- and Kψ1,ψ2,f (fine-intE)-obstacle
problems coincide and have the same energies.

The following example is a modification of Example 9.5 for p = n. In particular,
it covers the classical situation p = n = 2.

Example 9.6. If p = n, let E and Eε be as in Example 9.5 but with rk = δ 2−2kα

for some α > n/(n− 1). As in Example 9.5, E ⊂ Rn is a nowhere dense closed set
and

m([0, 1]n \ E) ≤ C δn
∞∑
k=1

2kn−n2
kα ≤ C δn.
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That m(E \Eε) ≤ C ε→ 0, as ε→ 0, is shown exactly as in Example 9.5. (Here it
is enough to require that 0 < θ < 1.)

To show that
⋃
ε>0 Eε ⊂ fine-intE, fix x ∈ Eε and let r = 2−j , j = 1, 2, . . . As

in Example 9.5, the ball B(q, rk) with k < j intersects B(x, r) only if

k >
1

1 + θ
(j + log2 ε) ≥ (1 − θ)j provided that j ≥ jε ≥ 1

θ2
(− log2 ε),

and for each such k there are at most 2n such balls. By (9.1) each of these balls
has capacity at most

C
(

log
2r

rk

)1−n
= C (1 − j − log2 δ + 2kα)1−n ≤ C 2−kα(n−1).

The total capacity of all such balls with (1−θ)j < k < j and B(q, rk)∩B(x, r) 	= ∅

is therefore at most ∑
(1−θ)j<k<j

C 2−kα(n−1) ≤ C 2−jα(1−θ)(n−1).(9.7)

Now, for each k ≥ j, there are at most (4r/ak)n balls B(q, rk), q ∈ Qk, intersecting
B(x, r) and their total capacity is at most

C
(4r

ak

)n(
log

2r

rk

)1−n
≤ C 2n(k−j)2−kα(n−1).

Summing over k ≥ j and combining this with (9.7) yields for r = 2−j, j ≥ jε,

capp(B(x, r) \ E,B(x, 2r)) ≤ C 2−jα(1−θ)(n−1) + 2−jn
∞∑
k=j

2−k(α(n−1)−n).

As α > n/(n− 1), the last series sums to C 2jn−jα(n−1) and we conclude that

capp(B(x, r) \ E,B(x, 2r)) ≤ C 2−jα(1−θ)(n−1).

Inserting this and (9.2) into (9.3) shows that for each x ∈ Eε the sum in (9.3) is
bounded from above by

∞∑
j=jε

(C 2−jα(1−θ)(n−1))1/(n−1) = C

∞∑
j=jε

2−jα(1−θ) <∞.

Thus, X \ E is thin at each x ∈ Eε and Theorem 1.2 shows that
⋃
ε>0 Eε ⊂

fine-intE. Hence m(E \ fine-intE) = 0 and Theorem 1.3 implies that the mini-
mal p-weak upper gradients with respect to E and Rn coincide almost everywhere
on E. By Theorem 7.2, N1,p

0 (E) is nontrivial and the solutions of the obstacle and
Dirichlet problems on E are in general not equal to their boundary data. By The-
orem 1.3 again, the solutions of the Kψ1,ψ2,f (E)- and Kψ1,ψ2,f (fine-intE)-obstacle
problems coincide and have the same energies.
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10. Further examples

Let X = R2 be equipped with dμ = dx + αdx1, where dx is the two-dimensional
Lebesgue measure on R2, dx1 is the one-dimensional Lebesgue measure on R (ex-
tended as the zero measure on R2 \ R), and α is a positive real constant.

Proposition 10.1. Let u ∈ N1,p(X). Then the function

(10.1) g̃u =

{
|∇u| in R2 \R,
|∂1u| in R,

is a minimal p-weak upper gradient of u with respect to μ. Here ∇u is the distri-
butional gradient on R2 and ∂1u is the distributional derivative on R.

Observe that u ∈ N1,p(R2, dx) ⊂ W 1,p(R2), and thus u has a distributional
gradient. Similarly, u|R ∈ N1,p(R, dx1) is absolutely continuous on R and has a
distributional derivative there. To prove Proposition 10.1 we need the following
two auxiliary results which hold for arbitrary metric spaces X .

