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Lattice points in rotated convex domains

Jingwei Guo

Abstract. If B ¢ R? (d > 2) is a compact convex domain with a
smooth boundary of finite type, we prove that for almost every rotation
0 € SO(d) the remainder of the lattice point problem, Pyz(t), is of order
Og (td_2+2/(d+l)_cfl) with a positive number (4. Furthermore we extend
the estimate of the above type, in the planar case, to general compact
convex domains.

1. Introduction

Let B C R? (d > 2) be a compact convex domain, which contains the origin in its
interior and has a smooth boundary d9B. The number of lattice points Z? in the
dilated domain tB is approximately |t5| (i.e., the volume (area if d = 2) of t58) and
the lattice point problem is to study the remainder, P(t), in the equation

Ps(t) = #(tBNZY — |B|t? fort > 1.

A trivial estimate gives Pg(t) = O(t41).
If OB has everywhere positive (Gaussian) curvature, a standard estimate is

PB (t) _ O(td72+2/(d+1)),

which can be readily obtained by a combination of the Poisson summation formula
and (nowadays standard) oscillatory integral estimates (see Hlawka [6]). Over the
years this result has been improved by many authors and the best bounds up-
to-date are due to Huxley [8] in the planar case and the author [4] in the higher
dimensional case. For a survey on historical results the reader is referred to Ivi¢,
Kritzel, Kiihleitner, and Nowak [11].

While the above case is relatively well understood, the general case when the
(Gaussian) curvature is allowed to vanish is not.

Let us first consider the d > 3 case of vanishing curvature. Partial results
indicate that the remainder may become much larger. For example, Randol [24]
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considered the super spheres
B={(z1,...,2q) € R : [z1]” + |z2|* + -+ + |za|” < 1}
for even integer w > 3, and proved that

O(t4=2+2/(d+D))  for w < d+ 1,
Pi(t) = { O@td=D0=1/w)y for w>d+1,

and this estimate is the best possible when w > d + 1. Krétzel [12] extended this
result to odd w > 3 and gave an asymptotic formula

(1.1) Pg(t) = H(t)t = DO=1/w) 1 0@©)

with an explicit © < (d — 1)(1 — 1/w) and H(t) continuous and periodic (see
Krétzel [13] for more details). We observe that the remainder Pg(t) becomes
extremely large as w — oo.

This observation is supported by the study of more examples, and special at-
tention is paid to specific convex domains in R3. See Kriitzel [16] and Kritzel and
Nowak [17], [18], in which they proved, among other results, asymptotic formulas
of Pg(t) with explicit representations of the main terms given.

For general domains with boundary points of Gaussian curvature zero, our
knowledge is still very poor. Partial results in R? are available in Kritzel [14], [15],
Peter [22], Popov [23], and Nowak [21] (with the latter two papers focusing on
bodies of rotation). Under a variety of assumptions, they provide O-estimates
(or asymptotic formulas) of Pg(t), and evaluate the contributions (to Pg(t)) of
different types of boundary points of Gaussian curvature zero. Their results show
that the size of Pg(t) depends on certain properties of the boundary points of
Gaussian curvature zero and whether the slope of the normal at such a point
is rational or irrational. In particular Pg(t) may become extremely large and a
substantial contribution to it is due to the neighborhoods of those boundary points
of Gaussian curvature zero at which the normal has a rational direction.

However after a rotation of the domain there may be no such points, hence
we can expect a better estimate. For example one may consider rotations of a
compact convex domain B with a smooth boundary of finite type (Here we say that
the boundary 0B is of finite type if at every point = € 0B, every one dimensional
tangent line to OB at x makes finite order of contact with 9B. If 0B is of finite
type, the maximum order of contact over all x € B and all tangent lines to x € 0B
is called the type of 0B. We will always assume below that the type is > 3 since
if the type is two then we recover the case of nonvanishing (Gaussian) curvature).
For such domains Iosevich, Sawyer, and Seeger [10] proved that there is r > 2 so
that

(1.2) Pg,(t) = Op (t772F2/(@+ D 10g! /" (2 4+ 1)) for ae. 6 € SO(d),

where By = 0B denotes the rotated domain {0z : € B}. Results of type (1.2)
with the same exponent d — 2+ 2/(d + 1) can be found in Randol [25] for convex
domains with an analytic boundary, and in Colin de Verdiere [3] for general (not
necessarily convex) domains if d < 7.
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It is then natural to ask whether one can prove a result of type (1.2) with an
exponent d — 2 + 2/(d + 1) — ¢ for some positive c. We make a progress in this
direction and prove the following theorem with a ¢ > 0 depending only on the
dimension d.

Theorem 1.1. Let B C R? (d > 3) be a compact convex domain containing the
origin in its interior. If the boundary is a smooth hypersurface of finite type then

Pg, (t) = Op(t~2F2/(@+10=Ca)  for g.e. 6 € SO(d),
where (4 > 0 is defined as

2(d — 2)(d — 1)d
(d + 1)(6d5 + 1184* + 109d® — 2104 — 119d + 82)

for 3 <d < 4,
(1.3) Ca=
(d—3)(d—-1)d
2d6 + 49d5 + 123d* — 9d3 — 167d2 — 52d + 30

ford > 5.

This result is an easy consequence of the following theorem.

Theorem 1.2. Let B C R? (d > 3) be a compact convex domain containing the
origin in its interior. If the boundary is a smooth hypersurface of finite type w then

sup | P, (1)|/ (22D Cameld@llogh (1)) € LY(SO(d)),

=

where b > 1, (4 is given by (1.3), and o(d,w) > 0 is defined as

4d(6d° + 100d* — 230d® — 193d2 + 496d — 172)
(6d5 + 118d% + 109d® — 210d% — 119d + 82) - O

for3 <d <4,

(1.4) o(d,w) =
2d(2d° + 39d* — 105d3 — 205d% + 377d — 96) ford>5
(2d5 + 47d* + 76d3 — 85d? — 82d + 30) - AA -
with
15 O =6(w—2)d° + 118(w — 2)d* + 109(w — 2)d?
' — 6(35w — 71)d? + (246 — 119w)d + (82w — 156)
and
16) A =2(w—2)d® + 47(w — 2)d* + 76(w — 2)d*

+ (172 — 85w)d? + (166 — 82w)d + (30w — 56).

The proof of Theorem 1.2 relies on the following analysis result (implied by
Svensson’s Theorem 4.1 in [28]): if B C R? (d > 3) is a compact convex domain
and its boundary is a smooth hypersurface of finite type! w, then

(1.7) ® e LP(S?Y) forany p < 2+2/(d—1)(w —2),

IThe restriction on the size of w given by Svensson’s Theorem 4.1 in [28] can be removed
under current assumptions.
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where

(1.8) D(¢) = supr TTV2|g5(re)|, eS8
r>0

For a general convex domain B with a smooth boundary, (1.7) is not necessarily
true, however, we have (due to Varchenko’s Theorem 8 in [29]) that

r D2 IRs(r€)| € LA(ST).

By using this result we can readily modify the proof of Theorem 1.2 and prove
the following theorem, which improves similar results contained on page 285 of
Randol [25] and Varchenko’s Theorem 7 in [29] in terms of the estimate.

