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Lattice points in rotated convex domains

Jingwei Guo

Abstract. If B ⊂ Rd (d � 2) is a compact convex domain with a
smooth boundary of finite type, we prove that for almost every rotation
θ ∈ SO(d) the remainder of the lattice point problem, PθB(t), is of order
Oθ(t

d−2+2/(d+1)−ζd) with a positive number ζd. Furthermore we extend
the estimate of the above type, in the planar case, to general compact
convex domains.

1. Introduction

Let B ⊂ Rd (d � 2) be a compact convex domain, which contains the origin in its
interior and has a smooth boundary ∂B. The number of lattice points Zd in the
dilated domain tB is approximately |tB| (i.e., the volume (area if d = 2) of tB) and
the lattice point problem is to study the remainder, PB(t), in the equation

PB(t) = #(tB ∩ Zd)− |B|td for t � 1.

A trivial estimate gives PB(t) = O(td−1).
If ∂B has everywhere positive (Gaussian) curvature, a standard estimate is

PB(t) = O(td−2+2/(d+1)),

which can be readily obtained by a combination of the Poisson summation formula
and (nowadays standard) oscillatory integral estimates (see Hlawka [6]). Over the
years this result has been improved by many authors and the best bounds up-
to-date are due to Huxley [8] in the planar case and the author [4] in the higher
dimensional case. For a survey on historical results the reader is referred to Ivić,
Krätzel, Kühleitner, and Nowak [11].

While the above case is relatively well understood, the general case when the
(Gaussian) curvature is allowed to vanish is not.

Let us first consider the d � 3 case of vanishing curvature. Partial results
indicate that the remainder may become much larger. For example, Randol [24]
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considered the super spheres

B =
{
(x1, . . . , xd) ∈ Rd : |x1|ω + |x2|ω + · · ·+ |xd|ω � 1

}
for even integer ω � 3, and proved that

PB(t) =
{
O(td−2+2/(d+1)) for ω � d+ 1,
O(t(d−1)(1−1/ω)) for ω > d+ 1,

and this estimate is the best possible when ω > d + 1. Krätzel [12] extended this
result to odd ω � 3 and gave an asymptotic formula

(1.1) PB(t) = H(t)t(d−1)(1−1/ω) +O(tΘ)

with an explicit Θ < (d − 1)(1 − 1/ω) and H(t) continuous and periodic (see
Krätzel [13] for more details). We observe that the remainder PB(t) becomes
extremely large as ω → ∞.

This observation is supported by the study of more examples, and special at-
tention is paid to specific convex domains in R3. See Krätzel [16] and Krätzel and
Nowak [17], [18], in which they proved, among other results, asymptotic formulas
of PB(t) with explicit representations of the main terms given.

For general domains with boundary points of Gaussian curvature zero, our
knowledge is still very poor. Partial results in R3 are available in Krätzel [14], [15],
Peter [22], Popov [23], and Nowak [21] (with the latter two papers focusing on
bodies of rotation). Under a variety of assumptions, they provide O-estimates
(or asymptotic formulas) of PB(t), and evaluate the contributions (to PB(t)) of
different types of boundary points of Gaussian curvature zero. Their results show
that the size of PB(t) depends on certain properties of the boundary points of
Gaussian curvature zero and whether the slope of the normal at such a point
is rational or irrational. In particular PB(t) may become extremely large and a
substantial contribution to it is due to the neighborhoods of those boundary points
of Gaussian curvature zero at which the normal has a rational direction.

However after a rotation of the domain there may be no such points, hence
we can expect a better estimate. For example one may consider rotations of a
compact convex domain B with a smooth boundary of finite type (Here we say that
the boundary ∂B is of finite type if at every point x ∈ ∂B, every one dimensional
tangent line to ∂B at x makes finite order of contact with ∂B. If ∂B is of finite
type, the maximum order of contact over all x ∈ ∂B and all tangent lines to x ∈ ∂B
is called the type of ∂B. We will always assume below that the type is � 3 since
if the type is two then we recover the case of nonvanishing (Gaussian) curvature).
For such domains Iosevich, Sawyer, and Seeger [10] proved that there is r > 2 so
that

(1.2) PBθ
(t) = Oθ

(
td−2+2/(d+1) log1/r(2 + t)

)
for a.e. θ ∈ SO(d),

where Bθ = θB denotes the rotated domain {θx : x ∈ B}. Results of type (1.2)
with the same exponent d− 2 + 2/(d+ 1) can be found in Randol [25] for convex
domains with an analytic boundary, and in Colin de Verdière [3] for general (not
necessarily convex) domains if d � 7.
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It is then natural to ask whether one can prove a result of type (1.2) with an
exponent d − 2 + 2/(d + 1) − c for some positive c. We make a progress in this
direction and prove the following theorem with a c > 0 depending only on the
dimension d.

Theorem 1.1. Let B ⊂ Rd (d � 3) be a compact convex domain containing the
origin in its interior. If the boundary is a smooth hypersurface of finite type then

PBθ
(t) = Oθ(t

d−2+2/(d+1)−ζd) for a.e. θ ∈ SO(d),

where ζd > 0 is defined as

(1.3) ζd =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2(d− 2)(d− 1)d

(d+ 1)(6d5 + 118d4 + 109d3 − 210d2 − 119d+ 82)
for 3 � d � 4,

(d− 3)(d− 1)d

2d6 + 49d5 + 123d4 − 9d3 − 167d2 − 52d+ 30
for d � 5.

This result is an easy consequence of the following theorem.

Theorem 1.2. Let B ⊂ Rd (d � 3) be a compact convex domain containing the
origin in its interior. If the boundary is a smooth hypersurface of finite type ω then

sup
t�2

|PBθ
(t)|/(td−2+2/(d+1)−ζd−σ(d,ω) logb(t)

) ∈ L1(SO(d)),

where b > 1, ζd is given by (1.3), and σ(d, ω) > 0 is defined as

(1.4) σ(d, ω) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4d(6d5 + 100d4 − 230d3 − 193d2 + 496d− 172)

(6d5 + 118d4 + 109d3 − 210d2 − 119d+ 82) ·� for 3 � d � 4,

2d(2d5 + 39d4 − 105d3 − 205d2 + 377d− 96)

(2d5 + 47d4 + 76d3 − 85d2 − 82d+ 30) · � for d � 5,

with

� = 6(ω − 2)d5 + 118(ω − 2)d4 + 109(ω − 2)d3

− 6(35ω − 71)d2 + (246− 119ω)d+ (82ω − 156)
(1.5)

and

� = 2(ω − 2)d5 + 47(ω − 2)d4 + 76(ω − 2)d3

+ (172− 85ω)d2 + (166− 82ω)d+ (30ω − 56).
(1.6)

The proof of Theorem 1.2 relies on the following analysis result (implied by
Svensson’s Theorem 4.1 in [28]): if B ⊂ Rd (d � 3) is a compact convex domain
and its boundary is a smooth hypersurface of finite type1 ω, then

(1.7) Φ ∈ Lp(Sd−1) for any p < 2 + 2/(d− 1)(ω − 2),

1The restriction on the size of ω given by Svensson’s Theorem 4.1 in [28] can be removed
under current assumptions.
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where

(1.8) Φ(ξ) = sup
r>0

r(d+1)/2|χ̂B(rξ)|, ξ ∈ Sd−1.

For a general convex domain B with a smooth boundary, (1.7) is not necessarily
true, however, we have (due to Varchenko’s Theorem 8 in [29]) that

r(d+1)/2|χ̂B(rξ)| ∈ L2(Sd−1).

By using this result we can readily modify the proof of Theorem 1.2 and prove
the following theorem, which improves similar results contained on page 285 of
Randol [25] and Varchenko’s Theorem 7 in [29] in terms of the estimate.

Theorem 1.3. Let B ⊂ Rd (d � 3) be a compact convex domain containing the
origin in its interior. If the boundary is a smooth hypersurface, then

|PBθ
(t)|/td−2+2/(d+1)−ζd ∈ L1(SO(d)),

where ζd is given by (1.3).

Let us now consider the d = 2 case of vanishing curvature, in which we have a
better understanding than in the higher dimensional case. We refer the interested
readers to Ivić, Krätzel, Kühleitner, and Nowak [11] and the author [5] for an
introduction to related results.

For general convex planar domains we know Φ ∈ L2,∞(S1) (see Brandolini,
Colzani, Iosevich, Podkorytov, and Travaglini’s Theorem 0.3 in [2]). By using this
result and the same method used in the proofs of Theorem 1.2 and 1.3, we are
able to extend our previous result for convex planar domains of finite type in The-
orem 1.1 in [5] to the following result for convex planar domains with no curvature
assumption on the boundary (with even a better estimate, due to an improved
estimate of certain nonvanishing determinants given in Lemma 3.5 below).

Theorem 1.4. If B is a compact convex planar domain with a smooth boundary
containing the origin in its interior, then

sup
t�2

|PBθ
(t)|/(t2/3−ζ2 logb(t)

) ∈ L1(SO(2)),

where b > 1 and ζ2 = 1/2859. In particular,

PBθ
(t) = Oθ

(
t2/3−ζ2 logb(t)

)
for a.e. θ ∈ SO(2).

