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The hyperbolic wavelet transform: an efficient

tool for multifractal analysis of anisotropic fields

Patrice Abry, Marianne Clausel, Stéphane Jaffard,
Stéphane G. Roux and Béatrice Vedel

Abstract. Global and local regularity of functions in anisotropic func-
tion spaces is analyzed in the common framework provided by hyperbolic
wavelet bases. Local and directional regularity features are characterized
by means of global quantities derived from the coefficients of hyperbolic
wavelet decompositions. A multifractal analysis is introduced, that jointly
accounts for scale invariance and anisotropy, and its properties are inves-
tigated.

1. Introduction

Natural images often display various forms of anisotropy. For a wide range of
applications, anisotropy has been quantified through regularity characteristics and
features that differ strongly when measured in different directions. This is, for
instance, the case in medical imaging (osteoporosis, muscular tissues, mammogra-
phies, etc.), see e.g. [13] and [14], hydrology [41], fracture surfaces analysis [20].
For such images, key issues are, first, to describe the anisotropy of the texture,
and then to define regularity anisotropy parameters that can be measured via nu-
merical procedures and further developed into e.g., classification schemes. This
requires the design of a mathematical framework that allows to define and esti-
mate these parameters. Such a program can be split into several questions, some
of them having already been either solved or, at least, partially addressed. We
start by briefly sketching this program.

Important examples of anisotropic self-similar fields governed by two parame-
ters (an anisotropy matrix and a self-similarity index) have been introduced and
studied by H. Biermé, M. Meerschaert and H. Scheffler in [13], as a model relevant
for describing osteoporosis.
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In [19], two of the authors (M. Clausel and B. Vedel) addressed the question
of defining in a proper way the concept of the anisotropy of an image in rela-
tion to its global regularity. In particular they showed that the two parameters
characterizing the above mentioned random fields can be recovered even in the
absence of a priori knowledge of the characteristics of the model, by studying the
global smoothness properties of the process. This result indicated that some of the
properties characterizing anisotropy are revealed by the regularity of the sample
paths when analyzed with functional spaces well adapted to anisotropy, namely
anisotropic Besov spaces, which extend (isotropic) Besov spaces (see Section 2.1
for a definition). This first result illuminated the key role that such spaces might
play in the analysis of random anisotropic textures. For example, in two variables,
such spaces present the following anisotropy property. They are invariant after
rescaling by λα along the x-axis and by λ2−α along the y-axis, where α is the
anisotropy parameter.

Note that this point of view follows, in the isotropic setting, ideas that are
common in multifractal analysis, where global function space regularity yields
parameters pertinent to classification; see [1] and references therein. This also
explains the choice of Besov spaces instead of Sobolev spaces, which (in addition
to a simpler wavelet characterization) allows to use Lebesgue integrability indices
p ∈ (0, 1), therefore yielding a larger range of classification indices.

Note that, in the isotropic setting, wavelet bases provide an efficient tool for
measuring smoothness in a large range of functional spaces (see [36] for details).
For a given anisotropy parameter, anisotropic wavelets such as curvelets, bandelets,
contourlets, shearlets, ridgelets, or wedgelets have been introduced (see e.g. [32]
for a thorough review of these representation systems and a comparison of their
properties for image processing). Natural criteria for choosing between these alter-
natives are, on the mathematical side, that these variations on isotropic wavelets
provide bases for the corresponding anisotropic spaces, and, on the applied side,
that practically tractable procedures can be devised and implemented to permit
the characterization of real-world data according to these function spaces.

On the mathematical side, many authors have addressed the problem of ob-
taining bases of a given anisotropic Besov space, and have proposed different so-
lutions, depending on the precise definition of anisotropic spaces they have used;
see e.g. [10], [9], [21], [31], [30], [48], and [49], and also the recent papers [26] by
G. Garrigós and A. Tabacco, and [29] by D. Haroske and E. Tamási, which contain
numerous references on the subject. Note also that, in several cases, the study was
restricted to a specific anisotropy parameter; typically, parabolic anisotropy, where
a contraction by λ in one direction is associated with a contraction by λ2 along the
orthogonal direction, (see [35], [39], and [43], and references therein, in particular
for applications to directional regularity). The corresponding dictionaries are in
that case curvelets or contourlets (corresponding to the Hart Smith decomposition
in the continuous setting; see [46]). This choice was motivated from application to
PDEs where this specific anisotropy has physical relevance (see e.g. [18] and [28]),
where curvelets and ridgelets are used for the study of Fourier integral operators,
with applications to the wave equation); however, it is no longer justified when
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dealing with images, where no particular form of anisotropy can be postulated a
priori. Actually, except perhaps in very specific applications, the particular type
of anisotropy present in an image is not known a priori, and determining it out is
part of the problem. Therefore a key practical issue for us is that we must deal si-
multaneously with the whole collection of anisotropic Besov spaces, for all possible
anisotropies. This raises the mathematical question of finding specific bases which
could serve as a common “dictionary” for all of these spaces simultaneously, and
obtaining simple characterizations of those bases in this “dictionary”. Clearly, the
dictionary used should display all possible types of anisotropy; among the variants
of directional wavelets that are not tailored to a specific anisotropy, two play a
prominent role because of their numerical simplicity (as tensor products of 1-D
wavelets) and their good functional properties:

• One is the collection of anisotropic Triebel bases; see [49]. Each basis is con-
structed from the standard wavelet through a multiresolution procedure, tai-
lored to a specific anisotropy. Simple characterizations of Besov spaces (with
the same anisotropy) have been given for this system. Such characterizations
can thus be used as building blocks for constructing a multifractal formalism;
see [6] for first results in this direction, and also Section 3. Triebel bases pro-
vide a powerful tool for deducing results on a given anisotropic Besov space;
in particular, they make it possible to show that these spaces are isomor-
phic to the corresponding isotropic Besov spaces. Furthermore, some results
such as embeddings or profiles of Besov characteristics can be obtained, via
the transference method proposed by H. Triebel. However, knowledge of the
expansion of a function in one basis gives neither information about its ex-
pansion in another basis nor about whether it belongs to other anisotropic
Besov spaces. Therefore, this tool does not seem to help understand the
link between different forms of anisotropy, in terms of function spaces, for
example.

In order to deal with situations where no anisotropy is prescribed, a natural
idea consists in using the union of these bases, for all possible anisotropies.
One easily checks that this dictionary is too redundant to constitute a frame.
However, because many of their elements coincide (and therefore need not be
duplicated), one cannot exclude the possibility that the union of these bases
could nonetheless prove an efficient tool for analyzing anisotropic fields with
no a priori anisotropy.

• Another possible decomposition system is given by hyperbolic wavelets, intro-
duced in various settings under various denominations (standard, rectangular
or hyperbolic wavelet analysis), notably in image coding (see [51]), numer-
ical analysis (see [11], [12]), and in [21], [30] for the purpose of approxima-
tion theory. They are simply defined as tensor products of one-dimensional
wavelets, allowing different dilations factors in different directions, as opposed
to the classical discrete wavelet transform that relies on a single isotropic di-
lation factor. This key difference enables their use as a tool in the study
of anisotropy. Hyperbolic wavelet bases form a nonredundant system by
construction, and contain all possible anisotropies. They have been used in



316 P. Abry, M. Clausel, S. Jaffard, S. Roux and B. Vedel

statistics for the purpose of adaptive estimation of multidimensional curves.
Notably, it has been proven in two seminal articles ([37], [38]) that nonlinear
thresholding of noisy hyperbolic wavelet coefficients leads to (near) optimal
minimax rates of convergence over a wide range of anisotropic smoothness
classes; see also the recent work [3] of F. Autin, G. Claeskens and J.M. Fre-
yermuth, where this problem is considered from the maxiset point of view.
Other interesting applications of hyperbolic analysis can also be founded in [4]
and [5], where the decompositions of fractional Brownian sheets and linear
fractional stable sheets are derived and are used to prove sample path prop-
erties of these random fields (regularity, Hausdorff dimension of the graph).

A key feature of hyperbolic wavelet bases is that they provide a common
dictionary for anisotropic Besov spaces. This result is stated in Theorem 2.6
of Section 2. The critical exponent in anisotropic Besov spaces is related to
some �p norms of the hyperbolic wavelet coefficients. These mathematical
results yield an efficient method for the detection of anisotropy, as detailed in
a companion article, where numerical investigations are described; see [42].

We now briefly discuss the pros and cons of both dictionaries. For a fixed
anisotropy, Triebel bases display slightly better mathematical properties: an exact
characterization of anisotropic Besov spaces, as shown in [49], and a characteriza-
tion of pointwise smoothness as sharp as in the isotropic case, as shown by H. Ben
Braiek and M. Ben Slimane in [7]. One purpose of the present contribution is to
show that these two important properties almost hold also for hyperbolic wavelets.
In Section 2, “almost characterizations” (i.e., necessary and sufficient conditions
that differ by a logarithmic correction) of anisotropic Besov spaces are obtained.
Furthermore, if one is not only interested in analysis, but also in simulation, this
slight disadvantage (a logarithmic loss, which in applications is irrelevant) is com-
pensated by the advantage of using a basis instead of an overcomplete system.
Indeed, generating a random field with prescribed regularity properties requires
the use of a basis (using an overcomplete system does not guarantee that the sim-
ulated field with coefficients of specific sizes has the expected properties, since
nontrivial linear combinations of the building blocks can vanish). To the con-
trary, with the hyperbolic wavelet basis, one can easily construct toy examples
with different multifractal spectra depending on the anisotropy. Our being jointly
motivated by analysis and synthesis motivates the choice of a system that permits
an interesting trade-off among directional wavelets, in terms of mathematical effi-
ciency and numerical simplicity and robustness, both on the analysis and synthesis
sides. The practical relevance of the mathematical tools introduced and studied
here are assessed in the companion paper [42].

We now focus on the comparison in terms of pointwise directional smoothness.
First, note that this notion has been little studied in the past. To our knowledge,
the natural definition which allows for a wavelet characterization was first intro-
duced by M. Ben Slimane in the 90s, see [8], in order to investigate the multifractal
properties of anisotropic selfsimilar functions. Partial results when using parabolic
bases (i.e., curvelets and Hart Smith transform) have been obtained by J. Sampo
and S. Sumetkijakan; see [35], [39] and [43], and references therein. A generaliza-
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tion and its implications in terms of the sizes of coefficients on directional wavelets
(the so-called “anisets”, which are a mixture of of the wavelet and Gabor trans-
form, where the wavelets can be arbitrarily shrunk in certain directions) were also
worked out in [33]. Finally, an “almost ” characterization of pointwise directional
regularity was recently obtained by H. Ben Braiek and M. Ben Slimane in [7] for
the Triebel basis coefficients, where the basis is picked so that its anisotropy pa-
rameter is adapted to the type of directional regularity considered. In Section 3,
we will obtain a similar result, that, however, relies on the coefficients of the hy-
perbolic wavelet basis, thus paving the way for the construction of a multifractal
formalism. An important difference with [7] is that, here again, a single basis fits
all anisotropies. Therefore, as in the case of Besov spaces, the advantage is that
nothing needs to be assumed a priori on the particular considered anisotropy. Thus
this can be used as a way to detect the specific anisotropy which exists in the data
at hand, rather than assuming its particular form beforehand. Note that other de-
composition systems have also been used for the detection of local singularities; see
for instance [22] and [27], where shearlets and wedgelets are used for the detection
of discontinuities along smooth edges.

