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On the relation between conformally invariant

operators and some geometric tensors

Paolo Mastrolia and Dario D. Monticelli

Abstract. In this note we introduce and study some new tensors on gen-
eral Riemannian manifolds which provide a link between the geometry of
the underlying manifold and conformally invariant operators (up to order
four). We study some of their properties and their relations with well-
known geometric objects, such as the scalar curvature, the Q-curvature,
the Paneitz operator and the Schouten tensor, and with the elementary
conformal tensors

{
T u
m,α

}
and

{
Xu

m,μ

}
on Euclidean space introduced

in [7] and [6].

1. Introduction and statement of results

In [7] and [6] we have recently given (in collaboration with Y.Y. Li) a complete
characterization of fully nonlinear conformally invariant differential operators of
any integer order on R

n, which extends the result proved for second order oper-
ators by A. Li and Y.Y. Li in [5]. In particular, there we proved existence and
uniqueness of families of tensors, which we denote by

{
T u
m,α

}
and

{
Xu

m,μ

}
, for

m ∈ N, m ≥ 2 and α, μ �= 0, that are suitably invariant under Möbius transfor-
mations and that are the basic building blocks appearing in the definition of all
conformally invariant differential operators on R

n; we also explicitly computed the
tensors that are related to operators of order up to four. We refer the interested
reader to Definition 1.6 and Theorems 1.13 and 1.16 in [7] for the elementary con-
formal tensors T u

m,α of degree α �= 0, and to Definition 1.7 and Theorems 1.11
and 1.15 in [6] for the elementary conformal tensors of exponential type Xu

m,μ with
exponent μ �= 0.

In this note we want to highlight the geometric relevance of the aforementioned
results: to this end, we consider a general Riemannian manifold (M, g) of dimen-
sion n ≥ 3 and we introduce the three main objects which provide the link between
our previous analysis and the geometry of the underlying manifold.
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In what follows we will use the moving frame notation with respect to a local
orthonormal coframe (see e. g. [9]): the Einstein summation convention will be in
force throughout, and we fix the index range 1 ≤ i, j, . . . ≤ n. Moreover we shall
use the subscript g to indicate the dependence of an object on the metric g.

Henceforth we shall denote by Hessg(f) the Hessian of a C2-function f on M ,
by Ricg the Ricci curvature tensor of the manifold, by Sg its scalar curvature

and by Ag = 1
n−2

(
Ricg − Sg

2(n−1)g
)
the Schouten tensor.

We denote by
{
θi
}
, i = 1, ..., n = dimM a local orthonormal coframe on (M, g),

so that, for instance, we have Ricg = Rijθ
j ⊗ θi and Ag = Aijθ

j ⊗ θi. We also
denote by A2

g the symmetric (0, 2)-tensor

A2
g =

(A�
g ◦ A�

g

)�
,

with (local) components
(
A2

)
ij
= (AitAtj), and where � and � are the usual musical

isomorphisms. Finally, we recall that, for n ≥ 5, the Paneitz operator on (M, g) is
defined by (see for instance [3] or [1])

(1.1) Pgu = Δ2
gu− divg

{
anSgdu+ bnRicg (∇gu, ·)

}
+

n− 4

2
Qgu,

where divg is the divergence, an = (n−2)2+4
2(n−1)(n−2) , bn = − 4

n−2 and Qg is the

Q-curvature, which for n ≥ 4 can be written (see e. g. [1]) as

(1.2) Qg = − ΔgSg

2 (n− 1)
− 2 |Ricg|2g

(n− 2)
2 +

n3 − 4n2 + 16n− 16

8(n− 1)
2
(n− 2)

2 S2
g .

When n = 4 the Paneitz operator and the Q-curvature have respectively the forms

Pgu = Δ2
gu− divg

{2

3
Sgdu− 2Ricg (∇gu, ·)

}
, Qg = −1

6
ΔgSg − 1

2
|Ricg|2g +

1

6
S2
g .

The main character in our results is the following tensor of type (0, 4), which
is defined on a generic Riemannian manifold (M, g) with n = dimM ≥ 3.