Theorem 1.3. Let B C R? (d > 3) be a compact convex domain containing the
origin in its interior. If the boundary is a smooth hypersurface, then

| P, (£)|/¢4722/ (0 =¢a e L1(SO(d)),
where (q is given by (1.3).

Let us now consider the d = 2 case of vanishing curvature, in which we have a
better understanding than in the higher dimensional case. We refer the interested
readers to Ivié, Kratzel, Kiihleitner, and Nowak [11] and the author [5] for an
introduction to related results.

For general convex planar domains we know ® € L%°(S1) (see Brandolini,
Colzani, Iosevich, Podkorytov, and Travaglini’s Theorem 0.3 in [2]). By using this
result and the same method used in the proofs of Theorem 1.2 and 1.3, we are
able to extend our previous result for convex planar domains of finite type in The-
orem 1.1 in [5] to the following result for convex planar domains with no curvature
assumption on the boundary (with even a better estimate, due to an improved
estimate of certain nonvanishing determinants given in Lemma 3.5 below).

Theorem 1.4. If B is a compact convex planar domain with a smooth boundary
containing the origin in its interior, then

sup |Ps, (1)]/ (t*2~ <2 1og"(t)) € L' (SO(2)),

where b > 1 and (; = 1/2859. In particular,
Py, (t) = O (t*/3710g"(t))  for a.e. § € SO(2).

This theorem improves Iosevich’s Theorem 0.2 in [9] and Brandolini, Colzani,
Tosevich, Podkorytov, and Travaglini’s Theorem 0.1 in [2] (in terms of the esti-
mate). If we assume that the boundary is of finite type then we have the following
better estimate (again due to the improved result given in Lemma 3.5 below),
which improves Theorem 1.2 in [5].
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Theorem 1.5. If B is a compact convex planar domain with a smooth boundary
of finite type w containing the origin in its interior, then

sup | Pg, ()|/ (t*/7~¢ 7 log" (1)) € L' (SO(2)),
t>2
where b > 1, (3 = 1/2859, and

616
o(2,w)

~ 953(953w — 1848)”

In particular,
Pg, (t) = 0p(t**=2)  for a.e. 6 € SO(2).

Remark 1.6. Our main idea originates from Iosevich, Sawyer, and Seeger [10]
(see pp. 168-169) and Miiller [20]. Our main tools used in this paper are from the
oscillatory integral theory and the classical Van der Corput’s method of exponential
sums (namely, the A- and B-processes). To prove our estimate of exponential
sums (see Proposition 5.1 below) we use an A?B-process. If we use more A- and
B-processes we may achieve further improvement at the cost of more technical
difficulties.

Notations. We use the usual Euclidean norm |z| for a point z € RY. B(z,r)
represents the Euclidean ball centered at x with radius r, and its dimension will
be clear from the context. The norm of a matrix A € R¥*? is given by [|A| =
sup| =1 |Az[. We set e(f(z)) = exp(2mif(z)), 73 = 74\ {0}, and R? = R4\ {0}.
The Fourier transform of f € L*(RY) is given by f(&) = [ f(z)e(—(,¢)) dz.

We fix xo to be a smooth cut-off function whose value is 1 on B(0,1/2) and 0
on the complement of B(0,1). For a set £ C R? and a positive number a, we
define F(,) to be the larger set

B = {J: e R : dist(E,z) < a}.

We use the differential operators

v a|’/‘ d -
Dy = m (V: (v1,...,va) €NG, |V :ZV")

i=1
and the gradient operator V,. We often omit the subscript if no ambiguity occurs.

Structure of the paper. We first establish some preliminaries in §2-4 mainly
for compact convex domains with no curvature assumption on the boundary. We
then prove an estimate of exponential sums in §5, which will be needed in the
next section. In §6 we give a proof of Theorem 1.2, in which the problem is
reduced to the estimate of two sums (Sum I and II). The estimate of Sum I that
we give essentially works for general compact convex domains, while the curvature
condition on the boundary is used in the estimate of Sum II. Since it is easy to
modify the proof of Theorem 1.2 to prove the other theorems, we only provide
brief proofs of Theorem 1.3 in §6 and Theorem 1.4 and 1.5 in §7. At last we collect
some standard analysis results in Appendix A.
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2. Some geometric facts

Assume B C R? (d > 2) is a compact convex domain and its boundary is a smooth
hypersurface. For a point © € 9B, let K(x) be the (Gaussian) curvature of 0B
at x. Define

(0B)y ={z € 0B:K(z) >0} and (0B)o={zx€dB:K(z)=0},

thus
0B = (0B)+ |4 (9B)o.

The Gauss map of 0B, denoted by 7, maps each boundary point = € 9B to a
unit exterior normal 7i(x) € S471. Define

St =qi((0B)4) and S§'=((0B)o),

-1 _ 51—1 @SBH'

Note that the restriction of 7i to (9B)4, namely

thus

ii|(0B)+ : (0B)+ — STt c §471,

is bijective. For & # 0 with £/|¢] € S9! let x(€) := A~ 1(¢/|€]) be the unique point
on OB where the unit exterior normal is £/|¢|. Hence K¢ = K (z(&)) is well defined
for such points &.

For nonzero & with £/[¢| € HSi_l let 27(¢) = 0x(6*¢) and Kg = Kyt¢. Then
29(€) is the unique point on By where the exterior normal is ¢ and Kg is the
curvature of 9By at 2% (¢).

Lemma 2.1. Assume B C R? (d > 2) is a compact convex domain and its bound-
ary is a smooth hypersurface. Then there exists a constant ¢c; > 0 (depending only
on B) such that, for any & € Si_l, if n € B(§,c1(Ke)?) C R? then n/In| € Si_l
and

Ke/2 < K, < 3K¢/2.

Proof. For any £ € 5171 it follows from the mean value theorem that there exists
a constant ¢ (depending only on B) such that

Ke/2 < K(y) <3Ke/2  if ye B(x(€),cKe) N dB.

It is a consequence of Lemma A.1 that the Gauss map is bijective from a subset
of B(x(£),cK¢) N OB onto a subset of S containing B(&, ¢/ (K¢)?) N S?~1 where
the constant ¢’ depends only on B. Then the lemma follows easily. O

Lemma 2.2. Assume B C R? (d > 2) is a compact convex domain and its bound-
ary 1s a smooth hypersurface. Then

|ii({z €dB: K(x) <6})| <Cpd|{zedB:0<K(z)<d},

where the absolute value denotes the induced Lebesque measure on ST=' and 0B.
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Proof. Note that
{zredB: K@) <é}={zecaB:0<K(x)<d}H (OB

We first have
si =0

due to Sard’s theorem (see p. 286 of Lang [19]). Hence it suffices to prove
|i({z €0B:0< K(z)<d})| <Cd|{xecdB:0<K(zx) <6}

By using a standard technique found in the proof of certain covering lemma of
Vitali type (see Stein [27]), we reduce the above estimate to

7(B)| < Csd|B,

where B C {z € 9B : 0 < K(z) < ¢} is a ball in 9B. However this last estimate
follows from the equality do = K (x)dA where dA is the volume element of 0B at
the point = € 9B and do the volume element of S?~! at the point 7i(x) € S¢~!
(see p. 47 of [1]; this equality can also be verified by using local coordinate charts).
This finishes the proof. O

