
Rev. Mat. Iberoam. 31 (2015), no. 2, 497–530
doi 10.4171/rmi/843

c© European Mathematical Society

Boundary measures, generalized Gauss–Green

formulas, and mean value property in metric
measure spaces

Niko Marola, Michele Miranda jr. and Nageswari Shanmugalingam

Abstract. We study mean value properties of harmonic functions in
metric measure spaces. The metric measure spaces we consider have a
doubling measure and support a (1, 1)-Poincaré inequality. The notion of
harmonicity is based on the Dirichlet form defined in terms of a Cheeger
differentiable structure. By studying fine properties of the Green function
on balls, we characterize harmonic functions in terms of a mean value
property. As a consequence, we obtain a detailed description of Poisson
kernels. We shall also obtain a Gauss–Green type formula for sets of
finite perimeter which posses a Minkowski content characterization of the
perimeter. For the Gauss–Green formula we introduce a suitable notion
of the interior normal trace of a regular ball.

1. Introduction

Solving the Dirichlet problem on a smooth domain in R
n is equivalent to con-

structing harmonic measure on the boundary of the domain. More precisely, it is
known that the classical harmonic measure can be expressed in terms of a Poisson
kernel which is given by the Radon–Nikodym derivative of harmonic measure with
respect to the Hausdorff boundary measure; that is,

P (x, y) =
dνx

dHn−1
(y).

In general metric measure spaces with a doubling measure and a Poincaré
inequality, the Dirichlet problem has been solved for Sobolev type boundary data
in [24], and also for all continuous boundary values in [4]. In [4] the authors
provide an integral representation for the solution to the Dirichlet problem, and
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perimeter measure, Poincaré inequality, singular function.



498 N. Marola, M. Miranda jr. and N. Shanmugalingam

hence extend the solvability to L1 boundary data. In this general setting, however,
due to lack of a natural choice of boundary Hausdorff measure one has to replace
a Poisson kernel with a Poisson kernel-like object for which

Px0(x, y) =
dνx
dνx0

(y).

It was shown in [4] that for a fixed x0 ∈ Ω, where Ω is a bounded open subset
of X , there exists a Radon measure νx0 concentrated on ∂Ω, i.e., νx0 is a harmonic
measure on ∂Ω evaluated at x0, and a real-valued function Px0 on Ω×∂Ω such that
whenever f ∈ L1(∂Ω, νx0) the following expression for the harmonic extension Hf

is valid:

Hf (x) =

∫
∂Ω

f(y)Px0(x, y) dνx0(y),

and moreover, for each y ∈ ∂Ω the function Px0(·, y) is harmonic in Ω.

Our main objective is to find a relationship between the Poisson kernel that
generates solutions to the Dirichlet problem in terms of Cheeger differentiable
structure, and the perimeter measure of a ball of finite perimeter in metric mea-
sure spaces. Our framework is a complete geodesic metric measure space with a
doubling Borel measure, and we moreover assume that the space supports a (1, 1)-
Poincaré inequality. These conditions are discussed in detail in Section 2. We
shall describe the Poisson kernel in terms of an analog of a normal derivative of
the Green function at the boundary.

We also study divergence-measure fields along the lines of Ziemer [27] in this

general context. We consider an L2-vector field, �F , from a metric measure space X
to R

k for which div �F is a real-valued signed Borel measure with finite mass.

To investigate divergence-measure fields we shall provide a meaningful defini-
tion for the divergence operator in metric measure spaces. We then generalize
some results obtained in [27] to the metric setting. In particular, we obtain the
Gauss–Green type integration by parts formula for sets of finite perimeter which
possess a Minkowski content characterization of the perimeter. For the Gauss–
Green formula we introduce a suitable notion of the interior normal trace of a
regular ball.

We mention a related paper by Thompson and Thompson [26] in which the
authors define divergence and prove an analogue of the Gauss–Green theorem in
Minkowski spaces, i.e., in finite-dimensional real normed spaces with smooth and
strictly convex unit ball.

We use the results for the divergence operator to characterize the Laplace op-
erator of the Green function on regular balls as the sum of the Dirac point mass
and a measure concentrated on the boundary of the ball. This characterization
allows us to give a precise description of the Poisson kernel defined in [4]. In the
setting of Heisenberg groups, we explain the relation between this measure and the
perimeter measure or the codimension one Hausdorff measure.
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2. Preliminaries

Here we recall some basic definitions and the notation we shall use in this paper.
Our framework is given by a complete metric measure space (X, d, μ), where μ is
doubling, that is, there is a constant c > 0 such that for every ball B = Br(x),
x ∈ X and r > 0,

(2.1) 0 < μ(2B) ≤ c μ(B) < ∞.

We write Br(x) for the ball centered at x with radius r > 0, and λB = Bλr(x) for
any λ > 0. The smallest value of c for which (2.1) is valid is called the doubling
constant of X , and we shall denote it as cd.

An upper gradient for an extended real-valued function u : X → [−∞,+∞] is
a Borel function g : X → [0,∞] such that

(2.2)
∣∣u(γ(0))− u(γ(lγ))

∣∣ ≤ ∫
γ

g ds

for every nonconstant compact rectifiable curve γ : [0, lγ ] → X . We say that g is
a p -weak upper gradient of u if (2.2) holds for p -almost every curve; the notion of
p -almost every curve is in the sense of the p -modulus of a curve family Γ defined as

Modp(Γ) = inf
{∫

X

�p dμ : � ≥ 0 is a Borel function,

∫
γ

� ds ≥ 1 for all γ ∈ Γ
}
.

If u has an upper gradient in Lp(X,μ), then it is possible to prove the existence of
a unique minimal p -weak upper gradient gu ∈ Lp(X,μ) of u, where gu ≤ g μ-a.e.
for every p -weak upper gradient g ∈ Lp(X,μ) of u. We refer to [24] for the case
p > 1, and for the case p = 1 to [12].

