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On the roots of generalized Wills μ-polynomials

Maŕıa A. Hernández Cifre and Jesús Yepes Nicolás

Abstract. We investigate the roots of a family of geometric polynomi-
als of convex bodies associated to a given measure μ on the non-negative
real line R≥0, which arise from the so called Wills functional. We study
its structure, showing that the set of roots in the upper half-plane is a
closed convex cone, containing the non-positive real axis R≤0, and strictly
increasing in the dimension, for any measure μ. Moreover, it is proved
that the ‘smallest’ cone of roots of these μ-polynomials is the one given
by the Steiner polynomial, which provides, for example, additional in-
formation about the roots of μ-polynomials when the dimension is large
enough. It will also give necessary geometric conditions for a sequence
{mi : i = 0, 1, . . . } to be the moments of a certain measure on R≥0, a ques-
tion regarding the so called (Stieltjes) moment problem.

1. Introduction and main results

Let Kn be the set of all convex bodies, i.e., compact convex sets, in the n-
dimensional Euclidean space Rn, and let Bn be the n-dimensional unit ball. The
volume of a set M � Rn, i.e., its n-dimensional Lebesgue measure, is denoted by
vol(M) and, in particular, we write κn = vol(Bn). Finally, with bdM , linM ,
affM , intM and relintM we represent its boundary, linear hull, affine hull, in-
terior and relative interior, respectively. For convex bodies K,E ∈ Kn and a
non-negative real number λ, the well-known Steiner formula states that the vol-
ume of the Minkowski sum K+λE can be expressed as a polynomial of degree (at
most) n in the parameter λ,

(1.1) vol(K + λE) =

n∑
i=0

(
n

i

)
Wi(K;E)λi;

here the coefficients Wi(K;E) are the relative quermassintegrals of K with respect
to E, and they are a special case of the more general defined mixed volumes (see e.g.
Section 5.1 in [17]). In particular, W0(K;E) = vol(K) and Wn(K;E) = vol(E).
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In 1973 ([20]), Wills introduced and studied the functional

(1.2) W (K) =

n∑
i=0

(
n

i

)
Wi(K;Bn)

κi

because of its possible relation with the so called lattice-point enumerator

G(K) = #(K ∩ Zn),

and conjectured that W (K) bounded by above G(K). Although Hadwiger [6]
showed that Wills’ conjecture was wrong (see also [1]), the Wills functional turned
out to have several interesting applications, e.g., in discrete geometry, where there
exist nice relations of this functional with the so called successive minima of a con-
vex body, or in deriving exponential moment inequalities for Gaussian random pro-
cesses [19]. Many other nice properties of this functional, as well as relations with
other measures, have been studied in the last years, see e.g. [5], [6], [15], [20], [21],
and [22].

In particular, in [5] Hadwiger showed, among others, the following integral
representations of W (K):

(1.3) W (K) =

∫
Rn

e−πd(x,K)2 dx, W (K) = 2π

∫ ∞

0

vol(K + tBn) t e
−πt2 dt,

where d(x,K) denotes the Euclidean distance between x ∈ Rn and K.
Recently, Kampf [10] has proved that generalizations of the above relations

remain true when the ‘distance’ dE(x,K), between x ∈ Rn and K, relative to a
convex body E with 0 ∈ intE is considered, i.e.,∫

Rn

e−πdE(x,K)2 dx = 2π

∫ ∞

0

vol(K + tE) t e−πt2 dt =
n∑

i=0

(
n

i

)
Wi(K;E)

κi
.

Moreover, a more general functional can be obtained replacing e−πt2 by a function
G(t) which is properly associated to a measure μ on the non-negative real line R≥0:∫

Rn

G
(
dE(x,K)

)
dx with G(t) = μ

(
[t,∞)

)
.

We extend this functional to any pair of convex bodies K and E, allowing gauge
bodies E with dimension dimE < n.

To this aim, for a given E ∈ Kn with 0 ∈ relintE and x − y ∈ linE, let
dE(x, y) = inf{λ ≥ 0 : x − y ∈ λE}. We notice that if E is 0-symmetric, i.e.,
E = −E, this function defines a distance on linE. Then, for x ∈ K + linE, we
have

dE(x,K) = inf
{
dE(x, y) : y ∈ K ∩ (x+ linE)

}
= inf{r ≥ 0 : x ∈ K + rE}.

Thus, the expression dE(x,K) is only defined for x ∈ K + linE and, following the
idea used in [10], the next result is fulfilled. It will be shown in Section 2.



On the roots of generalized Wills μ-polynomials 479

Lemma 1.1. Let μ be a (finite) measure on R≥0 such that the moments mi(μ) =∫∞
0 ti dμ(t) of μ, i = 0, . . . , n, exist and are finite, and let G(t) = μ

(
[t,∞)

)
,

t ∈ R≥0. Then, for K,E ∈ Kn with 0 ∈ relintE, we have that∫
K+linE

G
(
dE(x,K)

)
dx =

∫ ∞

0

vol(K + tE) dμ(t) =

n∑
i=0

(
n

i

)
Wi(K;E)mi(μ).

We observe that the right-hand side in the last equality is translation invariant.
Thus, for any convex bodies K,E ∈ Kn, any x0 ∈ relintE, and a given measure μ
on R≥0, we have a Wills type functional (associated to μ)

Wμ(K;E) =

∫
K+lin(E−x0)

G
(
dE−x0(x,K)

)
dx =

n∑
i=0

(
n

i

)
Wi(K;E)mi(μ).

Thus, we can always assume, without loss of generality, that 0 ∈ relintE.
Using the previous lemma for the function G(t) = e−πt2 , we get the relative

Wills functional for convex bodies K,E ∈ Kn, namely,

W(K;E) =

∫
K+linE

e−πdE(x,K)2 dx =

n∑
i=0

(
n

i

)
Wi(K;E)

κi
.

In the case of the Steiner functional
∑n

i=0

(
n
i

)
Wi(K;E), we have the following

μ-type representation, which will be also shown in Section 2.

Theorem 1.1. Let K,E ∈ Kn with 0 ∈ relintE. Then

n∑
i=0

(
n

i

)
Wi(K;E) = lim

σ→0+

∫
K+linE

∫ ∞

dE(x,K)

1√
2πσ

e−
(t−1)2

2σ2 dt dx.

Moreover, such an expression (in which a non-discrete measure μ on R≥0 is con-
sidered) is only possible through a ‘pass to the limit’ process.