Lemma 10.2. Any (rectifiable) curve γ : [0, lγ ] → X has an associated loop-erased
simple curve γ̃ : [0, lγ̃] → X.

A loop along the curve γ is a part γ|[t0,t1] such that 0 ≤ t0 < t1 ≤ lγ and γ(t0)=
γ(t1). Such a part can be removed by redefining γ(t) = γ(t0) for t0 < t < t1. By
doing this iteratively in an appropriate way and then reparameterizing (see below)
we can obtain a loop-free (i.e., simple) curve γ̃ ⊂ γ such that in particular

∫
γ̃ g ds ≤∫

γ g ds for all nonnegative Borel functions g. Note that a curve can have several
different associated loop-erased simple curves, and that the loop-erased simple
curve is a single point if γ(0) = γ(lγ).

Proof. As the length of γ is finite there is a longest loop (it may not be unique),
unless γ is already loop-free. Remove it, as described above, and call the resulting
curve γ1. Repeat the procedure to produce γ2, γ3, etc. This can terminate after a
finite number of steps with γn, which is then (after reparameterization with respect
to arc length) the desired loop-erased simple curve γ̃.

Otherwise, we get curves γj : [0, lγ ] → X , j = 1, 2, . . ., which by the Ascoli
theorem converge to a curve γ̃ with the same endpoints. (Note that here we
need a version of the Ascoli theorem valid for metric space valued equicontinuous
functions; see e.g. Royden [35], p. 169.) The resulting curve is a 1-Lipschitz map
which (after reparameterization with respect to arc length) is the desired loop-
erased simple curve γ̃. �

Lemma 10.3. Let X be equipped with measures μ1 and μ2 such that μ1 ≤ μ2.
Then N1,p(X,μ2)⊂N1,p(X,μ1) and for every u∈N1,p(X,μ2), the minimal p-weak
upper gradients with respect to μ1 and μ2 satisfy gu,μ1 ≤ gu,μ2 μ1-a.e.

Proof. The inclusion N1,p(X,μ2) ⊂ N1,p(X,μ1) follows directly from the fact that
upper gradients do not depend on the underlying measure and that N1,p(X,μj),
j = 1, 2, can be defined using only upper gradients.
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To compare the minimal p-weak upper gradients, let u∈N1,p(X,μ2). It is easily
verified that Modp,μ1(Γ)=0 whenever Modp,μ2(Γ)=0. Hence, the minimal p-weak
upper gradient gu,μ2 of u with respect to μ2 is a p-weak upper gradient of u with
respect to μ1 and we conclude that gu,μ1 ≤ gu,μ2 μ1-a.e. in X . �

Corollary 10.4. Let μ1 and μ2 be measures on X which support the p-Friedrichs
inequality (2.3). Then so does the measure μ = μ1 + μ2.

Proof. Lemma 10.3 shows that gu,μj ≤ gu,μ μj-a.e. in X , j = 1, 2. Hence∫
X

gpu,μj dμj ≤
∫
X

gpu,μ dμj ≤
∫
X

gpu,μ dμ, j = 1, 2.

The p-Friedrichs inequality with respect to μ1 and μ2, together with

‖u‖pLp(X,μ) = ‖u‖pLp(X,μ1)
+ ‖u‖pLp(X,μ2)

,

then finishes the proof. �

Proof of Proposition 10.1. Let

ũ(x) =

{
0, if u(x) = ±∞,

u(x), otherwise.

Then u = ũ q.e., by Proposition 1.30 in Björn–Björn [6], and thus Corollary 1.49
in [6] shows that u and ũ have the same p-weak upper gradients. Hence, we may
assume that u is real-valued for the rest of the proof.

Since dμ ≥ dx on R2 and dμ ≥ dx1 on R, Lemma 10.3 implies that the minimal
p-weak upper gradient with respect to μ satisfies gu ≥ g̃u μ-a.e. It is therefore
enough to show that g̃u itself is also a p-weak upper gradient of u with respect
to μ. This will be done by showing that it belongs to the Lp(X)-closure of the
set of upper gradients of u. Proposition 2.10 in [6] then shows that g̃u is a p-weak
upper gradient of u with respect to μ.