In what follows, the metric space is supposed to support a weak (1, 1)-Poincaré
inequality: there exist constants c > 0 and λ ≥ 1 such that for all balls Br with
Bλr ⊂ X , for any Lipschitz function f ∈ Lip(X) and minimal p -weak upper
gradient gf of f we have

(2.3)

∫
Br

|f − fBr | dμ ≤ c r

∫
Bλr

gf dμ,

where

fBr :=

∫
Br

f dμ :=
1

μ(Br)

∫
Br

f dμ

is the integral average of f on Br(x).
It is well known that the doubling condition and the Poincaré inequality imply

the quasiconvexity of the metric space X , see [17] and [13]. Therefore, up to a bi-
Lipschitz change of the metric, the space X can be assumed to be geodesic, that is,
given x, y ∈ X there is a curve γ with end points x, y and length d(x, y). Moreover,
for a geodesic space the weak (1, 1)-Poincaré inequality implies the (1, 1)-Poincaré
inequality, i.e., (2.3) holds with λ = 1. Therefore, as most of the properties of
metric spaces we consider are bi-Lipschitz invariant, it is not restrictive to assume
that X is a geodesic space and supports a (1, 1)-Poincaré inequality.
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We remark here that up to Proposition 4.2 assuming only a (1, 2)-Poincaré
inequality would suffice. However, in Proposition 4.2, and what follows thereafter,
a (1, 1)-Poincaré inequality is needed, for instance, to conclude that the minimal
1-weak upper gradient is equal μ-a.e. to its pointwise Lipschitz-constant function.

As proved by Cheeger in [7], in our setting the following differentiable structure
is given. There exists a countable measurable covering Uα of X , and Lipschitz
coordinate chartsXα = (Xα

1 , . . . , X
α
kα
) : X → R

kα such that μ(Uα) > 0 for each α,
μ(X \⋃α Uα) = 0 and for all α the following holds: the charts (Xα

1 , . . . , X
α
kα
) are

linearly independent on Uα and 1 ≤ kα ≤ N , where N is a constant depending
on the doubling constant and the constants from the (1, 1)-Poincaré inequality
satisfying the following condition: For any Lipschitz function f : X → R there is
an associated unique (up to a set of zero μ-measure) measurable function dαf :
Uα → R

kα for which the following Taylor-type approximation

(2.4) f(x) = f(x0) + dαf(x0) ·
(
Xα(x) −Xα(x0)

)
+ o(d(x, x0))

holds for μ-a.e. x0 ∈ Uα.
The previous construction implies, in particular, that for x ∈ Uα there exists

a norm ‖ · ‖x on R
kα equivalent to the Euclidean norm | · |, such that gf (x) =

‖dαf(x)‖x for almost every x ∈ Uα. Moreover, it is possible to show that there
exists a constant c > 1 such that

1

c
gf (x) ≤ |df(x)| ≤ c gf(x)

for all Lipschitz functions f and μ-a.e. x ∈ X . By df(x) we mean dαf(x) whenever
x ∈ Uα. Indeed, one can choose the cover such that Uα ∩ Uβ is empty whenever
α 
= β.

Formula (2.4) implies in particular linearity of the operator f �→ df and also
the Leibniz rule d(fg) = f dg + g df holds for all Lipschitz functions f and g.

For the definition of the Sobolev spaces N1,p(X,μ) we will follow [23]. Since we
assume X to satisfy the (1, 1)-Poincaré inequality, the Sobolev space N1,p(X,μ),
1 ≤ p < ∞, can also be defined as the closure of the collection of Lipschitz functions
on X in the following N1,p-norm

‖u‖p1,p = ‖u‖pLp(X) + ‖gu‖pLp(X).

The space N1,p(X,μ), equipped with the N1,p-norm, is a Banach space and a
lattice [23].

Let E ⊂ X be a Borel set. The p -capacity of E is defined as usual to be the
number

Capp(E) = inf
u

(∫
X

|u|p dμ+

∫
X

|du|p dμ
)
,

where the infimum is taken over all u ∈ N1,p(X,μ) for which u = 1 on E. We
say that a property holds p -quasieverywhere, p - q.e. for short, if the set of points
for which the property does not hold has p -capacity zero. For instance, if u, v ∈
N1,p(X,μ) and u = v μ -a.e., then u = v p - q.e. and ‖u − v‖1,p = 0. If we,
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moreover, redefine a function u ∈ N1,p(X,μ) on a set of zero p -capacity, then it
remains a representative of the same equivalence class in N1,p(X,μ).

We shall also use Sobolev spaces defined on a domain Ω (i.e., a non-empty
open pathconnected set) of X ; the space N1,2(Ω, μ) is defined in the same way the
space N1,2(X,μ) is, but considering Ω as the ambient space. The space of Sobolev
functions with zero boundary values is instead defined as

N1,p
0 (Ω, μ) =

{
u ∈ N1,p(X,μ) : u = 0 p - q.e. on X \ Ω} .

We have that N1,p
0 (Ω, μ) = N1,p(X,μ) as Banach spaces if and only if Capp(X \

Ω) = 0.
In what follows, let p = 2. By [10], the Cheeger differentiable structure extends

to all functions in N1,2(X,μ) and N1,2(Ω, μ), and hence we define an inner product
on N1,2(X,μ) by the Dirichlet form

E(u, v) =
∫
X

〈du, dv〉 dμ,

for all u, v ∈ N1,2(X,μ). It can be proved that such a form is strongly regular with
the domain, or core, given by N1,2(X,μ).

We recall that a Dirichlet form is said to be strongly regular if there exists a
subset K of the domain of the Dirichlet form, dense in both this domain and in
the class of Lipschitz functions on X , such that the distance dE : X ×X → [0,∞]
defined, in our case, by

dE(x, y) = sup
{
ϕ(x)− ϕ(y) : |dϕ(x)| ≤ 1

}
is a metric on X that induces the same topology on X as the original metric
topology on X . In fact, under the doubling property and a Poincaré inequality
dE is bi-Lipschitz equivalent to the original metric d on X , and so the Dirichlet
form E(u, v) is strongly regular. The set K is called a core of E . We refer to [25]
and [11] for more details.

For each α > 0 we define the bilinear form

Eα(u, v) = α

∫
X

u v dμ+ E(u, v).