In the following we will write, for K,E ∈ Kn and a measure μ on R≥0,

fμ
K;E(z) =

n∑
i=0

(
n

i

)
Wi(K;E)mi(μ) z

i

to denote the Wills μ-polynomial of K with respect to E, regarded as a formal
polynomial in a complex variable z ∈ C. Similarly, we will represent the relative
Steiner and Wills polynomials in a variable z ∈ C (cf. (1.1), (1.2)), respectively, by

fK;E(z) =

n∑
i=0

(
n

i

)
Wi(K;E) zi and fg

K;E(z) =

n∑
i=0

(
n

i

)
Wi(K;E)

κi
zi.

From now on, we will denote by g the measure associated to G(t) = e−πt2 , which
yields the (classical) Wills functional when E = Bn (cf. (1.3)), and whose moments
are mi(g) = 1/κi.
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Motivated by previous works of Henk, Hernández Cifre and Saoŕın on the roots
of the Steiner polynomial (see [7], [8]), here we are interested in studying properties
of the roots of the above family of polynomials fμ

K;E(z). To this end, we fix the
notation which will be used along the paper. Denoting by Re z, Im z and arg z,
the real part, imaginary part and the principal argument of a complex number z,
respectively, let C+ = {z ∈ C : Im z ≥ 0} be the set of complex numbers with
non-negative imaginary part, and for a fixed measure μ, let

Rμ(n) = {z ∈ C+ : fμ
K;E(z) = 0 for K,E ∈ Kn, dim(K + E) = n}

be the set of all roots of fμ
K;E(z), K,E ∈ Kn, in the upper half-plane.

Theorem 1.2. For any measure μ, Rμ(n) is a convex cone, containing the non-
positive real axis R≤0.

We notice that in order to construct these Wills type functionals, we work with
a measure μ on R≥0 (cf. Lemma 1.1). The results by Kampf [10] are stated in the
more general setting when a signed measure ρ is considered. We will show that in
this case the corresponding set Rρ(n), although it is always a cone, it is not, in
general, convex (see Proposition 3.1).

According to the above theorem, the ‘geometry’ of the set Rμ(n) is given by
the ‘upper ray’ of the boundary. Regarding the possible inclusion of this ray in the
cone and the monotonicity in the dimension, we have the following results, which
will be shown in Section 3.

Theorem 1.3. For any measure μ, the cone Rμ(n) is closed.

Theorem 1.4. For any measure μ, Rμ(n) is strictly increasing in the dimension,
i.e., Rμ(n) � Rμ(n+ 1).

Let R(n) = {z ∈ C+ : fK;E(z) = 0 for K,E ∈ Kn, dim(K + E) = n} be the
set of roots of all Steiner polynomials fK;E(z), K,E ∈ Kn, in the upper half-
plane. Then there exists a relation between (the cone of) the roots of the Steiner
polynomial and the Wills μ-polynomials.

Theorem 1.5. For any measure μ, it holds R(n) ⊂ Rμ(n). Moreover, if μ verifies
μ
(
R≥0 \ {0,mi(μ)/mi−1(μ)}

) �= 0 for i = 1, 2, . . . , the inclusion is strict.

This result shows that the ‘smallest’ cone of roots of Wills μ-polynomials is the
one given by the Steiner polynomial, which provides additional information about
the roots of μ-polynomials when the dimension is large enough, namely, that for
any measure μ, Rμ(n) covers the whole upper half-plane C+, except R>0, when n
tends to infinity.

Corollary 1.1. If n ≥ 10 it holds {z ∈ C+ : Re z ≤ 0} � Rμ(n). Moreover, given
γ ∈ C+ \ R>0, there exists nγ such that γ ∈ Rμ(n) for all n ≥ nγ.
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Similarly, we can determine the ‘largest’ cone of roots containing Rμ(n) for any
log-concave measure μ on R≥0 (see Section 4 for the definition). Before stating the
result, we need additional notation: given a sequence m = (mi)i∈N, mi > 0, let

(1.4) fm
K;E(z) =

n∑
i=0

(
n

i

)
Wi(K;E)miz

i,

K,E ∈ Kn with dim(K + E) = n, and, according to our terminology, we denote
the corresponding cone of roots by Rm(n), i.e.,

Rm(n) = {z ∈ C+ : fm
K;E(z) = 0 for K,E ∈ Kn, dim(K + E) = n}.

Theorem 1.6. Let ω = (ii)i∈N = (1, 1, 22, . . . ). Then Rμ(n) ⊂ Rω(n) for any
log-concave measure μ on R≥0.

We observe that fω
K;E(z) is a Wills μ-type polynomial, because the ‘weights’

mi = ii are the moments of a measure (see page 104 of [2] for a question regarding
the so called (Stieltjes ) moment problem; see also e.g. [13]).

We observe that properties collected in Theorem 1.5 and Corollary 1.1 are not
true for general m-polynomials (see Remark 4.2). Thus, Theorem 1.5 and Corol-
lary 1.1 state necessary ‘geometric’ conditions for the (Stieltjes) moment problem.

The above results will be shown in Section 4. Finally, in Section 5 we deal with
the stability of this kind of polynomials, listing additional properties concerning
the (relative) Wills polynomial fg

K;E(z).

2. On the Wills type functionals

We start this section proving Lemma 1.1. We follow the idea of the proof given
by Kampf in [10], which is based on Fubini’s theorem. Here χ

M
will denote the

characteristic function of the set M ⊂ Rn.

Proof of Lemma 1.1. Clearly, for x ∈ K + linE we have dE(x,K) ≤ t if and only
if x ∈ K + tE. Using this property and Steiner formula (1.1), we get∫
K+linE

G
(
dE(x,K)

)
dx =

∫
K+linE

μ
(
[dE(x,K),∞)

)
dx

=

∫
Rn

∫ ∞

0

χ{y∈K+linE: dE(y,K)≤t}(x) dμ(t) dx

=

∫
Rn

∫ ∞

0

χK+tE (x) dμ(t) dx =

∫ ∞

0

∫
Rn

χK+tE (x) dxdμ(t)

=

∫ ∞

0

vol(K + tE) dμ(t) =

n∑
i=0

(
n

i

)
Wi(K;E)

∫ ∞

0

ti dμ(t)

=

n∑
i=0

(
n

i

)
Wi(K;E)mi(μ).

This shows the lemma. �
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Next we show that the Steiner functional can be also obtained as a generalized
Wills type functional for a particular ‘limit’ measure.

Proof of Theorem 1.1. Let μσ be the measure on R≥0 given by

μσ(A) =

∫
A

fσ(t) dt, with fσ(t) =
1√
2πσ

e−
(t−1)2

2σ2 ,

(see Figure 1) and let Gσ be the function

Gσ(s) =

∫ ∞

s

dμσ(t) =

∫ ∞

s

fσ(t) dt.