Now we return to the anisotropic self-similar fields considered in [19] and [42].
Such exactly self-similar models are somewhat toy examples, and, though testing
regularity indices on their realizations is an important validation step, their study
could prove misleadingly simple (just as, one-dimensional fractional Brownian mo-
tion is too simple a model to capture the richness of situations met in real-world
data). Natural images are indeed likely to consist of patchworks of different kinds
of deformed pieces and therefore can be expected to exhibit more complex scale
invariance properties, and only in an approximate way. Multifractal analysis sup-
plies a natural setting for describing such properties, in which different kinds of
singularities are mixed. The next step is therefore to combine anisotropy and mul-
tifractality. To this end, a new form of multifractal analysis is introduced, based
on hyperbolic wavelet coefficients, and relating global and local characterizations
of regularity. It allows taking into account both scale invariance properties and
local anisotropic features of an image. Thus, it provides a new tool for image clas-
sification, seen as a refinement of texture classification based on the usual isotropic
multifractal analysis, as proposed for instance in [1] and [34]. Section 3 is devoted
to the introduction of this new framework. A new multifractal formalism, referred
to as the hyperbolic multifractal formalism is introduced. It permits relating local
anisotropic regularity of the analyzed image to global quantities called hyper-
bolic structure functions as is commonly done in multifractal analysis. Note that
an alternative multifractal analysis and multifractal formalism were introduced
by H. Ben Braiek and M. Ben Slimane in [6], based on Triebel basis coefficients.
In their approach, a particular anisotropy is picked, and the corresponding basis is
used. The main difference between both approaches is that the approach proposed
here is more flexible and can thus be used when anisotropies of several types are
present in data.

In the present article, we explore the possibilities generated by the hyperbolic
wavelet transform in order to investigate directional regularity, both in global
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(anisotropic Besov spaces) and local (directional pointwise regularity) forms. The
underlying motivation is to develop a multifractal formalism relating these two
notions (just as the standard multifractal formalism relates the usual Besov spaces
with the notion of pointwise (anisotropic) Hölder smoothness; see [34] and refer-
ences therein). It also aims at obtaining a numerically stable procedure for ex-
tracting the anisotropic features existing in natural images as well as information
related to the size (fractional dimensions) of the corresponding geometrical sets.

Our results on the characterization of regularity spaces in terms of hyperbolic
wavelets are stated in Section 2. Applications to multifractal analysis are detailed
in Section 3. We will show how to recover information on the Hausdorff dimensions
of the sets of points where a given directional regularity occurs from knowledge of
global directional quantities such as the Besov regularity of the data. Such ideas
were initially introduced by Parisi and Frisch in the context of hydrodynamic
turbulence [40], and extended to the setting of fixed anisotropy by Ben Braiek and
Ben Slimane; see [6]. The novelty here is that using hyperbolic wavelets permits
dropping the assumption of unique anisotropy, given a priori, in the data. The next
step, which we intend to investigate in the future, is to relax another simplifying
assumption and allow for local rotations of the anisotropy axes. Detailed proofs of
the results stated in Sections 2 and 3 are provided in Section 4.

2. Anisotropic global regularity and hyperbolic wavelets

We focus first on the measure of anisotropic global regularity using a common
analyzing dictionary: hyperbolic wavelet bases. Here we start by giving a brief ac-
count of the relevant functional spaces. Subsequently, we recall some well-known
facts about hyperbolic wavelet analysis (see Section 2.2). The main result of the
present section is Theorem 2.6, proven in Section 4.1, which allows the determina-
tion of the critical directional Besov indices of data by regressions on log-log plots
of quantities based on hyperbolic wavelet coefficients (see Section 2.2 for a precise
statement).

2.1. Anisotropic Besov spaces

Anisotropic Besov spaces were introduced in a completely different context, for the
study of semi-elliptic pseudo-differential operators whose symbols have different
degrees of smoothness in different directions; see for example [50]; see also [2], and
references therein, for a recent use of such spaces for optimal regularity results for
the heat equation.

Anisotropic Besov spaces generalize classical (isotropic) Besov spaces, and many
results concerning isotropic spaces have been extended to the anisotropic setting;
see [16] and [15] for a complete account of the results used in this section, and [48],
[52] and [53] for a detailed overview of anisotropic spaces.

A key property of anisotropic Besov spaces is that they are norm invariant
(asymptotically in the limit of small scales) with respect to anisotropic scaling. We
start by recalling this notion. Let α = (α1, α2) denote a fixed pair of parameters,
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with α1, α2 > 0 and α1 + α2 = 2. In the remainder, such pairs will be referred
to as admissible anisotropies. Such pairs quantify the degree of anisotropy of
the space (α1 = α2 = 1 corresponds to the isotropic case). For any t ≥ 0 and
ξ = (ξ1, ξ2) ∈ R2, we define the anisotropic scaling by tαξ = (tα1ξ1, t

α2ξ2). Note
that, in this definition and in the following, the coordinate axes are chosen as
the anisotropy directions. This particular choice can of course be modified by the
introduction of an additional rotation (as envisaged, for example, in [42]).

Anisotropic Besov spaces may be introduced using an anisotropic Littlewood–
Paley analysis. Let ϕα

0 ≥ 0 belong to the Schwartz class S(R2) and be such that

ϕα
0 (x) = 1 if sup

i=1,2
|ξi| ≤ 1 ,

and ϕα
0 (x) = 0 if sup

i=1,2
|2−αiξ| ≥ 1 .

For j ∈ N, we define

ϕα
j (x) = ϕα

0 (2
−jαξ)− ϕα

0 (2
−(j−1)αξ) .

Then
+∞∑
j=0

ϕα
j ≡ 1 ,

and (ϕα
j )j≥0 is called an anisotropic resolution of unity. It satisfies

(2.1) supp (ϕα
0 ) ⊂ Rα

1 , supp
(
ϕα
j

) ⊂ Rα
j+1 \Rα

j−1 ,

where
Rα

j =
{
ξ = (ξ1, ξ2) ∈ R2; sup

i=1,2
|ξi| ≤ 2αij

}
.

For f ∈ S ′(R2) let

Δα
j f = F−1

(
ϕα
j f̂

)
.

The sequence (Δα
j f)j≥0) is called an anisotropic Littlewood–Paley analysis of f .

The anisotropic Besov spaces are then defined as follows (see [16] and [15]).

Definition 2.1. The Besov space Bs,α
p,q,| log |β (R

2), for 0 < p ≤ +∞, 0 < q ≤ +∞,

s, β ∈ R, is defined by

Bs,α
p,q,| log |β (R

2) =
{
f ∈ S ′(R2);

(∑
j≥0

j−βq 2jsq ‖Δα
j f‖qp

)1/q

< +∞
}
.

This definition does not depend on the chose resolution of unity ϕα
0 and the quantity

‖f‖Bs,α

p,q,| log |β
=

(∑
j≥0

j−βq 2jsq ‖Δα
j f‖qp

)1/q

,

is a norm (respectively, quasi-norm) on Bs,α
p,q (R

2) for 1 ≤ p, q ≤ +∞ (respectively,
0 < min(p, q) < 1) and with usual modification if q = +∞.
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Remark 2.2. A homogeneous version Ḃs,α
p,q (R

2) of the spaces satisfies the property

‖f(λα1 ·, λα2 ·)‖Ḃs,α
p,q

= λs‖f‖Ḃs,α
p,q
.

For Bs,α
p,q (R

2), this anisotropic homogeneity of the norm is satisfied asymptotically.

As in the isotropic case, anisotropic Besov spaces encompass a large class of
classical anisotropic functional spaces (see [48] for details). For example, when
p = q = 2 and (α1, α2) ∈ Q2 is an admissible anisotropy, consider s > 0 such that
s/α1 and s/α2 are both integers. Then the anisotropic Sobolev space

Hs,α(R2) =
{
f ∈ L2(R2) such that

∂s/α1f

∂x1
∈ L2(R2) and

∂s/α2f

∂x2
∈ L2(R2)

}
,

coincides with the Besov space Bs,α
2,2 (R

2).

In the special case where p = q = ∞, the spacesBs,α
∞,∞(R2) are called anisotropic

Hölder spaces and are denoted by Cs,α
| log |u(R

2). These spaces also admit a finite dif-

ference characterization that we recall now (see also [48] for details).
Let (e1, e2) denote the standard basis of R2. For a function f : R2 → R,

� ∈ {1, 2} and t ∈ R one defines

Δ1
t,�f(x) = f(x+ te�)− f(x) .

The difference of order M ≥ 2 of a function f , in the direction e�, is defined
iteratively by

ΔM
t,�f(x) = Δt,� Δ

M−1
t,� f(x) .

One then has:

Proposition 2.3. Let α = (α1, α2) ∈ (R+∗ )2 be such that α1 + α2 = 2, s > 0,
u ∈ R, and f : R2 → R. The function f belongs to the anisotropic Hölder space
Cs,α
| log |u(R

2) if

‖f‖L∞(R2) +
2∑

�=1

sup
t>0

‖ΔM�

t,� f(x)‖L∞(R2)

|t|s/α� | log(|t|)|u < +∞ ,

where, for any � ∈ {1, 2}, M� = [s/α�] + 1.

2.2. Hyperbolic wavelet characterization of anisotropic Besov spaces

We state our first main result which is a hyperbolic wavelet characterization of
anisotropic Besov spaces.

We first recall the definition of the hyperbolic wavelet bases as tensor prod-
ucts of two unidimensional wavelet bases (see [21]) and second state Theorem 2.6,
proved later, in Section 4.1.

Definition 2.4. Let ψ denote the unidimensional Meyer wavelet and ϕ the as-
sociated scaling function. The hyperbolic wavelet basis is defined as the system
{ψj1,j2,k1,k2 , (j1, j2) ∈ (Z+ ∪ {−1})2, (k1, k2) ∈ Z2}, where
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• if j1, j2 ≥ 0,

ψj1,j2,k1,k2(x1, x2) = ψ(2j1x1 − k1)ψ(2
j2x2 − k2) ;

• if j1 = −1 and j2 ≥ 0

ψ−1,j2,k1,k2(x1, x2) = ϕ(x1 − k1)ψ(2
j2x2 − k2) ;

• if j1 ≥ 0 and j2 = −1

ψj1,−1,k1,k2(x1, x2) = ψ(2j1x1 − k1)ϕ(x2 − k2) ;

• if j1 = j2 = −1

ψ−1,−1,k1,k2(x1, x2) = ϕ(x1 − k1)ϕ(x2 − k2) .