Lemma 2.3. Assume B C R? (d > 2) is a compact convex domain and its bound-
ary 1s a smooth hypersurface of finite type w. Then

|[{z €0B: K(z) < d}| < Cpot/tdDlw=2),

Proof. By using a compactness argument and local coordinates we may only re-
gard K as a function of 2’ in a neighborhood B(0, Cp) of 0 in R4~! for some con-
stant Cp. We may assume that K, 0K /dz1, ..., 0"K/0z} (with h = (d—1)(w—2))
do not vanish simultaneously (see p. 19 of Svensson [28]). We then apply Svensson’s
Lemma 3.3 in [28] to K in x;-direction, which yields

| {@1 1 |21] < Co, K(2') < 6}] < Cp /™,

and the trivial estimate in x5, ..., x4_1-directions. Thus the desired estimate
follows. O

3. Nonvanishing d X d determinants

In this section we always assume that B C R? (d > 2) is a compact convex domain
and its boundary is a smooth hypersurface.

The support function of B is given by H() = sup,cp(§,y) for any nonzero
¢ € R In particular H (&) = (€, 2(€)) for any nonzero ¢ with £/[¢] € Si_l. It is
positively homogeneous of degree one, i.e., H(A) = AH () if A > 0. The results
in this section are mainly stated for unit vectors, but we can easily remove this
restriction by using the homogeneity of H.

The next two lemmas can be easily proved by using local coordinates, implicit
differentiation, and induction, hence we omit the proof.
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Lemma 3.1. H is smooth at every £ € Sf‘ffl and satisfies
D"H(&) <1 for 0< v <1
and
DYH(&) S (Ke)* 21 for |v| =2,
where the implicit constants may depend only on |v| and B.

Remark 3.2. For 6 € SO(d), we will denote the support function of By by Hg(§) =
sup,ep, (€, ). Since Hy(§) = H(0%¢), we can easily get bounds for Hy in the

same form as in the above lemma (with Sf‘ﬁ*l and K¢ replaced by 95’171 and K 59
respectively).

Lemma 3.3. For € € Sf‘ﬁ*l the eigenvalues of the matriz ngH(f) are 0, B, ...,
Ba—1, where {ﬁj_l ?;11 are principle curvatures of OB at x(§).

Given d vectors v1,...,vq € R%, by writing V = (vy,...,v4) we mean V is the
matrix in R4*? with column vectors vy, ..., vq. If y # 0 we define Fp(uy, ..., uq) =
Ho(y+ Y0 wwy), wy €R (I=1,...,d). For g € N let

hZ (yv V1y- e 7Ud) = det (gie,j (y’ U1y-e ’Ud))1<i,j<d )
where
0112
N aulauiﬁujaugfl

(0).

g?,j(:%vl, s 7Ud)

The following lemma is a higher dimensional analogue of Lemma 3.4 in [5],
which enables us to apply the method of stationary phase later in the estimate
of certain exponential sums. We will follow Miiller’s method used to prove his
Lemma 3 in [20].

Lemma 3.4. If d > 3, for every & € 95171 there exist d linearly independent
vectors v = v (€,0) € Z¢ (1 =1,...,d) such that

joa| = (Feg) RS/,

o] = (Kg)~a2amsHV/@=t (1=2,...d),

(3.1) o B
|det(V)|x(Kg)d( d—2q—5+1/(d 1))7
[V S (g)HH2are-1/dmn)
where V. = (v1,...,vq). Furthermore there exists a constant co > 0 (depending

only on q and B) such that, for n € B(¢, CQ(Kg)d+2q+7’1/(d’1)),
(32 |, or.... )| 2 (K25 U= Dla2) 50501 )

The constants implicit in (3.1) and (3.2) depend only on q and B.
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Proof. Let € € HSjlfl be arbitrarily fixed.
Step 1. Let p1 = £ We first choose d — 1 vectors pa,...,pa4 € S4=1 guch that
P = (p1,...,p4) € R™9 is an orthogonal matrix. Let Hy(y) = Hp(Py). Then

Hy is positively homogeneous of degree one and smooth at e;. Since the matrix
V2Hg(ey) is similar to V2Hy(€) it follows from Lemma 3.3 that the eigenvalues
of V2I;f9(el) are 0, B1,...,Ba—1, where {3, ! d_l are principle curvatures of 0By
at 2%(¢). Without loss of generality we assume 3; = maxigjgd—1 34, therefore
B > (KZ)~/@D,

Set A = V2Hy(ey). A is a symmetric matrix of rank d — 1 with vanishing first
row and column (due to the homogeneity of f[.g; see the proof of Miiller’s Lemma 3
n [20]). Choose a system of orthonormal eigenvectors wf,...,w}_, of A, whose
first components vanish, such that the eigenvalue of w; is B;. For a > 1 denote

w) +ae; if =1,

w =4 wl it 2<i<d—1,

el if I=d.
Then Aw; = Biw; (I =1,...,d —1) and w; is orthogonal to w; (I = ,d—1).
We also have |w;| < «, |wl| =1(=2,...,d), and |det(W)| = 1 here W =
(wi,...,wq). Let vf = Pw;. Then |vf| < a, |vf| =1 ( = 2,...,d), and

|det(V*)| = 1 where V* = (v],...,v}). We claim that if « = Cy, (K ) 3 with a
sufficiently large C, 5 then

(3.3) |h2(§,v{,...,v;)| > (Kg)—3d+5—1/(d—1)

with Fy(uy, ..., ug) = He(€ + 30, wvp).
This claim can be proved by a straightforward computation (given below). Note

that Fp(u,...,uq) = f[@(el + Zfl:l wyw;) and we will use this formula to compute
gfd-(f,vf, S bf’j(a). If1<i,j<d-1

(3-4) b 5(0) = (V- wi)(V - wi)(V - )0 Holer) S (KE)~°

The last inequality is due to the homogeneity of Hy (see the proof of Miiller’s
Lemma 3 in [20]) and Remark 3.2.
Ifi=1,1<j7<d-1, then

(3.5) o7 j(@) =07 ;(0) + 3a(=1)"q!B1d;,

where d;; is the Kronecker notation.
If2<i,j<d—1, then

(36) bgj(a) = b?d(O) + a(—l)qq!ﬁjéij.
If1<i<d,j=d, then

(3.7) bfd( ) = (=1)9¢!B161;.
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Using formulas (3.6) and (3.7), we get

|RE(E, 07, vp)| = (@181)?| det (B ;(a))a<i j<a—t]
= (¢'61)?| det (b7 ;(0) + a(=1)74!8;03) sy <y
= Bu(KE) 3P| gCd g + 0(Cl)],

where we have used (3.4), 5; 2 1, and [[5; = (Kg)’1 to get the last equality.

~

Since (1 > (Kg)_l/(d_l), we get (3.3) if C g is sufficiently large.

Step 2. For any N € N, there exist v; € Z¢ (I = 1,...,d) such that [v;* —v}| <
Vd/N where v;* = v/N. If N > C’(Kg)’3 then |v]*| =< (Kg)’g, loj*] < 1
(l=2,...,d), and | det(V**)| < 1 where V** = (vj*,...,v}*).

