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Interpolation of ideals

Mart́ın Avendano and Jorge Ortigas-Galindo

Abstract. Let K denote an algebraically closed field. We study the
relation between an ideal I ⊆ K[x1, . . . , xn] and its cross sections Iα =
I + 〈x1 − α〉. In particular, we study under what conditions I can be
recovered from the set IS = {(α, Iα) : α ∈ S} with S ⊆ K. For instance,
we show that an ideal I =

⋂
i Qi, whereQi is primary andQi∩K[x1] = {0},

is uniquely determined by IS when |S| = ∞. Moreover, there exists a
function B(δ, n) such that, if I is generated by polynomials of degree at
most δ, then I is uniquely determined by IS when |S| ≥ B(δ, n). If I is
also known to be principal, the reconstruction can be made when |S| ≥ 2δ,
and in this case, we prove that the bound is sharp.

1. Introduction

Throughout this paper K will be an algebraically closed field. The main result
regarding univariate polynomial interpolation states that for any given d+1 points
{(αi, βi) ∈ K2 : i = 1, . . . , d+1} there exists a unique polynomial p ∈ K[x] of degree
less than or equal to d such that f(αi) = βi for i = 1, . . . , d+1. The uniqueness part
of this statement says that a planar algebraic curve C = {(x, y) ∈ K2 : y = p(x)} of
degree at most d is uniquely determined by its intersection with d+1 parallel lines
{x = αi}. In this paper we study generalizations of this fact to higher dimensions,
i.e., we study under what conditions it is possible to recover an algebraic variety
V ⊆ Kn from its intersection with parallel hyperplanes. We also consider the
algebraic counterpart of the problem, i.e., under what conditions it is possible to
recover an ideal I ⊆ K[x1, . . . , xn] from some cross sections I + 〈x1 −α〉. Our first
result studies the simplest situation, when all the cross sections are known:

Theorem 1.1. Let I ⊆ K[x1, . . . , xn] be an ideal. Then:

(a)
√
I =

⋂
α∈K

√
I + 〈x1 − α〉.
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(b) I =
⋂
α∈K

⋂
k≥1

I + 〈x1 − α〉k.

For radical ideals I ⊆ K[x1, . . . , xn], Theorem 1.1 (a) implies that I =
⋂

α∈K
I+

〈x1 − α〉, since

I ⊆
⋂
α∈K

I + 〈x1 − α〉 =
⋂
α∈K

√
I + 〈x1 − α〉 ⊆(1.1)

⊆
⋂
α∈K

√
I + 〈x1 − α〉 1.1(a)

=
√
I = I.

However, this reconstruction formula is not valid for general ideals. For example
I = 〈xy〉 and J = 〈x2y〉 are distinct ideals of K[x, y] that have exactly the same
cross sections I + 〈x−α〉 = J + 〈x−α〉 for all α ∈ K. Theorem 1.1 (b) shows that
this problem can be avoided by including powers of the ideals 〈x1−α〉. Informally
speaking, these powers account for the multiplicities hidden in I that are not visible
geometrically in V (I).

Our second result corresponds with the situation where infinitely many cross
sections are known, i.e., the problem of recovering an ideal I from the set IS =
{(α, I+ 〈x1−α〉) : α ∈ S}, where S ⊆ K is infinite. In this case, only varieties with
no irreducible component included in a hyperplane {x1 = α} can be reconstructed.
These varieties, as we show in section 2, correspond exactly with those given by
ideals in good position according to the following definition.

Definition 1.2. Let I ⊆ K[x1, . . . , xn] be an ideal. We say that I is in good
position geometrically (with respect to the variable x1) if

√
I =

⋂r
i=1 Pi for some

prime ideals Pi such that Pi ∩ K[x1] = {0}. Similarly, we say that I is in good
position algebraically (with respect to x1) if I =

⋂r
i=1 Qi for some primary idealsQi

such that Qi ∩K[x1] = {0}.

Any ideal whose variety has no zero-dimensional component can be rotated with
a suitable linear change of variables in such a way that the resulting ideal is in
good position geometrically. Similarly, ideals with no embedded zero-dimensional
component can be put in good position algebraically through a linear change of
coordinates.