For any f ∈ S ′(R2), one defines its hyperbolic wavelet coefficients as follows:

cj1,j2,k1,k2 = 2j1+j2 〈f, ψj1,j2,k1,k2〉 if j1, j2 ≥ 0 ,
cj1,−1,k1,k2 = 2j1 〈f, ψj1,j2,k1,k2〉 if j1 ≥ 0 and j2 = −1 ,
c−1,j2,k1,k2 = 2j2 〈f, ψj1,j2,k1,k2〉 if j1 = −1 and j2 ≥ 0 ,
c−1,−1,k1,k2 = 〈f, ψj1,j2,k1,k2〉 if j1 = j2 = −1 .

Remark 2.5. We have chosen a L1-normalization for the wavelet coefficients, as
this is best suited to scale invariance.

The main result of this section is a hyperbolic wavelet characterization of the
spaces Bs,α

p,q,| log |β (R
2), up to a logarithmic correction. In what follow, some nota-

tions is needed. For any (j1, j2) ∈ (N ∪ {−1})2, define

‖cj1,j2,·,·‖�p =
( ∑

(k1,k2)∈Z2

|cj1,j2,k1,k2 |p
)1/p

.

Let α = (α1, α2) be an admissible anisotropy. We define the following subsets of
(N ∪ {−1})2 :

Γ
(HL)
j (α) = {[(j − 1)α1]− 1, . . . , [jα1] + 1} × {0, . . . , [(j − 1)α2]− 1},

Γ
(LH)
j (α) = {0, . . . , [(j − 1)α1]− 1} × {[(j − 1)α2]− 1, . . . , [jα2] + 1},

Γ
(HH)
j (α) = {[(j − 1)α1]− 1, . . . , [jα1] + 1} × {[(j − 1)α2]− 1, . . . , [jα2] + 1} ,

(2.2) and Γj(α) = Γ
(HL)
j (α) ∪ Γ

(LH)
j (α) ∪ Γ

(HH)
j (α) .

Now we state our hyperbolic wavelet characterization of anisotropic Besov spaces.
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Theorem 2.6. Let α = (α1, α2) be an admissible anisotropy, (s, β) ∈ R2 and
let (p, q) ∈ (0,+∞]2. Let f ∈ S ′(R2). If p ≥ 1 let be p∗ = max(p, p′)and let
p∗ = min(p, p′) with 1/p+ 1/p′ = 1. Set

r1 =

{
q(1/p− 1) + max(q − 1, 0) if p ≤ 1,

max(q/p∗ − 1, 0), if p > 1,

and

r2 =

{
1, if p < 1,

max(1− q/p∗, 0) if p ≥ 1.

1. Set β = β(p, q) = max(1/p− 1, 0) + max(1 − 1/q, 0). If( ∑
j∈N0

jr1−βq 2jsq
∑

(j1,j2)∈Γj(α)

2−(j1+j2)q/p ‖cj1,j2,·,·‖q�p
)1/q

< +∞ ,

then f ∈ Bs,α
p,q,| log |β (R

2) (with the usual modifications when q = ∞).

2. Conversely,

(a) if q <∞ and f ∈ Bs,α
p,q,| log |β (R

2) then( ∑
j∈N0

j−r2−βq−1 2jsq
∑

(j1,j2)∈Γj(α)

2−(j1+j2)q/p ‖cj1,j2,·,·‖q�p
)1/q

< +∞ ;

(b) if f ∈ Bs,α
p,∞,| log |β (R

2) then

max
j∈N0

j−β 2js max
(j1,j2)∈Γj(α)

2−(j1+j2)/p ‖cj1,j2,·,·‖�p < +∞ .

Note that in the special case p = q = 2, that is for anisotropic Sobolev spaces,
the logarithmic correction disappears.

Theorem 2.7. Let α be an admissible anisotropy, and let s ∈ R. Let f ∈ S ′(R2).
The following assertions are equivalent:

(i) f ∈ Hs,α(R2) = Bs,α
2,2 (R

2).

(ii) ( ∑
j∈N0

22js
∑

(j1,j2)∈Γj(α)

2−(j1+j2) ‖cj1,j2,·,·‖2�2
)1/2

< +∞ .

Theorem 2.6 is proved in Section 4.1.

In particular, for p = q = ∞, the following “almost” characterization of
anisotropic Hölder spaces by means of hyperbolic wavelets holds:

Proposition 2.8. Let α = (α1, α2) be an admissible anisotropy, let (s, β) ∈ R2,
and let f ∈ S ′(R2).

(i) If f ∈ Cs,α(R2) then there exists C > 0 such that for all j ∈ N ∪ {−1} and
any (j1, j2) ∈ Γj(α),

(2.3) ‖cj1,j2,·,·‖�∞ ≤ C 2−js .
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(ii) Conversely, if there exists C > 0 such that for all j ∈ N ∪ {−1} and any
(j1, j2) ∈ Γj(α)

(2.4) ‖cj1,j2,·,·‖�∞ ≤ C
2−js

2 + j
,

then f ∈ Cs,α(R2).

3. Hyperbolic multifractal analysis

Now we are interested in the simultaneous analysis of local regularity properties
and anisotropic features of a function. To this end, we construct a new method of
multifractal analysis, referred to as hyperbolic multifractal analysis. Recall that in
the isotropic case, the purpose of multifractal analysis is to provide information on
pointwise singularities of functions. Multifractal functions are usually such that
their local regularity jumps erratically from point to point, so that it is not possi-
ble to estimate the regularity index (defined below) of a function at a given point.
Instead, the relevant information consists of the “sizes” of the sets of points where
the regularity index takes a given value. This “size” is formalized mathematically
as the Hausdorff dimension. The function that associates the dimension of the set
of points sharing the same regularity index with this index is referred to as the
spectrum of singularities (or multifractal spectrum). The goal of a multifractal
formalism is to provide a method for measuring the spectrum of singularities from
quantities that can actually be computed from real-world data. We extend this
approach to the anisotropic setting. First we recall that, in the case where the
anisotropy of the analyzing space is fixed, this has already been achieved. See [7]
for anisotropic pointwise regularity analysis using Triebel bases and [6] for the cor-
responding anisotropic multifractal formalism. Here, we generalize this previous
work, developing a multifractal analysis that does not rely on a priori knowledge
of regularity and takes into account all possible anisotropies. Note that for a fixed
anisotropy, both formalisms coincide. Indeed, they are derived from wavelet char-
acterizations of the same functional spaces. Nevertheless, the formalism based on
hyperbolic wavelet allows handling simultaneously all possible anisotropies, thus
providing more useful algorithms for analyzing real-world data. In addition, the
use of hyperbolic wavelet bases offers the possibility to define and synthesize deter-
ministic and stochastic mathematical objects with prescribed anisotropic behavior.

In Section 3.1, the different concepts related to pointwise regularity are recalled.
A hyperbolic wavelet criterion is then devised in Section 3.1.2. Our main result,
Theorem 3.4, is stated in Section 3.1.2 and proved in Section 4. Hyperbolic wavelet
analysis is defined in Section 3.2.2 and the validity of the proposed multifractal
formalism is investigated in Theorem 3.7.

3.1. Anisotropic pointwise regularity and hyperbolic wavelet analysis

3.1.1. Definitions. We start by recalling the usual notion of pointwise regularity
(see [34] for a complete review).
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Definition 3.1. Let f be in L∞
loc(R

2) and let s > 0. The function f belongs to
the space Cs

| log |β (x0) if there exist C > 0, δ > 0, and Px0 , a polynomial of degree

less than s, such that

if |x− x0| ≤ δ, |f(x)− Px0(x)| ≤ C |x− x0|s · | log(|x − x0|)|β ,
where | · | is the usual Euclidean norm on R2. If β = 0, the space Cs

| log |0(x0) is

denoted simply Cs(x0).

Anisotropic pointwise regularity is defined as follows. Let P denote a polyno-
mial of the form

P (t1, t2) =
∑

(β1,β2)∈N2

aβ1,β2 t
β1

1 tβ2

2 ,

and let α = (α1, α2) be an admissible anisotropy. The α-homogeneous degree of
the polynomial P is defined by

dα(P ) = sup{α1β1 + α2β2, aβ1,β2 = 0} .
Finally, for any t = (t1, t2) ∈ R2, the α-homogeneous norm is denoted by

|t|α = |t1|1/α1 + |t2|1/α2 .

Now we can define the spaces Cs,α
| log |β (x0).

Definition 3.2. Let f ∈ L∞
loc(R

2), let α = (α1, α2) be an admissible anisotropy,
and let | · |α, s > 0, and β ∈ R. The function f belongs to Cs,α

| log |β (x0) if there exist
C > 0, δ > 0, and Px0 a polynomial with α-homogeneous degree less than s, such
that

(3.1) if |x− x0|α ≤ δ, |f(x)− Px0(x)| ≤ C |x− x0|sα · | log(|x− x0|α)|β .
If β = 0, the space Cs,α

| log |0(x0) is denoted simply Cs,α(x0).

Thus the pointwise anisotropic exponent of a locally bounded function f at x0
can be defined by:

(3.2) hf,α(x0) = sup{s, f ∈ Cs,α(x0)} .
The link between global and pointwise anisotropic regularity is given by:

Proposition 3.3. If f ∈ Bs,α
∞,∞(R2) = Cs,α(R2) then f belongs to Cs,α(x0) for all

x0 ∈ R2.

Conversely, if f belongs to Cs,α(x0) for all x0 ∈ R2 with a constant C in (3.1)
independent of x0, then f ∈ Bs,α

∞,∞(R2).

Proposition 3.3 is a direct consequence of the proof of Proposition 2 of [7], which
gives the wavelet characterization of Cs,α(x0) using the Triebel wavelet basis, where
it is easy to check that constants appearing in the wavelet characterizations are
independent of x0 when this is the case for C in (3.1).

The reader is refered to [7] and [33] for more details about the material of this
section.
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3.1.2. A hyperbolic wavelet criterion. As in the usual isotropic setting
(see [34]), the pointwise anisotropic Hölder regularity of a function is closely re-
lated to the rate of decay of its wavelet leaders. The usual definition of wavelet
leaders needs to be adapted to the hyperbolic setting.

For any (j1, j2, k1, k2), let λ(j1, j2, k1, k2) denote the dyadic rectangle

(3.3) λ = λ(j1, j2, k1, k2) =
[ k1
2j1

,
k1 + 1

2j1

)
×
[ k2
2j2

,
k2 + 1

2j2

)
,

and let cλ stand for cj1,j2,k1,k2 . The hyperbolic wavelet leaders dλ, associated
with λ, can now be defined by

dλ = sup
λ′⊂λ

|cλ′ | .