Definition 1.1. We define the tensor Zg = Zijktθ
t ⊗ θk ⊗ θj ⊗ θi by

Zg = ∇2
gAg − n

2

{Ag ⊗Ag + [AjtAik + Ait Ajk] θ
t ⊗ θk ⊗ θj ⊗ θi

}
(1.3)

+
{A2

g ⊗ g +
[
(A2)jt δik + (A2)it δjk

]
θt ⊗ θk ⊗ θj ⊗ θi

}
,

where ∇2
gAg is the second covariant derivative of the Schouten tensor with respect

to the Levi-Civita connection associated with g. In components we have
(1.4)

Zijkt = Aij,kt − n

2
[AktAji +AjtAki +AitAjk] +

(
A2

)
kt
δji +

(
A2

)
tj
δki +

(
A2

)
ti
δjk.

The other two tensors of geometric relevance are, respectively, ∇gAg, the co-
variant derivative of the Schouten tensor, and the Schouten tensor itself.
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The following results reveal the relevance of the tensor Zg for the geometry of
the underlying manifold.

Theorem 1.2. The tensor Zg = Zijktθ
t ⊗ θk ⊗ θj ⊗ θi defined in (1.3) satisfies

Zijkt = Zjikt, Zijkt = Zikjt +
1

n− 2
Cijk,t ,(1.5)

where Cg = Cijkθ
k ⊗ θj ⊗ θi is the Cotton tensor and Cijk,t are the (local) com-

ponents of its covariant derivative. Moreover, all the complete contractions of the
tensor Zg give the opposite of the Q-curvature, i.e.,

(1.6) Ziitt = Zitit = Ztiit = −Qg.

The following proposition shows how Zg changes under the right (in a suitable
sense, see Remark 1.6) conformal change of the metric.

Proposition 1.3. If n �= 4 and g̃ = u4/(n−4)g, then the (local) components of the
tensor Zg̃ = Z̃ijkt θ̃

t ⊗ θ̃k ⊗ θ̃j ⊗ θ̃i satisfy

u8/(n−4) Z̃ijkt = Zijkt − 2

n− 4

1

u
uijkt

(1.7)

+
1

u

[
2

n− 4
(ulAli,tδjk + ulAlj,tδik + ulAli,kδjt + ulAlj,kδit + ulAij,lδkt)

− 2

n− 4
(uiAjk,t + ujAik,t + uiAjt,k + ujAit,k + 3ukAij,t + 3utAij,k)

+Aijukt +
n− 2

n− 4
(uitAjk + ujtAik) +

n

n− 4
(ujkAit + uikAjt + uijAkt)

− 2

n− 4
(ultAklδij + uilAltδjk + ujlAltδik + uklAltδij)

]

+
1

u2

[
2(n+ 2)

(n− 4)
2 (uijkut + uijtuk) +

2n

(n− 4)
2 (ujktui + uiktuj)

+
4

(n− 4)2
(utjkui + utikuj)− 8

(n− 4)2
(ulAliutδjk + ulAljutδik)

− n2 − 4n− 8

(n− 4)
2 (uiutAjk + ujutAik)− n2 − 6n− 16

(n− 4)
2 ukutAij

− n(n− 2)

(n− 4)
2 (Aitujuk +Ajtuiuk +Aktuiuj) +

2

n− 4
(ulAltuiδjk + ulAltujδik)

+
2(n− 2)

(n− 4)
2 (ulutAklδij + ulukAltδij) +

4

(n− 4)
2Ag(∇gu,∇gu)(δitδjk + δikδjt)

− 4

(n− 4)
2 (ululktδij + ululjtδik + ululitδjk + ululjkδit + ululikδjt + uluijlδkt)
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+
4