Theorem 1.3. Let I ⊆ K[x1, . . . , xn] be an ideal and let S ⊆ K be an infinite set.
Then:

(a) I is in good position geometrically with respect to x1 ⇒
√
I=

⋂
α∈S

√
I + 〈x1−α〉.

(b) I is in good position algebraically with respect to x1 ⇒ I =
⋂

α∈S

I + 〈x1 − α〉.

For radical ideals I ⊆ K[x1, . . . , xn] in good position geometrically, we can show
that I =

⋂
α∈S I + 〈x1 − α〉 for any infinite set S ⊆ K, using an argument similar
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to that yielding (1.1):

I ⊆
⋂
α∈S

I + 〈x1 − α〉 =
⋂
α∈S

√
I + 〈x1 − α〉 ⊆(1.2)

⊆
⋂
α∈S

√
I + 〈x1 − α〉 1.3(a)

=
√
I = I.

Finally, our third result studies the possibility of reconstructing a variety (or
an ideal) from finitely many cross sections.

Theorem 1.4. Let I = 〈f1, . . . , fr〉 ⊆ K[x1, . . . , xn] be an ideal, let S ⊆ K be a
finite set, and let f ∈ K[x1, . . . , xn] satisfy deg(f) ≤ d. Let δ = max{deg(fi) : i =
1, . . . , r}.
(a) I is in good position geometrically with respect to x1 and |S| > (d+1) deg(V (I)).

Then
f ∈

√
I ⇐⇒ f ∈

√
I + 〈x1 − α〉 ∀α ∈ S,

where deg(V (I)) is the maximum of the degrees of the irreducible components
of V (I).

(b) I is in good position algebraically with respect to x1 and

|S| > ((
d+ 2(δr)2

n−1)n
+ 1

)
max{d, δ},

then
f ∈ I ⇐⇒ f ∈ I + 〈x1 − α〉 ∀α ∈ S.

The conclusion of Theorem 1.4 (b) can be written as

I ∩ {f : deg(f) ≤ d} =
⋂
α∈S

(I + 〈x1 − α〉) ∩ {f : deg(f) ≤ d},

where S ⊆ K has at least
((
d + 2(δr)2

n−1)n
+ 1

)
max{d, δ} + 1 elements. In this

formulation, both sides of the equality are K-vector spaces of dimension at most(
d+n
n

)
, and in the case where d = δ, they include the generators of I. In particular,

it is possible to compute generators of I as the basis of the K-vector space
⋂

α∈S(I+
〈x1 − α〉) ∩ {f : deg(f) ≤ δ} when

(1.3) |S| >
((

δ + 2
(
δ
(
δ+n
n

))2n−1)n

+ 1
)
δ.

The same conclusion is achieved with the simpler bound |S| ≥ (δ+ n)(n+1)22n ,
that overestimates bound (1.3) while keeping its order of magnitude. It should be
noted that, when the number n of variables is fixed, the bound depends polyno-
mially on δ.

Theorem 1.4 can be used to reduce the problem of ideal membership [8] (for ide-
als with no zero-dimensional components) to several instances of the same problem
with one variable less. The idea is to make first a linear change of coordinates to put
the ideal in good position, and then use the theorem to reduce the problem to a
large enough number of cross sections. In the geometric case, one can easily check
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whether a polynomial f of degree d vanishes on a given algebraic variety V , by
simply testing if f vanishes on (d+ 1) deg(V ) cross sections of V .

In [2], the authors prove that the ideal I(V ) of a smooth irreducible variety V
is generated by polynomials of degree at most deg(V ). They also provide a proba-
bilistic method for computing those generators. Theorem 1.4 (a) can be used as an
alternative procedure to compute the generators of I(V ), by iteratively reducing
the number of variables and the dimension of V , until there is obtained a zero-
dimensional variety, to which we can apply [1] or [6]. At each iteration we change
the problem by (deg(V ) + 1)2 problems in one variable less.

In the case of principal ideals, we obtained a much better bound, as shown in
the following theorem.