For any x0 = (a, b) ∈ R2, let

3λj1,j2(x0) =
[ [2j1a]− 1

2j1
,
[2j1a] + 2

2j1

)
×
[ [2j2b]− 1

2j2
,
[2j2b] + 2

2j2

)
(where [ · ] denotes the integer part), and

dj1,j2(x0) = sup
λ′⊂3λj1 ,j2 (x0)

|cλ′ | .

The hyperbolic wavelet leader criterion for pointwise regularity can be stated as:

Theorem 3.4. Let s > 0 and let α = (α1, α2) ∈ (R∗
+)

2 be such that α1 + α2 = 2.

1. Assume that f ∈ Cs,α(x0). There exists some C > 0 such that for any
j1, j2 ∈ N ∪ {−1} one has

(3.4) |dj1,j2(x0)| ≤ C 2−max(j1/α1,j2/α2) s .

2. Conversely, assume that f is uniformly Hölder, that is there exists some
ε∗0 > 0 such that f ∈ Cε∗0 (R2). If (3.4) holds, then f ∈ Cs,α

| log |2(x0).

The proofs are given in Section 4.

3.2. Anisotropic multifractal analysis

3.2.1. Hausdorff dimension and spectrum of singularities. The Hausdorff
dimension is defined through the Hausdorff measure (see [23] for details). The best
covering of a set E ⊂ Rd by sets of diameters less than ε can be estimated

Hδ
ε(E) = inf

{ ∞∑
i=1

|Ei|δ, E ⊂
∞⋃
i=1

Ei, |Ei| ≤ ε
}
.

Clearly, Hδ
ε is an outer measure. The Hausdorff measure is defined as the (possibly

infinite or vanishing) limit Hδ
ε as ε goes to 0.

The Hausdorff measure is decreasing as δ goes to infinity. Moreover,Hδ(E) > 0
implies Hδ′(E) = ∞ if δ′ < δ. Therefore the following definition is meaningful.
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Definition 3.5. The Hausdorff dimension dimH(E) of a set E ⊂ Rd is defined by

dimH(E) = sup{δ : Hδ(E) = ∞} .
With this definition, dimH(∅) = −∞.
We now define the hyperbolic spectrum of singularities of a locally bounded

function using the Hausdorff dimension.

Definition 3.6. Let f be a locally bounded function and let α be an admissible
anisotropy. The iso-anisotropic-Hölder set are defined by

Ef (H,α) = {x ∈ R2, hf,α(x) = H}
where the anisotropic pointwise Hölder hf,α(x) was defined in (3.2).

The hyperbolic spectrum of singularities of f is then defined by

d : (R+ ∪ {∞})× (0, 2) → R+ ∪ {−∞}
(H, a) �→ dimH(Ef (H, (a, 2− a))) .

3.2.2. Hyperbolic wavelet leader multifractal formalism. It is not always
possible to compute theoretically the spectrum of singularities of a given function.
A multifractal formalism thus consists of a practical procedure that yields the
convex hull of the function d, through the construction of structure functions and
the use of the Legendre transform. In the classical case, these formalisms are
variants of a derivation proposed by Parisi and Frisch [40]. The hyperbolic wavelet
leader multifractal formalism described below is aimed at extending the procedure
to where both anisotropy and singularities are studied jointly.

Hyperbolic partition functions of a locally bounded function are defined as

(3.5) S(j, p, α) = 2−2j
∑

(j1,j2)∈Γj(α)

∑
(k1,k2)∈Z2

dpj1,j2,k1,k2
,

where Γj(α) is defined in equation (2.2) of Section 2.2.
From the definition of an anisotropic scaling function (or scaling exponents)

(3.6) ωf (p, α) = lim inf
j→∞

logS(j, p, α)

log 2−j
.

We define the hyperbolic Legendre spectrum by

(3.7) Lf (H,α) = inf
p∈R∗

{Hp− ωf (p, (α, 2 − α)) + 2} .

Qualitatively, the hyperbolic Legendre spectrum and the hyperbolic spectrum
of singularities df (H, a) are expected to coincide, while Theorem 3.7 actually pro-
vides an upper bound relationship.

Theorem 3.7. Let f be a uniform Hölder function. Then the inequality

(3.8) ∀(H, a) ∈ (R∗
+)× (0, 2), df (H, a) ≤ Lf (H, a)

holds.
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Note that, if equality holds in (3.8), that is, if

∀(H, a) ∈ (R∗
+)× (0, 2), d(H, a) = Lf (H, a),

then f is said to satisfy the hyperbolic multifractal formalism.
From an applied perspective, (3.5), (3.6), and (3.7) constitute the core of the

practical procedure enabling computation of the hyperbolic Legendre spectrum
from the hyperbolic wavelet leaders computed from the data being analyzed.

4. Proofs

4.1. Proof of Theorem 2.6

4.1.1. Hyperbolic Littlewood–Paley characterization of Bs,α
p,q (R

2). Let

θ0 ∈ S(R,R+) be supported on [−2, 2] and such that θ0 = 1 on [−1, 1]. For any
j ∈ N, define

θj = θ0(2
−j ·)− θ0(2

−(j−1)·)
such that

∑
j≥0 θj(·) = 1 is one-dimensional resolution of the unity.

Observe that, for any j ≥ 1, supp (θj) ⊂ {2j−1 ≤ |ξ| ≤ 2j+1}.
Remark 4.1. In the following, the function θ0 can be chosen with an arbitrary
compact support. This does not change the main results even if technical details
of proofs and lemmas have to be adapted. This means that the Fourier transform
of a Meyer scaling function for θ0 can be chosen as one likes.

Definition 4.2. 1) For any j, � ≥ 0, and any ξ = (ξ1, ξ2) ∈ R2 set

φj1,j2(ξ1, ξ2) = θj1(ξ1)θj2 (ξ2) .

For any j1, j2 ≥ 0, φj1,j2 belongs to S(R2) and is compactly supported in

{2j1 ≤ |ξ1| ≤ 2j1+1} × {2j2 ≤ |ξ2| ≤ 2j2+1].

Further
∑

j1≥0

∑
j2≥0 φj1,j2 = 1 and (φj1,j2)(j1,j2)∈N2 is called a hyperbolic resolu-

tion of unity.

2) For f ∈ S ′(R2) and j1, j2 ≥ 0 set

Δj1,j2f = F−1
(
φj1,j2 f̂

)
.

The sequence ((Δj1,j2f)j1,j2≥0) is called a hyperbolic Littlewood–Paley analysis
of f .

In the remainder of the section, we are given α = (α1, α2), a fixed admissible
anisotropy, and (ϕα

j )j≥0, an anisotropic resolution of unity. Then, for any j ≥ 0
one defines the functions

(4.1) gαj =
∑

j1,j2∈Γj(α)

φj1,j2 ,

where the sets Γj(α) are defined in (2.2).
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Remark 4.3. Hyperbolic Littlewood–Paley analysis is used in the definition of
spaces of mixed smoothness. We refer to [44] for a study of these spaces and to [45]
for their link with tensor products of Besov spaces and their hyperbolic wavelet
characterizations.

We now give the following hyperbolic Littlewood–Paley characterization of
anisotropic Besov spaces:

Theorem 4.4. Let s ∈ R and (p, q) ∈ (0,+∞]2. If p ≥ 1 let p∗ = max(p, p′) and
p∗ = min(p, p′), with 1/p+ 1/p′ = 1.

1. (a) If q <∞ and

(4.2)
(∑

j≥0

jr1 · j−βq 2jsq
∑

(j1,j2)∈Γj(α)

‖Δj1,j2(f)‖qp
)1/q

< +∞ ,

with r1 =

{
q(1/p− 1) + max(q − 1, 0) if p ≤ 1,

max(q/p∗ − 1, 0), if p > 1,

then f ∈ Bs,α
p,q,| log |β (R

2).

(b) If

(4.3) max
j≥0

(
jmax(1/p−1,0)+1 · j−β 2js max

(j1,j2)∈Γj(α)
‖Δj1,j2(f)‖p

)
< +∞ ,

then f ∈ Bs,α
p,∞,| log |β (R

2).

2. (a) If q <∞ and f ∈ Bs,α
p,q,| log |β (R

2) then(∑
j≥0

j−r2 · j−βq 2jsq
∑

(j1,j2)∈Γj(α)

‖Δj1,j2(f)‖qp
)1/q

< +∞ ,

with r2 =

{
1, if p < 1,

max(1 − q/p∗, 0) if p ≥ 1.

(b) If f ∈ Bs,α
p,∞,| log |β (R

2) then

max
j≥0

(
j−β 2js max

(j1,j2)∈Γj(α)
‖Δj1,j2(f)‖p

)
< +∞ .

Note, in particular, that for p = q = 2 the logarithmic correction disappears
and Theorem 4.4 gives an exact characterization of anisotropic Sobolev spaces in
term of hyperbolic Littlewood–Paley analysis.

The proof of Theorem 4.4 consists of several steps, beginning with:

Lemma 4.5. 1. For any j ≥ 0 and any (j1, j2) ∈ Γj(α), one has

(4.4) supp(ϕα
j ) ∩ supp(φj1,j2) = ∅ .
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2. For any j ≥ 0 and any � ∈ {j − 1, j, j + 1}, one has

(4.5) supp(gαj ) ∩ supp(ϕα
� ) = ∅ .

Proof. Both claims are checked easily since the support of both functions are known
(see equation (2.1) and Definition 4.2). �

From Lemma 4.5 an intermediate hyperbolic Littlewood–Paley characterization
of anisotropic Besov spaces is obtained.

Proposition 4.6. Let (p, q) ∈ (0,+∞]2, s, β ∈ R. The following assertions are
equivalent:

1. f ∈ Bs,α
p,q,| log |β (R

2).

2.

(4.6)
(∑

j≥0

j−βq 2jsq
∥∥∥ ∑

(j1,j2)∈Γj(α)

[Δj1,j2(f)]
∥∥∥q
p

)1/q

< +∞ .

Proof of Proposition 4.6.
We prove that the inequality (4.6) of Proposition 4.6 implies f ∈ Bs,α

p,q,| log |β (R
2).

To this end, point 1 of Lemma 4.5 is used to deduce that, for any j,

ϕα
j f̂ = ϕα

j

( ∑
(j1,j2)∈N2

φj1,j2

)
f̂ = ϕα

j

( ∑
(j1,j2)∈Γj(α)

φj1,j2

)
f̂ = ϕα

j

(
gαj f̂

)
,

where gαj is defined by (4.1). Observe now that replacing the usual dilation with an
anisotropic one gives an anisotropic version of equation (13) in Section 1.5.2 in [50].
More precisely assume that we are given p ∈ (0,+∞], b > 0 andM ∈ S(R2). There
exists C > 0 not depending on b or M such that for any h ∈ Lp(R2) such that

supp(ĥ) ⊂ {ξ ∈ R2, supi |ξi| ≤ bαi} one has

(4.7) ‖F−1 (MFh) ‖Lp(R2) ≤ C ‖M(bα·)‖Hs
2 (R

2)‖h‖Lp(R2)

where Hs
2 is the usual Bessel potential space and s > 2(1/min(p, 1)− 1/2).