This theorem improves Iosevich’s Theorem 0.2 in [9] and Brandolini, Colzani,
Iosevich, Podkorytov, and Travaglini’s Theorem 0.1 in [2] (in terms of the esti-
mate). If we assume that the boundary is of finite type then we have the following
better estimate (again due to the improved result given in Lemma 3.5 below),
which improves Theorem 1.2 in [5].
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Theorem 1.5. If B is a compact convex planar domain with a smooth boundary
of finite type ω containing the origin in its interior, then

sup
t�2

|PBθ
(t)|/(t2/3−ζ2−σ(2,ω) logb(t)

) ∈ L1(SO(2)),

where b > 1, ζ2 = 1/2859, and

σ(2, ω) =
616

953(953ω− 1848)
.

In particular,
PBθ

(t) = Oθ(t
2/3−ζ2) for a.e. θ ∈ SO(2).

Remark 1.6. Our main idea originates from Iosevich, Sawyer, and Seeger [10]
(see pp. 168-169) and Müller [20]. Our main tools used in this paper are from the
oscillatory integral theory and the classical Van der Corput’s method of exponential
sums (namely, the A- and B-processes). To prove our estimate of exponential
sums (see Proposition 5.1 below) we use an AqB-process. If we use more A- and
B-processes we may achieve further improvement at the cost of more technical
difficulties.

Notations. We use the usual Euclidean norm |x| for a point x ∈ Rd. B(x, r)
represents the Euclidean ball centered at x with radius r, and its dimension will
be clear from the context. The norm of a matrix A ∈ Rd×d is given by ‖A‖ =
sup|x|=1 |Ax|. We set e(f(x)) = exp(2πif(x)), Zd∗ = Zd \ {0}, and Rd∗ = Rd \ {0}.
The Fourier transform of f ∈ L1(Rd) is given by f̂(ξ) =

∫
f(x)e(−〈x, ξ〉) dx.

We fix χ0 to be a smooth cut-off function whose value is 1 on B(0, 1/2) and 0
on the complement of B(0, 1). For a set E ⊂ Rd and a positive number a, we
define E(a) to be the larger set

E(a) =
{
x ∈ Rd : dist(E, x) < a

}
.

We use the differential operators

Dν
x =

∂|ν|

∂xν11 · · ·∂xνdd
(
ν = (ν1, . . . , νd) ∈ Nd

0, |ν| =
d∑

i=1

νi

)
and the gradient operator ∇x. We often omit the subscript if no ambiguity occurs.

Structure of the paper. We first establish some preliminaries in §2-4 mainly
for compact convex domains with no curvature assumption on the boundary. We
then prove an estimate of exponential sums in §5, which will be needed in the
next section. In §6 we give a proof of Theorem 1.2, in which the problem is
reduced to the estimate of two sums (Sum I and II). The estimate of Sum I that
we give essentially works for general compact convex domains, while the curvature
condition on the boundary is used in the estimate of Sum II. Since it is easy to
modify the proof of Theorem 1.2 to prove the other theorems, we only provide
brief proofs of Theorem 1.3 in §6 and Theorem 1.4 and 1.5 in §7. At last we collect
some standard analysis results in Appendix A.
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2. Some geometric facts

Assume B ⊂ Rd (d � 2) is a compact convex domain and its boundary is a smooth
hypersurface. For a point x ∈ ∂B, let K(x) be the (Gaussian) curvature of ∂B
at x. Define

(∂B)+ =
{
x ∈ ∂B : K(x) > 0

}
and (∂B)0 =

{
x ∈ ∂B : K(x) = 0

}
,

thus
∂B = (∂B)+

⊎
(∂B)0.

The Gauss map of ∂B, denoted by �n, maps each boundary point x ∈ ∂B to a
unit exterior normal �n(x) ∈ Sd−1. Define

Sd−1
+ = �n((∂B)+) and Sd−1

0 = �n((∂B)0),
thus

Sd−1 = Sd−1
+

⊎
Sd−1
0 .

Note that the restriction of �n to (∂B)+, namely

�n|(∂B)+ : (∂B)+ −→ Sd−1
+ ⊂ Sd−1,

is bijective. For ξ �= 0 with ξ/|ξ| ∈ Sd−1
+ let x(ξ) := �n−1(ξ/|ξ|) be the unique point

on ∂B where the unit exterior normal is ξ/|ξ|. Hence Kξ = K(x(ξ)) is well defined
for such points ξ.

For nonzero ξ with ξ/|ξ| ∈ θSd−1
+ let xθ(ξ) = θx(θtξ) and Kθ

ξ = Kθtξ. Then

xθ(ξ) is the unique point on ∂Bθ where the exterior normal is ξ and Kθ
ξ is the

curvature of ∂Bθ at xθ(ξ).

Lemma 2.1. Assume B ⊂ Rd (d � 2) is a compact convex domain and its bound-
ary is a smooth hypersurface. Then there exists a constant c1 > 0 (depending only
on B) such that, for any ξ ∈ Sd−1

+ , if η ∈ B(ξ, c1(Kξ)
2) ⊂ Rd then η/|η| ∈ Sd−1

+

and
Kξ/2 � Kη � 3Kξ/2.

Proof. For any ξ ∈ Sd−1
+ it follows from the mean value theorem that there exists

a constant c (depending only on B) such that

Kξ/2 � K(y) � 3Kξ/2 if y ∈ B(x(ξ), cKξ) ∩ ∂B.
It is a consequence of Lemma A.1 that the Gauss map is bijective from a subset

of B(x(ξ), cKξ)∩ ∂B onto a subset of Sd−1 containing B(ξ, c′(Kξ)
2)∩ Sd−1 where

the constant c′ depends only on B. Then the lemma follows easily. �

Lemma 2.2. Assume B ⊂ Rd (d � 2) is a compact convex domain and its bound-
ary is a smooth hypersurface. Then∣∣�n({x ∈ ∂B : K(x) < δ

})∣∣ � CB δ
∣∣ {x ∈ ∂B : 0 < K(x) < δ

}∣∣ ,
where the absolute value denotes the induced Lebesgue measure on Sd−1 and ∂B.
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Proof. Note that{
x ∈ ∂B : K(x) < δ

}
=

{
x ∈ ∂B : 0 < K(x) < δ

}⊎
(∂B)0.

We first have
|Sd−1

0 | = 0

due to Sard’s theorem (see p. 286 of Lang [19]). Hence it suffices to prove∣∣�n({x ∈ ∂B : 0 < K(x) < δ
})∣∣ � CB δ

∣∣ {x ∈ ∂B : 0 < K(x) < δ
}∣∣.

By using a standard technique found in the proof of certain covering lemma of
Vitali type (see Stein [27]), we reduce the above estimate to

|�n(B)| � CBδ|B|,
where B ⊂ {x ∈ ∂B : 0 < K(x) < δ} is a ball in ∂B. However this last estimate
follows from the equality dσ = K(x)dA where dA is the volume element of ∂B at
the point x ∈ ∂B and dσ the volume element of Sd−1 at the point �n(x) ∈ Sd−1

(see p. 47 of [1]; this equality can also be verified by using local coordinate charts).
This finishes the proof. �

Lemma 2.3. Assume B ⊂ Rd (d � 2) is a compact convex domain and its bound-
ary is a smooth hypersurface of finite type ω. Then∣∣ {x ∈ ∂B : K(x) < δ

}∣∣ � CB δ1/(d−1)(ω−2).

Proof. By using a compactness argument and local coordinates we may only re-
gard K as a function of x′ in a neighborhood B(0, C0) of 0 in Rd−1 for some con-
stant C0. We may assume thatK, ∂K/∂x1, . . . , ∂

hK/∂xh1 (with h = (d−1)(ω−2))
do not vanish simultaneously (see p. 19 of Svensson [28]). We then apply Svensson’s
Lemma 3.3 in [28] to K in x1-direction, which yields∣∣ {x1 : |x1| � C0,K(x′) < δ

}∣∣ � CB δ1/h,

and the trivial estimate in x2, . . . , xd−1-directions. Thus the desired estimate
follows. �

3. Nonvanishing d × d determinants

In this section we always assume that B ⊂ Rd (d � 2) is a compact convex domain
and its boundary is a smooth hypersurface.

The support function of B is given by H(ξ) = supy∈B〈ξ, y〉 for any nonzero

ξ ∈ Rd. In particular H(ξ) = 〈ξ, x(ξ)〉 for any nonzero ξ with ξ/|ξ| ∈ Sd−1
+ . It is

positively homogeneous of degree one, i.e., H(λξ) = λH(ξ) if λ > 0. The results
in this section are mainly stated for unit vectors, but we can easily remove this
restriction by using the homogeneity of H .