(n− 4)
2 (2uiujAkt + 3uiukAjt + 3ujukAit) +

n− 8

(n− 4)
2 |∇gu|2gAijδkt

+
|∇gu|2g
n− 4

(Ajkδit +Aikδjt +Aitδjk +Ajtδik +Aktδij)− 4

(n− 4)
2 (uiulAlkδjt

+ ujulAlkδit + uiulAljδkt + ujulAliδkt + 2ukulAljδit + 2ukulAliδjt)

]

+
1

u3

[
4n

(n− 4)
3 (ululkutδij + ululjutδik + ululiutδjk + ulultuiδjk + ulultujδik

+ ulultukδij)− 2n(n+ 2)

(n− 4)
3 (uiutujk + ujutuik + ukutuij + uiujukt + uiukujt

+ ujukuit) +
2n|∇gu|2g
(n− 4)3

(uitδjk + ujtδik + uktδij + uijδkt + uikδjt + ujkδit)

− 8

(n− 4)
3 Hessg (u)(∇gu,∇gu)(δijδkt + δikδjt + δjkδit) +

4n

(n− 4)
3 (uiululkδjt

+ ujululkδit + uiululjδkt + ujululiδkt + ukululiδjt + ukululjδit)

]

+
1

u4

[
6n(n+ 2)(n− 2)

(n− 4)
4 uiujukut

− 6n(n− 2)

(n− 4)
4 |∇gu|2g(uiutδjk + ujutδik + ukutδij + uiujδkt + uiukδjt + ujukδit)

+
6(n− 2)

(n− 4)4
|∇gu|4g(δijδkt + δikδjt + δjkδit)

]
.

Now we can tie Zg both to the Q-curvature and the Paneitz operator and to
the elementary conformal tensors

{
T u
m,α

}
and

{
Xu

m,μ

}
on Euclidean space through

the following corollaries.

Corollary 1.4. If (M, g) = (Rn, gflat), where gflat is the standard Euclidean met-
ric, and g̃ = u4/(n−4)gflat, n �= 4, then equation (1.7) becomes

(1.8) Zg̃ = − 2

n− 4
u8/(n−4) T u

4,(n−4)/(2n).

Corollary 1.5. All the complete contractions of equation (1.7) yield

u8/(n−4) Qg̃ =
2

n− 4

1

u
Pgu,

which is equivalent to the Q-curvature equation on (M, g), i.e.,

(1.9) Pgu =
n− 4

2
Qg̃ u

(n+4)/(n−4).



Invariant operators and geometric tensors 307

In particular, if (M, g) = (Rn, gflat), then (1.9) becomes

Δ2u =
n− 4

2
Qg̃ u

(n+4)/(n−4).

Remark 1.6. Note that g̃ = u4/(n−4)g is the most natural conformal change of
the original metric g that is customarily used to exploit the invariance properties
of the Q-curvature and of the Paneitz operator. One could also consider different
conformal changes of the metric; see Proposition 1.10.

The case n = 4 requires a conformal change of the underlying metric of expo-
nential type, which produces the following results.

Proposition 1.7. If n = 4 and g̃ = e2ug, then the (local) components of the tensor
Zg̃ = Z̃ijkt θ̃

t ⊗ θ̃k ⊗ θ̃j ⊗ θ̃i satisfy

e4u Z̃ijkt = Zijkt − uijkt

(1.10)

+ ulAli,tδjk + ulAlj,tδik + ulAli,kδjt + ulAlj,kδit + ulAij,lδkt

− [uiAjk,t + ujAik,t + uiAjt,k + ujAit,k + 3ukAij,t + 3utAij,k]

+ ujtAik + uitAjk + 2ujkAit + 2uikAjt + 2uijAkt

+ 2uiujkt + uiujtk + 2ujuikt + ujuitk + 3ukuijt + 3utuijk

− [ululktδij + ululjtδik + ululitδjk] + uiukAjt + ujukAit

− [ultAklδij + uilAltδjk + ujlAltδik + uklAltδij ]

− [2ulAliutδjk + 2ulAljutδik] + 2[uiutAjk + ujutAik + 3ukutAij ]