We thus have on N1,2(X,μ) the norm ‖ · ‖α induced by Eα which is equivalent to
the N1,2-norm. In this way, N1,2(X,μ) with the norm ‖·‖α is a Hilbert space with
inner product Eα. Note that E by itself is not an inner product on N1,2(X,μ);
E(u, u) = 0 if and only if u is a constant (see [7]). If, for example, μ(X) < ∞, then
E(u, u) = 0 does not imply that u = 0.

The fact that the bilinear form Eα yields a Hilbert space can be seen as follows.
Since the N1,2-norm is comparable to the Eα-norm, we have that N1,2(X,μ) is
complete also with respect to the Eα-norm. In this way the Eα-norm is well defined
for any u ∈ N1,2(X,μ). By approximation and the linearity of the map u �→ du,
the Leibniz rule follows for functions u and v in N1,2(X,μ) (we refer for these
properties to the paper [10]).
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Remark 2.1. We point out that the convergence of a sequence (uk)k to a func-
tion u in N1,2(X,μ) is same as the convergence of the two sequences (uk−u)k and
(guk−u)k to 0 in L2(X,μ).

In general, the convergence of uk to u in L2(X,μ) together with the convergence
of guk

to gu in L2(X,μ) does not imply that uk converges to u in N1,2(X,μ). As
a counterexample, consider the metric space X = R

2 with the distance induced
by the norm ‖(x, y)‖1 = |x| + |y| and with μ the Lebesgue measure; in this case
the upper gradient is determined by the dual norm ‖(x, y)‖∞ = max{|x|, |y|}. It
suffices to verify this for a Lipschitz function u. For such function, by Theorem 4.38

in [7], denoting by B
(1)
r (x0, y0) the ball in the norm ‖ · ‖1 with radius r centered

at (x0, y0), we have that

gu(x0, y0) = lim
r→0

sup
(x,y)∈B

(1)
r (x0,y0)

|u(x, y)− u(x0, y0)|
r

= max
‖v‖1=1

〈∇u(x0, y0), v
〉
R2 = ‖∇u(x0, y0)‖∞.

The sequence uk(x, y) = x + fk(y), where fk(y) = dist(y, 1
kZ) converges to the

function u(x, y) = x, but for a.e. point

guk
(x, y) = ‖∇uk(x, y)‖∞ = 1 = ‖∇u(x, y)‖∞ = gu(x, y)

and

guk−u(x, y) = ‖∇uk(x, y)−∇u(x, y)‖∞ = ‖∇fk(y)‖∞ = 1.

Nevertheless, it is possible to use Mazur’s lemma to prove that for a convex combi-
nation the aforementioned property holds true, both for the Cheeger differentiable
structure and for the upper gradient. For the Cheeger differentiable structure,
however, it is not necessary to take convex combinations. Indeed, in this case the
sequence of gradients duh is bounded in L2(X,Rk, μ), and so it is weakly conver-
gent to some ϕ ∈ L2(X,Rk, μ). Mazur’s lemma is then needed only to show that
ϕ = du. We can consider convex combinations

vk =

N(k)∑
i=1

λ
(k)
i ui

with strong convergence vk → u in L2(X,μ) and dvk → ϕ in L2(X,Rk, μ), that is
vk → u in N1,2(X,μ), and we may then conclude that ϕ = du. We then obtain

lim
k→∞

∫
X

|du− duk|2 dμ =

∫
X

|du|2 dμ+ lim
k→∞

( ∫
X

|duk|2 dμ− 2

∫
X

〈du, duk〉 dμ
)

= 2

∫
X

|du|2 dμ− 2

∫
X

〈du, ϕ〉 dμ = 0

by the weak convergence.
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3. Metric Laplace operator

In this section we construct a metric Laplace operator ΔX on the metric measure
space (X, d, μ). Recall that a Dirichlet form E is strongly local if whenever u, v are
in the domain of E and u is constant on the support of v, then E(u, v) = 0. Having
a strongly local Dirichlet form at one’s disposal it is rather standard argument to
construct an operator associated to the form. Most of the statements (without
detailed proofs) can be found in the book of Fukushima, Oshima and Takeda [11],
but we provide complete proofs for the reader’s convenience. Since this operator
plays the role of the Laplace operator on X , we shall denote it by ΔX . Setting

Dom(ΔX) =
{
u ∈ N1,2(X,μ) : there exists f ∈ L2(X,μ)

such that E(u, v) = −
∫
X

fv dμ for all v ∈ N1,2(X,μ)
}
,

the Laplace operator is defined by

ΔXu = f.

We summarize the main properties of this operator in the following theorem.
The main point is to construct the resolvent operator Rα, i.e., an operator that
gives for any α > 0 the formal solution of the problem

(3.1) (α−ΔX)u = f,

and to deduce from this the main properties of ΔX .

Theorem 3.1. For each α > 0, there is an injective bounded linear operator
Rα : L2(X,μ) → N1,2(X,μ) such that for all v ∈ N1,2(X,μ)∫

X

fv dμ = Eα(Rαf, v) = E (Rαf, v) + α (Rαf, v)2.

This operator satisfies:

1) for any f ∈ L2(X,μ), ‖Rαf‖2 ≤ 1
α ‖f‖2;

2) for any α, β > 0, Rα(L
2(X,μ)) = Rβ(L

2(X,μ)), and the resolvent equation
holds true

(3.2) Rαf −Rβf = (β − α)RαRβf

for all f ∈ L2(X,μ);

3) for any f ∈ L2(X,μ), we have the following limit in the L2(X,μ)-norm:

(3.3) lim
α→∞αRαf = f.

Properties 2) and 3) imply that Rα(L
2(X,μ)) is dense in L2(X,μ). In addition,

Dom(ΔX) = Rα(L
2(X,μ))

for any α > 0, and for u = Rαf , ΔXu := αu − f is independent of α.
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Proof. Let us fix f ∈ L2(X,μ). Then we can define the linear operator Tf : N
1,2(X)

→ R by Tf (v) = (f, v)2 :=
∫
X f v dμ. We have that

|Tf (v)| ≤ ‖f‖2 ‖v‖2 ≤ ‖f‖2√
α

Eα(v, v)1/2.