0 0.5 1 1.5 2

Figure 1. The function fσ(t) =
1√
2πσ

e
− (t−1)2

2σ2 for σ = 0.2 and σ = 0.1.

On the one hand we observe that, denoting by μσ the measure on R≤0 associ-
ated to the function fσ(t), we have

lim
σ→0+

∫ 0

−∞
tr dμσ(t) = lim

σ→0+

∫ 0

−∞
tr fσ(t) dt

= lim
σ→0+

∫ −1/(
√
2σ)

−∞

1√
π

(√
2σs+ 1

)r
e−s2 ds

= lim
σ→0+

∫ −1/(
√
2σ)

−∞

1√
π

( r∑
i=0

(
r

i

)(√
2σs

)i)
e−s2 ds

=
1√
π

r∑
i=0

(
r

i

)
2i/2

(
lim

σ→0+
σi

∫ −1/(
√
2σ)

−∞
sie−s2 ds

)
= 0.
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On the other hand, if ϕσ(t) = et+t2σ2/2 denotes the moment generating function
of a normal distribution N(1, σ) associated to the density function fσ (on the real
line R), then its i-th derivative can be written as

ϕ(i)
σ (t) = et+t2σ2/2

(
1 + tσ2

)i
+ σ2gσ(t)

for a suitable function gσ(t) bounded in a neighborhood of σ = 0, and thus

limσ→0+ ϕ
(i)
σ (0) = 1. So, by Lemma 1.1,

∫
K+linE

Gσ

(
dE(x,K)

)
dx =

n∑
i=0

(
n

i

)
Wi(K;E)

∫ ∞

0

ti dμσ(t)

and then

lim
σ→0+

∫
K+linE

Gσ

(
dE(x,K)

)
dx =

n∑
i=0

(
n

i

)
Wi(K;E) lim

σ→0+

∫ ∞

0

ti dμσ(t)

=

n∑
i=0

(
n

i

)
Wi(K;E)

(
lim

σ→0+

∫ ∞

0

ti dμσ(t) + lim
σ→0+

∫ 0

−∞
ti dμσ(t)

)

=

n∑
i=0

(
n

i

)
Wi(K;E) lim

σ→0+

∫ ∞

−∞
ti fσ(t) dt

=
n∑

i=0

(
n

i

)
Wi(K;E) lim

σ→0+
ϕ(i)
σ (0) =

n∑
i=0

(
n

i

)
Wi(K;E),

where, in the last equality but one, we have used the well known connection be-
tween the moments of a measure and its moment generating function (see e.g.
Sections 2.3–2.4 and Theorem 2.3.7 in [3]).

Finally, the last assertion of the theorem follows from the fact that if for a
measure μ̃ it holds mi(μ̃) = 1 for all i = 0, . . . , n, with n ≥ 2, then∫ ∞

0

(t− 1)2 dμ̃(t) =

∫ ∞

0

t2 dμ̃(t)− 2

∫ ∞

0

t dμ̃(t) +

∫ ∞

0

dμ̃(t) = 0,

which implies that μ̃ is a discrete measure concentrated at t = 1. �

3. The cone of roots of Wills μ-polynomials

From now on and unless we explicitly say the opposite, we will always assume that,
for a given measure μ on R≥0, its moments mi(μ) > 0 for all i ≥ 0, i.e., we omit
the case when μ is discrete and concentrates the measure at t = 0. We will also
need the following additional notation. For convex bodies K,E ∈ Kn such that
fμ
K;E(z) has a non-zero root let

θμK;E = min
{
arg z : z ∈ C+\{0}, fμ

K;E(z) = 0
}
,
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and we denote by

(3.1) Rμ(K;E) =
{
z ∈ C+\{0} : arg z ≥ θμK;E

} ∪ { 0}
the convex cone, in the upper half-plane, generated as the positive hull of the roots
of the polynomial fμ

K;E(z) and R≤0.
We start this section stating some preliminary lemmas which will be needed for

the proof of Theorem 1.2. In Theorem 5.2 of [12] the following result is proved.

Theorem 3.1 (Kato, 1995). Let ξ(t) be an unordered n-tuple of complex numbers,
depending continuously on a real variable t in a (closed or open) interval I. Then
there exist n continuous functions νi(t), i = 1, . . . , n, which constitute the values
of the n-tuple ξ(t) for each t ∈ I.

As a consequence, we get the following lemma.

Lemma 3.1. Let K(t) ∈ Kn, t ∈ [a, b], be a one-parameter continuous (on t)
family of convex bodies with dimK(a) = n − k − 1 and dimK(t) = n − k for all
t ∈ (a, b], and let E ∈ Kn with dimE = r > k and dim

(
K(t) + E

)
= n for all

t ∈ [a, b]. Let fμ
K(t);E(z), t ∈ [a, b], be the corresponding one-parameter family of

μ-polynomials. Then:

i) There exist r−k−1 continuous functions ν1, . . . , νr−k−1 : [a, b] −→ C joining
the r − k − 1 non-zero roots of fμ

K(a);E(z) and r − k − 1 non-zero roots of

fμ
K(b);E(z), such that ν1(t), . . . , νr−k−1(t) are r− k− 1 of the r− k non-zero

roots of fμ
K(t);E(z) for all t ∈ [a, b].

ii) Moreover there exists another continuous function νr−k : (a, b] −→ C such
that νr−k(t) is the remaining root of fμ

K(t);E(z) for all t ∈ (a, b], verifying

that limt→a+ νr−k(t) = 0.

Proof. Since c(t) =
(
n
r

)
Wr

(
K(t);E

)
mr(μ) �= 0 for all t ∈ [a, b], the result is a

direct consequence of Theorem 3.1 and the fact that the roots of a polynomial
are continuous functions of the coefficients (see e.g. [14], page 3) applied to the
polynomials

fμ
K(t);E(z)

c(t)zk
=

1

c(t)

r−k∑
i=0

(
n

k + i

)
Wk+i

(
K(t);E

)
mk+i(μ)z

i,

whose leading coefficients are 1 for all t ∈ [a, b]. �

Proof of Theorem 1.2. By the homogeneity of the quermassintegrals we have that
for K,E ∈ Kn and λ > 0, fμ

λK;E(λz) = λnfμ
K;E(z). Hence, if ν ∈ Rμ(n), ν �= 0,

then there exist K,E ∈ Kn such that fμ
K;E(ν) = 0 and thus, for each λ > 0,

0 = fμ
K;E(ν) = fμ

λK;E(λν)/λ
n. Therefore λν ∈ Rμ(n) and so, Rμ(n) is a cone.