Let ε > 0. As |∇u| is a minimal p-weak upper gradient of u with respect to dx,
we can find an upper gradient g̃ ∈ Lp(R2, dx) of u such that ‖g̃−|∇u|‖Lp(R2,dx) < ε.
Let

g =

{
g̃ in R2 \ R,
|∂1u| in R.

Then ‖g − g̃u‖Lp(X) = ‖g̃ − gu‖Lp(R2,dx) < ε. We shall show that g is an up-
per gradient of u in R2. We can require ∂1u above to be a Borel function on R,
by Proposition 1.2 in Björn–Björn [6]. Since g̃ is a Borel function, so is g.

Let γ : [0, lγ ] → X be a curve. If γ ⊂ R, then

|u(γ(0)) − u(γ(lγ))| ≤
∫
γ

|∂1u| ds =

∫
γ

g ds.

Similarly, if {t : γ(t) ∈ R} is a finite set, then

|u(γ(0)) − u(γ(lγ))| ≤
∫
γ

g̃ ds =

∫
γ

g ds.
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After possibly splitting any other curve into at most three parts we may assume
that γ(0), γ(lγ) ∈ R, but γ 	⊂ R. If γ(0) = γ(lγ), there is nothing to prove (as u
is real-valued). Otherwise, let G = {t : γ(t) ∈ R2 \ R} which is a nonempty open
subset of (0, lγ). It can thus be written as a pairwise disjoint union

⋃∞
i=1 Ii of

open intervals. (Here we allow some of the intervals Ii to be empty.) For a fixed n
let Gn =

⋃n
i=1 Ii. Let π(x, y) = (x, 0) be the orthogonal projection of R2 onto R,

and let

γn(t) =

{
γ(t), t ∈ Gn,

π ◦ γ(t), t ∈ [0, lγ ] \Gn.
Then γn is a rectifiable curve. The given parameterization need not be by arc
length, but it is a 1-Lipschitz map. Let γ̃n be an associated loop-erased simple
curve of γn, given by Lemma 10.2. Then γ̃n can be split into at most 2n + 1
subcurves such that each subcurve either is completely in R, or it intersects R only
at its endpoints. Denote the union of the former by γ̃n ∩ R, and the union of the
latter by γ̃n \R. Note that γ̃n \R ⊂ γ|G. Using that these subcurves have already
been treated above, we conclude that

(10.2) |u(γ(0)) − u(γ(lγ))| ≤
∫
γ̃n\R

g ds+

∫
γ̃n∩R

g ds ≤
∫
γ|G

g ds+

∫
γ̃n∩R

g ds.

Since γ̃n is a simple curve we obtain that

lim inf
n→∞

∫
γ̃n∩R

g ds = lim inf
n→∞

∫
R

gχγ̃n∩R dx ≤
∫
R

gχγ∩R dx ≤
∫
γ|[0,lγ ]\G

g ds.

Here we have used dominated convergence, which is justified by the fact that the
integrands in the second integral are dominated by gχ[−a,a] for some a > 0, and
g ∈ Lp(R) ⊂ L1

loc(R). (It is to justify the use of dominated convergence here that
we need to use loop-erased simple curves.) Moreover, we have used that the arc
length of the projection is bounded from above by the arc length of the original
curve.

Inserting this into (10.2) shows that

|u(γ(0)) − u(γ(lγ))| ≤
∫
γ|G

g ds+

∫
γ|[0,lγ ]\G

g ds =

∫
γ

g ds. �

Remark 10.5. The same proof as in Proposition 10.1 shows that if ν is any
positive Borel measure on R satisfying 0 < ν(I) < ∞ for every finite interval I,
then the function

gu,μ =

{
|∇u| in R2 \ R,
gu,ν in R,

is a minimal p-weak upper gradient of u with respect to dμ = dx+ dν. Here ∇u is
the distributional gradient on R2 and gu,ν is the minimal p-weak upper gradient
of u on R with respect to ν. (In this case, g in the proof of Proposition 10.1 consists
of g̃ and an upper gradient approximating gu,ν in Lp(R, ν).) See Proposition 10.6
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below and the comments after it for some results on one-dimensional minimal
p-weak upper gradients for different measures.