Therefore Tf is a bounded linear operator on the Hilbert space (N1,2(X,μ), Eα), so
by the Riesz representation theorem, there exists an element ofN1,2(X,μ), denoted
by Rαf , such that Tf(v) = Eα(Rαf, v). The map Rα : L2(X,μ) → N1,2(X,μ)
defined above is linear by the linearity of the defining operator f �→ Tf .

Since

α (Rαf, v)2 = Eα(Rαf, v)− E(Rαf, v) = (f, v)2 − E(Rαf, v),

choosing v = Rαf and applying Hölder’s inequality, we see that

0 ≤ α ‖Rαf‖22 = α (Rαf,Rαf)2 = (f,Rαf)2 − E(Rαf,Rαf)

≤ (f,Rαf)2 ≤ ‖f‖2‖Rαf‖2.

Thus we obtain Claim 1 of the theorem, namely,

α ‖Rαf‖2 ≤ ‖f‖2.

Thus Rα as an operator mapping L2(X,μ) to L2(X,μ) is bounded with image in
N1,2(X,μ) ⊂ L2(X,μ) and its operator norm given by

(3.4) ‖Rα‖ := ‖Rα‖L2→L2 ≤ 1

α
.

We now prove the resolvent equation (3.2). Let us take f ∈ L2(X,μ) and
v ∈ N1,2(X,μ). Then

Eα
(
Rαf −Rβf + (α − β)RαRβf, v

)
= Eα(Rαf, v)− Eα(Rβf, v) + (α− β) Eα(RαRβf, v)

= (f, v)2 − E(Rβf, v)− α (Rβf, v)2 + (α− β)(Rβf, v)2

= (f, v)2 − Eβ(Rβf, v) = 0.

This means that for f ∈ N1,2(X,μ), and then by density also for f ∈ L2(X,μ), we
have the identity

Rαf −Rβf + (α− β)RαRβf = 0.

Moreover, if we consider f ∈ N1,2(X,μ), we have (denoting Eα(f, f)1/2 =: ‖f‖α)

α ‖αRαf − f‖22 ≤ Eα (αRαf − f, αRαf − f)

= α2Eα(Rαf,Rαf) + ‖f‖2α − 2α Eα(Rαf, f)

= α2(f,Rαf)2 + E(f, f)− α ‖f‖22 .
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By Hölder’s inequality and by using (3.4), we also get

(3.5) α (f,Rαf)2 − ‖f‖22 ≤ α ‖Rαf‖2 ‖f‖2 − ‖f‖22 ≤ 0.

Therefore,

lim
α→∞ ‖αRαf − f‖2 ≤ lim

α→∞

√
E(f, f)

α
= 0.

To extend this limit to be valid for any f ∈ L2(X,μ), we use the boundedness
of Rα, by fixing fε ∈ N1,2(X,μ) such that ‖f − fε‖2 ≤ ε. In this way we get that

‖αRαf − f‖2 ≤ ‖αRαfε − fε‖2 + α ‖Rα(f − fε)‖2 + ‖f − fε‖2
≤ ‖αRαfε − fε‖2 + 2ε,

and hence
lim sup
α→0

‖αRαf − f‖2 ≤ 2ε.

From this Claim 3 of the theorem follows since ε was arbitrary.
We have now proved that Rα is a strongly continuous resolvent (see [11]) for

any α > 0. Let us next prove injectivity of Rα. Suppose f ∈ L2(X,μ) is such that
Rβf = 0 for some β > 0. Then by the resolvent equation (3.2),

0 = Rαf −Rβf + (α − β)RαRβf = Rαf,

that is, Rαf = 0 for every α > 0. Now by equation (3.3), we see that f = 0, that
is, Rα is injective. We can therefore define the inverse map R−1

α : Rα(L
2(X,μ)) →

L2(X,μ). We claim that

Dom(ΔX) = Rα(L
2(X,μ)), ΔXu = αu−R−1

α u.

For this definition to be consistent, we first show that the set Rα(L
2(X,μ)) and the

operator Aαu := αu−R−1
α u do not depend on α. By the resolvent equation (3.2),

Rβf = Rα

(
f + (α− β)Rβf

)
.

Therefore, for every f ∈ L2(X,μ), Rβf ∈ Rα(L
2(X,μ)), and hence

Rβ

(
L2(X,μ)

) ⊂ Rα

(
L2(X,μ)

)
.

By the symmetry of the argument, we have the required result Rα(L
2(X,μ)) =

Rβ(L
2(X,μ)). Let us write D = Rβ(L

2(X,μ)).
If u ∈ D and α, β > 0, then Aαu−Aβu = (α−β)u−R−1

α u+R−1
β u. Therefore,

Rα(Aαu−Aβu) = αRαu− βRαu− u+RαR
−1
β u.

On the other hand, since D = Rβ(L
2(X,μ)), there exists f ∈ L2(X,μ) such that

Rβf = u. Hence we have, by the resolvent equation (3.2), that

Rα(Aαu−Aβu) = αRαRβf − βRαRβf −Rβf +Rαf

= Rαf −Rβf + (α− β)RαRβf = 0.

By injectivity of Rα, we see that Aαu−Aβu = 0, i.e., Aαu = Aβu.
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Let us now show that Rα(L
2(X,μ)) ⊂ Dom(ΔX). Let u ∈ Rα(L

2(X,μ)). Then
there exists f ∈ L2(X,μ) such that u = Rαf . The identity Eα(Rαf, v) = (f, v)2
for any v ∈ N1,2(X,μ) can be written out as follows:∫

X

〈du, dv〉 dμ = E(u, v) = Eα(u, v)− α(u, v)2 = Eα(Rαf, v)− α(u, v)2

= (f, v)2 − α(u, v)2 = −
∫
X

(αu − f) v dμ

for all v ∈ N1,2(X,μ). This simply means that u ∈ Dom(ΔX) and that ΔXu =
αu− f = αu−R−1

α u = Aαu.
For the reverse inclusion, Dom(ΔX) ⊂ Rα(L

2(X,μ)), let us consider u ∈
Dom(ΔX). Thus there exists f ∈ L2(X,μ) such that for all v ∈ N1,2(X,μ) we
have ∫

X

〈du, dv〉 dμ = −
∫
X

fv dμ.