Theorem 1.5. Let I = 〈f〉 ⊆ K[x1, . . . , xn] be a principal ideal generated by
a nonzero polynomial of degree at most d. Assume that f 
∈ K[x1]. Let Ik =
I + 〈x1 −αk〉 for k = 1, . . . , 2d, where α1, . . . , α2d ∈ K are pairwise distinct. Then
the ideal I can be reconstructed uniquely from the pairs (αk, Ik).

Note that the information that I is principal has to be known a priori. In Ex-
ample 4.2 we exhibit two principal ideals I, J ⊆ C[x, y], generated by polynomials
of degree d, and 2d−1 points α1, . . . , α2d−1 ∈ C, such that I+〈x−αi〉 = J+〈x−αi〉
for all i = 1, . . . , 2d − 1. This shows that the bound of Theorem 1.5 cannot be
improved.

2. Interpolation of ideals and algebraic varieties

Proposition 2.1. Let I ⊆ K[x1, . . . , xn] be a radical ideal. Then

I =
⋂
α∈K

I + 〈x1 − α〉.

Proof. The forward inclusion (⊆) is trivial. The backwards inclusion (⊇) is proved
in the following way. Let f ∈ ⋂

α∈K
I + 〈x1 − α〉 and p = (p1, . . . , pn) ∈ V (I).

Since f ∈ I + 〈x1 − p1〉, there are g ∈ I and q ∈ K[x1, . . . , xn] such that f =
g + (x1 − p1)q. Therefore f(p) = g(p) + (p1 − p1)q(p) = 0. This implies that
f ∈ I(V (I)) =

√
I = I. �

The same technique can be used to prove Theorem 1.1 (a), which is slightly
stronger than Proposition 2.1, since the ideal

√
I + 〈x1 − α〉 contains the ideal

I + 〈x1 − α〉 for all α ∈ K.

Proof of Theorem 1.1 (a). The forward inclusion (⊆) is trivial. The backwards
inclusion (⊇) is proved in the following way. Let f ∈ ⋂

α∈K

√
I + 〈x1 − α〉 and

p = (p1, . . . , pn) ∈ V (I). There exists k ≥ 1 such that fk ∈ I + 〈x1 − p1〉. This
means that fk can be written as fk = g + (x1 − p1)q for some g ∈ I and q ∈
K[x1, . . . , xn]. Evaluating at the point p, we get fk(p) = g(p) + (p1 − p1)q(p) = 0,
and then f(p) = 0. This implies that f ∈ I(V (I)) =

√
I. �
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The two proofs given above also follow from the fact that V (I+J) = V (I)∩V (J)
for any ideals I, J ∈ K[x1, . . . , xn] and the easy fact that if a function is zero on
all the cross sections of a variety then it is zero over the whole variety.

Lemma 2.2. Let I⊆ K[x1, . . . , xn] be an ideal and let f, g∈K[x1] with gcd(f, g)=1.
Then

(I + 〈f〉) ∩ (I + 〈g〉) = I + 〈fg〉.

Proof. The backwards inclusion (⊇) is trivial. The forward inclusion (⊆) is proved
in the following way. Take h ∈ (I + 〈f〉) ∩ (I + 〈g〉). We can write h = h1 + ff ′ =
h2+ gg′ with h1, h2 ∈ I and f ′, g′ ∈ K[x1, . . . , xn]. Let a, b ∈ K[x1] be polynomials
such that af + bg = 1. Since ff ′ = h2 − h1 + gg′, then aff ′ = a(h2 − h1) + agg′,
and also f ′ = a(h2−h1)+ g(ag′+ bf ′). This implies that ff ′ ∈ I+ 〈fg〉, and since
h1 ∈ I, we conclude that h = h1 + ff ′ ∈ I + 〈fg〉. �

Lemma 2.2 allows us to rewrite the conclusion of Proposition 2.1 as

I ⊆ K[x1, . . . , xn] radical =⇒ I =
⋂

p∈K[x1]\{0}
squarefree

I + 〈p〉.

Proposition 2.1 does not work for general ideals. For instance, the ideal I =
〈x2

1x2〉 and J = 〈x1x2〉 satisfy I+ 〈x1−α〉 = J+ 〈x1−α〉 for all α ∈ K, but I 
= J .
Theorem 1.1 (b) shows that this problem can be avoided by considering arbitrarily
large powers of x1 − α.