Note also that by Corollary 10.4, the p-Friedrichs inequality (2.3) holds for μ,
provided it holds for ν on R. Combined with Proposition 10.6, this provides us
with many examples of nonstandard measures on R2 to which a large part of our
theory applies.

With a little bit more work we can show that the measure dμ = dx + αdx1
on R2 supports a (q, p)-Poincaré inequality as in Definition 2.5, and not only a
p-Friedrichs inequality as in the above remark. Here q = 2p/(2 − p) (for p < 2)
or q <∞ (for p ≥ 2) is the usual Sobolev exponent on R2. We can clearly assume
that q ≥ p. Note however that μ is not doubling and therefore we cannot conclude
the (q, p)-Poincaré inequality directly from the (1, 1)-Poincaré inequality which
would have been somewhat simpler to derive.

To derive the (q, p)-Poincaré inequality, let u∈N1,p(R2, μ) and Q=I × I ′⊂R2,
where I, I ′ ⊂ R are finite intervals of length R. We can assume that 0 ∈ I ′, as
otherwise μ|Q is just the Lebesgue measure on Q. Also let uQ,dμ, uQ,dx and uI,dx1

be the integral averages of u over Q with respect to dμ, dx and dx1, respectively.
Split the left-hand side in the (q, p)-Poincaré inequality as(∫

Q

|u− uQ,dμ|q dμ
)1/q

≤ ‖u− uQ,dx‖Lq(Q,dx) + |Q|1/q|uQ,dx − uQ,dμ|

+ α1/q‖u− uI,dx1‖Lq(I,dx1) + (α|I|)1/q |uI,dx1 − uQ,dμ|,(10.3)

where |Q| and |I| are the two- and one-dimensional Lebesgue measures of Q and I,
respectively. The first and the third term are estimated using the usual Sobolev–
Poincaré inequalities on R2 and R, respectively. For the second term we have
(using the fact that u is absolutely continuous on almost every line parallel to the
x2-axis) that

|uQ,dx − uQ,dμ| =
∣∣∣μ(Q) − |Q|

μ(Q)

∫
Q

u dx− α

μ(Q)

∫
I

u dx1

∣∣∣
≤ α

μ(Q)

∫
I′

∫
I

|u(x1, x2) − u(x1, 0)| dx1 dx2

≤ α

μ(Q)

∫
I

∫
I′
|∂x2u(x1, t)| dt dx1 ≤ α|Q|1−1/p

μ(Q)

(∫
Q

|∇u|p dx
)1/p

.

Similarly,

|uI,dx1 − uQ,dμ| =
∣∣∣μ(Q) − α|I|

μ(Q)

∫
I

u dx1 − 1

μ(Q)

∫
Q

u dx
∣∣∣

≤ |Q|
μ(Q)

∫
I′

∫
I

|u(x1, 0) − u(x1, x2)| dx1 dx2

≤ |I| |Q|1−1/p

μ(Q)

(∫
Q

|∇u|p dx
)1/p

.(10.4)
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Since |∇u| ≤ gu a.e. on R2, |u′| ≤ gu a.e. on R, dx ≤ dμ and αdx1 ≤ dμ,
inserting (10.4) into (10.3) yields(∫

Q

|u− uQ,dμ|q dμ
)1/q

≤ C(R)
(∫

Q

gpu dμ
)1/p

,

where

C(R) = CR(|Q|1/q−1/p + |I|1/q−1/p) +
α|Q|1+1/q−1/p

μ(Q)
+

(α|I|)1/q |I| |Q|1−1/p

μ(Q)
.

As |Q| ≤ μ(Q), |I| = R ≤ μ(Q) and α|Q| ≤ Rμ(Q), this proves the (q, p)-Poincaré
inequality on squares Q ⊂ R2. For balls, using the circumscribed squares, and
Lemma 4.17 in Björn–Björn [6], gives a weak Poincaré inequality with dilation

√
2.