+ ulutAklδij + ulukAltδij − [ululjkδit + ululikδjt + uluijlδkt]

+Ag(∇gu,∇gu)(δitδjk + δikδjt)− |∇gu|2gAijδkt − [2ukulAljδit + 2ukulAliδjt]

− [uiulAlkδjt + ujulAlkδit + uiulAljδkt + ujulAliδkt]

+ 2 [ululkutδij + ululjutδik + ululiutδjk + ulultuiδjk + ulultujδik + ulultukδij

+ uiululkδjt + ujululkδit + uiululjδkt + ujululiδkt + ukululiδjt + ukululjδit]

− 6[uiutujk + ujutuik + ukutuij + uiujukt + uiukujt + ujukuit]

+ |∇gu|2g[uitδjk + ujtδik + uktδij + uijδkt + uikδjt + ujkδit]

−Hessg (u)(∇gu,∇gu)(δijδkt + δikδjt + δjkδit) + 18uiujukut

− 3|∇gu|2g(uiutδjk + ujutδik + ukutδij + uiujδkt + uiukδjt + ujukδit)

+
3

4
|∇gu|4g(δijδkt + δikδjt + δjkδit).

Corollary 1.8. If (M, g) =
(
R

4, gflat
)
and g̃ = e2ugflat, then equation (1.10)

becomes

(1.11) Zg̃ = −e4uXu
4,1/4.
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Corollary 1.9. All the complete contractions of equation (1.10) yield the Q-curvat-
ure equation on

(
M4, g

)
, i.e.,

(1.12) Pgu+Qg = e4u Qg̃.

In particular, if (M, g) =
(
R

4, gflat
)
, then (1.12) becomes

Δ2u = e4u Qg̃.

The next proposition shows how the tensor Zg on R
n changes under a generic

conformal transformation (of polynomial or exponential type) of the underlying
metric. This further connects the tensor Zg with the elementary conformal tensors
T u
m,α and Xu

m,μ.

Proposition 1.10. If (M, g) = (Rn, gflat) then Zg changes under a conformal
transformation of polynomial type of the underlying metric, g̃ = u2βgflat, according
to the formula

Zg̃ = −β u4β T u
4,1/(nβ) +

( 1

β
− n− 4

2

)
β2 u4β

{
T u
2,1/(nβ) ⊗ T u

2,1/(nβ)

+
[(
T u
2,1/(nβ)

)
tj

(
T u
2,1/(nβ)

)
ki
+
(
T u
2,1/(nβ)

)
ti

(
T u
2,1/(nβ)

)
kj

]
θt ⊗ θk ⊗ θj ⊗ θi

}
.

On the other hand, Zg changes under a conformal transformation of exponential
type of the underlying metric, g̃ = e2αugflat, according to the formula

Zg̃ = −α e4αu Xu
4,1/(nα) +

4− n

2
α2 e4αu

{
Xu

2,1/(nα) ⊗Xu
2,1/(nα)

+
[(
Xu

2,1/(nα)

)
tj

(
Xu

2,1/(nα)

)
ki
+
(
Xu

2,1/(nα)

)
ti

(
Xu

2,1/(nα)

)
kj

]
θt ⊗ θk ⊗ θj ⊗ θi

}
.

The traces of the tensor Zg can now be used to formulate a fully nonlinear
generalization of the Q-curvature problem on (M, g), i.e., the problem of finding a
metric g̃, conformally related to g, such that Qg̃ is constant.

First we define the tensor Ug = Uijθ
j ⊗ θi with components

Uij = Zijtt = Aij,tt − n

2
(2Ait Atj +Att Aij) + 2(A2)ij + (A2)tt δij

= Aij,tt − (n− 2)(A2)ij − n

2
(trg Ag)Aij + |Ag|2g δij .