Then consider w := Rα(αu − f); we obtain that

Eα(w, v) = (αu−f, v)2 = α

∫
X

uv dμ−
∫
X

fv dμ = α

∫
X

uv dμ+ E(u, v) = Eα(u, v),

that is w = u, which means that u ∈ Rα(L
2(X,μ)). The identity f = ΔXu =

αu− R−1
α u follows easily.

In addition to the density of Dom(ΔX) in L2(X,μ), we also have that Dom(ΔX)
is dense in N1,2(X,μ). In fact, by (3.4) and (3.5), for any f ∈ N1,2(X,μ), we have
that

‖αRαf − f‖2α = Eα(αRαf − f, αRαf − f)

= α2Eα(Rαf,Rαf)− 2α Eα(Rαf, f) + Eα(f, f)
= α2(f,Rαf)2 − α(f, f)2 + E(f, f) ≤ E(f, f),

that is the sequence (αRαf − f)α is bounded in N1,2(X,μ). Therefore, for any
sequence of positive real numbers (αn)n so that limn αn = ∞, the corresponding
sequence of functions αnRαnf − f is a bounded sequence, and hence by Mazur’s
lemma we have a sequence of convex combinations converging in N1,2(X,μ);

(N(n)∑
i=n

λi,nαiRαif
)
− f → w ∈ N1,2(X,μ).

On the other hand, limα→∞ αRαf = f in L2(X,μ). Thus w = 0 μ-a.e. in X , and
hence by the fact that w ∈ N1,2(X,μ) we know that w = 0 p - q.e. in X . There-
fore, it must be that w = 0. Observe that the sequence of convex combinations∑N(n)

i=n λi,nαiRαif lies in Dom(ΔX) and converges to f ∈ N1,2(X,μ), so the proof
is completed. �

We can now give the definition of a Cheeger harmonic function in the obvious
way.
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Definition 3.2. A function u ∈ N1,2(Ω, μ) is said to be Cheeger harmonic (re-
ferred to in this paper as harmonic) if∫

Ω

〈du, dv〉 dμ = 0

for all v ∈ N1,2
0 (Ω, μ), i.e., u is harmonic if and only if u ∈ Dom(ΔΩ) and ΔΩu = 0.

Here ΔΩ is the operator defined in Remark 3.4 below.

Remark 3.3. The notion of Cheeger harmonicity refers to the fact that we are
using the Cheeger differentiable structure. This notion has been previously consid-
ered in the paper [19], where Lipschitz regularity of Cheeger harmonic functions
has been investigated. We also underline that Cheeger harmonicity can be equiv-
alently be given in terms of a minimizer of the Dirichlet energy: u is Cheeger
harmonic if and only if for any ball Br∫

Br

|du|2 dμ ≤
∫
Br

|dv|2 dμ,

for all v such that v − u ∈ N1,2
0 (Br, μ).

Remark 3.4. Let Ω ⊂ X be a bounded domain satisfying a (1, 2)-Poincaré in-
equality with Cap2(X \ Ω) > 0. The previous construction of ΔX can also be
used to construct a Laplace operator on the subdomain Ω. There are essentially
two different Laplace operators; the first is just the restriction of ΔX to Ω and is
defined by

Dom(ΔΩ) =
{
u ∈ N1,2(Ω, μ) : there exists f ∈ L2(Ω, μ) such that∫

Ω

〈du, dv〉 dμ = −
∫
Ω

fv dμ for all v ∈ N1,2
0 (Ω, μ)

}
,

and the operator is given by
ΔΩu = f.

The second alternative, adapted to the inhomogeneous Dirichlet problem, is the
operator defined by

Dom(ΔD
Ω ) =

{
u ∈ N1,2

0 (Ω, μ) : there exists f ∈ L2(Ω, μ) such that∫
Ω

〈du, dv〉 dμ = −
∫
Ω

fv dμ for all v ∈ N1,2
0 (Ω, μ)

}
,

and
ΔD

Ωu = f.

To define the latter operator, the previous procedure has to be modified by con-
sidering the Hilbert space N1,2

0 (Ω, μ) with the inner product Eα for all α > 0, to
obtain the resolvent operator R0

α : N1,2
0 (Ω, μ) → N1,2

0 (Ω, μ) with

Eα(R0
αf, v) = (f, v)2
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whenever v ∈ N1,2
0 (Ω, μ). Since the vector subspace Lip0(Ω) of N

1,2
0 (Ω, μ) is also a

dense subspace of L2(Ω, μ), we may extend R0
α to be an injective map from L2(Ω)

to N1,2
0 (Ω). These properties, like the one proved for Rα in Theorem 3.1, are the

essential properties for the definition of the operator ΔD
Ω .

It is easy to verify that the operator ΔΩ is the restriction of ΔX to Ω in the
following sense: If u ∈ Dom(ΔX), then

ΔΩ(u|Ω) = (ΔXu)|Ω.

On the other hand, the operator ΔD
Ω is the restriction of ΔΩ to the spaceN1,2

0 (Ω, μ),
that is

Dom(ΔD
Ω ) = Dom(ΔΩ) ∩N1,2

0 (Ω, μ)

with ΔD
Ωu = ΔΩu for u ∈ Dom(ΔΩ) ∩N1,2

0 (Ω, μ).

3.1. Measure-valued Laplace operator

Let Ω be a domain in X . We give the following definition of the measure-valued
Laplace operator DΩ on Ω. By Mb(Ω) we denote the space of all bounded signed
Borel measures on Ω, i.e., ν ∈ Mb(Ω) is a real-valued signed Borel measure on Ω
with bounded total variation

|ν|(Ω) = sup
{∫

Ω

ϕdν : ϕ ∈ Lipc(Ω), ‖ϕ‖∞ ≤ 1
}
< ∞.