Assume N is the smallest integer not less than C'(Kg)_d_Qq_5+1/(d_1) with C’
chosen below and 7 € B(€, cor? (€)) with r9(£) = (K£)4H2077=1/ (=1 and ¢; < ¢y,
where ¢; is the constant appearing in Lemma 2.1. By the mean value theorem,
Lemma 2.1, and Remark 3.2, we get

|9 5(& 08, v0) — gl j(n, 07", 0g)
(K2 (NT 4 eo(KY)20(8)) if i=j=1,
SRBEHPITTINT + (KD 2()  if i=1,5>2,
(K2 4N+ (KD 2%(9) it i>2,5>2

These estimates, together with the bounds of gﬁj (&,v7,...,v3)’s (given by (3.4),
(3.5), (3.6), and (3.7)), lead to

| hg(&, v vi) = hg(n,vy™s g S () T2 (N + eo(KE) 727 (€)).

If C" is sufficiently large and ¢ is sufficiently small, it then follows from (3.3)
that

| hz(n) ,UT*’ R 71]2*)

The desired bound (3.2) now follows from the equality

Z (Kg)_3d+5_1/(d_1).

| hg(n, o1, va)| = NUE2 [ RG(n, 01", 03]
All bounds in (3.1) are easy to get. O

For d = 2 case Lemma 3.4 in [5] gives a similar result but in a nicer form.
That lemma can be proved by using the same method. In particular, the bound
g11(& v1,02) S (Kg)*zq’1 is used in its proof, but later we find a better bound
of g11, namely g11(§,v1,v2) S (Kg)*3 (just like the bound (3.4) in the above proof).
By using the latter bound without modifying too much of the proof of Lemma 3.4
in [5], we are able to prove the following improved result, which eventually leads
to our estimates in Theorem 1.4 and 1.5.
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Lemma 3.5. If d = 2, for every £ € 93171 there exist two orthogonal vectors
vi = v;(€,0) € Z* (i = 1,2) such that

(3.8) joi] = Joa| = (K¢) 72172 and [V S (KE)*1*2,

where V' = (v1,v2). Furthermore there exists a constant co > 0 (depending only
on q and B) such that, forn € B(§,02(Kg)2q+4)7

(3.9) |h2(7lavl,vz){ > (Kg)*442*12q710'

The constants implicit in (3.8) and (3.9) depend only on q and B.

4. The Fourier transform of certain indicator functions

In this section we will establish an asymptotic formula of the Fourier transform
of the indicator function yz for convex domains B in R? which generalizes the
results in Section 4 of [5].

Lemma 4.1. Assume B C R? (d > 2) is a compact convex domain and its bound-
ary is a smooth hypersurface. Let x4 be given points on OB with 7i(x4) = —i(z_)
and Ky the (Gaussian) curvature at them. Then there ezist two positive constants c
and c3 (both depending only on B) such that

(4.1) | (fi(x),fi(z4))| <1— cr?(min(K,, K_))*
for every r < ¢z and x € OB\ (B(z4,rKy)UB(z_,rK_)).

Proof. Tt suffices to assume that K. # 0 otherwise it is trivial. It follows from
Lemma A.1 that there exists a constant ¢3 > 0 (depending only on B) such
that, for every r < c¢3, the Gauss map is bijective from B(z4,rK;) N 9B and
B(z_,rK_) N 0B to two subsets of S9~! which contain B(ii(z4),rK3) NS4t
and B(ii(z_),crK?) N S9! respectively where the constant ¢/ > 0 depends only
on B. Then the lemma follows easily with ¢ = 2¢/2/72. O

Theorem 4.2. Assume B C R? (d > 2) is a compact convex domain and its
boundary is a smooth hypersurface. Let n; (I = 1,...,d) be the I"* component
of the Gauss map of OB and dS the induced Lebesque measure on OB. For any
¢e SN (=894t we have

RB(E) = (e((d = 1)/8) &(Ke) ™ 2e(~MH(€)
+e(—(d—1)/8)(=&) (K _¢) "/ 2e(AH (=€) A~ D/2
+ O()\_(d+1)/25_(d+5)/2 + /\—N5—4N)

for X > 0, where H(§) = sup,ep(y,§), N € N, and § = min(K¢, K_¢). The
implicit constant depends only on N and B.
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Proof. We will only prove the case d > 3 below, while the case d = 2 is easier and
can be handled in the same way. Note that there exists a Cy > 0 such that, for
any x € 0B, the boundary 9B in a neighborhood of = can be parametrized by

Tlu,z) =z + u;ti(z) + h(u,z)(—7(z)),
42) Zj ) (—ii(2))
for u:(ul,...,ud_l)GB():B(O,CO)CRd_l,

where {;(z)}9"! is an orthonormal basis of the tangent plane of 9B at x (we require
that the basis {1(x),...,t4_1(x), —7(2)} has the same orientation as {ey,...,eq})
and h(-,z) € C°°(By) such that h(0,z) = 0, V,h(0,2) = 0, and det V2 h(0,z) =
K(x).

For any fixed £ € Sf'fl N (75171) decompose n; as a sum

=1+ P2 + Y3

where

Pn(z,§) = nl(m)XO(%;ég)) and  a(z,&) = nl(x)Xo(%(_f)),

where ¢4 > 0 is determined below and xg is the fixed cut-off function (see §1).

We first estimate @ (while m is handled in the same way). Applying the
parametrization (4.2) at x(§) yields

(4.3) TrdB0E) = e — Me, 2(6))) / r(u,€) e(Mn(u, 2(€))) du,

where 7(u, &) = 1 (7(u, #(£)), &) (1 + |Vyh(u, z(£))[>)'/? such that
7(,§) € C(B(0, caKy))

and
|Dir(u, &) < Cleakie) .
By a change of variable the integral in (4.3), denoted by A(¢), is

AE) = K;H/T(Kfu,g)e(Ah(Kgu,m(g))) du.

Applying a quantitative version of the Morse lemma (see the proof of Sogge and
Stein’s Lemma 2 in [26]) we can find an a; > 0 and a smooth invertible mapping
u +— v from B(0, o) to a neighborhood of the origin in v-space, so that |DYv| < C,
|Diu| < C, det(V,u(0)) =1, and

h(KE’LL,I'(f)) Kg( 11)1 "'+/4Ld71’0§_1)/27 (A B(O,al)v

where p1,. .., a—1 are the eigenvalues of the matrix V2 h(0,z(£)). Let ¢4 <
Then

A(6) = K?*/?(vé)e(w?(uw% ot pg-1vio)/2) dv
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where 7(v,§) = 7(Keu(v),§) |det(Vyu)|. Applying Lemma A.3 to the integral
above yields an asymptotic expansion, which in turn gives

U1dS(AE) = e((d — 1)/8) &(Ke) ™% e(~AH(€)A~4=D/2
+ O()\’(d+1)/2Kf_(d+5)/2).