Set now b = 2j, M = ϕα
j and ĥ = gαj f̂ . Since ϕ

α
j (2

jα·) = ϕα
1 , there exists some

C > 0 not depending on j such that for any p ∈ (0,+∞] and any f ∈ Lp(R2)

‖Δα
j f‖Lp ≤ C

∥∥∥ ∑
(j1,j2)∈Γj(α)

Δj1,j2f
∥∥∥
Lp

= C ‖(F−1gαj ) ∗ f‖Lp .

Then

‖f‖Bs,α

p,q,| log |β
=
(∑

j≥0

j−βq 2jsq‖Δα
j f‖qLp

)1/q

≤ C
(∑

j≥0

j−βq2jsq‖(F−1gαj ) ∗ f‖qLp

)1/q

,

which shows point 1 of Proposition 4.6.
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Now we prove the converse assertion. Assume that f belongs to Bs,α
p,q,| log |β (R

2).

For any j ≥ 0, point 2 of Lemma 4.5 gives

gαj f̂ = gαj
(
ϕα
j−1 + ϕα

j + ϕα
j+1

)
f̂ .

Hence, inequality (4.7) applied with b = 2j ,M = gαj , and ĥ = (ϕα
j−1+ϕ

α
j +ϕ

α
j+1)f̂ ,

gives the existence of a C > 0 not depending on j or f such that

‖ (F−1gαj
) ∗ f‖Lp ≤ C ‖gαj (2jα·)‖Hs

2
‖(F−1ϕα

j−1 + F−1ϕα
j + F−1ϕα

j+1) ∗ f‖Lp

for any p ∈ (0,+∞]. Since ‖ · ‖Lp is either a norm or a quasi-norm (according to
the value of p), there exists C > 0 such that

‖ (F−1gαj
) ∗ f‖Lp ≤ C ‖gαj (2jα·)‖Hs

2

j+1∑
l=j−1

‖(F−1ϕα
l ) ∗ f‖Lp .

First we bound ‖gαj (2jα·)‖Hs
2
. To this end, observe that

F [gαj (2
jα·)](ξ) = 2−j(α1+α2) ĝj(2

−jαξ) = 2−2j ĝj(2
−jαξ)

=
∑

(j1,j2)∈Γj(α)

2j1+j2−2j θ̂1(2
j1−jα1 ξ1) θ̂1(2

j2−α2j ξ2) .

Hence

‖gαj (2jα·)‖2Hs
2

=

∫
R2

(1 + |ξ|2)s
[ ∑
(j1,j2)∈Γj(α)

2j1+j2−2j θ̂1(2
j1−jα1 ξ1) θ̂1(2

j2−α2j ξ2)

]2
dξ

≤
∫
R2

(1 + |ξ|2)s
[ ∑
(j1,j2)∈Γj(α)

2j1+j2−2j |θ̂1(2j1−jα1 ξ1)| |θ̂1(2j2−α2j ξ2)|
]2
dξ .

Since θ1 ∈ S(R), for any M > 1 there exists C > 0 such that

|θ̂1(ζ)| ≤ CM

(1 + |ζ|)2M .

Finally

‖gαj (2jα·)‖2Hs
2

≤ CM

∫
R2

(1 + |ξ|2)s
[ ∑
(j1,j2)∈Γj(α)

2j1+j2−2j

(1 + |2j1−jα1 ξ1|)2M · (1 + |2j2−jα2 ξ2|)2M
]2
dξ

≤ CM

∫
R2

(1 + |ξ|2)s
[ ∑
(j1,j2)∈Γj(α)

1

(2jα1−j1 + |ξ1|)2M · (2jα2−j2 + |ξ2|)2M
]2
dξ .
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By the inequality
(a+ b)2 ≥ amax(b, 1) ,

valid for any a > 1 and b > 0, and applied first with a = 2jα1−j1 and b = |ξ1| and
then with a = 2jα2−j2 and b = |ξ2|, there results

‖gαj (2jα·)‖2Hs
2
≤ CM

∫
R2

(1 + |ξ|2)s
[ ∑
(j1,j2)∈Γj(α)

2(j1−jα1)M 2(j2−jα2)M

max(1, |ξ1|)M max(1, |ξ2|)M
]2
dξ .

With a sufficiently large M it follows that

sup
j

(‖gαj (2jα·)‖Hs
2

)
< +∞ .

Returning to finding an upper bound of ‖ (F−1gαj
) ∗ f‖Lp, there exists C > 0 such

that

‖ (F−1gαj
) ∗ f‖Lp ≤ C j

j+1∑
l=j−1

‖(F−1ϕα
l ) ∗ f‖Lp

and

(4.8)
∑
j≥0

j−βq 2jsq‖(F−1gαj ) ∗ f‖qLp ≤ C ‖f‖q
Bs,α

p,q,| log |β
=

∑
j≥0

j−βq2jsq‖Δα
j f‖qLp .

The last equality shows that if (4.6) holds then f ∈ Bs,α
p,q,| log |β (R

2).

Note that the proof can be shortened in the case p ≥ 1 using Young’s inequality

‖F−1 (MFh) ‖Lp(R2) ≤ C ‖F−1M‖L1(R2)‖h‖Lp(R2)

in place of inequality (4.7).

Proof of Theorem 4.4. First we recall that:

• For any q ∈ (0,+∞), n ∈ N, and (a1, . . . , an) ∈ (R+)
n,

(4.9) (a1 + · · ·+ an)
q ≤ nmax(q−1,0) (aq1 + · · ·+ aqn) .

• For any p ∈ (0, 1], n ∈ N, and (f1, . . . , fn) ∈ Lp(R2)n,

(4.10) ‖f1 + · · ·+ fn‖Lp ≤ n1/p−1 (‖f1‖+ · · ·+ ‖fn‖) .

Moreover Lemma 7.1 of [47] applied to the hyperbolic Littlewood–Paley analysis
provides the following inequality as a consequence of interpolation of the Plancherel
and Minkowski inequalities:

(4.11)

[ ∑
j1,j2∈J

‖Δj1,j2f‖p
∗

p

]1/p∗

≤ ‖
∑

j1,j2∈J

Δj1,j2f‖p ≤
[ ∑
j1,j2∈J

‖Δj1,j2f‖p∗
p

]1/p∗

,

for p ≥ 1 and any subset J of N2. (Recall that p∗ = min(p, p′) and p∗ = max(p, p′).)
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Now we prove the first claim of the theorem in the case where q = ∞. For
this, we assume that (4.2) holds and let prove that f ∈ Bs,α

p,q,| log |β (R
2). For p < 1,

by inequalities (4.9) and (4.10) and the fact that Card(Γj(α)) ≤ Cj there exists
C > 0 such that∥∥∥ ∑

(j1,j2)∈Γj(α)

Δj1,j2f
∥∥∥q
Lp

≤ C jq(1/p−1)+max(q−1,0)
∑

(j1,j2)∈Γj(α)

‖Δj1,j2f‖qLp .

Hence,(∑
j≥0

j−βq2jsq
∥∥∥ ∑

(j1,j2)∈Γj(α)

Δj1,j2f
∥∥∥q
Lp

)1/q

≤ C
(∑

j≥0

jq(1/p−1)+max(q−1,0) · j−βq 2jsq
∑

(j1,j2)∈Γj(α)

‖Δj1,j2f‖qLp

)1/q

.

This proves that, if (4.2) holds, one has(∑
j≥0

j−βq2jsq
∥∥∥ ∑

(j1,j2)∈Γj(α)

Δj1,j2f
∥∥∥q
Lp

)1/q

<∞ .

Finally, by (1) of Proposition 4.6, there results that f ∈ Bs,α
p,q,| log |β (R

2).

If p ≥ 1, inequality (4.11) with (4.9) gives∥∥∥ ∑
(j1,j2)∈Γj(α)

Δj1,j2f
∥∥∥q
Lp

≤
( ∑

(j1,j2)∈Γj(α)

∥∥Δj1,j2f
∥∥p∗
p

)q/p∗

≤ C jmax(q/p∗−1,0)
∑

(j1,j2)∈Γj(α)

‖Δj1,j2f‖qp

which also leads to the desired result.
We now treat the case q = ∞. In this case, we have

max
j≥0

j−β 2js
∥∥∥ ∑

(j1,j2)∈Γj(α)

Δj1,j2f
∥∥∥
Lp

≤ Cmax
j≥0

jmax( 1
p−1,0)−β 2js

∑
(j1,j2)∈Γj(α)

‖Δj1,j2f‖Lp .

Hence if (4.6) holds, f ∈ Bs,α
p,∞,| log |β (R

2).

To prove the converse assertion, assume f ∈ Bs,α
p,q,| log |β (R

2). We first treat the

case p < 1. Observe that for any j ≥ 0 and any (j1, j2) ∈ Γj(α), one has

φj1,j2 f̂ = φj1,j2
(
gαj−1 + gαj + gαj+1

)
f̂ .

Note that φj1,j2(2
jα·) is bounded in Hs

2(R
2) independently of (j1, j2) ∈ Γj(α).

Hence, by (4.7), there exists C > 0 not depending on j or f such that, for
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any (j1, j2) ∈ Γj(α),

‖(F−1φj1,j2) ∗ f‖Lp ≤ C

j+1∑
l=j−1

‖(F−1gαl ) ∗ f‖Lp .

Again, two cases have to be distinguished according to whether q = ∞ or q = ∞.
Consider the case q <∞. Observing that Card(Γj(α)) ≤ Cj, we deduce that

∑
(j1,j2)∈Γj(α)

‖(F−1φj1,j2) ∗ f‖qLp ≤ Cj

j+1∑
l=j−1

‖(F−1gαl ) ∗ f‖qLp ,

so ∑
j

j−1j−βq 2jsq
∑

(j1,j2)∈Γj(α)

‖(F−1φj1,j2) ∗ f‖qLp

≤
∑
j

j · j−1j−βq 2jsq‖(F−1gαj ) ∗ f‖qLp .(4.12)

Since in addition the function f is assumed to belong to Bs,α
p,q,| log |β (R

2), one has∑
j

j−βq 2jsq‖(F−1gαj ) ∗ f‖qLp =
∑
j

j · j−1j−βq 2jsq‖(F−1gαj ) ∗ f‖qLp <∞ ,

which directly yields the required inequality using (4.12).
The case p ≥ 1 is simpler. Again, inequalities (4.11) and (4.9) give∥∥∥ ∑

(j1,j2)∈Γj(α)

Δj1,j2f
∥∥∥q
Lp

≥
( ∑

(j1,j2)∈Γj(α)

‖Δj1,j2f‖p
∗

p

)q/p∗

≥ C j−max(1−q/p∗,0)
∑

(j1,j2)∈Γj(α)

‖Δj1,j2f‖qp

which allow us to obtain the desired conclusion.
In the case q = ∞, we have

max
(j1,j2)∈Γj(α)

‖(F−1φj1,j2) ∗ f‖qLp ≤ C max
�=j−1,j,j+1

‖(F−1gα� ) ∗ f‖Lp ,

which leads, for a C > 0, to

max
j≥0

(
j−β 2js max

(j1,j2)∈Γj(α)
‖(F−1φj1,j2) ∗ f‖Lp

)
≤ I,

where
I = Cmax

j≥0

(
j−β 2js‖(F−1gαj ) ∗ f‖Lp

)
.