Similar arguments can be used in other situations, in particular on Euclidean
spaces. Here we give a rather general one-dimensional result.

Proposition 10.6. Let μ be a positive locally finite Borel measure on R with the
Lebesgue–Radon–Nikodym decomposition dμ = w dx+dσ, where 0 ≤ w ∈ L1

loc(R) is
locally essentially bounded away from zero and σ ⊥ dx. Then for all u ∈ N1,p(R, μ),
all q ≥ 1 and all finite intervals I ⊂ R,(∫

I

|u− uI,μ|q dμ
)1/q

≤ 2 |I|1−1/p
( μ(I)

ess infI w

)1/p(∫
I

gpu,μ dμ
)1/p

,

where |I| denotes the Lebesgue measure of I. In particular, (R, μ) supports the
p-Friedrichs inequality (2.3).

Moreover, for every u ∈ N1,p(R, μ), the minimal p-weak upper gradient of u
with respect to μ is the function

(10.5) g̃u =

{
|u′| in A,

0 in R \A,
where u′ is the distributional derivative, and A is any maximal null set of the singu-
lar part σ of μ with respect to the Lebesgue measure, i.e., σ(A) = 0 and |R \A| = 0.

Remark 10.7. Since
∫
E g

p
u,μ dμ =

∫
E g

p
u,μw dx, Proposition 10.6 shows that there

is no need to consider measures with a singular part when solving the Dirichlet
problem on R, provided that the measure is locally bounded from below by a posi-
tive multiple of the Lebesgue measure. On the other hand, for obstacle problems it
still makes sense to distinguish between μ and its absolutely continuous part w dx,
since the presence of the singular part σ may influence the capacity Cp and hence
the obstacle condition ψ1 ≤ u ≤ ψ2 q.e.

If μ is not bounded from below by a positive multiple of the Lebesgue measure,
then Proposition 10.6 can fail, as shown by the following examples.

Example 10.8. Let dμ = |x|α dx with α > 2p − 1 and u(x) = |x|−β , where
1 ≤ β < (α + 1)/p− 1. Then u ∈ N1,p

loc (R, μ) and gu,μ = β|x|−β−1, but u is not a
distribution, so gu,μ cannot be its distributional derivative.
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Example 10.9. Let {qj}∞j=1 be a countable dense subset of R and {aj}∞j=1 be

a sequence of positive numbers such that
∑∞

j=1 aj < ∞. Let p ≥ 1, α > p − 1,
0 < ε < 1/α and 1 ≤ β < (α + 1)/p. Then the function

f(x) = 1 +

∞∑
j=1

aj |x− qj |−αε

belongs to L1
loc(R) and is thus finite almost everywhere. Since f ≥ 1 on R, it follows

that w := f−1/ε ∈ L1
loc(R) is positive almost everywhere and w(x) < |x−qj |α/a1/εj

for all j = 1, 2, . . .

Let dμ = w dx and u(x) =
∑∞
j=1 a

1+1/pε
j |x− qj |−β . Since∫ R

−R
(a

1/pε
j |x− qj |−β)p dμ ≤

∫ R

−R
(a

1/pε
j |x|−β)p

|x|α dx
a
1/ε
j

=

∫ R

−R
|x|α−βp dx <∞,

we see that u∈Lploc(R, μ). As
∫ b
a u(x) dx=∞ for every nonempty interval (a, b)⊂R,

Proposition 1.37 (c) in Björn–Björn [6] implies that the family of all rectifiable
curves on R has zero Modp,μ-modulus. It follows that the zero function is a p-weak
upper gradient with respect to μ of every function and henceN1,p(R, μ) = Lp(R, μ).