The next two lemmas can be easily proved by using local coordinates, implicit
differentiation, and induction, hence we omit the proof.
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Lemma 3.1. H is smooth at every ξ ∈ Sd−1
+ and satisfies

DνH(ξ) � 1 for 0 � |ν| � 1

and
DνH(ξ) � (Kξ)

3−2|ν| for |ν| � 2,

where the implicit constants may depend only on |ν| and B.

Remark 3.2. For θ ∈ SO(d), we will denote the support function of Bθ byHθ(ξ) =
supy∈Bθ

〈ξ, y〉. Since Hθ(ξ) = H(θtξ), we can easily get bounds for Hθ in the

same form as in the above lemma (with Sd−1
+ and Kξ replaced by θSd−1

+ and Kθ
ξ

respectively).

Lemma 3.3. For ξ ∈ Sd−1
+ the eigenvalues of the matrix ∇2

ξξH(ξ) are 0, β1, . . . ,

βd−1, where {β−1
j }d−1

j=1 are principle curvatures of ∂B at x(ξ).

Given d vectors v1, . . . , vd ∈ Rd, by writing V = (v1, . . . , vd) we mean V is the
matrix in Rd×d with column vectors v1, . . . , vd. If y �= 0 we define Fθ(u1, . . . , ud) =

Hθ(y +
∑d

l=1 ulvl), ul ∈ R (l = 1, . . . , d). For q ∈ N let

hθq(y, v1, . . . , vd) = det
(
gθi,j(y, v1, . . . , vd)

)
1�i,j�d

,

where

gθi,j(y, v1, . . . , vd) =
∂q+2Fθ

∂u1∂ui∂uj∂u
q−1
d

(0).

The following lemma is a higher dimensional analogue of Lemma 3.4 in [5],
which enables us to apply the method of stationary phase later in the estimate
of certain exponential sums. We will follow Müller’s method used to prove his
Lemma 3 in [20].

Lemma 3.4. If d � 3, for every ξ ∈ θSd−1
+ there exist d linearly independent

vectors vl = vl(ξ, θ) ∈ Zd (l = 1, . . . , d) such that

|v1|  (Kθ
ξ )

−d−2q−8+1/(d−1),

|vl|  (Kθ
ξ )

−d−2q−5+1/(d−1) (l = 2, . . . , d),

| det(V )|  (Kθ
ξ )

d(−d−2q−5+1/(d−1)),

‖V −1‖ � (Kθ
ξ )

d+2q+2−1/(d−1),

(3.1)

where V = (v1, . . . , vd). Furthermore there exists a constant c2 > 0 (depending
only on q and B) such that, for η ∈ B(ξ, c2(K

θ
ξ )

d+2q+7−1/(d−1)),

(3.2) |hθq(η, v1, . . . , vd)| � (Kθ
ξ )

(−d−2q−5+1/(d−1))d(q+2)−3d+5−1/(d−1).

The constants implicit in (3.1) and (3.2) depend only on q and B.
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Proof. Let ξ ∈ θSd−1
+ be arbitrarily fixed.

Step 1. Let p1 = ξ. We first choose d − 1 vectors p2, . . . , pd ∈ Sd−1 such that
P = (p1, . . . , pd) ∈ Rd×d is an orthogonal matrix. Let H̃θ(y) = Hθ(Py). Then

H̃θ is positively homogeneous of degree one and smooth at e1. Since the matrix
∇2H̃θ(e1) is similar to ∇2Hθ(ξ) it follows from Lemma 3.3 that the eigenvalues

of ∇2H̃θ(e1) are 0, β1, . . . , βd−1, where {β−1
j }d−1

j=1 are principle curvatures of ∂Bθ

at xθ(ξ). Without loss of generality we assume β1 = max1�j�d−1 βj, therefore
β1 � (Kθ

ξ )
−1/(d−1).

Set A = ∇2H̃θ(e1). A is a symmetric matrix of rank d− 1 with vanishing first

row and column (due to the homogeneity of H̃θ; see the proof of Müller’s Lemma 3
in [20]). Choose a system of orthonormal eigenvectors w′

1, . . . , w
′
d−1 of A, whose

first components vanish, such that the eigenvalue of w′
j is βj . For α > 1 denote

wl =

⎧⎪⎨⎪⎩
w′

1 + αe1 if l = 1,

w′
l if 2 � l � d− 1,

e1 if l = d.

Then Awl = βlw
′
l (l = 1, . . . , d − 1) and w1 is orthogonal to w′

l (l = 2, . . . , d− 1).
We also have |w1|  α, |wl| = 1 (l = 2, . . . , d), and | det(W )| = 1 where W =
(w1, . . . , wd). Let v∗l = Pwl. Then |v∗1 |  α, |v∗l | = 1 (l = 2, . . . , d), and
| det(V ∗)| = 1 where V ∗ = (v∗1 , . . . , v

∗
d). We claim that if α = Cq,B(Kθ

ξ )
−3 with a

sufficiently large Cq,B then

(3.3)
∣∣hθq(ξ, v∗1 , . . . , v∗d)∣∣ � (Kθ

ξ )
−3d+5−1/(d−1)

with Fθ(u1, . . . , ud) = Hθ(ξ +
∑d

l=1 ulv
∗
l ).

This claim can be proved by a straightforward computation (given below). Note

that Fθ(u1, . . . , ud) = H̃θ(e1+
∑d

l=1 ulwl) and we will use this formula to compute
gθi,j(ξ, v

∗
1 , . . . , v

∗
d) =: bθi,j(α). If 1 � i, j � d− 1,

(3.4) bθi,j(0) = (∇ · w′
1)(∇ · w′

i)(∇ · w′
j)∂

q−1
y1

H̃θ(e1) � (Kθ
ξ )

−3.

The last inequality is due to the homogeneity of H̃θ (see the proof of Müller’s
Lemma 3 in [20]) and Remark 3.2.

If i = 1, 1 � j � d− 1, then

(3.5) bθ1,j(α) = bθ1,j(0) + 3α(−1)qq!β1δ1j ,

where δij is the Kronecker notation.
If 2 � i, j � d− 1, then

(3.6) bθi,j(α) = bθi,j(0) + α(−1)qq!βjδij .

If 1 � i � d, j = d, then

(3.7) bθi,d(α) = (−1)qq!β1δ1i.
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Using formulas (3.6) and (3.7), we get∣∣hθq(ξ, v∗1 , . . . , v∗d)∣∣ = (q!β1)
2
∣∣det(bθi,j(α))2�i,j�d−1

∣∣
= (q!β1)

2
∣∣det (bθi,j(0) + α(−1)qq!βjδij

)
2�i,j�d−1

∣∣
= β1(K

θ
ξ )

−3d+5
∣∣ q!dCd−2

q,B +O(Cd−3
q,B )

∣∣,
where we have used (3.4), βj � 1, and

∏
βj = (Kθ

ξ )
−1 to get the last equality.

Since β1 � (Kθ
ξ )

−1/(d−1), we get (3.3) if Cq,B is sufficiently large.

Step 2. For any N ∈ N, there exist vl ∈ Zd (l = 1, . . . , d) such that |v∗∗l − v∗l | �√
d/N where v∗∗l = vl/N . If N � C(Kθ

ξ )
−3 then |v∗∗1 |  (Kθ

ξ )
−3, |v∗∗l |  1

(l = 2, . . . , d), and | det(V ∗∗)|  1 where V ∗∗ = (v∗∗1 , . . . , v∗∗d ).

Assume N is the smallest integer not less than C′(Kθ
ξ )

−d−2q−5+1/(d−1) with C′

chosen below and η ∈ B(ξ, c2r
θ(ξ)) with rθ(ξ) = (Kθ

ξ )
d+2q+7−1/(d−1) and c2 � c1,

where c1 is the constant appearing in Lemma 2.1. By the mean value theorem,
Lemma 2.1, and Remark 3.2, we get∣∣ gθi,j(ξ, v∗1 , . . . , v∗d)− gθi,j(η, v

∗∗
1 , . . . , v∗∗d )

∣∣
�

⎧⎪⎨⎪⎩
(Kθ

ξ )
−2q−10(N−1 + c2(K

θ
ξ )

−2rθ(ξ)) if i = j = 1,

(Kθ
ξ )

−2q−7(N−1 + c2(K
θ
ξ )

−2rθ(ξ)) if i = 1, j � 2,

(Kθ
ξ )

−2q−4(N−1 + c2(K
θ
ξ )

−2rθ(ξ)) if i � 2, j � 2.

These estimates, together with the bounds of gθi,j(ξ, v
∗
1 , . . . , v

∗
d)’s (given by (3.4),

(3.5), (3.6), and (3.7)), lead to∣∣hθq(ξ, v∗1 , . . . , v∗d)− hθq(η, v
∗∗
1 , . . . , v∗∗d )

∣∣ � (Kθ
ξ )

−4d−2q
(
N−1 + c2(K

θ
ξ )

−2rθ(ξ)
)
.

If C′ is sufficiently large and c2 is sufficiently small, it then follows from (3.3)
that ∣∣ hθq(η, v∗∗1 , . . . , v∗∗d )

∣∣ � (Kθ
ξ )

−3d+5−1/(d−1).