In order to prove the convexity of Rμ(n) it suffices to show that for any ν0 ∈
Rμ(n) fixed, ν0 �= 0, the cone

Rμ(n) ∩
({

z ∈ C+\{0} : arg z ≥ arg ν0
} ∪ { 0}

)
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is convex. To this end, let K,E ∈ Kn be such that fμ
K;E(ν0) = 0. Without

loss of generality we may assume that aff E = {x1 = · · · = xn−r = 0}, where
r = dimE. Let Hi = {xn−r+1 = · · · = xn−r+i = 0}, i = 1, . . . , r − 1, be the
(n − i)-dimensional coordinate plane containing (aff E)⊥, and let Ki = K|Hi be
the orthogonal projection of K onto Hi, i = 1, . . . , r − 1, with K0 = K.

With this notation we will show, by finite induction on j = r − i, with
j = 1, . . . , r, that all the points of Rμ(Ki;E) (cf. (3.1)) are roots of some μ-
polynomial, i.e., that Rμ(Ki;E) ⊂ Rμ(n). So Rμ(K;E) ⊂ Rμ(n), which will
show the convexity of Rμ(n) ∩ ({z ∈ C+ \ {0} : arg z ≥ arg ν0} ∪ {0}).

If j = 1, then the polynomial fμ
Kr−1;E

(z) reduces to

[( n

r − 1

)
Wr−1(Kr−1;E)mr−1(μ) +

(
n

r

)
Wr(Kr−1;E)mr(μ) z

]
zr−1,

and so it has only a non-zero real root. Thus, R≤0 = Rμ(Kr−1;E) ⊂ Rμ(n) and
in particular, we have that Rμ(n) contains the non-positive real axis.

Now we assume 1 < j ≤ r and that the result is true for j − 1, i.e., we assume
that Rμ(Kr−j+1;E) ⊂ Rμ(n). Notice that we can suppose the strict inclusion
Rμ(Kr−j+1;E) � Rμ(Kr−j;E), otherwise we directly get the required result. For
each t ∈ [0, 1], we consider the convex body

K(t) = tKr−j+1 + (1 − t)Kr−j,

and let νj be a root of fμ
Kr−j ;E

(z) such that arg νj = θμKr−j ;E
. The family of

sets K(t), t ∈ [0, 1], provides a one-parameter family of μ-polynomials fμ
K(t);E(z)

satisfying the conditions of Lemma 3.1, and hence there exists a continuous map
ν : [0, 1] −→ C with ν(0) = νj and ν(1) = νj−1 being a root of fμ

Kr−j+1;E
(z), such

that ν(t) is a root of fμ
K(t);E(z) for all t ∈ [0, 1]. Without loss of generality we may

assume that νj is not the root which ‘goes to zero’; otherwise, we can work with
its conjugate νj .

Therefore, f : [0, 1] −→ (0, 2π), f(t) = arg ν(t), is a continuous function with
f(1) = arg νj−1 ≥ θμKr−j+1;E

and f(0) = θμKr−j ;E
. Thus, using the intermediate

value theorem, together with the fact that Rμ(n) is a cone and the induction
hypothesis, we may conclude that Rμ(Kr−j ;E) ⊂ Rμ(n). �

In [10], Kampf considered the already mentioned Wills type functionals asso-
ciated to a signed measure ρ. We will show that in this case, the corresponding
cone Rρ(n) is not, in general, convex.

Proposition 3.1. There exist signed measures ρ on R≥0 such that the cone Rρ(n)
is not convex.

Proof. Let ρ be the signed measure on R≥0 given by

ρ
({0}) = 7

6
, ρ

({1}) = −1

3
, ρ

({2}) = 1

6
, ρ

(
R≥0 \ {0, 1, 2}

)
= 0.
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Then the first four moments are given by(
m0(ρ),m1(ρ),m2(ρ),m3(ρ)

)ᵀ
= A(7/6,−1/3, 1/6)ᵀ = (1, 0, 1/3, 1)ᵀ,

where A is the matrix with entries a11 = 1 and aij = (j− 1)(i−1) for (i, j) �= (1, 1),
1 ≤ i ≤ 4, 1 ≤ j ≤ 3. Hence, in dimension n = 3, any ρ-polynomial takes the form
fρ
K;E(z) = W0(K;E) +W2(K;E)z2 +W3(K;E)z3.

On the one hand, if K,E ∈ Kn are convex bodies such that W0(K;E) = 0 and
both W2(K;E),W3(K;E) �= 0, i.e., with 1 ≤ dimK ≤ 2 and dimE = 3, then
fρ
K;E(z) has only non-positive real roots.

On the other hand, if K,E ∈ Kn are such that W3(K;E) = 0 and both
W0(K;E),W2(K;E) �= 0, i.e., dimK = 3 and dimE = 2, then fρ

K;E(z) has
imaginary pure complex roots.

Thus R≤0 ∪ {ri ∈ C : r ≥ 0} ⊂ Rρ(3) ∩ {z ∈ C+ : Re z ≤ 0}. And moreover,
it is easy to check that this inclusion is an equality: indeed, if there exist convex
bodies K,E ∈ Kn such that

fρ
K;E(z) = W3(K;E)(z + 1 + bi)(z + 1− bi)(z + c)

for some b, c ≥ 0, with W3(K;E) �= 0, then we get, in particular, the relation
W3(K;E)(b2 + 2c + 1) = 0, which is a contradiction. This shows that the cone
Rρ(3) is not convex. �

3.1. Characterizing μ-polynomials. Properties of Rμ(n)

The main ingredient for most of the following proofs are the well-known inequalities

(3.2) Wi(K;E)2 ≥ Wi−1(K;E)Wi+1(K;E), 1 ≤ i ≤ n− 1,

particular cases of the Aleksandrov–Fenchel inequality (see e.g. Section 6.3 in [17]).
A sequence of real numbers a0, . . . , an ≥ 0 is called ultra-logconcave if

ci,n a
2
i ≥ ai−1 ai+1, with ci,n =

(
n

i−1

)(
n

i+1

)
(
n
i

)2 ,

1 ≤ i ≤ n − 1. In Lemma 2.1 and Corollary 2.1 of [8] (see also [18]), it is shown
that this property allows to characterize Steiner polynomials. These results can
be rewritten, with an analogous proof, to characterize μ-polynomials for a given
measure μ. We include them here, without proof, for completeness.