Proof of Proposition 10.6. Lemma 10.3 implies that u ∈ N1,p
loc (R, dx) and

gu,μ ≥ gu,dx = |u′| = g̃u dx-a.e. in R,

and hence gu,μ ≥ g̃u μ-a.e. in A. Since g̃u = 0 in R\A, we see that gu,μ ≥ g̃u μ-a.e.
in R. Conversely, as u is absolutely continuous on R, the fundamental theorem of
calculus and the fact that g̃u = |u′| dx-a.e. show that for all x ≤ y ∈ R,

|u(x) − u(y)| ≤
∫ y

x

|u′(t)| dt =

∫ y

x

g̃u dt,

i.e., g̃u is an upper gradient of u. Hence gu,μ ≤ g̃u μ-a.e. in R.
The fundamental theorem of calculus again, together with the Hölder inequality

and the Fubini theorem, now yields (with I = (a, b))∫
I

|u(x) − u(a)|q dμ(x) ≤ |I|q−q/p
∫
I

(∫
I

|u′(t)|p dt
)q/p

dμ(x)

≤ |I|q−q/pμ(I)
(∫

I

gpu,μ dt
)q/p

.

Since dt ≤ w−1 dμ, we obtain(∫
I

|u(x) − u(a)|q dμ(x)
)1/q

≤ |I|1−1/p
( μ(I)

ess infI w

)1/p(∫
I

gpu,μ dμ
)1/p

,

and the required inequality then follows by a standard argument in which the
constant u(a) is replaced by the mean value uI,μ; see e.g. Lemma 4.17 in Björn–
Björn [6]. �
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We have seen that our theory can be applied directly to the measure dμ =
dx + αdx1 on R2, or even dμ = dx + w(x1) dx1 for a suitable weight w, and we
can thus study the minimizers of the corresponding energy. It might be of interest
to see which equation they satisfy.

Let Ω ⊂ R2 be a domain. In Ω \ R, a minimizer u with respect to μ is a
minimizer with respect to the ordinary dx measure, and is hence, after redefinition
on a set of capacity zero, a p-harmonic function and thus locally C1,α in Ω \ R.
As u|Ω∩R ∈ N1,p(Ω ∩ R, dx1), u|Ω∩R must be absolutely continuous. Since all the
points in Ω ∩ R are regular boundary points of {(x1, x2) ∈ Ω: ± x2 > 0} (for all
p > 1), it follows that u is continuous across R and thus (after the redefinition
above) u is continuous in Ω.

For simplicity we assume that p = 2. In this case u is harmonic, and thus
real-analytic, in Ω \ R. It locally minimizes the energy∫

((∂1u)2 + (∂2u)2) dx1 dx2 +

∫
(∂1u)2 w dx1.

Therefore u must satisfy the corresponding Euler–Lagrange equation, which in
weak form becomes∫

Ω

∇u · ∇ϕdx1 dx2 +

∫
Ω∩R

∂1u ∂1ϕw dx1 = 0 for all ϕ ∈ C∞
0 (Ω).

Consider a function ϕ(x1, x2)=ϕ1(x1)ϕ2(τx2)∈C∞
0 (Ω), where τ≥1 and ϕ2(0)=1.

Inserting this into the Euler–Lagrange equation gives

∫
R

(∫
R

∂1u(x1, x2)∂1ϕ1(x1) dx1

)
ϕ2(τx2) dx2

(10.6)

+

∫
R

(∫
R

τ∂2u(x1, x2)∂2ϕ2(τx2) dx2

)
ϕ1(x1) dx1 −

∫
Ω∩R

ϕ1∂1(w∂1u) dx1 = 0.

After the change of variables y = τx2, the inner integral in the second term becomes∫
R

∂2u(x1, y/τ)∂2ϕ2(y) dy

which tends to

∂−
2 u(x1, 0)

∫ 0

−∞
∂2ϕ2 dy + ∂+

2 u(x1, 0)

∫ ∞

0

∂2ϕ2 dy = ∂−
2 u(x1, 0) − ∂+

2 u(x1, 0),

as τ → ∞, where ∂±
2 u(x1, 0) = limx2→0± ∂2u(x1, x2). Since the first term in (10.6)

tends to 0, as τ → ∞, we obtain that∫
R

(∂−
2 u(x1, 0) − ∂+

2 u(x1, 0))ϕ1(x1) dx1 −
∫
Ω∩R

ϕ1∂1(w∂1u) dx1 = 0.