The desired bound (3.2) now follows from the equality∣∣ hθq(η, v1, . . . , vd)∣∣ = Nd(q+2)
∣∣ hθq(η, v∗∗1 , . . . , v∗∗d )

∣∣.
All bounds in (3.1) are easy to get. �

For d = 2 case Lemma 3.4 in [5] gives a similar result but in a nicer form.
That lemma can be proved by using the same method. In particular, the bound
g11(ξ, v1, v2) � (Kθ

ξ )
−2q−1 is used in its proof, but later we find a better bound

of g11, namely g11(ξ, v1, v2) � (Kθ
ξ )

−3 (just like the bound (3.4) in the above proof).
By using the latter bound without modifying too much of the proof of Lemma 3.4
in [5], we are able to prove the following improved result, which eventually leads
to our estimates in Theorem 1.4 and 1.5.
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Lemma 3.5. If d = 2, for every ξ ∈ θSd−1
+ there exist two orthogonal vectors

vi = vi(ξ, θ) ∈ Z2 (i = 1, 2) such that

(3.8) |v1| = |v2|  (Kθ
ξ )

−2q−2 and ‖V −1‖ � (Kθ
ξ )

2q+2,

where V = (v1, v2). Furthermore there exists a constant c2 > 0 (depending only
on q and B) such that, for η ∈ B(ξ, c2(K

θ
ξ )

2q+4),

(3.9)
∣∣ hθq(η, v1, v2)∣∣ � (Kθ

ξ )
−4q2−12q−10.

The constants implicit in (3.8) and (3.9) depend only on q and B.

4. The Fourier transform of certain indicator functions

In this section we will establish an asymptotic formula of the Fourier transform
of the indicator function χB for convex domains B in Rd, which generalizes the
results in Section 4 of [5].

Lemma 4.1. Assume B ⊂ Rd (d � 2) is a compact convex domain and its bound-
ary is a smooth hypersurface. Let x± be given points on ∂B with �n(x+) = −�n(x−)
and K± the (Gaussian) curvature at them. Then there exist two positive constants c
and c3 (both depending only on B) such that

(4.1)
∣∣ 〈�n(x), �n(x+)〉∣∣ � 1− cr2(min(K+,K−))4

for every r � c3 and x ∈ ∂B \ (B(x+, rK+) ∪B(x−, rK−)
)
.

Proof. It suffices to assume that K± �= 0 otherwise it is trivial. It follows from
Lemma A.1 that there exists a constant c3 > 0 (depending only on B) such
that, for every r � c3, the Gauss map is bijective from B(x+, rK+) ∩ ∂B and
B(x−, rK−) ∩ ∂B to two subsets of Sd−1 which contain B(�n(x+), c

′rK2
+) ∩ Sd−1

and B(�n(x−), c′rK2−) ∩ Sd−1 respectively where the constant c′ > 0 depends only
on B. Then the lemma follows easily with c = 2c′2/π2. �

Theorem 4.2. Assume B ⊂ Rd (d � 2) is a compact convex domain and its
boundary is a smooth hypersurface. Let nl (l = 1, . . . , d) be the lth component
of the Gauss map of ∂B and dS the induced Lebesgue measure on ∂B. For any
ξ ∈ Sd−1

+ ∩ (−Sd−1
+ ) we have

n̂ldS(λξ) =
(
e((d− 1)/8) ξl(Kξ)

−1/2e(−λH(ξ))

+ e(−(d− 1)/8)(−ξl)(K−ξ)
−1/2e(λH(−ξ)))λ−(d−1)/2

+O
(
λ−(d+1)/2δ−(d+5)/2 + λ−Nδ−4N

)
for λ > 0, where H(ξ) = supy∈B〈y, ξ〉, N ∈ N, and δ = min(Kξ,K−ξ). The
implicit constant depends only on N and B.
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Proof. We will only prove the case d � 3 below, while the case d = 2 is easier and
can be handled in the same way. Note that there exists a C0 > 0 such that, for
any x ∈ ∂B, the boundary ∂B in a neighborhood of x can be parametrized by

�r(u, x) = x+

d−1∑
j=1

uj �tj(x) + h(u, x)(−�n(x)),

for u = (u1, . . . , ud−1) ∈ B0 = B(0, C0) ⊂ Rd−1,

(4.2)

where {�tj(x)}d−1
1 is an orthonormal basis of the tangent plane of ∂B at x (we require

that the basis {�t1(x), . . . ,�td−1(x),−�n(x)} has the same orientation as {e1, . . . , ed})
and h(· , x) ∈ C∞(B0) such that h(0, x) = 0, ∇uh(0, x) = 0, and det∇2

uuh(0, x) =
K(x).

For any fixed ξ ∈ Sd−1
+ ∩ (−Sd−1

+ ) decompose nl as a sum

nl = ψ1 + ψ2 + ψ3

where

ψ1(x, ξ) = nl(x)χ0

(x− x(ξ)

c4Kξ

)
and ψ2(x, ξ) = nl(x)χ0

(x− x(−ξ)
c4K−ξ

)
,

where c4 > 0 is determined below and χ0 is the fixed cut-off function (see §1).
We first estimate ψ̂1dS (while ψ̂2dS is handled in the same way). Applying the

parametrization (4.2) at x(ξ) yields

(4.3) ψ̂1dS(λξ) = e
(− λ〈ξ, x(ξ)〉) ∫ τ(u, ξ) e

(
λh(u, x(ξ))

)
du,

where τ(u, ξ) = ψ1(�r(u, x(ξ)), ξ)(1 + |∇uh(u, x(ξ))|2)1/2 such that

τ(· , ξ) ∈ C∞
c (B(0, c4Kξ))

and
|Dν

uτ(u, ξ)| � C(c4Kξ)
−|ν|.

By a change of variable the integral in (4.3), denoted by Δ(ξ), is

Δ(ξ) = Kd−1
ξ

∫
τ(Kξu, ξ) e

(
λh(Kξu, x(ξ))

)
du.

Applying a quantitative version of the Morse lemma (see the proof of Sogge and
Stein’s Lemma 2 in [26]) we can find an α1 > 0 and a smooth invertible mapping
u �→ v from B(0, α1) to a neighborhood of the origin in v-space, so that |Dν

uv| � C,
|Dν

vu| � C, det(∇vu(0)) = 1, and

h(Kξu, x(ξ)) = K2
ξ

(
μ1v

2
1 + · · ·+ μd−1v

2
d−1

)
/2, u ∈ B(0, α1),

where μ1, . . . , μd−1 are the eigenvalues of the matrix ∇2
uuh(0, x(ξ)). Let c4 � α1.

Then

Δ(ξ) = Kd−1
ξ

∫
τ̃ (v, ξ) e

(
λK2

ξ (μ1v
2
1 + · · ·+ μd−1v

2
d−1)/2

)
dv,
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where τ̃ (v, ξ) = τ(Kξu(v), ξ) |det(∇vu)|. Applying Lemma A.3 to the integral
above yields an asymptotic expansion, which in turn gives

ψ̂1dS(λξ) = e((d− 1)/8) ξl(Kξ)
−1/2 e(−λH(ξ))λ−(d−1)/2

+O
(
λ−(d+1)/2K

−(d+5)/2
ξ

)
.

The estimate ψ̂3dS = O(λ−N δ−4N ) follows from Lemma 4.1 and integration by
parts (see p. 350 of Stein [27] for a similar argument). This finishes the proof. �

As a consequence of the Gauss–Green formula we get:

Corollary 4.3. Assume B ⊂ Rd (d � 2) is a compact convex domain and its
boundary is a smooth hypersurface. For any ξ ∈ Sd−1

+ ∩ (−Sd−1
+ ) we have

χ̂B(λξ) =
(
(2π)−1e((d+ 1)/8)(Kξ)

−1/2e(−λH(ξ))

+ (2π)−1e(−(d+ 1)/8)(K−ξ)
−1/2e(λH(−ξ)))λ−(d+1)/2

+O
(
λ−(d+3)/2δ−(d+5)/2 + λ−N−1δ−4N

)
for λ > 0,

where H(ξ) = supy∈B〈y, ξ〉, N ∈ N, and δ = min(Kξ,K−ξ). The implicit constant
depends only on N and B.

5. Estimate of exponential sums

In this section we will prove a higher dimensional analogue of Proposition 5.2 in [5]
by using the same method.

Let M∗ > 1 and T > 0 be parameters. We consider d-dimensional exponential
sums of the form

S(T,M∗;G,F ) =
∑
m∈Zd

G(m/M∗) e(−TF (m/M∗)),

where G : Rd → R is smooth, compactly supported, and bounded above by a
constant, and F : Ω ⊂ Rd → R is smooth on an open convex domain Ω such that

supp(G) ⊂ Ω ⊂ c0B(0, 1),

where c0 > 0 is a fixed constant.