Proof of Theorem 1.1 (b). Let P denote the set of nonzero polynomials in K[x1].
By Lemma 2.2 it is enough to show that I =

⋂
p∈P I + 〈p〉. We show first that

the we can reduce the proof to the case where I is a primary ideal. Indeed,
if I = Q1 ∩ · · · ∩Qr with Qi primary ideals, then

I ⊆
⋂
p∈P

I + 〈p〉 =
⋂
p∈P

((Q1 ∩ · · · ∩Qr) + 〈p〉)

⊆
⋂
p∈P

((Q1 + 〈p〉) ∩ · · · ∩ (Qr + 〈p〉)) =
r⋂

i=1

⋂
p∈P

(Qi + 〈p〉) =
r⋂

i=1

Qi = I.

If there is a nonzero polynomial q in I pure in x1, then it is clear that

I ⊆
⋂
p∈P

I + 〈p〉 ⊆ I + 〈q〉 = I.

This reduces the proof to the case of primary ideals I such that I ∩K[x1] = {0}.
Take I a primary ideal with I ∩ K[X1] = 0. Let f ∈ I + 〈p〉. For all p ∈ P

we can write f = fp + pgp with fp ∈ I and gp ∈ K[x1, . . . , xn]. Now we compare
the two representations of f with subindices p and pq for p, q ∈ P . We have that
f = fp + pgp = fpq + pqgpq. This implies that p(gp − qgpq) ∈ I and, since p /∈ √

I,
we get gp − qgpq ∈ I, and also that gp ∈ I + 〈q〉. Write J =

⋂
p∈P I + 〈p〉. The
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previous discussion proves that J ⊆ ⋂
p∈P(I + 〈p〉J), and since the other inclusion

is trivial, we obtain

(2.1) J =
⋂
p∈P

(I + 〈p〉J) .

Now we localize (2.1) at the maximal ideal M = 〈x1 − α1, . . . , xn − αn〉 ∈
K[x1, . . . , xn]. We obtain

JM =
(⋂
p∈P

(I + 〈p〉J)
)
M

⊆
⋂
p∈P

(I + 〈p〉J)M ⊆
⋂
p∈P

(IM + 〈p〉JM) ⊆ JM.

Now we have JM =
⋂

p∈P IM + 〈p〉JM as K[x1, . . . , xn]M-modules. This inter-
section can be rewritten as

JM =
( ⋂

p∈P
p(α1)=0

IM + 〈p〉JM
)
∩
( ⋂

p∈P
p(α1)�=0

IM + 〈p〉JM
)
= J ′ ∩ J ′′ .

For any p ∈ P such that p(α1) 
= 0, we have that 〈p〉 = 〈1〉 in K[x1, . . . , xn]M
and consequently IM + 〈p〉JM = JM. Therefore J ′′ = JM. For any p ∈ P with
p(α1) = 0, we have that 〈p〉 ⊆ 〈x1 − α1〉, and therefore J ′ ⊆ IM + 〈x1 − α1〉JM.
All together, this shows that JM = J ′ ∩ J ′′ ⊆ IM + 〈x1 −α1〉, and by Nakayama’s
lemma, JM = IM. Since this is true for any maximal ideal M, it follows from the
global-local principle that I = J . �

Theorem 1.1 (b) is the algebraic counterpart of the more geometrically intuitive
Proposition 2.1 and Theorem 1.1 (a). These results show that ideal reconstruction
is possible if we are given all the cross sections. Indeed, it is possible to recover
ideals (with no vertically embedded components) with infinitely many sections,
as we show below. The extra assumption is necessary, as shown by the ideals
I = 〈(x+y)2, (x+y)x〉 = 〈x+y〉∩〈x, y〉 and J = 〈x+y〉 which satisfy I+〈x−α〉 =
J + 〈x− α〉 = 〈x+ y, x− α〉 for all α 
= 0, but are not equal. The problem in this
example comes from the embedded component {(0, 0)} of I, corresponding to the
primary ideal 〈x, y〉, that is invisible to all the vertical planes {x = α} with α 
= 0.

Lemma 2.3. Let A(t) ∈ K[t]N×M and b(t) ∈ K[t]N×1.