For complex numbers z1, . . . , zr ∈ C let

si
(
z1, . . . , zr

)
=

∑
J⊂{1,...,r}

#J=i

∏
j∈J

zj

denote the i-th elementary symmetric function of z1, . . . , zr, 1 ≤ i ≤ r. In addition
we set s0

(
z1, . . . , zr

)
= 1. Moreover, let

cμi,n =

(
n

i−1

)
mi−1(μ)

(
n

i+1

)
mi+1(μ)(

n
i

)2
mi(μ)2

.
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Lemma 3.2. A real polynomial
∑n

i=0 aiz
i, ai ≥ 0, is a μ-polynomial fμ

K;E(z) for
a measure μ on R≥0 and a pair K,E ∈ Kn, with dimE = r, dimK = n − k,
dim(K +E) = n, if and only if ai > 0 for all k ≤ i ≤ r, and ai = 0 otherwise, and
the sequence

(
ai/mi(μ)

)n
i=0

is ultra-logconcave.
Moreover, ν1, ν2, . . . , νr ∈ C are the roots of the μ-polynomial fμ

K;E(z) of degree
r ≤ n, dimE = r, dimK = n− k, dim(K + E) = n, if and only if

i) (−1)i si
(
ν1, . . . , νr

)
> 0, 0 ≤ i ≤ r − k,

si
(
ν1, . . . , νr

)
= 0, r − k + 1 ≤ i ≤ r,

ii) cμr−i,n si
(
ν1, . . . , νr

)2 ≥ si−1

(
ν1, . . . , νr

)
si+1

(
ν1, . . . , νr

)
, 1 ≤ i ≤ r − 1.

We notice that an analogous result to Lemma 3.2 can be stated for m-polyno-
mials fm

K;E(z).
Regarding the topology (closeness) of the cone Rμ(n), the proof of Theorem 1.3

is similar to the corresponding one for Steiner polynomials (see Theorem 1.2 in [8]).
We briefly sketch it here, pointing out the slight differences, for completeness.

Proof of Theorem 1.3. Let ν ∈ bdRμ(n). Since R≤0 ⊂ Rμ(n) (see Theorem 1.2),
we assume that ν /∈ R. Let (νj)j∈N � intRμ(n) be such that limj→∞ νj = ν. For
each j ∈ N, since νj ∈ Rμ(n), then there exist Kj , Ej ∈ Kn, dim(Kj + Ej) = n,
with fμ

Kj ;Ej
(νj) = 0.

We notice that among all pairs of convex bodies with νj as a root of the corres-
ponding μ-polynomial, we can always chooseKj , Ej such that fμ

Kj ;Ej
(1) = 1; other-

wise, since fμ
Kj;Ej

(1) > 0, we consider the convex bodies K ′
j = fμ

Kj;Ej
(1)−1/nKj ,

E′
j = fμ

Kj ;Ej
(1)−1/nEj , for which it clearly holds fμ

K′
j;E

′
j
(νj) = 0 and fμ

K′
j ;E

′
j
(1) = 1.

Since fμ
Kj ;Ej

(1) =
∑n

i=0

(
n
i

)
Wi(Kj ;Ej)mi(μ) = 1, then all quermassintegrals

Wi(Kj ;Ej) ∈
[
0, 1/min0≤l≤n{ml(μ)}

]
, i = 0, . . . , n, and not all of them are zero.

The proof finishes with a (sequential) compactness argument (see the proof of The-
orem 1.2 in [8]), using the characterization of μ-polynomials via ultra-logconcave
sequences (see Lemma 3.2). �

The monotonicity Rμ(n) ⊂ Rμ(n+ 1) is easy to prove. Let ν ∈ Rμ(n) and let
K,E ∈ Kn, dim(K+E) = n, be such that fμ

K;E(ν) = 0. Embedding K canonically

into the hyperplane {en+1}⊥ � Rn+1 (ei denotes the i-th canonical unit vector),
let K ′ = K × conv{0, en+1} be the prism over K of height 1 in the direction en+1.
Then voln+1(K

′ + λE) = voln(K + λE) for all λ ≥ 0, and thus (cf. (1.1)),(
n+ 1

i

)
W

(n+1)

i (K ′;E) =

(
n

i

)
W

(n)

i (K;E), i = 0, . . . , n,

W
(n+1)

n+1 (K
′;E) = 0;

here W
(j)

i denotes the i-th quermassintegral in Rj . Multiplying the above identi-
ties by mi(μ) and mn+1(μ) respectively, we obtain fμ

K′;E(z) = fμ
K;E(z), and thus

fμ
K′;E(ν) = 0. Hence ν ∈ Rμ(n+ 1).
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Next we show that the inclusion Rμ(n) ⊂ Rμ(n + 1) is strict (Theorem 1.4).
The proof is similar to the one of Theorem 1.3 in [8]. We again sketch it here,
briefly pointing out the differences.

Proof of Theorem 1.4. In order to show that the above inclusion is indeed strict, let
ν ∈ bdRμ(n) \R≤0; otherwise the assertion is trivially true (see e.g. Theorem 1.5
for n = 2, and Theorem 1.2 in [7]). Since Rμ(n) is closed (Theorem 1.3), ν is a
root of some μ-polynomial fμ

K;E(z) of degree r ≤ n, with K,E ∈ Kn, dimE = r,
dimK = n− k, dim(K + E) = n. Let ν, ν3, . . . , νr be the remaining roots of the
polynomial.

Then, we have to see that there exists ε > 0 small enough such that, for any
z ∈ C, |z| = 1, the r numbers ν + εz, ν + εz, ν3, . . . , νr are roots of a suitable
μ-polynomial fμ

K′;E′(z), K ′, E′ ∈ Kn+1 with dimK ′ = n− k + 1, dimE′ = r and
dim(K ′+E′) = n+1, i.e., the ‘sign conditions’ i) and the ‘quadratic conditions’ ii)
in Lemma 3.2 are properly verified, namely,

i’) (−1)i si
(
ν + εz, ν + εz, ν3, . . . , νr

)
> 0, 0 ≤ i ≤ r − k,

si
(
ν + εz, ν + εz, ν3, . . . , νr

)
= 0, r − k + 1 ≤ i ≤ r,

and

ii’) cμr−i,n+1 si
(
ν + εz, ν + εz, ν3, . . . , νr

)2
≥ si−1

(
ν + εz, ν + εz, ν3, . . . , νr

)
si+1

(
ν + εz, ν + εz, ν3, . . . , νr

)
,

for 1 ≤ i ≤ r − 1. Since conditions i) and ii) of Lemma 3.2 hold for the sequence
of roots ν, ν, ν3, . . . , νr, and since

cμr−i,n+1 =

(
n+1

r−i−1

)(
n+1

r−i+1

)
(
n+1
r−i

)2 mr−i−1(μ)mr−i+1(μ)

mr−i(μ)2

>

(
n

r−i−1

)(
n

r−i+1

)
(

n
r−i

)2 mr−i−1(μ)mr−i+1(μ)

mr−i(μ)2
= cμr−i,n

for all 1 ≤ i ≤ r−1, the proof of the above facts i’) and ii’) is just a consequence of
the continuity of the elementary symmetric functions (see the proof of Theorem 1.3
in [8]). �

The following proposition is also analogous to the corresponding one for Steiner
polynomials (see Corollary 1.1 in [8]).