Proposition 5.1. Let d � 3, q ∈ N, Q = 2q, and 0 < K < 1 be a parameter.
Assume that

(5.1) dist(supp(G),Ωc) � Kd+2q+13−1/(d−1),

for all ν ∈ Nd
0 and y ∈ Ω,

DνG(y) � K−(d+2q+13−1/(d−1))|ν|,(5.2)

DνF (y) �
{
K−6|ν| if 0 � |ν| � 1,

K3−8|ν| if |ν| � 2,
(5.3)
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and for μ = (1, 0, . . . , 0, q − 1) ∈ Nd
0

(5.4)
∣∣ det(∇2DμF (y))

∣∣ � K−3(q+3)d+5−1/(d−1).

If

(5.5) M∗ � K−4(5q+4)d−37+4/(d−1)

and

(5.6) T � K−I/(Q(d−1)d2)M
q+2/Q−2/d
∗

with
I = 2(5q + 4)(2Q− 3)d4 + (−35 + 25q + 40Q+ 2qQ)d3

+ (60 + 5q −Q− 17qQ)d2 + (6− 60Q− 5qQ)d− 6Q,

then

(5.7)
S(T,M∗;G,F ) � [K−(2(5q+4)d3+(3q+19)d2−(13q+24)d−6)/(d(d−1))

· TM2(Q−1)d+2Q−q−2
∗ ]d/(2Q+2(Q−1)d).

The constant implicit in (5.7) depends only on d, q, c0, and the constants
implicit in (5.1), (5.2), (5.3), and (5.4).

Proof. Let H be a parameter satisfying

(5.8) 1 < H � c5K
(6(5q+4)d3−5(5q−7)d2−5(q+12)d−6)/(2(d−1)d)M∗

with c5 < 1 chosen (later) to be sufficiently small. Then H � M∗. We apply
to S(T,M∗;G,F ) the iterated one-dimensional Weyl–Van der Corput inequality
with r1 = e1 and rj = ed (j = 2, . . . , q) (see Lemma 2.2 in [4] for this inequality
and notations like Gq, Fq, H , and Ωq that we will use below). Then we need to
estimate S4 := S(H TM−q

∗ ,M∗;Gq, Fq). Applying the Poisson summation formula
followed by a change of variables yields

S4 =
∑
p∈Zd

K8dMd
∗

∫
Rd

Ψq(z) e
(− H TM−q

∗ Fq(K
8z) +K8M∗〈p, z〉

)
dz,

where Ψq(z) = Gq(K
8z). It is obvious that

(5.9) supp(Ψq) ⊂ K−8Ωq ⊂ c0K
−8B(0, 1).

By (5.1) we also have

(5.10) dist(supp(Ψq), (K
−8Ωq)

c) � Kd+2q+5−1/(d−1).

By the assumption (5.3) there exists a constant A1 such that

|∇z(Fq(K
8z))| � (A1/2)K

3−8q.
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We split S4 into two parts:

S4 =
∑

|p|<A1K−8q−5H TM−q−1
∗

+
∑

|p|�A1K−8q−5H TM−q−1
∗

=: S5 +R5.

It is not hard to prove2, by integration by parts (Lemma A.2), that

(5.11) R5 � K−(d+2q+13−1/(d−1))(d+1)M−1
∗ .

Define λ1 = K3−8qH TM−q
∗ and

Φq(z, p) =
(
H TM−q

∗ Fq(K
8z)−K8M∗〈p, z〉

)
/λ1,

then

(5.12) S5 = K8dMd
∗

∑
|p|<A1K−8λ1M

−1
∗

∫
Rd

Ψq(z) e(−λ1Φq(z, p)) dz.

To estimate S5 we discuss in two cases.

case 1. λ1 � K−4(5q+4)d−29+4/(d−1).

For all z ∈ K−8Ωq, by (5.2), (5.3), and (5.4), we get

Dν
zΨq(z) � K−(d+2q+5−1/(d−1))|ν|,(5.13)

Dν
zΦq(z, p) �

{
K−8 for ν = 0,

1 for |ν| � 1,
(5.14)

and

(5.15) | det (∇2
zzΦq(z, p)

)| � K(5q+4)d+5−1/(d−1).

To prove this lower bound (5.15) we first note, by using the definition of Fq

and the mean value theorem, that for μ = (1, 0, . . . , 0, q − 1) ∈ Nd
0

∂2

∂zl1∂zl2

(
Φq(z, p)

)
= K8q+13 ∂

2DμF

∂xl1∂xl2
(K8z) +O

(
K−8 H

M∗

)
.

The two terms on the right are � 1 and c5K
(5q+4)d+5−1/(d−1) respectively (implied

by (5.3) and (5.8)). Thus

det
(∇2

zz(Φq(z, p))
)
= K(8q+13)d det(∇2DμF ) +O

(
c5K

(5q+4)d+5−1/(d−1)
)
.

By (5.4), we get (5.15) if we pick a sufficiently small c5.
With (5.9), (5.10), (5.13), (5.14), and (5.15), we can estimate the integrals

in S5. Let us fix an arbitrary p ∈ Zd with |p| < A1K
−8λ1M

−1∗ .

2Check the proof of Lemma 5.4 in [5] for a similar argument.
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We first need to estimate the number of critical points of the phase func-
tion Φq(z, p). Denote p̃ = K8M∗p/λ1 and F (z) = K8q−3∇z(Fq(K

8z)), then
∇zΦq(z, p) = F (z)− p̃ and the critical points are determined by the equation

F (z) = p̃ for z ∈ K−8Ωq.

The bounds (5.14) and (5.15) imply that the mapping F and its components Fj

satisfy
DνFj(z) � 1 for |ν| � 2, j = 1, . . . , d,

and
| det(∇zF (z))| � K(5q+4)d+5−1/(d−1).

By (5.10), we know that supp(Ψq) is strictly smaller than the domain K−8Ωq

and the distance between their boundary is larger than a1K
d+2q+5−1/(d−1) for

some positive constant a1. Let r0 = a1K
d+2q+5−1/(d−1)/2. By Taylor’s formula,

there exists a positive constant a2 (< a1/2) such that if z̃ is a critical point in
(supp(Ψq))(r0),

3 then, for any z ∈ B(z̃, a2K
d+2q+5−1/(d−1)),

(5.16) |∇zΦq(z, p)| � K(5q+4)d+5−1/(d−1)|z − z̃|.
Applying Lemma A.1 to F with r0 as above yields two positive constants a3 (<
a2/2) and a4 such that if

r1 = a3K
(5q+4)d+5−1/(d−1) and r2 = a4K

2((5q+4)d+5−1/(d−1)),

then F is bijective from B(z, 2r1) to an open set containing B(F (z), 2r2) for any
z ∈ (supp(Ψq))(r0). It follows, simply by a size estimate, that the number of critical

points in (supp(Ψq))(r1) is � (K−8/r1)
d � K−((5q+4)d+13−1/(d−1))d.

For the p that we have fixed, let Zj (j = 1, . . . , J(p)) be all critical points in
(supp(Ψq))(r1) of the phase function Φq(z, p) and χj(z) = χ0((z−Zj)/(c6r1)) with
c6 chosen below. Then the integral in S5 can be decomposed as

(5.17)

∫
Ψq(z) e(−λ1Φq(z, p)) dz = S6 +R6,

where

S6 =

J(p)∑
j=1

∫
χj(z)Ψq(z) e

(− λ1Φq(z, p)
)
dz

and

R6 =

∫ (
1−

J(p)∑
j=1

χj(z)
)
Ψq(z) e

(− λ1Φq(z, p)
)
dz.

It follows from integration by parts (Lemma A.2) and (5.16) that4

(5.18) R6 � K−8d−4((5q+4)d+7−1/(d−1))Nλ−N
1 .

3Check §1 for the definition of this notation.
4Check the proof of Lemma 5.5 in [5] for a similar argument.
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As for S6, for each 1 � j � J(p), let φj(z, p) = Φq(z, p) − Φq(Zj , p). By
Lemma A.4, if c6 is sufficiently small then∣∣∣ ∫ χj(z)Ψq(z) e

(− λ1Φq(z, p)
)
dz

∣∣∣
=

∣∣∣ ∫ χj(z)Ψq(z) e
(− λ1φj(z, p)

)
dz

∣∣∣ � K−((5q+4)d+5−1/(d−1))/2λ
−d/2
1 .(5.19)

Hence

(5.20) S6 � K−8d−((5q+4)d+5−1/(d−1))(d+1/2)λ
−d/2
1 .

Noticing that we have assumed λ1 � K−4(5q+4)d−29+4/(d−1) in the case 1, it is
then easy to check that the bound (5.18) of R6 is less than the bound (5.20) of S6

if N is sufficiently large. Hence, by (5.12), (5.17), (5.18), and (5.20), we get the
following bound of S5:

S5 � K8dMd
∗
(
(K−8λ1M

−1
∗ )d + 1

)
K−8d−((5q+4)d+5−1/(d−1))(d+1/2)λ

−d/2
1 ,

� K−((5q+4)d+5−1/(d−1))(d+1/2)(K−8dλ
d/2
1 +Md

∗λ
−d/2
1 ).(5.21)

case 2. λ1 < K−4(5q+4)d−29+4/(d−1).