Note that the tensor Ug is symmetric, i.e., Uij = Uji for every i, j = 1, . . . , n.
Next, we introduce the tensor Hg = Hijθ

j ⊗ θi with components

Hij = Ztitj = Ati,tj − n

2
(2Ait Atj +Att Aij) + 2(A2)ij + n(A2)ij

= Att,ij − n

2
(trg Ag)Aij + 2(A2)ij .

Note that for every i, j = 1, . . . , n one has

Zittj = Ztitj = Hij
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and

Zttij = Att,ij − n

2
(2Ait Atj +Att Aij) + 2(A2)ij + n(A2)ij = Hij .

Note also that we can write

Hg =
1

2 (n− 1)
Hessg (Sg)− nSg

4(n− 1)
Ag + 2A2

g

and that Hg is symmetric, i.e., Hij = Hji for every i, j = 1, . . . , n. Obviously one
has

(1.13) trg Hg = trg Ug = −Qg.

Since the tensors Ug and Hg are both symmetric, in the spirit of the well-
known k-Yamabe problem (see [10] and the references therein) we are led to the
formulation of the following problems: find a metric in the conformal class of the
original metric g such that σk(Hg), k = 1, . . . , n, is constant, or find a metric in the
conformal class of the original metric g such that σk(Ug), k = 1, . . . , n, is constant,
where σk(·) denotes the kth elementary symmetric function of the eigenvalues of
the tensor in the argument.

These problems, by (1.13), can be considered as fourth order fully nonlinear
generalizations of the Q-curvature problem.

Remark 1.11. Note that we could also define the tensor Yg = Yijθ
j ⊗ θi with

components

Yij = Zitjt = Ait,jt − n

2
(2Ait Atj +Att Aij) + 2(A2)ij + (A2)tt δij

= Ait,jt − n(A2)ij − n

2
Att Aij + 2(A2)ij + (A2)tt δij

= Aij,tt − 1

n− 2
Cijt,t − (n− 2)(A2)ij − n

2
(trg Ag)Aij + |Ag|2g δij ,

and that one also has Yij = Ztijt = Zitjt. Although Yg in general is not symmetric,
i.e., Yij �= Yji, we have that Ug = Yg if divg Cg = 0 and that

trg Yg = trg Hg = trg Ug = −Qg.

For tensors of order 2 and 3, the relations between Ag and ∇gAg and the
elementary conformal tensors T u

2,α, T
u
3,α and Xu

2,μ, X
u
3,μ take a simpler form.

Proposition 1.12. Let (M, g) = (Rn, gflat). If g̃ = u2βgflat, u ∈ C2(Rn), u > 0,
β �= 0 there holds:

(1.14) Ag̃ = −β u2β T u
2,1/(nβ).

On the other hand, if g̃ = e2αugflat, u ∈ C2(Rn), α �= 0 then

(1.15) Ag̃ = −α e2αu Xu
2,1/(nα).
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Proposition 1.13. Let (M, g) = (Rn, gflat), where gflat denotes the Euclidean
metric. If g̃ = u2βgflat, u ∈ C3(Rn), u > 0, β �= 0 then there holds:

(1.16) ∇g̃Ag̃ = −β u3β T u
3,1/(nβ) .

On the other hand, if g̃ = e2αugflat, u ∈ C3(Rn), α �= 0 then there holds:

(1.17) ∇g̃Ag̃ = −α e3αu Xu
3,1/(nα) .

We conclude the section with two open questions. It would be interesting to
construct higher order tensors related to higher order Q-curvatures and to the
GJMS operators (see [4]), which are connected to them in the same way as the
(0, 4)-tensor Zg introduced in (1.3) is connected to the Q-curvature and to the
Paneitz operator. Of course, if possible at all, this construction must break down
(on manifolds (Mn, g) of even dimension) for tensors of even order greater than
the dimension of M ; again see [4]. We also note that in [8] a complete character-
ization of second order fully nonlinear CR invariant differential equations on the
Heisenberg group was given, which is the analogue in the CR setting of the result
proven by A. Li and Y.Y. Li in [5] in the Euclidean case. One could try to con-
struct also the CR analogue on the Heisenberg group of the elementary conformal
tensors

{
T u
m,α

}
and

{
Xu

m,μ

}
defined on R

n, and the analogue in the CR setting of
the tensor Zg defined in (1.3) on a general Riemannian manifold.