That is,

(4.13) max
j1,j2≥0

(
max

( j1
α1
,
j2
α2

))−β

2max(j1/α1,j2/α2) s‖(F−1φj1,j2) ∗ f‖Lp ≤ I.
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Since, in addition, f is assumed to belong to Bs,α
p,∞,| log |β (R

2), there results

max j−β 2js‖(F−1gαj ) ∗ f‖Lp <∞ .

Finally, the required conclusion is obtained by an approach similar to the one used
for the previous case.

4.1.2. Proof of the hyperbolic wavelet characterization of anisotropic
Besov spaces. First we consider the general case where (p, q) ∈ (0,+∞]2, β, s ∈ R

and α = (α1, α2) is a fixed anisotropy. The intermediate spaces Es,α
p,q,| log |β (R

2) are

defined as the collection of functions f in S ′(R2) such that∑
j≥0

j−βq 2jsq
∑

(j1,j2)∈Γj(α)

‖Δj1,j2f‖qp < +∞.

A norm on Es,α
p,q,| log |β (R

2) is defined by

‖f‖Es,α

p,q,| log |β
=

(∑
j≥0

j−βq 2jsq
∑

(j1,j2)∈Γj(α)

‖Δj1,j2f‖qp
)1/q

.

Then the embeddings of Theorem 4.4 can be rewritten in the following manner:

• if q <∞,

Es,α

p,q,| log |β−r1/q(R
2) ↪→ Bs,α

p,q,| log |β (R
2) ↪→ Es,α

p,q,| log |β+r2/q (R
2) .

with r1 =

{
q(1/p− 1) + max(q − 1, 0) if p ≤ 1,

max(q/p∗ − 1, 0) if p > 1,

and r2 =

{
1 if p < 1,

max(1 − q/p∗, 0) if p ≥ 1.

• if q = ∞,

Es,α

p,∞,| log |β−max(1/p−1,0)−1(R
2) ↪→ Bs,α

p,∞,| log |β (R
2) ↪→ Es,α

p,q,| log |β (R
2) .

In Proposition 4.7, an hyperbolic wavelet characterization of the spaces Es,α
p,q (R

2)
is given. Combining Proposition 4.7 and Theorem 4.4 directly implies Theorem 2.6.

Proposition 4.7. Let (p, q) ∈ (0,+∞]2, and let s, β ∈ R2. The following asser-
tions are equivalent:

(1) f ∈ Es,α
p,q,| log |β (R

2).

(2)
(∑

j≥0

j−βq2jsq
∑

(j1,j2)∈Γj

2−(j1+j2)q/pDj1,j2

)1/q

< +∞.
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(3)
( ∑

(j1,j2)∈N2
0

(
max

( j1
α1
,
j2
α2

))−βq

2(max(j1/α1,j2/α2)s−(j1+j2)/p)qDj1,j2

)1/q

<+∞,

where Dj1,j2 =
(∑

(k1,k2)∈Z2 |cj1,j2,k1,k2 |p
)q/p

.

We prove Proposition 4.7. Assertions (2) and (3) are equivalent because, for
any (j1, j2) ∈ Γj(α), one has

max
( j1
α1
,
j2
α2

)
+ 2− 2 ≤ j ≤ max

( j1
α1
,
j2
α2

)
+ 2

and ∪Γj = (N ∪ {−1})2. The crucial point is the equivalence of the assertions (1)
and (2).

Proof of the implication (1) ⇒ (2) of Proposition 4.7. The proof of this
implication relies on the following sampling lemma, which is an adaptation of
Lemma 2.4 of [25] in the case of rectangular support.

Lemma 4.8. Let p ∈ (0,+∞] and j = (j1, j2) ∈ N2
0. Suppose g ∈ S ′(R2) and

supp(ĝ) ⊂ {ξ, |ξ1| ≤ 2j1+1 and |ξ2| ≤ 2j2+1}. Then there exists C > 0 such that

( ∑
(k1,k2)∈Z2

2−(j1+j2)
∣∣∣g( k1

2j1
,
k2
2j2

)∣∣∣p)1/p

≤ C‖g‖Lp .

Proof. Let ψ ∈ S(R2) be such that supp(ψ̂) ⊂ {ξ, max(|ξ1|, |ξ2|) ≤ π} and ψ̂ ≡ 1
on [−2, 2]2. Set ψj(x) = 2j1+j2ψ(2j1x1, 2

j2x2). One has

ψ̂j ≡ 1 on [−2j1+1, 2j1+1]× [−2j2+1, 2j2+1].

By assumption supp(ĝ) ⊂ [−2j1+1, 2j1+1] × [−2j2+1, 2j2+1], so that, for any
x = (x1, x2) ∈ R2 and any fixed y = (y1, y2) ∈ R2,

g(x+ y) = (ψj � g)(x+ y) = (2π)−2

∫ 2j1+1

ξ1=−2j1+1

∫ 2j2+1

ξ2=−2j2+1

ψ̂j(ξ) ĝ(ξ) e
ix·ξ eiy·ξ dξ .

Denote by ĥj the periodic extension of ψ̂j with period 2ji+1π in each variable
ξi (i = 1, 2). One has

(4.14) g(x+ y) = (2π)−2

∫ 2j1+1

ξ1=−2j1+1

∫ 2j2+1

ξ2=−2j2+1

(
ĥj(ξ) e

ix·ξ) (ĝ(ξ) eiy·ξ) dξ .
Using an expansion of ĥje

ix·ξ in two-dimensional Fourier series, with τ = (τ1, τ2),
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it results:

ĥj(ξ) e
ix·ξ

=
∑

(�1,�2)∈Z2

(∫ 2j1+1π

τ1=−2j1+1π

∫ 2j2+1π

τ2=−2j2+1π

ĥj(τ)e
ix·τ e−i(2−j1�1τ1+2−j2 �2τ2dτ1dτ2

)
× ei(2

−j1 �1ξ1+2−j2 �2ξ2)

=
∑

(�1,�2)∈Z2

(∫ 2j1+1π

τ1=−2j1+1π

∫ 2j2+1π

τ2=−2j2+1π

ψ̂j(τ)e
ix·τ e−i2−j1 �1τ1e−i2−j2 �2τ2dτ1dτ2

)
× ei2

−j1 �1ξ1ei2
−j2 �2ξ2

= 2−(j1+j2)
∑

(�1,�2)∈Z2

ψj(x− 2−j�)ei2
−j1�1ξ1ei2

−j2 �2ξ2 ,

where for j = (j1, j2) and � = (�1, �2), the notation 2−j� = (2−j1�1, 2
−j2�2) is

used. Replacing ĥj(ξ)e
ix·ξ with the last sum in equation (4.14) yields that, for any

x = (x1, x2) ∈ R2 and any fixed y = (y1, y2) ∈ R2,

g(x+ y)

=
2−(j1+j2)

4π2

∑
(�1,�2)∈Z2

(∫ 2j1+1

ξ1=−2j1+1

∫ 2j2+1

ξ2=−2j2+1

ψj(x− 2−j�)ei2
−j�·ξ (ĝ(ξ)eiy·ξ) dξ)

= 2−(j1+j2)
∑

(�1,�2)∈Z2

g(2−j�+ y)ψj(x− 2−j�) .

Hence, for all y ∈ λj1,j2,k1,k2 = [2−j1k1, 2
−j1(k1 + 1))× [2−j2k2, 2

−j2(k2 + 1)),

sup
|z1−2−j1k1|≤2−j1 ,|z2−2−j2k2|≤2−j2

|g(z)|

≤ sup
|x1|≤2−j1

√
2,|x2|≤2−j2

√
2

|g(x+ y)|

≤ 2−(j1+j2)
∑

(�1,�2)∈Z2

|g(2−j�+ y)| · sup
max(2j1 |x1|,2j2 |x2|)≤

√
2

|ψj(x − 2−j�)|

≤ 2−(j1+j2)
∑

(�1,�2)∈Z2

|g(2−j�+ y)| · 1

(1 + |�|)M ,

where the last inequality follows from the fast decay of ψ. TakeM sufficiently large
and use either the p triangular inequality or the Hölder inequality as p ∈ (0, 1) or
p ∈ [1,+∞]. Hence, one has

|g(2−j1k1, 2
−j2k2)|p ≤ sup

|z1−2−j1k1|≤2−j1 ,|z2−2−j2k2|≤2−j2

|g(z)|p

≤ C 2−(j1+j2)
∑

(�1,�2)∈Z2

|g(2−j�+ y)|p · 1

(1 + |�|)M ′ ,
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for some M ′ > 1. Integration over y ∈ λj1,j2,k1,k2 leads to

2−(j1+j2) |g(2−j1k1, 2
−j2k2)|p ≤

∑
(�1,�2)∈Z2

1

(1 + |�|)M ′

∫
λj1,j2,k1,k2

|g(y)|p dy.

Summing over k ∈ Z2 gives∑
k

2−(j1+j2) |g(2−j1k1, 2
−j2k2)|p ≤

∑
k

∑
(�1,�2)∈Z2

1

(1 + |�|)3
∫
λj1,j2,k1,k2

|g(y)|p dy ,

which concludes the proof of Lemma 4.8. �

Now, observe that cj1,j2,k1,k2 = Δj1,j2f(2
−j1k1, 2

−j2k2). By Lemma 4.8 applied
to g = Δj1,j2f ∈ S(R2), one has∑
(k1,k2)∈Z2

|cj1,j2,k1,k2 |p =
∑

(k1,k2)∈Z2

|Δj1,j2f(2
−j1k1, 2

−j2k2)|p ≤ C 2j12j2‖Δj1,j2f‖pp ,

which is the desired wavelet characterization.

Proof of the implication (2) ⇒ (1) of Proposition 4.7. To obtain the converse
implication, the approach of the proof of Theorem 3.1 of [25] is followed.