Within this range of λ1, the assumption (5.5) implies K−8λ1M
−1
∗ < 1, hence

the trivial estimate of S5 (together with (5.9) and (5.13)) yields

(5.22) S5 �Md
∗ � K−(4(5q+4)d+29−4/(d−1))d/2Md

∗λ
−d/2
1 .

Combining the bounds of S5 from cases 1 and 2 (namely, (5.21) and (5.22))
yields

S5 � K−8d−((5q+4)d+5−1/(d−1))(d+1/2)λ
d/2
1

+K−(4(5q+4)d+29−4/(d−1))d/2Md
∗λ

−d/2
1 .

Note that this bound of S5 is larger than the bound (5.11) of R5 no matter
whether λ1 � 1 or λ1 > 1. It follows that

S4 = S5 +R5 � K−(4q+13/2)d−((5q+4)d+5−1/(d−1))(d+1/2)(H TM−q
∗ )d/2

+K−2d((5q+4)d+8−2q−1/(d−1))(H TM−q−2
∗ )−d/2,

where we have already used the definition of λ1.
Plugging this bound of S4 into the Weyl–Van der Corput inequality that we

used at the beginning gives

(5.23)
|S(T,M∗;G,F )|Q �MdQ

∗ H−1 +H(1−1/Q)dT d/2M
d(Q−1−q/2)
∗

·K−(4q+13/2)d−((5q+4)d+5−1/(d−1))(d+1/2) + E,

where
E = K−2d((5q+4)d+8−2q−1/(d−1))H−2+2/QT−d/2M

d(Q+q/2)
∗ .
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In order to balance the first two terms on the right side of (5.23) we let

H = c5
(
K

2(5q+4)d3+(3q+19)d2−(13q+24)d−6
2(d−1) T−d/2M

(q/2+1)d
∗

)Q/(Q+(Q−1)d)
.

We then need to check that (5.8) is satisfied with this choice of H . First, H > 1
since we can assume

(5.24) T < c7K
(2(5q+4)d3+(3q+19)d2−(13q+24)d−6)/(d(d−1))M q+2

∗

with a sufficiently small c7 (otherwise the trivial bound of S(T,M∗;G,F ), i.e., Md∗ ,
is better than (5.7)). Second, the assumption (5.6) implies the second inequality
in (5.8).

With the choice of H as above and (5.24), we get

(5.25)
H−2+2/QT−d/2M

d(Q+q/2)
∗

� K− 2(5q+4)d3+(3q+19)d2−(13q+24)d−6
2(d−1) M

(Q−1)d
∗ Hd−1.

It then follows from (5.8) and (5.25) that

E �MQd
∗ H−1.

Applying this bound to (5.23) finally yields the desired bound (5.7). �

6. The Rd (d � 3) case

By a very standard argument, Theorem 1.2 follows easily from the following lemma
(see Lemma 6.1 and 6.2 in [5], p. 26–27 of Iosevich [9], or p. 168–169 of Iosevich,
Sawyer, and Seeger [10] for this argument).

Lemma 6.1. Let B ⊂ Rd (d � 3) be a compact convex domain and ρ ∈ C∞
0 (Rd)

such that
∫
Rd ρ(y) dy = 1. If the boundary is a smooth hypersurface of finite type ω,

then, for j ∈ N, we have

(6.1)

∫
SO(d)

sup
2j−1�t�2j+2

t2d/(d+1)+ζd+σ(d,ω)
∣∣∣ ∑
k∈Zd∗

χ̂Bθ
(tk)ρ̂(εk)

∣∣∣ dθ � 1,

where dθ is the normalized Haar measure on SO(d), ζd and σ(d, ω) are given
by (1.3) and (1.4) respectively, and

ε = ε(j, d, ω) = 2−jα(d,ω),

α(d, ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1− 2[6(ω − 2)d4 + 112(ω − 2)d3 − 4(ω − 2)d2

+ (410− 203ω)d+ 82ω − 156]/� for 3 � d � 4,

1− [4(ω − 2)d4 + 90(ω − 2)d3 + 61(ω − 2)d2

− (227ω − 456)d+ 60ω − 112]/� for d � 5,

with � and � given by (1.5) and (1.6) respectively. The implicit constant depends
only on B.
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Proof. Let t ∈ [2j−1, 2j+2] and δ = δ(j, d, ω) = 2−jβ(d,ω) with

β(d, ω) =

{
2(ω − 2)d(d− 1)(d− 2)/� for 3 � d � 4,

(ω − 2)d(d− 1)(d− 3)/� for d � 5.

For any θ ∈ SO(d) we have the following splitting:∑
k∈Zd∗

χ̂Bθ
(tk)ρ̂(εk) = Sum I (t, ε, δ, θ) + Sum II (t, ε, δ, θ),

where

Sum I (t, ε, δ, θ) =
∑

k∈D1(δ,θ)

χ̂Bθ
(tk) ρ̂(εk),

Sum II (t, ε, δ, θ) =
∑

k∈D2(δ,θ)

χ̂Bθ
(tk) ρ̂(εk),

and D1(δ, θ) and D2(δ, θ) are two regions defined as follows:

D2(δ, 0) =
{
ξ ∈ Rd

∗ : ξ/|ξ| or − ξ/|ξ| ∈ �n({x ∈ ∂B : K(x) < δ})},
D1(δ, 0) = Rd

∗ \D2(δ, 0), D1(δ, θ) = θD1(δ, 0), and D2(δ, θ) = θD2(δ, 0).

The estimate (6.1) follows from the next two claims. Notice that the finite type
condition is only used in the estimate of Sum II and the size estimate of |D2(δ, 0)|.

Claim 6.2.∫
SO(d)

sup
2j−1�t�2j+2

t2d/(d+1)+ζd+σ(d,ω)
∣∣ Sum II (t, ε, δ, θ)

∣∣ dθ � 1

with an implicit constant depending only on B.

Claim 6.3.∫
SO(d)

sup
2j−1�t�2j+2

t2d/(d+1)+ζd+σ(d,ω)
∣∣ Sum I (t, ε, δ, θ)

∣∣ dθ � 1

with an implicit constant depending only on B.

Proof of Claim 6.2.

L.H.S. � (2j)2d/(d+1)−(d+1)/2+ζd+σ(d,ω)
∑
k∈Zd∗

|k|−(d+1)/2|ρ̂(εk)|(∗),

where

(∗) :=
∫
SO(d)

1D2(δ,θ)(k)
(

sup
2j−1�t�2j+2

|tk|(d+1)/2|χ̂Bθ
(tk)|) dθ.
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Recalling the definition (1.8) of the function Φ, we get

(∗) �
∫
Sd−1∩D2(δ,0)

Φ(ξ) dξ �
∫
Sd−1∩D2(δ,0)

(Kξ)
−1/2 + (K−ξ)

−1/2 + 1 dξ

�
∫
{ξ∈Sd−1:Kξ<δ}

(Kξ)
−1/2 dξ �

∫
{x∈∂B:K(x)<δ}

K(x)1/2 dA(x)

� δ1/2+1/(d−1)(ω−2).

In the above estimate of (∗) we have used Svensson’s estimate of Φ(ξ) for finite
type domains (see p. 19 of [28]), the symmetry of D2(δ, 0), a change of variables,
and Lemma 2.3. Hence,

L.H.S. � (2j)2d/(d+1)−(d+1)/2+ζd+σ(d,ω)δ1/2+1/(d−1)(ω−2)ε−(d−1)/2 � 1. �

Proof of Claim 6.3. Note if ξ ∈ D1(δ, θ) then K
θ
±ξ � δ. Applying Corollary 4.3 to

Sum I yields

(6.2) Sum I (t, ε, δ, θ) = (2π)−1e
(
(d+ 1)/8

)
S1 + (2π)−1e

(− (d+ 1)/8
)
S̃1 +R1,

where

S1(t, ε, δ, θ) = t−(d+1)/2
∑

k∈D1(δ,θ)

|k|−(d+1)/2(Kθ
k)

−1/2ρ̂(εk) e(−tHθ(k)),

S̃1(t, ε, δ, θ) = t−(d+1)/2
∑

k∈D1(δ,θ)

|k|−(d+1)/2(Kθ
−k)

−1/2ρ̂(εk) e(tHθ(−k)),

and

(6.3) R1 � δ−2(d+1)t−(d+3)/2
(
ε−(d−3)/2 + log(ε−1)

)
� t−2d/(d+1)−ζd−σ(d,ω).

We will only estimate S1 since S̃1 is similar. Denote C1 = {ξ ∈ Rd : 1/2 �
|ξ| � 2}. Let us introduce a dyadic decomposition and a partition of unity.

Assume ϕ ∈ C∞
0 (Rd) is a real radial function such that supp(ϕ)⊂ C1, 0� ϕ �1,

and ∞∑
l0=−∞

ϕ
( ξ

2l0

)
= 1 for ξ ∈ Rd \ {0}.