We remark that to compute the total variation of a measure we test in the
space Lipc(Ω) of Lipschitz functions on Ω with compact support instead of the
space Cc(Ω) of continuous functions with compact support; we may do this since
Lipc(Ω) is clearly dense in Cc(Ω).

We define

Dom(DΩ) =
{
u ∈ N1,2(Ω, μ) : there exists ν ∈ Mb(X) such that

E(u, v) = −
∫
Ω

v dν for all v ∈ Lipc(Ω)
}
,(3.6)

and then we set
DΩu = ν.

Example 3.5. As an example, we can consider the Euclidean space (Rn, ‖ ·‖) and
modify its metric structure in two ways, which essentially lead to the same metric
measure structure. We fix Ω ⊂ R

n an open set with regular boundary and we can
modify either the measure by considering dμ = (1 + χΩ)dLn, or the differential
structure du = (1 + αχΩ)∇u, where α =

√
2− 1.

In both cases we have, for u, v ∈ C2
c (R

n),∫
Rn

〈du, dv〉 dμ =

∫
Rn

∇u · ∇v dx+

∫
Ω

∇u · ∇v dx

=−
∫
Rn

vΔudx −
∫
Ω

vΔu dx+

∫
∂Ω

v∇u · νΩ dHn−1.

Then u ∈ Dom(ΔRn) if and only if ∇u · νΩ = 0 on ∂Ω and Δu ∈ L2(Rn).
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In addition, in the case μ = (1+χΩ)Ln with the standard differential structure
we also have

ΔRnu = Δu.

In the second case, where μ = Ln and du = (1 + αχΩ)∇u, we obtain

ΔRnu = (1 + χΩ)Δu.

In a similar fashion, Dom(DRn) is given by those functions u for which Δu ∈
L1(Rn) and the trace of ∇u · νΩ ∈ L1(∂Ω,Hn−1), and

DRnu = Δuμ−∇u · νΩHn−1 ∂Ω.

It can be verified that Dom(DΩ) is a vector space and that DΩ is linear. We
wish to expand the class of test functions in the definition of the domain Dom(DΩ)
from Lipc(Ω) to allow for test-functions v in N1,2

0 (Ω, μ), see Proposition 3.8. For
that, we need the following lemma.

Lemma 3.6. If E ⊂ Ω is a Borel set such that Cap2(E) = 0, then for every
u ∈ Dom(DΩ), |DΩu|(E) = 0.

Proof. By the Jordan decomposition theorem, the measure DΩu can be decom-
posed into its positive and negative parts, D+

Ωu and D−
Ωu; this means that we

can decompose Ω into two disjoint Borel sets Ω = Ω+ ∪ Ω− in such a way that
DΩu(B) ≥ 0 for every B ⊂ Ω+ and DΩu(B) ≤ 0 for every B ⊂ Ω−. Hence
we may, without loss of generality, consider E ⊂ Ω+; in fact we can decompose
E = E+ ∪E− and use the monotonicity of capacity. Further, we may also assume
that E is a compact set, since as Radon measures both D+

Ωu and D−
Ωu are inner

measures and E is a Borel set.
Since Cap2(E) = 0, we have also that the relative capacity Cap2(E,Ω) is zero.

This can be seen by multiplying those Lipschitz test-functions which were used for
computing Cap2(E) by another Lipschitz function η which is 1 on a neighborhood
of the compact set E and has compact support in Ω. We can then find a sequence of
Lipschitz functions (ϕi)i so that 0 ≤ ϕi ≤ 1 on X , ϕi = 1 on E, and ‖ϕi‖N1,2(X) ≤
2−i, and ϕi are compactly supported in Ω. We may assume that the sequence
(ϕi)i converges pointwise to zero outside of the compact set E (we can do so by
choosing ϕi to have support in the open set

⋃
x∈E B(x, 1/i)). We have∣∣∣ ∫

X

ϕi dDΩu
∣∣∣ = ∣∣∣ ∫

X

〈du, dϕi〉 dμ
∣∣∣ ≤ ( ∫

X

|du|2 dμ
)1/2(∫

X

|dϕi|2 dμ
)1/2

≤
(∫

X

|du|2 dμ
)1/2

‖ϕi‖N1,2(X,μ),

which tends to 0 as i → ∞.
On the other hand, since ϕi are all bounded by 1 and |DΩ|(X) < ∞, by the

Lebesgue dominated convergence theorem we have

lim
i→∞

∫
X

ϕi dDΩu = DΩu(E) = D+
Ωu(E).

A similar argument shows that D−
Ωu(E) = 0, and hence the proof follows. �
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Remark 3.7. The requirement that E is a Borel set in the above lemma is not
a serious restriction, because if E ⊂ Ω is a set with Cap2(E) = 0, then there is a
Borel set E0 with E ⊂ E0 ⊂ Ω such that Cap2(E0) = 0.

The following proposition tells us that we do not have to restrict ourselves to
having test-functions v only in Lipc(X) in (3.6).

Proposition 3.8. Let u ∈ Dom(DΩ). Then for every v ∈ N1,2
0 (Ω, μ) ∩ L∞(Ω, μ)

the following holds:

E(u, v) = −
∫
Ω

v dDΩu.

Proof. We first assume that v has compact support in Ω. Note that by the
(1, 2)-Poincaré inequality we can approximate compactly supported functions in
N1,2(Ω, μ) by Lipschitz functions. So we can find a sequence of compactly sup-
ported Lipschitz functions (ϕi)i on Ω that converge to v in the N1,2(Ω, μ)-norm.
By passing to a subsequence if necessary, we may also assume that ϕi → v point-
wise outside a set of zero 2-capacity; we refer to [23]. Since v is bounded, we can
also assume that the approximating compactly supported Lipschitz functions ϕi

are also uniformly bounded by M := ‖v‖∞. Applying ϕi as in (3.6), we see that∫
Ω

ϕi dDΩu = −
∫
Ω

〈dϕi, du〉 dμ → −
∫
Ω

〈dv, du〉 dμ.