The estimate @ = O(A N6 follows from Lemma 4.1 and integration by
parts (see p. 350 of Stein [27] for a similar argument). This finishes the proof. O

As a consequence of the Gauss—Green formula we get:

Corollary 4.3. Assume B C R? (d > 2) is a compact convexr domain and its
boundary is a smooth hypersurface. For any & € 5’171 N (—Sifl) we have

(A) = ((2m) " e((d +1)/8)(Ke) ™/ *e(~AH (&)
+(2m) " le(—(d +1)/8)(K—_¢) "V /2e(AH (=€) ) A~/
+ O()\i(d+3)/267(d+5)/2 + )\*N*1674N) fOT’ A > 0,

where H(§) = sup,ep(y,§), N €N, and § = min(K¢, K_¢). The implicit constant
depends only on N and B.

5. Estimate of exponential sums

In this section we will prove a higher dimensional analogue of Proposition 5.2 in [5]
by using the same method.

Let M, > 1 and T > 0 be parameters. We consider d-dimensional exponential
sums of the form

S(T, MG, F) =) G(m/M.)e(~TF(m/M.)),

meZd

where G: R? — R is smooth, compactly supported, and bounded above by a
constant, and F': Q C R* — R is smooth on an open convex domain (2 such that

supp(G) C Q C ¢B(0,1),
where ¢g > 0 is a fixed constant.

Proposition 5.1. Letd > 3, ¢ € N, Q = 29, and 0 < K < 1 be a parameter.
Assume that

(5.1) dist(supp(G), Q°) > K4+2a+13-1/(d=1)
for allv € N¢ and y € Q,

(5.2) D¥G(y) < K~(d+2a+13=1/(@d=1)lv|,
KM if o< <1,

5.3 DYF(y ,S{ )
>3 W3\ gea-se if v >2,
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and for p = (1,0,...,0,q — 1) € Ng

(5-4) | det(V2DHF(y))| 2 K —5(a+3)d+5-1/(d-1),
If

(5.5) M, > K—4(a+4)d=37+4/(d-1)

and

(5.6) T > K—1/(QU-1)d) pra+2/Q=2/d

with

I =2(5¢+4)(2Q — 3)d"* + (=35 + 25¢ + 40Q + 2¢Q)d’
+ (60 + 50 — Q — 17¢Q)d> + (6 — 60Q — 5¢Q)d — 6Q,
then
S(T, M,: G, F) < [K—(2(5q+4)d3+(3q+19)d2—(13q+24)d—6)/(d(d—1))

5.7
(5.7) . TME(Q*1)d+2Q*qf2]d/(2Q+2(Q—1)d).

The constant implicit in (5.7) depends only on d, q, co, and the constants
implicit in (5.1), (5.2), (5.3), and (5.4).
Proof. Let H be a parameter satisfying

(5.8) 1< H<es K<6(5q+4)d3—5<5q—7)d2—5(q+12>d—6)/(2<d—1)d)M*

with ¢5 < 1 chosen (later) to be sufficiently small. Then H < M,. We apply
to S(T, My; G, F) the iterated one-dimensional Weyl-Van der Corput inequality
with 1 = e and rj = eq (j = 2,...,¢) (see Lemma 2.2 in [4] for this inequality
and notations like G4, Fy, J, and , that we will use below). Then we need to
estimate Sy := S(ATM, ?, M,;G,, F,). Applying the Poisson summation formula
followed by a change of variables yields

Si= Y K*M! / | Uy(2)e( — ATMF,(K®2) + KSM.(p, 2)) dz,
peLL R

where U, (z) = G4(K®z). It is obvious that

(5.9) supp(¥,) € K78Q, C ¢ K8 B(0,1).

By (5.1) we also have

(5.10) dist (supp(¥,), (K ~8Q,)¢) > KH2at5-1/(d-1),
By the assumption (5.3) there exists a constant A; such that

V= (Fy(K%2)| < (Ar/2) KP750
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We split Sy into two parts:

Sy = Z + Z =: S5 + Rs.

|pl< ALK —=84=52TM; 9" |p|>AK—84=52TM; 9"

It is not hard to prove?, by integration by parts (Lemma A.2), that
(5.11) Rs < K~ (d+2q+13-1/(d=D)(d+1) p -1

Define Ay = K37 817T M ¢ and

(I)q(zvp) = (%TM;qu(KSZ) - KSM*<p’Z>)/)\17
then
(512)  Sy=KSMi YD / U, (2) (= Dy (2, p)) d=.
Ipl<Ar k=St 0

To estimate S5 we discuss in two cases.

CASE 1. \; > K —4(a+4)d=29+4/(d~1)

For all z € K~3Q,, by (5.2), (5.3), and (5.4), we get

(5.13) DY, (z) < K~ (d+2a+5=1/(@d=1)lv|
K™% for v=0

5.14 DY® , < )

(5.14) wens{] ool

and

(5.15) | det (V2,8,(z,p))| > KGatrddts-1/(d=1),

To prove this lower bound (5.15) we first note, by using the definition of Fj,
and the mean value theorem, that for u = (1,0,...,0,q — 1) € Nd
)
M,/

The two terms on the right are < 1 and ¢5 K ®0+4d+5-1/(d=1) yegpectively (implied
by (5.3) and (5.8)). Thus

82

( 0°DHF
azllazlz

a’Ell (9:El2

B, (z,p)) = K513 (K2) + O(K‘S

det (V2,(94(2,p))) = KB det(VEDIF) + O(c5 K Crrdts=1/(d=1),

By (5.4), we get (5.15) if we pick a sufficiently small ¢5.
With (5.9), (5.10), (5.13), (5.14), and (5.15), we can estimate the integrals
in S5. Let us fix an arbitrary p € Z¢ with |p| < A; K8\ M1,

2Check the proof of Lemma 5.4 in [5] for a similar argument.
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We first need to estimate the number of critical points of the phase func-
tion ®,(z,p). Denote p = KSM,p/\; and F(z) = K813V, (F,(K%2)), then
V.®,(z,p) = F(z) — p and the critical points are determined by the equation

F(z)=p forze K %Q,.

The bounds (5.14) and (5.15) imply that the mapping F' and its components F}
satisfy

D'Fj(z) S1 for |v|<2, j=1,....4d,

and
|det(V.F(z))] > K Gatd+5-1/(d=1)

By (5.10), we know that supp(¥,) is strictly smaller than the domain K80,
and the distance between their boundary is larger than a;K#t2a+5-1/(d=1) for
some positive constant a;. Let ro = a; K4+24+t5-1/(d=1) /9 By Taylor’s formula,
there exists a positive constant as (< a1/2) such that if Z is a critical point in
(supp(¥4))(ro),> then, for any z € B(Z, ag K4T2a+5-1/(d=1))

(5.16) IV.®,(2,p)| = KOrtHdH5-1/d=), _ 5,

Applying Lemma A.1 to F with ry as above yields two positive constants az (<
az/2) and a4 such that if

= a3 KGat4d+5-1/(d—1) K2((5q+4)d+5—1/(d—1)))

1 and 719 = ay

then F' is bijective from B(z,2r1) to an open set containing B(F(z),2ry) for any
z € (supp(¥yq))(ro)- It follows, simply by a size estimate, that the number of critical
points in (supp(¥y)) () is < (K~8/ry)? < K~ ((Gardd+13-1/(d=1))d,

For the p that we have fixed, let Z; (j = 1,...,J(p)) be all critical points in
(supp(¥y))(r,) of the phase function ®,(z, p) and x;(2) = xo((z — Z;)/(cer1)) with
ce chosen below. Then the integral in S5 can be decomposed as

(5.17) /‘I/q(z) e(—\®y (2, p)) dz = Sg + Re,

where
J(p)

SGfZ/XJ — My (2,p)) dz

and
J(p)

/(kZXJ ))Wa(2) e = My(z,p) dz.