Since φj1,j2 and ψm1,m2,k1,k1 are both defined as tensor products, Lemma 3.3
of [25] can be applied to conclude that there exists C > 0 such that for any α > 0
and for all x = (x1, x2) ∈ R2 one has

|φj1,j2 � ψm1,m2,k1,k1(x)|

≤ C 2−(|j1−m1|+|j2−m2|)(M+3)(
1 + 2inf(j1,m1) |x1 − 2−m1k1|

)α (
1 + 2inf(j2,m2) |x2 − 2−m2k2|

)α ,(4.15)

where M denotes the number of vanishing moments of the wavelets.
Lemma 4.9 is analogous to Lemma 3.4 of [25].

Lemma 4.9. Let p ∈ [1,+∞], and let �1, �2,m1, and m2 be integers such that
�1 ≤ m1 and �2 ≤ m2. Additionally suppose given functions gk1,k2 satisfying,
∀x = (x1, x2) ∈ R2, the inequality

(4.16) |gk1,k2(x)| ≤
C

(1 + 2�1 |x1 − 2−m1k1|)2(1 + 2�2 |x2 − 2−m2k2|)2

for some C > 0. Set

F =
∑

k=(k1,k2)∈Z2

dk1,k2gk1,k2 .

Then

(4.17) ‖F‖Lp ≤ C 2−(m1+m2)/p 2m1−�1 2m2−�2 ·
( ∑

k=(k1,k2)∈Z2

|dk1,k2 |p
)1/p

.
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Proof. By definition of the Lp-norm, one has

‖F‖pLp =

∫
R2

∣∣∣ ∑
k=(k1,k2)∈Z2

dk1,k2gk1,k2(x)
∣∣∣pdx

≤
∑

k′=(k′
1,k

′
2)∈Z2

∫
λm1,m2,k′

1,k′
2

∣∣∣ ∑
k=(k1,k2)∈Z2

dk1,k2gk1,k2(x)
∣∣∣pdx ,

where the hyperbolic dyadic cubes λm1,m2,k′
1,k

′
2
are defined in (3.3). Observe now

that, by the usual triangle inequality and by inequality (4.16), there exists C > 0
such that, for any (k1, k2) ∈ Z2, (k′1, k′2) ∈ Z2,

sup
x∈λm1,m2,k′

1
,k′

2

∣∣∣ ∑
(k1,k2)∈Z2

dk1,k2gk1,k2(x)
∣∣∣

≤
∑

(k1,k2)∈Z2

|dk1,k2 |∏
i=1,2(1 + 2�i |2−mik′i − 2−miki|)2 = I(m1,m2, k

′
1, k

′
2) .

Hence one has

‖F‖pLp ≤ C 2−(m1+m2)
∑

(k′
1,k

′
2)∈Z2

I(m1,m2, k
′
1, k

′
2)

p .

Recall the usual convolution inequality

‖s ∗ s′‖p�p(Z2) ≤ ‖s‖p�p(Z2)‖s′‖p�1(Z2) ,

valid for any sequences s, s′ in �p(Z2) for p ≥ 1. Applied to s = |dk1,k2 | and
s′ = (1 + 2�1−m1 |k′1 − k1|)−2(1 + 2�2−m2 |k′2 − k2|)−2, this gives

‖F‖pLp ≤C 2−(m1+m2)
( ∑

(k1,k2)∈Z2

|dk1,k2 |p
)

×
( ∑

(k′
1,k

′
2)∈Z2

1

(1 + 2�1−m1 |k′1|)2(1 + 2�2−m2 |k′2|)2
)p

.

Recall the classical inequality∑
k′=(k′

1,k
′
2)∈Z2

1

(1 + 2�1−m1 |k′1|)2(1 + 2�2−m2 |k′2|)2
≤ C 2m1−�1 2m2−�2 .

Hence

‖F‖pLp ≤C 2−(m1+m2) 2(m1−�1)p 2(m2−�2)p
( ∑

k=(k1,k2)∈Z2

|dk1,k2 |p
)

×
( ∑

k′=(k′
1,k

′
2)∈Z2

1∏
i=1,2(1 + 2�i−mi |k′i|)2

)p

,

which directly yields the required result. This concludes the proof of Lemma 4.9.
�
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Now we return to implication (2) ⇒ (1) of Proposition 4.7. Two cases are
considered: p ∈ (0, 1) and p ∈ [1,+∞].

First we assume that p ∈ (0, 1). We need to bound ‖Δj1,j2f‖Lp = ‖φj1,j2 �f‖Lp .
Observe that

φj1,j2 � f =
∑

m1,m2

∑
k1,k2

cm1,m2,k1,k2 (φj1,j2 � ψm1,m2,k1,k2) .

By the p-triangular inequality, there results

∀x ∈ R2, |φj1,j2 � f(x)|p ≤
∑

m1,m2

∑
k1,k2

|cm1,m2,k1,k2 |p |(φj1,j2 � ψm1,m2,k1,k2)(x)|p .

By the inequality (4.15), for all x = (x1, x2) ∈ R2, one has

|φj1,j2 � f(x)|p ≤
∑

m1,m2

∑
k1,k2

|cm1,m2,k1,k2 |p

× 2−p(|j1−m1|+|j2−m2|)(M+3)

((1 + 2inf(j1,m1)|x1−2−m1k1|)(1 + 2inf(j2,m2)|x2−2−m2k2|))pα .

Integration over R2 implies that

‖φj1,j2 � f(x)‖pLp ≤
∑

m1,m2

∑
k1,k2

|cm1,m2,k1,k2 |p 2−p(|j1−m1|+|j2−m2|)(M+3) .

Hence

‖f‖qEs,α

p,q,| log |β
=

∑
j1,j2

(
max

( j1
α1
,
j2
α2

))−βq

2qsmax(j1/α1,j2/α2) ‖φj1,j2 � f(x)‖qLp

≤
∑
j1,j2

( ∑
m1,m2

‖cm1,m2,·,·‖p�p 2−p(|j1−m1|+|j2−m2|)(M+3)

×
(
max

( j1
α1
,
j2
α2

))−βp

2psmax(j1/α1,j2/α2)
)q/p

.

For any t ∈ R, set (t)+ = max(t, 0) and define

sgn(t) =

⎧⎨⎩
1 if t > 0 ,
0 if t = 0 ,

−1 if t < 0 .

Now observe now that, for any integers j and m,

m− (m− j)+ ≤ j ≤ (j −m)+ +m,

and that, for any integers j1, j2,m1, and m2,

max(m1/α1,m2/α2)

1− max((m1−j1)+/α1,(m2−j2)+/α2)
max(m1/α1,m2/α2)

≤ max
( j1
α1
,
j2
α2

)
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and

max
( j1
α1
,
j2
α2

)
≤ max

(m1

α1
,
m2

α2

) [
1 + max

( (j1 −m1)+
α1

,
(j2 −m2)+

α2

)]
(except in the case m1 = m2 = 0 which can be treated separately). Hence

‖f‖qEs,α

p,q,| log |β
≤

∑
j1,j2

( ∑
m1,m2

um1,m2 vj1−m1,j2−m2 ·
)q/p

,

with

um1,m2 =
(
max

(m1

α1
,
m2

α2

))−βp

2psmax(m1/α1,m2/α2) ‖cm1,m2,·,·‖p�p
and

vj1,j2 = 2−p(|j1|+|j2|)(M+3)
[
1+max

( (j1)+
α1

,
(j2)+
α2

)]−βp

2sgn(s)psmax((j1)+/α1,(j2)+/α2).

If q/p > 1, Young’s inequality can be applied. It states that, for any sequences s
and s′,

‖s ∗ s′‖�q/p(Z2) ≤ ‖s‖�q/p(Z2) ‖s′‖�1(Z2) ,

whereas if q/p ≤ 1 the usual (q/p)-triangle inequality and the usual inequality
‖s ∗ s′‖�1(Z2) ≤ ‖s‖�1(Z2)‖s′‖�1(Z2) valid for any sequence s and s′ can applied.
In either case, there is obtained the inequality

‖f‖qEs,α

p,q,| log |β
≤

( ∑
m1,m2

(
max

(m1

α1
,
m2

α2

))−βp

2qsmax(m1/α1,m2/α2) ‖cm1,m2,·,·|p�p
)

×
∑
j1,j2

(
2−p(j1+j2)(M+3)

(
max

( j1
α1
,
j2
α2

))−βp

2psmax(j1/α1,j2/α2)
)max(q/p,1)

.

If the wavelets have sufficiently many vanishing moments, we get that

‖f‖qEs,α

p,q,| log |β
≤ C

( ∑
m1,m2

(
max

(m1

α1
,
m2

α2

))−βp

2qsmax(m1/α1,m2/α2) ‖cm1,m2,·,·|p�p
)
,

which is the required result.
Now we consider the case p ∈ [1,+∞]. In this case, observe that

Δj1,j2f =
∑
k1,k2

dk1,k2gk1,k2

with
gk1,k2 = 2(|j1−m1|+|j2−m2|)(M+3)(φj1,j2 � ψm1,m2,k1,k2) ,

and
dk1,k2 = 2−(|j1−m1|+|j2−m2|)(M+3)cj1,j2,k1,k2 .

We set �1 = inf(j1,m1) and �2 = inf(j2,m2). Lemma 4.9 gives

‖Δj1,j2f‖Lp ≤C 2−p(|j1−m1|+|j2−m2|)(M+3)2−(m1+m2)/p‖cm1,m2,·,·|p�p2m1−�1 2m2−�2 .

Again the two cases q ≤ 1 and q > 1 are distinguished and the same approach as
in the case p ∈ (0, 1) is followed. It leads to the required conclusion.
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4.2. Proof of Theorem 3.4

First a two-microlocal criterion is proved.

Proposition 4.10. 1) Assume that f ∈ Cs,α(x0). Then there exists C > 0 such
that, for any (j1, j2, k1, k2) ∈ (N ∪ {−1})2 × Z2,

(4.18) |cj1,j2,k1,k2 | ≤ Cmin
(
2−j1s/α1 +

∣∣∣ k1
2j1

− a
∣∣∣s/α1

, 2−j2s/α2 +
∣∣∣ k2
2j2

− b
∣∣∣s/α2

)
.

2) Conversely, if f is uniformly Hölder and (4.18) holds, then f ∈ Cs,α
| log |2(x0).

Proof. First assume that f ∈ Cs,α(x0) with x0 = (a, b). Assume that j1 = −1 and
j2 = −1. By definition of the hyperbolic wavelet coefficients one has

cj1,j2,k1,k2 = 2j1+j2

∫
R2

f(x1, x2)ψ(2
j1x1 − k1)ψ(2

j2x2 − k2) dx1 dx2 .

Since ψ admits at least one vanishing moment, there hold the equalities
(4.19)

cj1,j2,k1,k2 = 2j1+j2

∫
R2

(f(x1, x2)− Px0(a, x2))ψ(2
j1x1 − k1)ψ(2

j2x2 − k2)dx1dx2 ,

(4.20)

cj1,j2,k1,k2 = 2j1+j2

∫
R2

(f(x1, x2)− Px0(x1, b))ψ(2
j1x1 − k1)ψ(2

j2x2 − k2)dx1dx2 .