By Lemma 3.6, we know that ϕi → v almost everywhere with respect to the
total variation measure |DΩu|. By the Lebesgue dominated convergence theorem
applied to the uniformly bounded functions ϕi with respect to the positive and
negative parts DΩu

+, DΩu
− of the signed Borel measure DΩu, we may conclude

that ∫
Ω

ϕi dDΩu →
∫
Ω

v dDΩu.

Hence equation (3.6) holds for all compactly supported functions v ∈ N1,2(Ω, μ)∩
L∞(Ω, μ).

To pass to any v ∈ N1,2
0 (Ω, μ)∩L∞(Ω, μ), we note that functions in N1,2

0 (Ω, μ)
with compact support in Ω form a dense subclass of N1,2

0 (Ω, μ) (see [24]). Hence,
if v is in N1,2

0 (Ω, μ) ∩ L∞(Ω, μ), we can find a sequence of compactly supported
functions vi from N1,2

0 (Ω, μ)∩L∞(Ω, μ) such that vi → v in N1,2
0 (Ω, μ). As before,

we can also ensure that vi → v 2-capacity almost everywhere in Ω. Hence∫
Ω

〈du, dv〉 dμ = lim
i→∞

∫
Ω

〈du, dvi〉 dμ = − lim
i→∞

∫
Ω

vi dDΩu,

and then if v is bounded in Ω we have

lim
i→∞

∫
Ω

vi dDΩu =

∫
Ω

v dDΩu,

giving the desired result for all bounded functions in N1,2
0 (Ω, μ). �
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We shall also need the following lemma, which is based on the Lebesgue de-
composition of the measure DΩ given by

dDΩu = fudμ+ dDs
Ωu,

where fu = dDΩu/dμ is the absolutely continuous part and Ds
Ω the singular part

of DΩ.

Lemma 3.9. Let u ∈ Dom(DΩ). If the singular part Ds
Ω of DΩu is zero and if

the Radon–Nikodym derivative fu ∈ L2(Ω, μ), then u ∈ Dom(ΔΩ) with ΔΩu = fu.

Proof. From the discussion in Section 3, if Ds
Ωu = 0 and the absolutely continuous

part is represented by fu ∈ L2(Ω, μ), then

(3.7) E(u, v) = −
∫
Ω

fuv dμ

for all v ∈ N1,2
0 (Ω, μ)∩L∞(Ω, μ). When fu ∈ L2(Ω, μ), we can use a truncation ar-

gument and the Lebesgue dominated convergence theorem to show that (3.7) holds
for any v ∈ N1,2

0 (Ω, μ). So we conclude that u ∈ Dom(ΔΩ) and ΔΩu = fu. �

Remark 3.10. It can be seen that Dom(ΔΩ) ⊂ Dom(DΩ); moreover, if u, v ∈
Dom(DΩ) and a ∈ R, the following hold true:

1) spt(DΩu) ⊂ spt(u); also, if u is constant on an open set U , then spt(DΩu) ⊂
Ω \ U ;

2) u+ v, au ∈ Dom(DΩ) with DΩ(u+ v) = DΩu+DΩv and DΩ(au) = aDΩu;

3) if in addition u and v are bounded, then uv ∈ Dom(DΩ) with

dDΩ(uv) = v dDΩu+ u dDΩv + 2 〈du, dv〉 dμ.
Note here that since u, v are in N1,2(Ω), it follows that they are well-defined
up to sets of Cap2-zero; such null sets are not charged by DΩu, DΩv, see
Lemma 3.6.

3.2. Inhomogeneous Dirichlet problem

In this section we consider the inhomogeneous Dirichlet problem on bounded open
domains Ω such that μ(X \ Ω) > 0; we assume that a metric space X satisfies a
(1, 2)-Poincaré inequality. More precisely, given two functions f ∈ L2(X,μ) and
v ∈ N1,2(X,μ), we wish to find u ∈ Dom(ΔΩ) such that

(3.8)

{
ΔΩu = f on Ω,

u− v ∈ N1,2
0 (Ω, μ).

By definition of ΔΩ, we interpret (3.8) in the weak sense, i.e., u is a solution of (3.8)
if u− v ∈ N1,2

0 (Ω, μ) and for all ϕ ∈ N1,2
0 (Ω, μ),

E(u, ϕ) = −
∫
Ω

fϕ dμ.
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As in the classical linear theory, a solution u to (3.8) can be written as the sum of
two functions, u0 and u1, where u0 is harmonic in Ω such that u0− v ∈ N1,2

0 (Ω, μ)
and u1 ∈ N1,2

0 (Ω, μ) is a particular solution to the problem ΔD
Ωu1 = f with

u1 ∈ N1,2
0 (Ω, μ).

The function u0 is constructed in [19] as the minimum of the energy functional

min
u−v∈N1,2

0 (Ω,μ)

∫
Ω

|du|2 dμ.

For the second part, we use the functional F : N1,2
0 (Ω, μ) → R given by

F (u) =
1

2

∫
Ω

|du|2 dμ+

∫
Ω

uf dμ,

which is the sum of a linear functional and a strictly convex energy. Hence F itself
is strictly convex. Then, if F has a minimum, it is unique and the minimum is
the desired solution u1. To prove the existence, it is enough to use the Sobolev
inequality, i.e., if u ∈ N1,2

0 (Ω, μ) there exists a constant cs > 0 such that

‖u‖2 ≤ cs‖du‖2.

Given that Ω is bounded and μ(X \ Ω) > 0, the above Sobolev inequality holds;
we refer to [13] and [18] for the details. Then, for any u ∈ N1,2

0 (Ω, μ) we have that,
using the inequality ab ≤ εa2/2 + b2/2ε with a, b, ε > 0,

F (u) =
1

2
‖du‖22 +

∫
Ω

uf dμ ≥ 1

2
‖du‖22 − ‖f‖2 ‖u‖2 ≥ 1

2
‖du‖22 − cs ‖f‖2 ‖du‖2

≥
(1
2
− εcs

2

)
‖du‖22 −

cs
2ε

‖f‖22.