Denote

S1,M =
∑

k∈D1(δ,θ)

ϕ(M−1k)|k|−(d+1)/2(Kθ
k)

−1/2ρ̂(εk) e(−tHθ(k)),

then

(6.4) S1 = t−(d+1)/2
∞∑

l0=0

S1,2l0 .
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We will estimate S1,M for a fixed M = 2l0 , l0 ∈ N0. Let q ∈ N. For each
ξ ∈ Sd−1

+ there exists a cone

C(ξ, 2r(ξ)) :=
⋃
l>0

l B(ξ, 2r(ξ)) ⊂ Rd,

where r(ξ) = c2(Kξ)
d+2q+7−1/(d−1)/2 and c2 is the constant appearing in the

statement of Lemma 3.4. Note that Lemma 2.1 implies that Kη  Kξ if η ∈
C(ξ, 2r(ξ)). From the family of cones {C(ξ, r(ξ)/2) : ξ ∈ Sd−1

+ }, we can choose, by
a Vitali procedure, a sequence {C(ξi, r(ξi)/2)}∞i=1 such that these cones still cover
Sd−1
+ and that {C(ξi, r(ξi))}∞i=1 satisfies the bounded overlap property. Denote

Cθ
i = θ C(ξi, r(ξi)).

Then the collection {Cθ
i }∞i=1 forms an open cover of θSd−1

+ . We can construct a
partition of unity {ψi}∞i=1 such that

(i)
∑

i ψi ≡ 1 on θSd−1
+ , and ψi ∈ C∞

0 (Cθ
i );

(ii) each ψi is positively homogeneous of degree zero;

(iii) |Dνψi| �|ν| (Kξi)
−(d+2q+7−1/(d−1))|ν| on C1.

From the family {Cθ
i }∞i=1 we can find a subfamily {Cθ

i }i∈A which coversD1(δ, θ),
where A = A (δ) is an index set such that i ∈ A if and only if Cθ

i intersects
D1(δ, θ). Since r(ξi) � δd+2q+7−1/(d−1) for any i ∈ A , a size estimate gives that
#A � δ−(d+2q+7−1/(d−1))(d−1). Define

(6.5) S∗
1,M =

∑
i∈A

S2,i,

where

S2,i =
∑
k∈Zd

Uθ
i (k) e(−tHθ(k))

and

Uθ
i (k) = ψi(M

−1k)ϕ(M−1k)|k|−(d+1)/2(Kθ
k)

−1/2ρ̂(εk).

Instead of S1,M we will estimate S∗
1,M . It turns out that the error

(6.6) R2,M = S1,M − S∗
1,M

is relatively small and this will be clear at the end of this proof.

To estimate S∗
1,M we will estimate S2,i for any fixed i ∈ A . By Lemma 3.4

and the homogeneity of Hθ, there exist d linearly independent vectors vj ∈ Zd

(j = 1, . . . , d) such that if η ∈ ∪1/4�l�4 lB(θξi, 2r(ξi)) then

(6.7) |hθq(η, v1, . . . , vd)| � (Kξi)
(−d−2q−5+1/(d−1))d(q+2)−3d+5−1/(d−1).
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Let L = [Zd : Zv1⊕Zv2⊕· · ·⊕Zvd] be the index of the lattice spanned by v1, . . . , vd
in the lattice Zd. Then there exist vectors bl ∈ Zd (l = 1, . . . , L) such that

Zd =

L⊎
l=1

(
Zv1 + · · ·+ Zvd + bl

)
.

It follows from Lemma 3.4 that

L = | det(v1, . . . , vd)|  (Kξi)
d(−d−2q−5+1/(d−1))

and
|bl| � (Kξi)

−d−2q−8+1/(d−1).

Let N > d/2 be an arbitrarily fixed natural number. We have

S2,i =

L∑
l=1

∑
m∈Zd

Uθ
i

( d∑
j=1

mjvj + bl

)
e
(
− tHθ

( d∑
j=1

mjvj + bl

))

= (Kξi)
−1/2M−(d+1)/2(1 +Mε)−N

L∑
l=1

S(T,M∗;Gl, Fl),(6.8)

where T = tM , M∗ = (Kξi)
d+2q+2−1/(d−1)M ,

Gl(y) = (Kξi)
1/2M (d+1)/2(1 +Mε)NUθ

i (M∗V y + bl),

and
Fl(y) = Hθ(M

−1(M∗V y + bl)),

where V = (v1, . . . , vd).
We consider the function Fl restricted to the convex domain

Ωl =
{
y ∈ Rd :M−1(M∗V y + bl) ∈

⋃
1/4�l�4

l B(θξi, 2r(ξi))
}
.

The support of Gl satisfies

supp(Gl) ⊂
{
y ∈ Rd :M−1(M∗V y + bl) ∈ C1 ∩ Cθ

i

} ⊂ Ωl.

We apply to S(T,M∗;Gl, Fl) Proposition 5.1 with G = Gl, F = Fl, K = Kξi ,
and Ω = Ωl. And we only compute below the case d � 5 with q = 1 (while the
case 3 � d � 4 with q = 2 can be handled in the same way).

Since 1 � Kξi � δ if i ∈ A , there exist positive constants C2 and C3 such that
the assumptions of Proposition 5.1 are satisfied if M ∈ I1 where I1 is an interval
defined by

I1 =
[
C3δ

−37d−41+5/(d−1), C2δ
(14d4+66d3+61d2−144d−12)/(2(d−2)(d−1)d)td/(d−2)

]
.

This follows from Lemma 3.4, (6.7) and the following facts: if

(Kξi)
−d−2q−8+1/(d−1) �M
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then Ωl ⊂ c0B(0, 1) for a constant c0 (depending only on q, B);

dist
(( ⋃

1/4�l�4

lB(θξi, 2r(ξi))
)c

, C1 ∩ Cθ
i

)
� c2(Kξi)

d+2q+7−1/(d−1)/8;

and

DνUθ
i � (Kξi)

−(d+2q+7−1/(d−1))|ν|−1/2M−|ν|−(d+1)/2(1 +Mε)−N .

Thus by Proposition 5.1 we get

(6.9) S(T,M∗;Gl, Fl) � (Kξi)
d2−13d/2−6+9/(d+2)td/(2d+4)Md−d/(d+2).

Then by using (6.5), (6.8), (6.9), Kξi � δ, and bounds of #A and L, we get

S∗
1,M � δ−d2−43d/2+9/2+1/(d−1)+9/(d+2)

· td/(2d+4)M (d−1)/2−d/(d+2)(1 +Mε)−N .
(6.10)

Now we can estimate S1. By (6.4) and (6.6) we get

(6.11) S1 = t−(d+1)/2
( ∑

l0∈{n∈N0:2n∈I1}
S∗
1,2l0 +R2 +R3

)
,

where

R2 =
∑

l0∈{n∈N0:2n∈I1}
R2,2l0 and R3 =

∑
l0∈{n∈N0:2n∈I c

1 }
S1,2l0 .

Using the bound (6.10) of S∗
1,M we get∑

l0∈{n∈N0:2n∈I1}
S∗
1,2l0

� δ−d2−43d/2+9/2+1/(d−1)+9/(d+2)td/(2d+4)ε−(d−1)/2+d/(d+2).

(6.12)

Hence Claim 6.3 follows from (6.2), (6.3), (6.11), (6.12), sizes of δ and ε, and
the following estimates of 5 R2 and R3:∫

SO(d)

sup
2j−1�t�2j+2

t2d/(d+1)+ζd+σ(d,ω)t−(d+1)/2|R2| dθ � 1;(6.13)

sup
2j−1�t�2j+2

t2d/(d+1)+ζd+σ(d,ω)t−(d+1)/2|R3| � 1.(6.14)

Inequality (6.13) follows from Lemma 2.2 and 2.3 if we notice that

|R2,M | � δ−1/2
∑

k∈D2(δ,θ)

|ϕ(M−1k)||k|−(d+1)/2|ρ̂(εk)|;

5The method used here to estimate R2 is different from what we used in [5]. More precisely,
we estimate the integral of R2 rather than R2 itself. Here we need the size estimate of |D2(δ, 0)|,
and this is the only place in the estimate of Sum I where the finite type condition is used.
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and (6.14) is true since we have, by trivial estimates,

|R3| � δ−5d2−7d/2+9 + δ−1/2td(d−1)/(2(d−2))−N1d/(d−2)ε−N1 ,

for any integer N1 > (d− 1)/2. �

Just like that Lemma 6.1 implies Theorem 1.2, the following lemma implies
Theorem 1.3. Its proof is essentially the same as above, however, we now use,
in the estimate of Sum II, Hölder’s inequality and Varchenko’s Theorem 8 in [29]
instead of Svensson’s estimate of Φ(ξ) (as we mentioned in §1) and δ = t−β(d,∞)

with β(d,∞) = limω→∞ β(d, ω).