Thus u needs to fulfill

∂−
2 u(x1, 0) − ∂+

2 u(x1, 0) = ∂1(w∂1u)(x1, 0) for x1 ∈ Ω ∩ R
(in a weak sense), in addition to being harmonic in Ω \ R. For this derivation we
have assumed that u is sufficiently smooth.
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A. Consequences of the Fuglede and Mazur lemmas

In this appendix we prove two convergence results, which were used in the earlier
sections. They are generalizations to Dirichlet spaces of results from Björn–Björn–
Parviainen [8] (which can also be found in Björn–Björn [6]). Note that these results
hold on arbitrary metric spaces without any additional assumptions.

Proposition A.1. Let fj ∈ Dp(X) have a p-weak upper gradient gj ∈ Lp(X),
j = 1, 2, . . . Assume that fj − f → 0 and gj → g in Lp(X), as j → ∞, and that g

is nonnegative. Then there is a function f̃ = f a.e. such that g is a p-weak upper
gradient of f̃ , and thus f̃ ∈ Dp(X). There is also a subsequence {fjk}∞k=1 such

that fjk → f̃ q.e., as k → ∞.

When we say that fj−f → 0 in Lp(X) we implicitly require that fj−f ∈ Lp(X),
which in particular requires that fj and f are real-valued almost everywhere. Note
that we do not require fj ∈ Lp(X) and can therefore not use Proposition 3.1 in [8]
(nor Proposition 2.3 in [6]).

Proof. By passing to a subsequence if necessary we may assume that fj → f a.e.,
and (by the Fuglede lemma; see Shanmugalingam [36], Lemma 3.4 and Remark 3.5,
or Björn–Björn [6], Lemma 2.1), that

∫
γ
gj ds → ∫

γ
g ds ∈ R, as j → ∞, for all

curves γ /∈ Γ, where Modp(Γ) = 0. Let f̃ = lim supj→∞ fj , and observe that f̃ is

defined at every point of X and f̃ = f a.e. in X . Let A = {x ∈ X : |f̃(x)| = ∞}.
By definition, p-almost every curve γ is such that (2.1) holds for all fj and gj ,

j=1, 2, ..., on γ and all its subcurves, and neither γ nor any of its subcurves belongs
to Γ. Consider such a curve γ : [0, lγ] → X . We see that either γ(0), γ(lγ) ∈ A or

|f̃(γ(lγ)) − f̃(γ(0))| ≤ lim sup
j→∞

|fj(γ(lγ)) − fj(γ(0))| ≤ lim sup
j→∞

∫
γ

gj ds =

∫
γ

g ds.

As μ(A) = 0, Proposition 2.5 in Björn–Björn–Parviainen [8] (or Corollary 1.51 in
Björn–Björn [6]) shows that g is indeed a p-weak upper gradient of f̃ , and thus
f̃ ∈ Dp(X).

Now let f̂ = lim infj→∞ fj. Arguing exactly as above we see that g is also a

p-weak upper gradient of f̂ ∈ Dp(X) and that f̂ = f = f̃ a.e. Hence f̂ = f̃ q.e.,
and thus fj → f̃ q.e., as j → ∞. �

Lemma A.2. Let 1 < p <∞ and f ∈ Dp(X). Assume that gj is a p-weak upper
gradient of uj, j = 1, 2, . . ., and that both sequences {uj − f}∞j=1 and {gj}∞j=1 are
bounded in Lp(X). Then there are functions u and g and convex combinations

vj =
∑Nj

i=j aj,iui with p-weak upper gradients ḡj =
∑Nj

i=j aj,igi, such that

(a) u− f ∈ N1,p(X) and g ∈ Lp(X);

(b) both vj − u→ 0 and ḡj → g in Lp(X), as j → ∞;

(c) vj → u q.e., as j → ∞;

(d) g is a p-weak upper gradient of u.
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Proof. Let wj = uj − f , j = 1, 2, . . . Then gwj ≤ gj + gf and {wj}∞j=1 is bounded

in N1,p(X). Since Lp(X) is reflexive, its unit ball is weakly compact (by the
Banach–Alaoglu theorem) and thus there is a subsequence of {wj}∞j=1 which con-
verges weakly in Lp(X). Taking a subsequence of this subsequence and again using
the Banach–Alaoglu theorem we obtain a subsequence (again denoted {wj}∞j=1)
such that both {wj}∞j=1 and {gj}∞j=1 converge weakly in Lp(X) say to w and g.
As gj, j = 1, 2, . . ., are nonnegative we may choose g nonnegative.