Equality (4.19) and the assumption f ∈ Cs,α(x0) imply that

|cj1,j2,k1,k2 | ≤ 2j1+j2

∫
|x1 − a|sα |ψ(2j1x1 − k1)ψ(2

j2x2 − k2)| dx1 dx2

≤ 2j1+j2

∫
R2

(∣∣∣x1− k1
2j1

∣∣∣s/α1

+
∣∣∣ k1
2j1

−a
∣∣∣s/α1

)
|ψ(2j1x1 − k1)ψ(2

j2x2 − k2)| dx1dx2 .

We now set u1 = 2j1x1 − k1, u2 = 2j2x2 − k2 and deduce that

|cj1,j2,k1,k2 | ≤
(
2−j1s/α1

∫
R2

|u1|s/α1 |ψ(u1)ψ(u2)|du1du2

+
∣∣∣ k1
2j1

− a
∣∣∣s/α1

∫
|ψ(u1)ψ(u2)|du1du2

)
.

Hence for some C depending only on ψ, s, and α one has

|cj1,j2,k1,k2 | ≤ C
(
2−j1s/α1 +

∣∣∣ k1
2j1

− a
∣∣∣s/α1

)
.

A similar approach yields that

|cj1,j2,k1,k2 | ≤ C
(
2−j2s/α2 +

∣∣∣ k2
2j2

− b
∣∣∣s/α2

)
.

This shows that (4.18) can be interpreted as a necessary condition for pointwise
regularity.
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Now we prove the converse result. Assuming that (4.18) holds, the initial aim
is to define a polynomial approximation of f at x0. To this end, a Taylor expansion
is used to investigate the differentiability of f at x0. We define fj by

fj =
∑

(j1,j2)∈Γj(α)

∑
(k1,k2)∈Z2

cj1,j2,k1,k2 ψj1,j2,k1,k2 .

where the notation is the same as in the proof of Proposition 2.8. One has

|fj(x)| ≤
∑

(j1,j2)∈Γj

∑
(k1,k2)∈Z2

min(2−j1s/α1 + | k1

2j1
− a|s/α1 , 2−j2s/α2 + | k2

2j2
− a|s/α2)

(1 + |2j1x1 − k1|)N (1 + |2j2x2 − k2|)N

≤
∑
j1≤j

∑
k1,k2

2−js + |k2

2j − x2|s/α2 + |x2 − b|s/α2

(1 + |2j1x1 − k1|)N (1 + |2j2x2 − k2|)N

+
∑
j2≤j

2−js + | k1

2j1
− x1|s/α1 + |x1 − a|s/α2

(1 + |2j1x1 − k1|)N (1 + |2j2x2 − k2|)N .

Then

(4.21) |fj(x)| ≤ C
(
j2−js + j|x1 − a|s/α1 + j|x2 − b|s/α2

)
.

In the same way, if β = (β1, β2), an upper bound of |∂βfj | is given by∑
(j1,j2)∈Γj

2j1β1+j2β2

∑
(k1,k2)∈Z2

min(2−j1s/α1 + | k1

2j1
− a|s/α1 , 2−j2s/α2 + | k2

2j2
− a|s/α2)

(1 + |2j1x1 − k1|)N (1 + |2j2x2 − k2|)N .

Then

(4.22) |∂βfj(x)| ≤ C 2j(β1α1+β2α2)
(
2−js + |x1 − a|s/α1 + |x2 − b|s/α2

)
.

Hence, the function f is β-differentiable at x0 provided that β1α1+β2α2 ≤ s. The
Taylor polynomial of f at x0 is given by

Pj,x0(x) =
∑

β1α1+β2α2≤s

(x− x0)
β

β!
∂βfj(x0)

and
Px0(x) =

∑
j

Pj,x0(x) .

We shall now bound |f(x) − Px0(x)| in a neighborhood of x0. Recall that f is
assumed to be uniformly Hölder, namely there exists ε∗0 > 0 such that f ∈ Cε∗0 (R2).
The inclusions between Hölder spaces with different anisotropies (see [48]) lead to
the existence of ε0 such that f ∈ Cε0,α(R2). Set J1 = [αJ/ε0]. Observe that

|f(x)−Px0(x)| ≤
∑
j≤J

|fj(x)−Pj,x0(x)|+
J1∑

j=J+1

|fj(x)|+
∑
j>J1

|fj(x)|+
∑
j>J

|Pj,x0(x)| .

Now we bound each term of the right hand side of this inequality.
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First we deal with the term corresponding to j ≤ J . In this case we shall use
an anisotropic version of the Taylor inequality which can be found in [17] and [24]
and is recalled in [6]. It gives the existence of some C > 0 such that

|fj(x)− Pj,x0(x)| ≤ C
∑

β1+β2≤k+1, α1β1+α2β2>s

|x− x0|α1β1+α2β2
α sup

z=(z1,z2)∈R2

|∂βfj | ,

with k = [max(s/α1, s/α2)]. The bound (4.22) implies that there exists C > 0
such that

|fj(x)− Pj,x0(x)|
≤ C

∑
β1+β2≤k+1

α1β1+α2β2>s

|x− x0|α1β1+α2β2
α 2j(β1α1+β2α2)(2−js + |x1 − a|s/α1 + |x2 − b|s/α2).

Hence,∑
j≤J

|fj(x) − Pj,x0(x)|

≤ C
∑

β1+β2≤k+1

α1β1+α2β2>s

|x− x0|α1β1+α2β2
α (2J(β1α1+β2α2−s) + 2J(β1α1+β2α2)|x− x0|sα) .

Since |x− x0|α ≤ 2−J there follows

(4.23)
∑
j≤J

|fj(x) − Pj,x0(x)| ≤ C |x− x0|sα .

Now we bound the sum
∑J1

j=J+1 |fj(x)|. By (4.21) and the definition of J1,
which depends on J , one has

(4.24)

J1∑
j=J+1

|fj(x)| ≤
J1∑
j=J

(j 2−js + j|x− x0|sα) ≤ J 2−Js + J2|x− x0|sα .

To bound the sum
∑

j>J1
|fj(x)| the uniform regularity of f is used, leading to

(4.25)
∑
j>J1

|fj(x)| ≤ C 2−J1ε0 ≤ C 2−Js ,

the last inequality following from the definition of J1.
Finally, by (4.22), the sum

∑
j>J |Pj,x0(x)| can be bounded. Indeed, for some

C > 0, one has∑
j>J

|Pj,x0(x)| ≤
∑

β1α1+β2α2<s

|(x − x0)
β |

β!

∑
j>J

|∂βfj(x0)|

≤ C
∑

β1α1+β2α2<s

|x1 − a|β1 |x2 − b|β2

β!

∑
j>J

2j(β1α1+β2α2−s) .
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Since |x1 − a| ≤ |x−x0|α1
α ≤ 2−Jα1 and |x2 − b| ≤ |x−x0|α2

α ≤ 2−Jα2 there results

(4.26)
∑
j>J

|Pj,x0(x)| ≤ C
∑

β1α1+β2α2<s

2−J(β1α1+β2α2)
∑
j>J

2j(β1α1+β2α2−s) ≤ C 2−Js.

Finally, inequalities (4.23), (4.24), (4.25), and (4.26) yield that f ∈ Cs,α
| log |2(x0). �

Theorem 3.4 is a straightforward consequence of the two-microlocal criterion
and of the following lemma:

Lemma 4.11. The two following properties are equivalent:

(i) Inequality (4.18) holds.

(ii) Inequality (3.4) holds.

Proof. Assume that (4.18) holds. If λ′ ⊂ 3λj1,j2(x0), then

j′1 ≥ j1, j′2 ≥ j2 ,
∣∣∣ k′1
2j

′
1

− a
∣∣∣ ≤ 2 · 2−j′1 , and

∣∣∣ k′2
2j

′
2

− b
∣∣∣ ≤ 2 · 2−j′2 .

Condition (4.18) implies

|cλ′ | ≤ min(2−j1s/α1 , 2−j2s/α2) = 2−max(j1/α1,j2/α2)s .

Conversely, assume that (3.4) holds. Let λ′ = λ(j′1, j
′
2, k

′
1, k

′
2) be a hyperbolic

dyadic cube. Set

j1 = sup
{
�1, 2

−j′1 +
∣∣∣ k′1
2j

′
1

− a
∣∣∣ ≤ 2−�1

}
and

j2 = sup
{
�2, 2

−j′2 +
∣∣∣ k′2
2j

′
2

− b
∣∣∣ ≤ 2−�2

}
.

We have λ′ ⊂ 3λj1,j2(x0). Since (3.4) holds one has

|cλ′ | ≤ min(2−j1s/α1 , 2−j2s/α2)

≤ Cmin
(
2−j′1s/α1 +

∣∣∣ k′1
2j

′
1

− a
∣∣∣s/α1

, 2−j′2s/α2 +
∣∣∣ k′2
2j

′
2

− b
∣∣∣s/α2

)
.

That is, (4.18) holds. �

4.3. Proof of Theorem 3.7

The proof of Theorem 3.7 is based on the two following lemmas, analogous to
Propositions 7 and 8 of [34].

Lemma 4.12. Set α = (a, 2− a) and define

G(H,α) = {x ∈ R2, f ∈ CH,α
| log |2(x)} .

Let p > 0 and s ∈ (0, ω(p, α)/p]. Then, for any H ≥ s− 2/p,

dimH(G(H,α)) ≤ Hp− sp+ 2 .

If H < s− 2/p, dimH(G(H,α)) = −∞.
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Lemma 4.13. Set α = (a, 2− a) and define

B(H,α) = {x ∈ R2, f ∈ CH,α(x)} .
Let p < 0 and s ∈ (0, ω(p, α)/p]. Then

dimH(B(H,α)) ≤ dimP (B(H,α)) ≤ Hp− sp+ 2 .

The proof of Lemma 4.12 in the case H ≥ s− 2/p is exactly the same as that
of Proposition 7 of [34], except that the sets Gj,H are replaced by the sets

G(j,H, α) = {λ = λ(j1, j2, k1, k2), (j1, j2) ∈ Γj(α), |dλ| ≥ 2−jHp} .
Lemma 4.12, in the case H < s − 2/p, comes from the hyperbolic wavelet char-
acterization of anisotropic Besov spaces stated in Theorem 2.6 and the Sobolev
embeddings which can be proved in the anisotropic case as in the isotropic one
(see [48]).

The proof of Lemma 4.13 is exactly the same as that of Proposition 8 of [34],
except that the sets BH are replaced by the sets B(H,α).

Lemmas 4.12 and 4.13 then imply Theorem 3.7, since for any α = (α1, α2) such
that α1 + α2 = 2, one has

E(H,α) ⊂
( ⋂

H′>H

G(H ′, α)
)⋂( ⋃

H′<H

B(H ′, α)
)
.
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