Lemma 6.4. Let B ⊂ Rd (d � 3) be a compact convex domain and ρ ∈ C∞
0 (Rd)

such that
∫
Rd ρ(y) dy = 1. If the boundary is a smooth hypersurface then∫

SO(d)

t2d/(d+1)+ζd
∣∣∣ ∑
k∈Zd∗

χ̂Bθ
(tk) ρ̂(εk)

∣∣∣ dθ � 1,

where dθ is the normalized Haar measure on SO(d), ζd is given by (1.3), and

ε = t−α(d,∞)

with

α(d,∞) =

⎧⎪⎪⎨⎪⎪⎩
1− 12d4 + 224d3 − 8d2 − 406d+ 164

6d5 + 118d4 + 109d3 − 210d2 − 119d+ 82
for 3 � d � 4,

1− 4d4 + 90d3 + 61d2 − 227d+ 60

2d5 + 47d4 + 76d3 − 85d2 − 82d+ 30
for d � 5.

Remark 6.5. Note that α(d,∞) = limω→∞ α(d, ω).

7. The R2 case

To prove Theorem 1.4 and 1.5 the key step is to prove the following R2 analogues
of Lemma 6.1.

Lemma 7.1. Let ζ2 = 1/2859, let B ⊂ R2 be a compact convex domain with
a smooth boundary, and let ρ ∈ C∞

0 (R2) be such that
∫
R2 ρ(y) dy = 1. Then,

for j ∈ N, we have∫
SO(2)

sup
2j−1�t�2j+2

t4/3+ζ2
∣∣∣ ∑
k∈Z2∗

χ̂Bθ
(tk)ρ̂(ε(j,∞)k)

∣∣∣ dθ � 1,

where dθ is the normalized Haar measure on SO(2) and ε(j,∞) = 2−318j/953.
Furthermore, if the boundary is of finite type ω then∫

SO(2)

sup
2j−1�t�2j+2

t4/3+ζ2+σ(2,ω)
∣∣∣ ∑
k∈Z2∗

χ̂Bθ
(tk)ρ̂(ε(j, ω)k)

∣∣∣ dθ � 1,
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where ε(j, ω) = 2−jα(2,ω),

α(2, ω) =
318ω − 616

953ω − 1848
and σ(2, ω) =

616

953(953ω− 1848)
.

The implicit constants depend only on B.
Since the proof is essentially the same as the proof of Lemma 6.1 we will not

provide every detail but only a few key estimates (see also the proof of Lemma 6.1
in [5]).

As before we first decompose
∑

k∈Z2∗
χ̂Bθ

(tk)ρ̂(εk) into two parts: Sum I and II.

By Lemma 2.2 and the fact that Φ ∈ L2,∞(S1) (see Theorem 0.3 in [2]) we get∫
SO(2)

sup
2j−1�t�2j+2

t4/3+ζ2
∣∣Sum II

∣∣ dθ � (2j)4/3−3/2+ζ2δ1/2ε−1/2 � 1,

where ε = ε(j,∞) and δ = δ(j,∞) = 2−j/953.
If ∂B is of finite type ω, then∫

SO(2)

sup
2j−1�t�2j+2

t4/3+ζ2+σ(2,ω)
∣∣Sum II

∣∣ dθ
� (2j)4/3−3/2+ζ2+σ(2,ω)δ1/2+1/(ω−2)ε−1/2 � 1,

where ε = ε(j, ω) and δ = δ(j, ω) = 2−jβ(2,ω) with

β(2, ω) =
ω − 2

953ω − 1848
.

For Sum I we now use Lemma 3.5 and get

Sum I � δ−14t−3/2+1/22ε−7/22 + t−3/2|R2|.
Combining this estimate with the above two of Sum II yields Lemma 7.1.

A. Several lemmas

Here is a quantitative version of the inverse function theorem (see the appendix
in [4]).

Lemma A.1. Suppose f is a C(k) (k � 2) mapping from an open set Ω ⊂ Rd

into Rd and b = f(a) for some a ∈ Ω. Assume | det(∇f(a))| � c and that, for
any x ∈ Ω,

|Dνfi(x)| � C for |ν| � 2, 1 � i � d.

If r0 � sup{r > 0 : B(a, r) ⊂ Ω}, then f is bijective from B(a, r1) to an open set
containing B(b, r2), where

r1 = min
{ c

2d2d!Cd
, r0

}
and r2 =

c

4d!Cd−1
r1.

The inverse mapping f−1 is in C(k)(V ).
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Hörmander’s Theorem 7.7.1 in [7] gives the following estimate obtained by
integration by parts.

Lemma A.2. Let K ⊂ Rd be a compact set, X an open neighborhood of K and k
a nonnegative integer. If u ∈ Ck

0 (K), real f ∈ Ck+1(X), then∣∣∣ ∫ u(x) eiλf(x) dx
∣∣∣ � C|K|λ−k

∑
|ν|�k

sup |Dνu| |∇f ||ν|−2k, λ > 0.

Here C is bounded when f stays in a bounded set in Ck+1(X).

The following lemmas are various results of the method of stationary phase.
The first one follows from Hörmander’s Lemma 7.7.3 in [7]. The second one is
Sogge and Stein’s Lemma 2 in [26].

Lemma A.3. Let A be a real symmetric non-degenerate matrix. Then we have,
for every integer k > 0 and integer s > d/2,∣∣∣ ∫ u(x) eiλ〈Ax,x〉/2 dx− (2π)d/2λ−d/2| detA|−1/2eiπsgn(A)/4Tk(λ)

∣∣∣
� Ck(‖A−1‖/λ)d/2+k

∑
|α|�2k+s

‖Dαu‖L2 , u ∈ S , λ > 0,

Tk(λ) =

k−1∑
0

(2iλ)−j〈A−1D,D〉ju(0)/j! .

Lemma A.4. Suppose φ and ψ are smooth functions in B(0, δ) ⊂ Rd with φ real-
valued. Assume that |(∂/∂x)νφ| � C1, |ν| � d + 2 and |(∂/∂x)νψ| � C2δ

−|ν|,
|ν| � d. We also suppose that (∇φ)(0) = 0, but | det∇2φ(0)| � δ. Then there
exists a positive constant c1 (independent of δ), which is sufficiently small, so that
if ψ is supported in B(0, c1δ) we can assert that∣∣∣ ∫

Rd

ψeiλφ dx
∣∣∣ � C λ−d/2 δ−1/2.
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rotating Lamé’s curve. Monatsh. Math. 154 (2008), no. 2, 145–156.

[18] Krätzel, E. and Nowak, W.G.: The lattice discrepancy of certain three-
dimensional bodies. Monatsh. Math. 163 (2011), no. 2, 149–174.

[19] Lang, S.: Differential and Riemannian manifolds. Graduate Texts in Mathemat-
ics 160, Springer-Verlag, New York, 1995.

[20] Müller, W.: Lattice points in large convex bodies. Monatsh. Math. 128 (1999),
no. 4, 315–330.

[21] Nowak, W.G.: On the lattice discrepancy of bodies of rotation with boundary
points of curvature zero. Arch. Math. (Basel) 90 (2008), no. 2, 181–192.



438 J.W. Guo

[22] Peter, M.: Lattice points in convex bodies with planar points on the boundary.
Monatsh. Math. 135 (2002), no. 1, 37–57.

[23] Popov, D. A.: On the number of lattice points in three-dimensional bodies of
revolution. Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 2, 121–140. Translation
in Izv. Math. 64 (2000), no. 2, 343–361.

[24] Randol, B.: A lattice point problem. Trans. Amer. Math. Soc. 121 (1966), 257–268.
A lattice point problem. II. Trans. Amer. Math. Soc. 125 (1966), 101–113.

[25] Randol, B.: On the asymptotic behavior of the Fourier transform of the indicator
function of a convex set. Trans. Amer. Math. Soc. 139 (1969), 279–285.

[26] Sogge, C.D. and Stein, E.M.: Averages of functions over hypersurfaces in Rn.
Invent. Math. 82 (1985), no. 3, 543–556.

[27] Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscilla-
tory integrals. Princeton Mathematical Series 43, Monographs in Harmonic Analy-
sis III, Princeton Univ. Press, Princeton, NJ, 1993.

[28] Svensson, I.: Estimate for the Fourier transform of the characteristic function of a
convex set. Ark. Mat. 9 (1971), 11–22.

[29] Varchenko, A.: The number of lattice points in families of homothetic domains
in Rn. Funktsional. Anal. i Prilozhen. 17 (1983), no. 2, 1–6. English translation in
Funct. Anal. Appl. 17 (1983), no. 2, 79–83.

Received March 18, 2013.

Jingwei Guo: School of Mathematical Sciences, University of Science and Technology
of China, Hefei 230026, Anhui Province, China.

E-mail: jwguo@ustc.edu.cn

mailto:jwguo@ustc.edu.cn

	Introduction
	Some geometric facts
	Nonvanishing dd determinants
	The Fourier transform of certain indicator functions
	Estimate of exponential sums
	The Rd (d3) case
	The R2 case
	Several lemmas