1. If (A(t)|b(t)) is incompatible in K(t) then (A(α)|b(α)) is compatible in K for
only finitely many α ∈ K.

2. If (A(t)|b(t)) is compatible in K(t) then (A(α)|b(α)) is compatible in K for
all but finitely many α ∈ K.

3. Assume that deg(Aij), deg(bi) ≤ d for all 1 ≤ i ≤ N and 1 ≤ j ≤ M . Let
S ⊆ K with |S| > dmax{N,M + 1}. Then (A(t)|b(t)) is compatible if and
only if (A(α)|b(α)) is compatible for all α ∈ S.

Proof. The rank of any matrix with coefficients in K[t] is the size of the largest
submatrix with nonzero determinant. Since the determinant of that submatrix is a
polynomial in t, its evaluation at α is nonzero for almost every α ∈ K. The first two
statements follow immediately from that remark and the fact that a system (A|b)
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is compatible if and only if rank(A|b) = rank(A). For the last item, note that
the degree of the determinant of any square submatrix of (A(t)|b(t)) has degree at
most dmax{N,M + 1}. �

Theorem 2.4. Let I = 〈f1, . . . , fr〉 ⊆ K[x1, . . . , xn] be an ideal with deg(fi) ≤ δ
for i = 1, . . . , r, and let f ∈ I. Then there exists g1, . . . , gr ∈ K[x1, . . . , xn] such

that f = g1f1 + · · ·+ frgr and deg(gi) ≤ deg(f) + 2(rδ)2
n−1

.

Proof. See the application of Theorem 3 in [4]. �

Lemma 2.5. Let I ⊆ K[x1, . . . , xn] be a primary ideal with I ∩K[x1] = {0}. Then
(I + 〈x1 − t〉) ∩K[x1, . . . , xn] = I ,

where I + 〈x1 − t〉 is regarded as an ideal of K(t)[x1, . . . , xn].

Proof. The backwards inclusion (⊇) is trivial. The forward inclusion (⊆) is proved
in the following way. Assume that I = 〈f1, . . . , fr〉 with fi ∈ K[x1, . . . , xn]. Take
f ∈ K[x1, . . . , xn] and suppose that it can be written as f = f1g1 + · · · + frgr
+(x1 − t)g, with gi ∈ K(t)[x1, . . . , xn]. Clearing denominators by multiplying
by ω(t) ∈ K[t] gives ω(t)f = f1ḡ1 + · · · + fr ḡr + (x1 − t)ḡ, where ḡ1, . . . , ḡr, ḡ ∈
K[t, x1, . . . , xn]. Since f1, . . . , fr, f do not involve the variable t, substituting t = x1

gives ω(x1)f ∈ I. Moreover, ω(x1) /∈ √
I because I∩K[x1] = 0. Since I is primary,

we conclude that f ∈ I. �

We start with a simplified version of Theorem 1.3 (b) for primary ideals.

Theorem 2.6. Let I ⊆ K[x1, . . . , xn] be a primary ideal with I ∩K[x1] = {0} and
let S ⊆ K be an infinite set. Then

I =
⋂
α∈S

I + 〈x1 − α〉.

Proof. Assume that I = 〈f1, . . . , fr〉, with fi ∈ K[x1, . . . , xn], and consider f ∈
K[x1, . . . , xn]. Define C = deg(f) + 2((r + 1)δ)2

n−1

, where

δ = max{1, deg(f1), . . . , deg(fr)}.
For a given α ∈ K, we have that f ∈ I + 〈x1 − α〉 if and only if there exist
g1, . . . , gr, g ∈ K[x1, . . . , xn] with degrees at most C such that f = f1g1+· · ·+frgr+
(x1−α)g, by Theorem 2.4. This is a linear system of equations with coefficients that
depend polynomially on α. By Lemma 2.3, if this system is compatible for infinitely
many α, then it is compatible in K(α), where α is regarded as an indeterminate.
Conversely, if the system is incompatible for infinitely many values of α, then it is
also incompatible in K(α). All together this says that

f ∈
⋂
α∈S

I + 〈x1 − α〉 ⇐⇒ f ∈ I + 〈x1 − t〉 ⊆ K(t)[x1, . . . , xr].