It follows from integration by parts (Lemma A.2) and (5.16) that*
(5.18) Rg < K 8= 4((Bat4)d+7-1/(d—1))N \ -N

3Check §1 for the definition of this notation.
4Check the proof of Lemma 5.5 in [5] for a similar argument.
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As for S, for each 1 < j < J(p), let ¢j(2,p) = Py(z,p) — ©4(Z;,p). By
Lemma A 4, if ¢g is sufficiently small then

’/XJ — A1 ®y(z,p)) dz’
(5.19) = ‘/X; —M¢j(z,p) dz‘ < K~ ((Gatd)dt5-1/(d=1))/2 )\ =d/2
Hence
(5.20) S < K ~84=((Ga+4)d+5-1/(d=-1)(d+1/2)y =d/2,

Noticing that we have assumed \; > K —4(0a+4)d=29+4/(d=1) iy the case 1, it is
then easy to check that the bound (5.18) of Rg is less than the bound (5.20) of Sg
if N is sufficiently large. Hence, by (5.12), (5.17), (5.18), and (5.20), we get the
following bound of Ss:

S5 < KSde((Kfs/\le)d + 1)Kfsdf((5q+4)d+571/(d—1))(d+1/2)/\1*d/2)
(5.21) < Kf((5q+4)d+571/(d—1))(d+1/2)(Kfsd/\fli/Q +Mf/\1_d/2)-

CASE 2. \; < K ~4(5q+4)d=29+4/(d~1)

Within this range of A1, the assumption (5.5) implies K —8A\; M1 < 1, hence
the trivial estimate of S5 (together with (5.9) and (5.13)) yields
(5.22) S5 < Mil < K7(4(5q+4)d+2974/(d71))d/2Mf)\1—d/2.

Combining the bounds of S5 from cases 1 and 2 (namely, (5.21) and (5.22))

yields
Sy < K—8d- ((5q+4)d+5—1/(d— 1))(d+1/2))\il/2

_ —4/(d— —d/2
+ K~ (4(5g+4)d+29-4/(d 1))d/2M£l)\1 /2
Note that this bound of S5 is larger than the bound (5.11) of Rs no matter
whether Ay <1 or A\ > 1. It follows that
Sy = S5+ Ry < K~ (4aH18/2)d=((5a+4)d+5-1/(d=1)(d+1/2) (g [ ~9)d/2
+K_Qd((5q+4)d+8_2q_1/(d_1))(%TM* q— 2) d/2)
where we have already used the definition of \;.

Plugging this bound of Sy into the Weyl-Van der Corput inequality that we
used at the beginning gives

S(T, M*;G,F”Q < M:zQHq +H(lfl/Q)de/2Mj(Q—1—Q/2)

(5.23)
- K~ (0 13/2)d— (a4 4)d+5-1/(d-1)(d+1/2) L |

where
E— K72d((5q+4)d+872q71/(d71))H72+2/QT7d/2Mf(Q+Q/2)-
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In order to balance the first two terms on the right side of (5.23) we let

5 3 - 2 - _
H=cs (K2< R TR 6de/zM%EQ/Q—&-l)d)Q/(QJr(Q*l)d)’

We then need to check that (5.8) is satisfied with this choice of H. First, H > 1
since we can assume

(5.24) T < ¢y K(2(5Q+4)d3+(3q+19)d2—(13q+24)d—6)/(d(d—1))M§+2

with a sufficiently small ¢; (otherwise the trivial bound of S(T, M,; G, F), i.e., M2,
is better than (5.7)). Second, the assumption (5.6) implies the second inequality
in (5.8).

With the choice of H as above and (5.24), we get

H72+2/QT7d/2Mf(Q+Q/2)
(5.25)

_ 2(5q+4)d3 +(3q+19)d? — (13q+24)d—6 —1)d -
<K 2D MOVt

It then follows from (5.8) and (5.25) that
E< MPH
Applying this bound to (5.23) finally yields the desired bound (5.7). O

6. The R? (d > 3) case

By a very standard argument, Theorem 1.2 follows easily from the following lemma
(see Lemma 6.1 and 6.2 in [5], p. 26-27 of Iosevich [9], or p. 168-169 of Iosevich,
Sawyer, and Seeger [10] for this argument).

Lemma 6.1. Let B C R? (d > 3) be a compact convexr domain and p € C§°(R?)
such that fRd ply) dy = 1. If the boundary is a smooth hypersurface of finite type w,
then, for j € N, we have

(61) / sup th/(d+1)+Cd+J(d,w)
SO(d) 201 <292

D X, (th)p(ek) | df S 1,

keZ?

where df is the normalized Haar measure on SO(d), (q and o(d,w) are given
by (1.3) and (1.4) respectively, and

£ =¢e(j,d,w) = 277dw),

1—2[6(w — 2)d* + 112(w — 2)d® — 4(w — 2)d?

@) + (410 — 203w)d + 82w — 156]/0 for 3<d<4,
ald,w) =
1 — [4(w —2)d* + 90(w — 2)d® + 61(w — 2)d*
— (227w — 456)d + 60w — 112]/A for d=>=5,

with O and A\ given by (1.5) and (1.6) respectively. The implicit constant depends
only on B.
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Proof. Let t € [27-1,27%2] and 6 = §(j, d, w) = 2778(4) with

2w —2)d(d—1)(d—2)/0 for 3
ﬁ(d’“):{(wm(dn(ds)/a for d

For any 6 € SO(d) we have the following splitting:

> R, (th)p(ek) = Sum 1 (¢,,46,0) + Sum 11 (t,,5,0),
kezgd

where

SumI(t,e,6,0) = > Xs,(tk) plek),
keDy (670)

Sum I (t,,6,0) = > Xp,(tk) plek),
k?eDZ (670)

and D1(9,0) and Dy(4,60) are two regions defined as follows:

Da(6,0) = {€ € RE: €/l¢] or —&/lel € i({w € 9B K(x) < 5})},
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D;(6,0) = R\ Dy(6,0), Di(6,60) = 0D1(5,0), and Ds(6,60) = 0Dx(5,0).

The estimate (6.1) follows from the next two claims. Notice that the finite type
condition is only used in the estimate of Sum IT and the size estimate of |D2(d, 0)].

Claim 6.2.

/ sup t2d/<d+1)+<d+”(d"“)| Sum 11 (¢, €, 4, 9)| do <1
S0(d) 29— 1<t <29+2

with an implicit constant depending only on B.

Claim 6.3.

/ sup t2d/<d+1)+<d+‘7(d’“’)| Sum I (t,¢,0, 9)| do <1
SO(d) 291 <t 2i+2

with an implicit constant depending only on B.

Proof of Claim 6.2.