2. Sketch of the proofs of the results

Using the moving frame formalism most of the proofs consist in quite straightfor-
ward but long and tedious calculations; in order to keep the length of the paper
reasonable we will just give an idea of to prove most of them.

Proof of Theorem 1.2. Using equation (1.4), the symmetry of Zg in the first two
indices follows immediately from the symmetry of the Schouten tensor Ag, i.e.,
Aij = Aji, and from the symmetry of A2

g.

Formula (1.5) follows using the definition of the Cotton tensor and observing
that

Zijkt − Zikjt = Aij,kt −Aik,jt .

From equation (1.4), noting that

AitAit = |Ag|2g =
1

(n− 2)
2

[
|Ricg|2g −

3n− 4

4(n− 1)
2 S2

g

]
,

Aii = trg (Ag) =
Sg

2(n− 1)
, and

Aii,tt =
ΔgSg

2(n− 1)
,
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we deduce

Ziitt =
ΔgSg

2(n− 1)
− n

2

[2 |Ricg|2g
(n− 2)

2 +
n2 − 10n+ 12

4(n− 1)
2
(n− 2)

2 S2
g

]

+
n+ 2

(n− 2)2

[
|Ricg|2g −

3n− 4

4(n− 1)2
S2
g

]

=
ΔgSg

2(n− 1)
+

2 |Ricg|2g
(n− 2)

2 − n3 − 4n2 + 16n− 16

8(n− 1)
2
(n− 2)

2 S2
g = −Qg.

The equality among all the complete contractions of Zg is a simple computation.
�

Proof of Propositions 1.3 and 1.7. We observe that, with respect to the (local) ba-
sis

{
θ̃t ⊗ θ̃k ⊗ θ̃j ⊗ θ̃i

}
, i, j, k, t = 1, . . . , n, the components of Zg̃ can be written as

Z̃ijkt = Ãij,kt − n

2

(
ÃktÃji + ÃtjÃik + ÃitÃjk

)
+
(
Ã2

)
kt
δji +

(
Ã2

)
jt
δik +

(
Ã2

)
it
δjk.

The proof now is a long computation using the transformation law for∇2
gAg andA2

g

under a conformal change of the metric (see e. g. [2]). �

Proof of Corollaries 1.4 and 1.8 and of Proposition 1.10. On (Rn, gflat) we have
Zgflat ≡ 0, and the claim follows upon carefully rearranging terms on the right-
hand side of equation (1.7) in order to recover (a multiple of) T u

4,(n−4)/(2n); see

also Theorem 1.20 in [7] for the explicit expressions for T u
4,α and T u

2,α. The same
procedure can be applied to equation (1.10) in order to recover (1.11), also exploit-
ing Theorem 1.13 in [6]. The proof of Proposition 1.10 follows from a similar, but
longer, procedure. �

Proof of Corollaries 1.5 and 1.9. We start from (1.7) and we set i = j and k = t.
Now we use the facts that Ziitt = −Qg and uiitt = Δ2

gu, and the well-known
commutation relation

uijk = uikj + ut Rtijk,

which implies

(2.1) uitt = utit = utti + utRti.

Equation (1.9) can be now obtained through a careful computation exploiting the
definitions of the Schouten tensor, the Paneitz operator and of the Q-curvature
(see equations (1.1) and (1.2)). The same procedure can be applied to (1.10) in
order to obtain equation (1.12). �

Proof of Propositions 1.12 and 1.13. Since (M, g) = (Rn, gflat), we have Agflat ≡ 0.
From the standard transformation law for the Schouten tensor and its covariant
derivative under a conformal change of the metric (see e. g. [2]) we deduce (1.14),
(1.15), (1.16) and (1.17). �
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