We conclude the proof by using Lemma 2.5. �

At this point we have all the tools needed to show the main result of this
section.
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Proof of Theorem 1.3 (b). The forward inclusion (⊆) is trivial. The backwards
inclusion (⊇) is proved in the following way. Assume that I =

⋂r
i=1 Qi with Qi

primary and Qi ∩K[x1] = {0}. We have that

⋂
α∈S

I + 〈x1 − α〉 =
⋂
α∈S

[( r⋂
i=1

Qi

)
+ 〈x1 − α〉

]

⊆
⋂
α∈S

r⋂
i=1

(Qi + 〈x1 − α〉) =
r⋂

i=1

⋂
α∈S

(Qi + 〈x1 − α〉).

By Theorem 2.6, the last term of the previous chain of inclusions equals
r⋂

i=1

Qi = I.

�

Theorem 2.7. Let I = 〈f1, . . . , fr〉 ⊆ K[x1, . . . , xn] be an ideal with deg(fi) ≤ δ
for i = 1, . . . , r, and let f ∈ √

I with deg(f) ≤ δ. Then there exist g1, . . . , gr, g ∈
K[t, x1, . . . , xn] such that 1 = g1f1+ · · ·+ frgr+(1− tf)g, with deg(gi) and deg(g)
no greater than max{3, δ + 1}n+1.

Proof. See Theorem 1.5 in [7]. See also [3], Theorem 1.1 in [5], or Theorem 1 in [9]
for alternative proofs. �

A conclusion similar to that of Theorem 2.7 can be obtained from Theorem 2.4,
but with a worse bound. Although any finite bound would have been enough
to show the following theorem, we included it here since it gives an idea of the
computational complexity of the linear algebra problem involved in the proof.

Proof of Theorem 1.3 (a). The forward inclusion (⊆) is trivial. The backwards
inclusion (⊇) is proved in the following way. Assume that I = 〈f1, . . . , fr〉 with
fi ∈ K[x1, . . . , xn]. Take f ∈ ⋂

α∈S

√
I + 〈x1 − α〉 and let

δ = max{deg(f), degi=1,...,r(fi)}.
Define C = max{3, δ+1}n+1, the constant of Theorem 2.7. For all α ∈ S, the linear
system 1 = f1g1+ · · ·+frgr+(x1−α)h+(1−tf)g with deg(g), deg(h), deg(gi) ≤ C
is compatible in K, i.e., there are g1, . . . , gr, g, h ∈ K[x1, . . . , xn], that depend on α,
such that 1 = f1g1+ · · ·+frgr+(x1−α)h+(1−tf)g. By Lemma 2.3, the system is
also compatible over K(α), where α is regarded as an indeterminate. This means
that, in the expression above, g1, . . . , gr, h, g can be taken in K(α)[t, x1, . . . , xn].
Multiplying by ω(α) in order to clear denominators, we get

ω(α) = f1ḡ1 + · · ·+ grḡr + (x1 − t)h̄+ (1− tf)ḡ ,

where ḡ1, . . . , ḡr, h̄, ḡ ∈ K[α, t, x1, . . . , xn]. Substituting α = x1, we get

ω(x1) = f1g̃1 + · · ·+ frg̃r + (1− tf)g̃ ,

where g̃1, . . . , g̃r, g̃ ∈ K[t, x1, . . . , xn]. Finally, substituting t = 1/f and removing
denominators by multiplying by a large enough power of f , we obtain fNω(x1) ∈ I.
Since

√
I = P1∩· · ·∩Ps with Pi prime and Pi∩K[x1] = 0, we have that ω(x1) /∈ Pi

and therefore f ∈ Pi for all i. This implies that f ∈ I. �
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3. Recovering an ideal from finitely many cross sections

Let I = 〈f1, . . . , fr〉 ⊆ K[x1, . . . , xn] be an ideal and let α ∈ K. Throughout this
section we will use the notation

I|x1=α = 〈f1|x1=α, . . . , fr|x1=α〉 ⊆ K[x2, . . . , xn].

Theorem 3.1. Let I ⊆ K[x1, . . . , xn] be an ideal such that:

• V (I) is equidimensional.