Proposition 3.2. For n ≥ 3 and a given measure μ on R≥0, let K,E ∈ Kn be
such that the μ-polynomial fμ

K;E(z) has a root lying on bdRμ(n)\R≤0. Then K,E
are extremal sets for at least one Aleksandrov–Fenchel inequality.

Proof. For ν ∈ bdRμ(n) \ R≤0, let K,E ∈ Kn, with dimE = r, be such that
fμ
K;E(ν) = 0, and let ν, ν3, . . . , νr be the remaining roots of fμ

K;E(z). If K,E are
not extremal sets in any Aleksandrov–Fenchel inequality, i.e., if we have strict
inequalities in (3.2), then r ≥ n− 1 and for all 1 ≤ i ≤ r − 1 it holds

cμr−i,nsi(ν, ν, ν3, . . . , νr)
2 > si−1(ν, ν, ν3, . . . , νr) si+1(ν, ν, ν3, . . . , νr).
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Again, by the continuity of the elementary symmetric functions, for ε > 0 small
enough, the numbers ν + εz, ν + εz, ν3, . . . , νn are roots of a polynomial with real
coefficients, satisfying conditions i) and ii) in Lemma 3.2 for any z ∈ C with |z| = 1.
Thus {ν + εz : |z| = 1} � Rμ(n), a contradiction. �

3.2. The cone of roots for a fixed gauge body

Let E ∈ Kn be a fixed gauge body. If we define

Rμ(n;E) = {z ∈ C+ : fμ
K;E(z) = 0 for K ∈ Kn, dim(K + E) = n},

then the proof of Theorem 1.2 also says that Rμ(n;E) is a convex cone, containing
the non-positive real axis R≤0. However, other properties of Rμ(n) cannot be
extended to Rμ(n;E). For instance, Rμ(n;E) is, in general, not closed (see e.g.
Theorem 1.2 in [7]). Here we give a sufficient condition for ν ∈ bdRμ(n;E) \R≤0

to lie in Rμ(n;E).
Let R(K) = min{R > 0 : ∃x ∈ Rn with K ⊂ x+RBn} denote the circumradius

of the convex body K. The (unique) point x such that K ⊂ x+R(K)Bn is called
its circumcenter.

Proposition 3.3. Let ν ∈ bdRμ(n;E) \ R≤0. Let (νj)j∈N � intRμ(n;E) with
limj→∞ νj = ν and, for each j ∈ N, let Kj ∈ Kn, dim(Kj + E) = n, be such that
fμ
Kj ;E

(νj) = 0. If there exists a subsequence (Kjm)m∈N ⊂ (Kj)j∈N with dimKjm =
n− k for all m ∈ N, such that

lim
m→∞

Wk(Kjm ;E)

R(Kjm)n−k
�= 0,

then ν ∈ Rμ(n;E).

Proof. Without loss of generality, we may suppose that dimKj = n − k for all
j ∈ N and thus Wk(Kj ;E) �= 0.

For each j ∈ N, let K̃j = R(Kj)
−1Kj and ν̃j = R(Kj)

−1νj, which is a root
of fμ

˜Kj ;E
(z). Since quermassintegrals are translation invariant (and thus the co-

rresponding μ-polynomial), it is not restrictive to assume that the origin 0 is the

circumcenter of all Kj, and so, of K̃j . Then, K̃j ⊂ Bn for all j ∈ N, and Blaschke’s
selection theorem (see e.g. Theorem 1.8.6 in [17]) ensures the existence of a subse-

quence of (K̃j)j∈N converging to a convex body K ∈ Kn; without loss of generality

we may assume that limj→∞ K̃j = K. Then, by the continuity of the quermassin-

tegrals, each coefficient
(
n
i

)
Wi

(
K̃j ;E

)
mi(μ) of the polynomial fμ

˜Kj;E
(z) converges

to the corresponding coefficient
(
n
i

)
Wi(K;E)mi(μ) of f

μ
K;E(z), and moreover,

Wk(K;E) = Wk

(
lim
j→∞

K̃j ;E
)
= lim

j→∞
Wk

(
K̃j ;E

)
= lim

j→∞
Wk

( 1

R(Kj)
Kj ;E

)
= lim

j→∞
Wk(Kj ;E)

R(Kj)n−k
�= 0.
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Hence, from the fact that the roots of a polynomial are continuous functions of
the coefficients of the polynomial (see e.g. [14], page 3), and since fμ

˜Kj;E
(z) has

degree r = dimE for all j ∈ N, we get that there exist r − k sequences of num-
bers (ν1j )j∈N, . . . , (ν

r−k
j )j∈N such that ν1j , . . . , ν

r−k
j are the r − k non-zero roots of

fμ
˜Kj ;E

(z) for all j ∈ N, and with νi = limj→∞ νij , i = 1, . . . , r − k, being the non-

zero roots of fμ
K;E(z). Now, since ν̃j was a non-zero root of fμ

˜Kj;E
(z) for each j,

taking subsequences if necessary, we may assume that (ν̃j)j∈N converges to some
root of fμ

K;E(z), say ν1. Then

ν

ν1
=

limj→∞ νj
limj→∞ ν̃j

= lim
j→∞

νj
ν̃j

= lim
j→∞

R(Kj) ∈ R>0,

which implies that fμ
(ν/ν1)K;E(ν) = 0, as required. �

4. The smallest and largest cones of roots of μ-polynomials

Let Cn denote the n-dimensional regular cube of edge-length 1. Then, the Aleksan-
drov–Fenchel inequalities (3.2) for Wi(Cn;Bn) = κi and any value of the dimension
yield the inequalities

(4.1) mi(g)
2 ≤ mi+1(g)mi−1(g), i = 1, 2, . . . ,

for the moments mi(g) = 1/κi of the measure g associated to G(t) = e−πt2 .
Moreover, if we had equality in one of the above inequalities for an i ≥ 1, i.e.,

if Wi(Cn;Bn)
2 = Wi−1(Cn;Bn)Wi+1(Cn;Bn), then the known equality case in

Aleksandrov–Fenchel inequality for centrally symmetric convex bodies would lead
to a contradiction (it would imply that Cn is a so called (n − i − 1)-tangential
body of a ball with i �= 0, which is not true; see Theorem 6.6.19 in [17]). Thus,
inequalities (4.1) are strict.