Applying the Mazur lemma (see, e.g., Yosida [38], pp. 120–121) repeatedly to

the sequences {wi}∞i=j , j ≥ 1, we find convex combinations w′
j =

∑N ′
j

i=j a
′
i,jwi such

that ‖w′
j−w‖Lp(X) < 1/j. Let v′j = w′

j+f =
∑N ′

j

i=j a
′
i,jui. Then g′j :=

∑N ′
j

i=j a
′
i,jgi is

a p-weak upper gradient of v′j . Since moreover g′j → g weakly in Lp(X), as j → ∞,
we can again apply the Mazur lemma (repeatedly) to obtain convex combinations

vj =
∑Nj

i=j ai,jui with p-weak upper gradients ḡj =
∑Nj

i=j ai,jgi such that vj−v → 0
and ḡj → g in Lp(X), as j → ∞. By Proposition A.1, there is a function u = v
a.e. satisfying (b)–(d).

As g + gf ∈ Lp(X) is a p-weak upper gradient of u − f ∈ Lp(X), we see that
u− f ∈ N1,p(X). �

B. The variational capacity capp on nonopen sets

In this appendix we define the variational capacity with respect to nonopen sets,
which was used to prove the Adams criterion in Section 6. We also state those
properties of the variational capacity that we have needed in this paper. For proofs
of Lemma B.2 and Theorem B.3, and a considerably more extensive discussion, we
refer to Björn–Björn [7].

Let E ⊂ X be a nonempty bounded set.

Definition B.1. For an arbitrary set A ⊂ E we define the variational capacity

capp(A,E) = inf

∫
X

gpu dμ,

where the infimum is taken over all u ∈ N1,p
0 (E) (extended by 0 outside E) such

that u ≥ 1 on A.

The infimum can equivalently be taken over all nonnegative u ∈ N1,p
0 (E) such

that u = 1 on A. If E is measurable we can also equivalently integrate over E
instead of X . The variational capacity capp(A,E) can also be regarded as the
condenser capacity capp(X \ E,A,X), as in Definition 5.12.

Note that as N1,p
0 (E) ⊂ N1,p(X), it is natural to consider the minimal p-weak

upper gradient gu with respect to X . On the other hand, by Proposition 3.10,
gu = gu,E in this case (if E is measurable).

Lemma B.2. Assume that X supports the p-Friedrichs inequality (2.3) and that
Cp(X \ E) > 0. Let A ⊂ E. Then Cp(A) = 0 if and only if capp(A,E) = 0.
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Theorem B.3.

(i) If A1 ⊂ A2 ⊂ E, then capp(A1, E) ≤ capp(A2, E);

(ii) capp is countably subadditive, i.e., if A1, A2, . . . ⊂ E, then

capp

( ∞⋃
i=1

Ai, E
)
≤

∞∑
i=1

capp(Ai, E);

(iii) if 1 < p <∞ and A1 ⊂ A2 ⊂ · · · ⊂ E, then

capp

( ∞⋃
i=1

Ai, E
)

= lim
i→∞

capp(Ai, E).

Observe the following more or less direct consequence of Theorem 7.3. We leave
the proof to the reader.

Proposition B.4. Assume that X is complete and supports a (1, p)-Poincaré
inequality, that μ is doubling and that p > 1. Let E ⊂ X be bounded and let A ⊂ E.
Then

capp(A,E) =

{
capp(A ∩ fine-intE, fine-intE), if Cp(A \ fine-intE) = 0,

∞, if Cp(A \ fine-intE) > 0.
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