• V (I) has no irreducible component contained in a hyperplane {x1 = α}.
Let f ∈ K[x1, . . . , xn] satisfy deg(f) ≤ d. Then

f ∈
√
I ⇐⇒ f |x1=α ∈

√
I|x1=α

for all α ∈ S with |S| > (d+ 1) deg(V (I)).

Proof. The forward implication (⇒) is trivial. The backwards implication (⇐) is
proved in the following way. We proceed by induction on dim(V (I)).

Case dim(V (I)) = 1. We have that V (I) is a union of irreducible curves
C1 ∪ · · · ∪ Cm. Our assumptions imply that f vanishes on V (I) ∩ {x1 = α} for all
α ∈ S, and in particular, f vanishes on Ci∩{x1 = α} for all α ∈ S and i = 1, . . . ,m.
We know that |Ci ∩ {x1 = α}| ≥ 1 for all α except maybe for those values where
the compactification of Ci in P

n intersects the hyperplane {x1 = α} at infinity.
Since there are at most deg(V (I)) such points, we have |V (f) ∩ Ci| > deg(V (I))d.
By Bezout’s theorem (see Theorem 2.1 in [10]), we have that either |V (f) ∩ Ci| ≤
deg(V (I))d or f vanishes on Ci. We have shown above that the former cannot
happen, so we conclude that f ∈ I(Ci) for all i = 1, . . . ,m. Therefore f ∈ √

I.

Case dim(V (I)) = e > 1. Assume the theorem is true for dim(V (I)) ≤ e − 1.
Without loss of generality we can assume that, after a suitable linear change of
coordinates, there exist an infinite set Ω ⊆ K such that the ideals I|x2=β satisfy

◦ deg(V (I)) = deg(V (I|x2=β)),

◦ V (I|x2=β) is equidimensional,

◦ dim(V (I|x2=β)) = dimV (I)− 1 ≥ 1,

◦ V (I|x2=β) has no irreducible component contained in any hyperplane {x1 = α},
for all β ∈ Ω. In particular, the ideals I|x2=β satisfy the induction hypothesis

with dim(V (I|x2=β)) = e − 1. If f |x1=α ∈ √
I|x1=α for α ∈ S with |S| > (d + 1)

· deg(V (I)), then we also have that f |x1=α, x2=β ∈ √
I|x1=α, x2=β . Consequently,

f |x2=β ∈ √
I|x2=β for all β ∈ Ω. By Theorem 1.3 (a), we conclude that f ∈⋂

β∈S

√
I + 〈x2 − β〉 = √

I. �

Now Theorem 1.4 (a) follows as a corollary.
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Proof of Theorem 1.4 (a). Our assumptions imply that

V (I) = V = V1 ∪ V2 ∪ . . . ∪ Ve ,

where e = dimV and the Vi are equidimensional varieties of dimension i, none of
them included in a hyperplane {x1 = α}. The following diagram holds:

f |V ≡ 0
��

∀i
��

�� �� f |V ∩{x1=α} ≡ 0

f |Vi ≡ 0 �� (∗) �� f |Vi∩{x1=α} ≡ 0
��

∀i
∀α∈S

��

The arrow (∗) follows from Theorem 3.1. By the Nullstellensatz, the arrow on
top is equivalent to the claim that f ∈ I ⇐⇒ f ∈ √

I + 〈x1 − α〉 ∀α ∈ S. �

In the algebraic case, we proceed as in the proof of Theorem 1.3 (b), but keeping
track of the bounds on the degrees.

Proof of Theorem 1.4 (b). Assume that I =
⋂l

i=1 Qi, where the Qi are primary
ideals with Qi ∩ K[x1] = {0}. By Theorem 2.4, we have that f ∈ I if and only

if there exist g1, . . . , gr ∈ K[x1, . . . , xn] with deg(gi) ≤ d + 2(δr)2
n−1

such that
f = f1g1 + · · ·+ frgr. This equation can be regarded as the linear system