This fact can be extended to the moments of (almost) any measure; it will be
shown and used in the proof of Theorem 1.5.

Proof of Theorem 1.5. Let γ ∈ R(n). Then there exist convex bodies K,E ∈ Kn

such that fK;E(γ) =
∑n

i=0

(
n
i

)
Wi(K;E)γi = 0.

Moreover, for any measure μ on R≥0, the Cauchy–Schwarz inequality yields

mi(μ)
2 =

( ∫ ∞

0

ti dμ(t)
)2

=
(∫ ∞

0

t(i+1)/2 t(i−1)/2 dμ(t)
)2

≤
∫ ∞

0

ti+1 dμ(t)

∫ ∞

0

ti−1 dμ(t) = mi+1(μ)mi−1(μ),

(4.2)

i.e., 1/mi(μ), i = 0, . . . , n, satisfy the Aleksandrov–Fenchel inequalities (3.2).
Then, we get that the sequence of positive numbers

(
n
i

)
Wi(K;E)/mi(μ) is ultra-

logconcave, and Lemma 3.2 ensures that the Steiner polynomial fK;E(z) is also
a μ-polynomial for some convex bodies K ′, E′ ∈ Kn. Therefore, γ ∈ Rμ(n), as
required.
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In order to prove the last assertion, we notice that equality in the Cauchy–
Schwarz inequality (4.2) holds if and only if

t
i+1
2 − mi(μ)

mi−1(μ)
t
i−1
2 ≡ 0

almost everywhere or, in other words, if and only if

μ
(
R≥0 \

{
0, mi(μ)/mi−1(μ)

})
= 0, i ≥ 1.

Therefore, if a measure μ verifies the condition of the theorem, inequalities (3.2)
strictly hold for the values 1/mi(μ), i = 1, . . . , n− 1, which implies that cμr−i,n >
cr−i,n; here, as usual, r = dimE = dimE′. Hence, denoting by γ2, . . . , γr the
remaining roots of fK;E(z) = fμ

K′;E′(z), we get

cμr−i,n si(γ, γ2, . . . , γr)
2 > cr−i,n si(γ, γ2, . . . , γr)

2

≥ si−1(γ, γ2, . . . , γr) si+1(γ, γ2, . . . , γr),

which implies, if n ≥ 3, that γ ∈ intRμ(n) (see the proof of Proposition 3.2).
Therefore, R(n) � Rμ(n) when n ≥ 3. For n = 2, we just notice that the
discriminant of fμ

K;E(z) is

Δ = m1(μ)
2
(
4W1(K;E)2 − 4vol(K)vol(E)

m0(μ)m2(μ)

m1(μ)2

)
,

and thus, if K = E = B2 it holds Δ < 0. Hence R(2) = R≤0 � Rμ(2). �

As a consequence of Theorem 1.1 and the known results for the roots of the
Steiner polynomial (see Proposition 1.3 and Theorem 1.4 in [8]), we directly get
Corollary 1.1.

Remark 4.1. It is known that, for any −a ∈ R<0, a > 0, there exist convex bodies
K,E ∈ Kn such that−a is an n-fold root of the Steiner polynomial fK;E(z) (see e.g.
Proposition 2.3 in [8]). This property remains true for any μ-polynomial. Indeed,
since 1/mi(μ), i = 0, . . . , n, satisfy the Aleksandrov–Fenchel inequalities (3.2)
(see (4.2)), then Lemma 3.2 ensures that

n∑
i=0

(
n

i

)
zi = (z + 1)n = fμ

K′;E′(z)

is a μ-polynomial for two convex bodies K ′, E′ ∈ Kn, i.e., −1 is an n-fold root of
fμ
K′;E′(z); for the real number −a, it suffices to consider fμ

K′;(1/a)E′(z).

Several of the above properties for the cone of roots of μ-polynomials (con-
vexity, closeness, monotonicity in the dimension, etc.) remain true for general
m-polynomials (see (1.4)), independently the numbers mi are moments of a mea-
sure on R≥0 or not; in fact, we have only needed that mi(μ) > 0 for all i ≥ 0.
However, the properties collected in Theorem 1.5 and Corollary 1.1 are not true
for arbitrary m-polynomials, as the following example shows.
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Remark 4.2. Let m =
(
e−i(i+1)/2

)
i∈N

and we consider the m-polynomial fm
K;E(z)

for any K,E ∈ Kn. On the one hand, it is easy to check that

(4.3)
mi−1

mi
≤ β

mi+1

mi+2
for all i = 1, 2, . . . ,

where β ≈ 0.4655 is the only real solution of the equation z(z + 1)2 = 1. On the
other hand, it is known (see Theorem 3 in [16] and Theorem 1 in [11]) that

(4.4)
f(z) =

∑n
i=0 ai z

i, with ai > 0 for i = 0, . . . , n, is stable (i.e., all its
roots have negative real part) if ai−1 ai+2 ≤ β ai ai+1.

Then, using (3.2) and (4.3) we get that fm
K;E(z) fulfills the above stability crite-

rion (4.4) for any pair of convex bodiesK,E ∈ Kn and any value of the dimension n.
Therefore, Corollary 1.1 does not hold.

Thus, Theorem 1.5 and Corollary 1.1 provide necessary ‘geometric’ conditions
for a sequence of positive numbers {mi : i = 0, 1, . . . } to be the moments of a
measure on R≥0.

So we already know that the ‘smallest’ cone of roots of μ-polynomials is the
one given by the Steiner polynomial. Next we deal with the ‘largest’ cone of roots
of μ-polynomials, i.e., we prove Theorem 1.6.

We observe that, in the proof of Theorem 1.5, the main tool in order to get the
desired inclusion was the inequality mi+1(μ)mi−1(μ) ≥ mi(μ)

2 for all i ≥ 1. So,
for a ‘reverse’ inclusion we would need that

mi+1(μ)mi−1(μ) ≤ ci mi(μ)
2, i ≥ 1,

for a suitable sequence (ci)i∈N. Theorem 1.6 determines such a sequence, and
thus the corresponding inclusion when working with log-concave measures, i.e.,
measures μ of the form μ(A) =

∫
A
f(t) dt, where f is a log-concave function.

Proof of Theorem 1.6. We consider the real functions f, g : [0,∞) → [0,∞) given
by f(t) = ti−1, g(t) = ti+1, and let

h(t) = sup
{
f(x)1/2g(y)1/2 : t =

x+ y

2
, x, y ∈ [0,∞)

}
.