LHS. < (2]‘)Qd/(d-i-l)—(d+1)/2+€d+0(d,w) Z |k|—(d+1)/2|27\(5k)|(*)7
kezd

where
() o= / sy () sup  |tK[@HD/2|R, (tR)]) db.
50(d)

2014 20+2
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Recalling the definition (1.8) of the function ®, we get

ms/ ﬂ@%i/ (Ke) ™2 4 (K_¢) /2 + 1dg
54-1MDy(5,0) 54-1AD5(5,0)

5/ (&Y“%S/ K(2)V/2 dA(z)
{€eSd—1: K <6} {z€dB:K ()<}

< 61/2+1/(d—1)(w—2)-

In the above estimate of (x) we have used Svensson’s estimate of ®(&) for finite
type domains (see p. 19 of [28]), the symmetry of D2(0,0), a change of variables,
and Lemma 2.3. Hence,

L.HS. 5 (2j)2d/(d+1)—(d+1)/2+Cd+0'(d,w)61/2+1/(d—1)(w—Q)E—(d—l)/Q 5 1. 0O

Proof of Claim 6.3. Note if £ € D1(0,0) then Kig > 4. Applying Corollary 4.3 to
Sum I yields

(6.2) SumI(t,e,6,0) = (27) " te((d+1)/8)S1 + (2m) te( — (d+1)/8)Si + Ry,
where

Su(tye,8,0) = -2 S (D) V2 (e o~y (k)
keD1(4,0)

Si(t,e,6,0) =t~ (@H02 N g @20 )25 (ek) e(tH (—k)),
keD1(6,0)

and

(6.3) R < §—2(d+1)—(d+3)/2 (E—(d—s)/z +log(5_1)) < t—2d/(d+1)=Ca—o(dw)

We will only estimate S; since §1 is similar. Denote € = {{ € R : 1/2 <
|€] < 2}. Let us introduce a dyadic decomposition and a partition of unity.

Assume ¢ € C5°(R?) is a real radial function such that supp(p) C 61, 0< ¢ <1,
and

i @(i)zl for ¢ e R\ {0}.

2o
l0=—oo
Denote
Siv= Y @(MTE) kT 2(KD) V2 p(ek) e(—tHo(k)),
keD1(5,0)
then
(6.4) Sy =t~ @H/2 Z S1 200

lo=0



LATTICE POINTS IN ROTATED CONVEX DOMAINS 431

We will estimate Sy s for a fixed M = 2l 1y € Ng. Let ¢ € N. For each
e 5171 there exists a cone

€& 2r(€) = | JIB(&2r(9) c R,

>0

where 7(£) = co(K¢)4t2a+7=1/(d=1) /2 and ¢y is the constant appearing in the
statement of Lemma 3.4. Note that Lemma 2.1 implies that K, < K¢ if n €
€(&,2r(¢)). From the family of cones {€(&,7(€)/2) : € € S4}, we can choose, by
a Vitali procedure, a sequence {€(&;,7(&;)/2)}52, such that these cones still cover
Sjlfl and that {€(&;,r(&))}52, satisfies the bounded overlap property. Denote

Then the collection {€¢}°, forms an open cover of 951_1. We can construct a
partition of unity {t;}$°; such that

(i) > ;i =1on 9551:1, and ¢; € C§°(¢9);
(i) each 4; is positively homogeneous of degree zero;

(ii) [D 9] <

) (Ke,)~ (@200 7=1/@= D)l o ;.

From the family {€¢}2°, we can find a subfamily {€?},c ., which covers D1 (4, 6),
where o/ = /(§) is an index set such that i € & if and only if ¢¢ intersects
D;(6,0). Since r(&) > §94+2a+7=1/(d=1) for any i € o7, a size estimate gives that
#or < 6~ (A+20+7-1/(d=D)(d=1)  Define

(65) i]\/[ = Z 52,1'7

i€

where

Sai= Y Ul(k)e(~tHo(k))

kezd
and
UP (k) = (M~ 1R) @(M k) k|~ D2 (KR 2 (ek).
Instead of S1 a we will estimate ST ;. It turns out that the error

(6.6) Rov = S1,m — ST m

is relatively small and this will be clear at the end of this proof.
To estimate ST, we will estimate Sz ; for any fixed ¢ € &/. By Lemma 3.4

and the homogeneity of Hp, there exist d linearly independent vectors v; € Z°
(4 =1,...,d) such that if n € Uy uci<a 1B(0&;,2r(&;)) then

(67) |h2 (,'7’ Vi, Ud)| Z (K&)(7d72q75+1/(d71))d(q+2),3d+571/(d71).
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Let L = [Z% : Zw1 @ Zwa @ - -®Zwg) be the index of the lattice spanned by vy, . . .

in the lattice Z?. Then there exist vectors b; € Z¢ (I =1,..., L) such that

~

2% =4 (Zvy + - + Zva + by).
1

It follows from Lemma 3.4 that

L = |det(vy, ..., vq)| = (K¢, )4 -d-2a-5+1/(d=1)

—~ .
i

and
|bl| g (KE )7d72q78+1/(d71) )

Let N > d/2 be an arbitrarily fixed natural number. We have

L d d
Sai = Z Z Uf(zmjvj + bl> e( — tH@(ijUj + bl>>
=1 mezd j=1 j=1
L
(6.8) = (K¢,)"\PM =021 4 Me)™ > " S(T, M.; Gi, ),
=1

where T' = tM, M, = (Kéi)d+2q+2_1/(d_1)M,
Cily) = (Ke,)V2M@D2(1 4 Me)NUS (M. Vy + by),

and
Fi(y) = Ho(M~ (M. Vy + b)),

where V' = (v1,...,vq).
We consider the function Fj restricted to the convex domain

Ql:{yeRd;Mfl(M*vyml)e U lB(Hfi,Qr(fi))}.

1/4<1<4

The support of G; satisfies

supp(G;) C {y € RY: M~Y M. Vy+b) €€ N ¢} c.

» Vd

We apply to S(T, M,; Gi, Fy) Proposition 5.1 with G = G, F = F;, K = K¢,
and Q = ;. And we only compute below the case d > 5 with ¢ = 1 (while the

case 3 < d < 4 with ¢ = 2 can be handled in the same way).

Since 1 2 K¢, 2 0 if i € o7, there exist positive constants Co and Cs such that
the assumptions of Proposition 5.1 are satisfied if M € .#; where .#; is an interval

defined by

I = [635—37d—41+5/(d—1) 025(14d4+66d3+61d2—144d—12)/(2(d—2)(d—1)d)td/(d—2)]_

This follows from Lemma 3.4, (6.7) and the following facts: if
(KE )7d72Q*8+1/(d71) < M
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then Q; C ¢oB(0,1) for a constant ¢y (depending only on ¢, B);
dist (( U 1B, 27«(@-))) 6N ef) > co(K, )1 2a+7-1/(d-1) /g,
1/4<I<4
and
DU < (K, )~ @20+ T=1/(@=0)lvl=1/2 = lv|=(@+1/2(1 4 pe)=N,
Thus by Proposition 5.1 we get

(69) S(T, M,: le Fl) < (KE )d2713d/276+9/(d+2)td/(2d+4)Mdfd/(d+2)'

Then by using (6.5), (6.8), (6.9), K¢, = ¢, and bounds of #< and L, we get

Sim S §—d°—43d/2+9/2+1/(d—1)+9/(d+2)