(3.1) f ∈ I ⇐⇒ A(x1)G = b(x1)

of equations in K[x1], where A(x1) and b(x1) are matrices whose entries are
the coefficients of f1, . . . , fr and f respectively. The unknowns are the coeffi-
cients of g, represented by the vector G. Therefore f ∈ I if and only if the
system (3.1) is compatible in K[x1]. Thanks to the hypothesis of good posi-
tion this is equivalent to being compatible in K(x1). By Lemma 2.3, the sys-
tem (3.1) is compatible if and only if the system (A(α)|b(α)) is compatible for
α ∈ S with |S| > max{d, δ}max{rows(A), cols(A) + 1}. Using Theorem 2.4 again,
each of these systems is compatible if and only if f |x1=α ∈ I|x1=α, or equivalently,
f ∈ I + 〈x1 − α〉. The result follows by counting the number of rows and columns

of A. One obtains rows(A) ≤ dn and cols(A) ≤ (d+ 2(δr)2
n−1

)n. �

4. Principal ideals

Remark 4.1. Let I = 〈f〉 ⊆ K[x1, . . . , xn] be a principal ideal, and let J = I +
〈x1 −α〉 with α ∈ K. Then J ∩K[x2, . . . , xn] = 〈f(α, x2, . . . , xn)〉 in K[x2, . . . , xn].

Proof of Theorem 1.5. Throughout this proof we will write x = x1 and y = (x2, . . . ,
xn). We will order the monomials in y using the graded lexicographic order
x2 > x3 > · · · > xn. Let

f =
∑

i : |i|≤d

ai(x)y
i,
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where i = (i2, . . . , in), y
i = xi2

2 · · ·xin
n , and |i| = i2 + · · ·+ in. By Remark 4.1, for

any k = 1, . . . , 2d, we have that

Ik ∩K[y] = 〈f, x− αk〉 ∩K[y] = 〈gk〉,

where gk = λkf(αk, y) has leading coefficient 1 and λk ∈ K
∗. The following

identities show that it is possible to recover multidegy(f) from the gk:

e = multidegy(f) = max{i : ai(x) 
= 0} (∗)
= max{i : ai(αk) 
= 0 for some k}

= max
k=1,...,2d

(max{i : ai(αk) 
= 0}) = max
k=1,...,2d

multidegy(f(αk, y))

= max
k=1,...,2d

multidegy(gk).

The equality (∗) is true since deg(ai) ≤ d− |i| < 2d.
Now we know that f =

∑
i≤e ai(x)y

i with ae 
= 0. Since f 
∈ K[x], then |e| ≥ 1.
The polynomial ae(x) vanishes on exactly r ≤ d − |e| points in {α1, . . . , α2d}.
Without loss of generality we can assume ae(α2d−r+1) = · · · = ae(α2d) = 0, i.e.,

(4.1) ae(x) = ãe(x) ·
2d∏

l=2d−r+1

(x− αl),

where ãe ∈ K[x] has degree at most d − |e| − r. Since the polynomials gk =
λkf(αk, y) have leading coefficients 1, λk = 1/ae(αk) for k = 1, . . . , 2d − r. In
particular, the coefficients of gk, which are all known, are equal to ai(αk)/ae(αk)
for 1 ≤ k ≤ 2d− r and 0 ≤ i ≤ e. Combining this with equation (4.1), we obtain
the fractions

ai(αk)

ãe(αk)
=

ai(αk)

ae(αk)
·

2d∏
l=2d−r+1

(αk − αl).

Since deg(ai) ≤ d − |i| and deg(ãe) ≤ d − |e| − r, it is possible to reconstruct
the rational function ai(x)/ãe(x) from the 2d − r ≥ 2d − |i| − |e| − r + 1 points
α1, . . . , α2d−r using rational interpolation. �

The following example shows that 2d− 1 cross sections are not enough.

Example 4.2. Consider the polynomials f = p(x)y + 1 and g = a(x)y + b(x),
where p(x) = xd, a(x) = −xd−1 + 22d−1, and b(x) = xd − 1. The ideals I = 〈f〉
and J = 〈g〉 are both principal, generated by polynomials of degree d, and clearly
satisfy I 
= J . Let αi = 2ξi2d−1, where ξ2d−1 ∈ C is a primitive (2d − 1)st root of
unity. The ideals I + 〈x − αi〉 and J + 〈x − αi〉 are equal for i = 1, . . . , 2d − 1.
Indeed, a simple computation shows that (2d ξid2d−1 − 1)f(αi, y) = g(αi, y).
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