It clearly holds h
(
(x + y)/2

) ≥ f(x)1/2g(y)1/2 for all x, y ∈ [0,∞) and hence,
since μ is log-concave, by the Prékopa–Leindler inequality (see e.g. Theorem 8.14
in [4]), ∫ ∞

0

h(t) dμ(t) ≥
(∫ ∞

0

ti−1 dμ(t)
)1/2( ∫ ∞

0

ti+1 dμ(t)
)1/2

,

i.e., we get

(4.5)
( ∫ ∞

0

h(t) dμ(t)
)2

≥ mi−1(μ)mi+1(μ).
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So, now we deal with the left-hand side in the above inequality. Taking into account
the definition of h, we maximize, for each t ≥ 0, the function Ft : [−t, t] → [0,∞)
given by

Ft(s) = (t− s)(i−1)/2(t+ s)(i+1)/2.

Its first derivative (Ft)
′(s) = (t2 − s2)(i−1)/2−1

(−is2 + (1 − i)ts + t2
)
has only

one root in (−t, t), namely, t/i, which gives in fact the maximum of the function.
Therefore, we have

h(t) = Ft

(
t

i

)
=

⎧⎨
⎩ ti

(i− 1)(i−1)/2(i+ 1)(i+1)/2

ii
for i > 1,

2t for i = 1.

So, denoting by

ci =
(i− 1)(i−1)(i+ 1)(i+1)

i2i
for all i > 1, c1 = 4,

we get that

(∫ ∞

0

h(t) dμ(t)
)2

=
(∫ ∞

0

c
1/2
i ti dμ(t)

)2

= ci mi(μ)
2,

and thus (4.5) yields

(4.6) cimi(μ)
2 ≥ mi−1(μ)mi+1(μ).

Now we can prove the result. Let ν ∈ Rμ(n). Then there exist convex bodies
K,E ∈ Kn such that fμ

K;E(ν) =
∑n

i=0

(
n
i

)
Wi(K;E)mi(μ)ν

i = 0.

Let ω = (ωi)i∈N = (1, 1, 22, . . . , ii, . . . ). By (3.2) and (4.6), we easily get that
the sequence of positive numbers

(
n
i

)
Wi(K;E)mi(μ)/ωi, i = 0, . . . , n, is ultra-

logconcave, and hence, fμ
K;E(z) is also an ω-polynomial fω

K′;E′(z) for some convex
bodies K ′, E′ ∈ Kn (cf. Lemma 3.2). Thus, fω

K′;E′(ν) = 0, i.e., ν ∈ Rω(n), as
required. �

5. On the stability of generalized Wills μ-polynomials

We conclude the paper considering the stability of Wills μ-polynomials, i.e., we
study the inclusion

Rμ(n) ⊂ {
z ∈ C+ : Re z < 0

} ∪ { 0},

property that we call, following the notation in [8], ‘weak’ stability.
Of course, it is not possible to state a general characterization result for μ-

polynomials for any measure μ. So, it is natural to consider particularly prominent
polynomials of this type, which, at the end, will provide information on the stability
of any μ-polynomial.
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Theorem 1.5 shows that the ‘smallest’ cone of roots of Wills μ-polynomials is
the one given by the Steiner polynomial, and it is known that Steiner polynomials
are weakly stable if and only if n ≤ 9 (see Proposition 1.3 in [8]). Therefore, we
can state the following result:

Corollary 5.1. If n ≥ 10 then, for any measure μ on R≥0, μ-polynomials are not
weakly stable, i.e.,

{
z ∈ C+ : Re z ≤ 0

} ⊂ Rμ(n).

Thus, we wonder for the stability of those polynomials which determine the
‘largest’ cone of roots containing Rμ(n) for any log-concave measure μ on R≥0,
i.e., the ω-polynomials (Theorem 1.6). We prove the following result.

Proposition 5.1. ω-polynomials are weakly stable if and only if n ≤ 3.

Proof. First we notice that the stability criterion (4.4) cannot be applied to fω
K;E(z)

when n = 3 because it is, in general, not fulfilled. Thus, we assume that ω-
polynomials are not weakly stable in dimension n = 3, and hence, since the cone
of roots is convex (cf. Theorem 1.2), we know that there exist K,E ∈ K3 such that
i,−i,−c, c ≥ 0, are the three roots of fω

K;E(z). Then, it is an easy computation to
check that Aleksandrov–Fenchel inequalities (3.2) yield, in terms of c, the relations
4 ≥ 3c2 ≥ 16/3, a contradiction. Therefore, ω-polynomials are weakly stable for
n = 3 and, from the monotonicity of the cone of the roots (see Theorem 1.4), also
for n = 2.

Finally, we consider the ω-polynomial fω
B4;B4

(z) = κ4

∑4
i=0

(
4
i

)
iizi. It can be

checked with a computer or by applying the Routh–Hurwitz criterion (see e.g. [14],
page 181) that fω

B4;B4
(z) has a root with positive real part (ν ≈ 0.03838+0.20807 i).

The non-stability property for all n ≥ 4 is deduced again from the monotonicity
of the cones (Theorem 1.4). �

Thus, using Theorem 1.6, the following result is a direct consequence of the
above proposition.

Corollary 5.2. If n ≤ 3 then, for any log-concave measure μ on R≥0, μ-polyno-
mials are weakly stable.

We remark that this bound for the dimension might be not best possible, since
we do not know whether ω-polynomials are μ-polynomials for some log-concave
measure μ on the non-negative real line R≥0.

Another particulary interesting μ-polynomial is the (relative) Wills polynomial
fg
K;E(z). Its stability can be also characterized.

Proposition 5.2. Relative Wills polynomials fg
K;E(z) are weakly stable if and only

if n ≤ 7.

Proof. It is easy to check, using (3.2), that the stability criterion (4.4) is fulfilled for
n = 7. The weak stability property for all n ≤ 6 follows from Theorem 1.4. Now
we consider f(z) =

∑6
i=1

(
8
i

)
(1/κi)z

i, which is a relative Wills polynomial fg
K;E(z)
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for some K,E ∈ K8 (see Lemma 3.2). It can be checked with a computer or by
applying the Routh–Hurwitz criterion that f(z) has a root with positive real part,
ν ≈ 0.05244 + 0.94238 i. The non-stability property for n ≥ 8 is deduced again
from Theorem 1.4. �

We finish the section noticing an additional property of the relative Wills poly-
nomial. In [9], we studied the properties of the classical Wills polynomial fg

K;Bn
(z)

and, among others, we characterized the cone Rg(n;Bn) in dimensions n = 2, 3
(see Theorem 1.2 in [9]): Rg(i;Bi) = Rg(Bi;Bi), i = 2, 3. An analogous argument
shows that these cones remain unchanged if any gauge body E is considered.

Proposition 5.3. Rg(i) = Rg(Bi;Bi), i = 2, 3.
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