1
(6.10) .td/(2d+4)M(dfl)/2fd/(d+2)(1JrME)fN’

Now we can estimate S;. By (6.4) and (6.6) we get

(6.11) Sp = t—<d+1>/2( > St gt + Ra + R:s),
loE{nENoZ2n€L¢1}
where
R2 = Z R27210 and R3 = Z 517210.
loe{neNy:2" .71} loe{neNy:2n €7}

Using the bound (6.10) of ST ;, we get

*
1,2

(6.12) loe{neNo:2n €.}
< §—d7—43d/249/2+1/(d—1)+9/(d+2) yd/ (2d+4) .~ (d—1)/2+d/ (d+2)

Hence Claim 6.3 follows from (6.2), (6.3), (6.11), (6.12), sizes of § and ¢, and
the following estimates of® Ry and Ra:

(613) / sup t2d/(d+1)+£¢+o(d,w)tf(d+1)/2|R2| do g 1;
SO(d) 291 <tL29+2

2014 20+2

Inequality (6.13) follows from Lemma 2.2 and 2.3 if we notice that

[Rona| SO7Y2 3" (M) k|~ Y2 p(ek));
keD2(6,0)

5The method used here to estimate Rs is different from what we used in [5]. More precisely,
we estimate the integral of Ro rather than Ry itself. Here we need the size estimate of |D2(4,0)],
and this is the only place in the estimate of Sum I where the finite type condition is used.
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and (6.14) is true since we have, by trivial estimates,

IR < 55 =TA/249 | §=1/24d(d=1)/(2(d~2)) = Nid/(d~2) =Ny

for any integer Ny > (d —1)/2. O

Just like that Lemma 6.1 implies Theorem 1.2, the following lemma implies
Theorem 1.3. TIts proof is essentially the same as above, however, we now use,
in the estimate of Sum II, Holder’s inequality and Varchenko’s Theorem 8 in [29]
instead of Svensson’s estimate of ®(¢) (as we mentioned in §1) and § = ¢~8(4:°)
with £(d, 00) = limy, e f(d,w).

Lemma 6.4. Let B C R? (d > 3) be a compact convexr domain and p € C5°(R?)
such that fRd p(y) dy = 1. If the boundary is a smooth hypersurface then

/ £2d/(d+1)+Ca
SO(d)

where df is the normalized Haar measure on SO(d), Cq is given by (1.3), and

> R, (k) plek)| do < 1,
kezd

e = tfa(d,oo)

with

12d* + 224d% — 8d? — 406d + 164
" 6d° + 118d% + 10943 — 210d2 — 119d + 82
4d* + 90d> + 61d? — 227d + 60
2d5 + 47d* + 76d3 — 85d2 — 82d + 30

Remark 6.5. Note that a(d,o0) = lim,, 0 a(d, w).

for 3<d<4,

a(d, 00) =
for d>=5.

7. The R? case

To prove Theorem 1.4 and 1.5 the key step is to prove the following R? analogues
of Lemma 6.1.

Lemma 7.1. Let (; = 1/2859, let B C R? be a compact convex domain with
a smooth boundary, and let p € C§°(R?) be such that [4, p(y)dy = 1. Then,
for 7 € N, we have

/ sup t4/3+C2
S0(2) 2-1<t<29+2

where df is the normalized Haar measure on SO(2) and £(j, 00)
Furthermore, if the boundary is of finite type w then

/ sup et rC)| S g (1h)p(e k)| d6 < 1,
50(2)

20—1 <1 20+2 reze

> X, ()l 00)k)| 8 S 1,

keZ2

— 2—318j/953
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where £(j,w) = 277¥2w)
18w — 61 1
a(2,w) = 18w ~ 616 and o(2,w) = 616 .
953w — 1848 953(953w — 1848)

The implicit constants depend only on B.

Since the proof is essentially the same as the proof of Lemma 6.1 we will not
provide every detail but only a few key estimates (see also the proof of Lemma 6.1
in [5]).

As before we first decompose ), ;> X5, (tk)p(ck) into two parts: Sum I and II.

By Lemma 2.2 and the fact that ® € L2°°(S") (see Theorem 0.3 in [2]) we get

/ sup (/3¢ Sum 11| df < (27)Y/33/2HC51 /2712 < 1,
SO(2) 2012042
where & = £(j,00) and & = §(j, 00) = 277/9%3,

If OB is of finite type w, then

/ sup t4/3+C2+"(2’“)| Sum II ’ do
S0(

2) 20-1<4<29+2
< (20437324 GHo(2w) §1/241/(W=2) . —1/2 <
where £ = £(j,w) and 6§ = §(j,w) = 27782%) with

w—2
953w — 1848°

For Sum I we now use Lemma 3.5 and get

6(27"‘1) =

Sum I < §14p=3/241/22 ~7/22 | t_3/2|R2|.

Combining this estimate with the above two of Sum II yields Lemma 7.1.

A. Several lemmas

Here is a quantitative version of the inverse function theorem (see the appendix
in [4]).

Lemma A.1. Suppose f is a C*® (k > 2) mapping from an open set Q C R?
into RY and b = f(a) for some a € Q. Assume |det(Vf(a))| = ¢ and that, for
any x € Q,

|ID"fi(z)| < C for |v| <2, 1<i<d.

If ro < sup{r > 0: B(a,r) C Q}, then [ is bijective from B(a,r1) to an open set
containing B(b,r2), where

ry = min{ and 19 =

C C
2821 C’ 7"0} o1

The inverse mapping f~* is in C*) (V).
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Hormander’s Theorem 7.7.1 in [7] gives the following estimate obtained by
integration by parts.

Lemma A.2. Let K C R? be a compact set, X an open neighborhood of K and k
a nonnegative integer. If u € C§(K), real f € C*+1(X), then

’/u(m) eM@) dy| < C|K ATk Z sup | DYul [V f|VI72F X > 0.

lv|<k
Here C is bounded when f stays in a bounded set in C*¥T1(X).

The following lemmas are various results of the method of stationary phase.
The first one follows from Hoérmander’s Lemma 7.7.3 in [7]. The second one is
Sogge and Stein’s Lemma 2 in [26].

Lemma A.3. Let A be a real symmetric non-degenerate matriz. Then we have,
for every integer k > 0 and integer s > d /2,

‘/u(x) ei)\(Aaf,ar)/2 dr — (2’/T)d/2)\_d/2| det A|—1/26i7rsgn(A)/4Tk()\)

SCR(|ATH /NS 1Dz, we SN >0,
|a|<2k+s
k—1
Te(A) = (2iA)7(A~'D, D) u(0)/4!.
0

Lemma A.4. Suppose ¢ and ) are smooth functions in B(0,8) C R* with ¢ real-
valued. Assume that |(9/0z)"¢| < C1, |v| < d+ 2 and |(/0z) 9| < Cod~ 11,
lv| < d. We also suppose that (V¢)(0) = 0, but |det V2¢(0)| = 8. Then there
exists a positive constant ¢i (independent of §), which is sufficiently small, so that
if 1 is supported in B(0,c10) we can assert that

’ e d:c‘ <ONU271/2,
R4
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