If we fix ε < 1/cs, the preceding inequality gives us that F is bounded from below
by −2−1ε−1cs‖f‖22. Therefore,

m = inf
u∈N1,2

0 (Ω,μ)
F (u)

is finite, and in particular, the infimum is a minimum as seen by taking a minimiz-
ing sequence and applying Mazur’s lemma. The minimizing function u1 is a weak
solution to the desired equation, that is

(3.9)

∫
Ω

〈du1, dϕ〉 dμ = −
∫
Ω

fϕ dμ

for all ϕ ∈ N1,2
0 (Ω, μ). From (3.9) it is immediate to see that u1 is the desired

solution; in addition, if in (3.9) we take ϕ = u1, we have the Caccioppoli type
estimate

‖du1‖2 ≤ cs‖f‖2.
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4. Functions of bounded variation and the perimeter measure

The aim of this section is to study some properties of the perimeter measure
of a ball in metric space. The properties we have in mind are needed in the
characterization of a singular function which will be constructed in Section 6.

Following [21], the definition of the total variation of a function u ∈ L1(X,μ)
is given by

(4.1) |Du|(X) = inf
{
lim inf

j

∫
X

guj dμ : uj ∈ Liploc(X,μ), uj → u in L1
loc(X,μ)

}
.

A function u is said to have bounded variation, that is, u ∈ BV (X,μ), if
|Du|(X) < ∞. Moreover, a Borel set E ⊂ X with finite measure is said to have
finite perimeter if χE ∈ BV (X,μ). We denote the perimeter measure of E by
P (E,X) = |DχE |(X).

To each function of bounded variation we associate a Borel regular measure,
its total variation measure. This measure is defined on every open set A ⊂ X
using (4.1), that is,

|Du|(A) = inf
{
lim inf

j

∫
A

guj dμ : uj ∈ Liploc(A, μ), uj → u in L1
loc(A, μ)

}
.

We extend this measure to act on any Borel set B ⊂ X by the Carathéodory
construction

|Du|(B) = inf
{|Du|(A) : A open and B ⊂ A

}
;

for more details on this construction in the metric measure setting see Theorem 3.4
in [21].

An equivalent definition can be also given by way of the Cheeger differentiable
structure as follows:

|Dcu|(X) = inf
{
lim inf

j

∫
X

|duj | dμ : uj ∈ Liploc(X,μ), uj → u in L1
loc(X,μ)

}
,

and we shall say that u has bounded total Cheeger variation if |Dcu|(X) < ∞; a
set with Cheeger finite perimeter is a Borel set E with finite measure such that
|DcχE |(X) < ∞.

By the results contained in [7], it follows that these two definitions are equiva-
lent, in the sense that u has bounded total variation if and only if it has bounded
total Cheeger variation. There exists a constant c > 1 such that

1

c
|Du|(X) ≤ |Dcu|(X) ≤ c |Du|(X).

Also using the Cheeger differentiable structure, we have that |Dcu| defines a finite
Radon measure; the argument is similar to the case of |Du| and so we refer to [21]
for the proof.

A sequence of Lipschitz functions (uj)j is said to converge in variation to a
function u ∈ BV (X,μ) if uj converges to u in L1

loc(X,μ) and∫
X

guj dμ → |Du|(X).
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The preceding definition of total variation does not specify the optimal sequence,
i.e., the sequence which converges to u in variation.

It is proved in Theorem 3.8 of [21] that the discrete convolution gives an approx-
imation that is only comparable in variation with the optimal one. Note that for
the optimal sequence, the vector valued measures d�μj = duj dμ, have uniformly
bounded total variation. So, up to subsequences, they converge to some vector
valued finite measure �μ∞.

Remark 4.1. A sequence (uj)j converging to u in variation is optimal not only
for the variation in X , but also for the variation in all open subsets A with
|Du|(∂A) = 0. In fact, by definition, we have that

|Du|(A) ≤ lim inf
j→∞

∫
A

guj dμ,

but also that

|Du|(X \A) ≤ lim sup
j→∞

∫
X\A

guj dμ ≤ lim sup
j→∞

( ∫
X

guj dμ−
∫
A

guj dμ
)

= |Du|(X)− lim inf
j→∞

∫
A

guj dμ ≤ |Du|(X \A).

The preceding inequalities are indeed equalities if |Du|(∂A) = 0 and so |Du|(X\A)
= |Du|(X \A). Hence the following two limits exist:

lim
j→∞

∫
X\A

guj dμ = |Du|(X \A),

and

(4.2) lim
j→∞

∫
A

guj dμ = |Du|(A).

An important tool in the theory of functions of bounded variation is the coarea
formula. The version we work with in the present paper is a direct consequence of
Proposition 4.2 in [21]. For any u ∈ BV (X,μ) and any Borel measurable function
f : X → R, the following identities hold:

(4.3)

∫
X

f d |Du| =
∫
R

∫
X

f(x) d |DχEt |(x) dt

and ∫
X

f d |Dcu| =
∫
R

∫
X

f(x) d |DcχEt |(x) dt,

where Et = {u > t}, t ∈ R, is the super-level set of u. We point out that in these
formulae, due to the fact that the measures |Du| and |Dcu| are not absolutely
continuous with respect to the measure μ, it is important to consider the function f
and not an equivalent representative. Since the perimeter measure does not charge
sets with zero 1-capacity, we can modify the function f on such negligible sets.
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If u is Lipschitz, (4.3) can be written as∫
X

fgu dμ =

∫
R

∫
X

f d |DχEt |(x) dt.

This follows by an argument contained in Theorem 6.2.2 of [6], and summarized in
the following proposition. We will provide a proof here for the reader’s convenience.

Proposition 4.2. Let u ∈ Lip(X). Then the total variation measure d |Du| is
given by gudμ.

Proof. Lipschitz continuity of u implies that |Du| is absolutely continuous with
respect to μ with density given by some function Gu. To see this, note that uj = u
is a possible competitor in the definition of |Du|, and so for every open set A ⊂ X
(and hence for every set A ⊂ X) we have

|Du|(A) ≤
∫
A

gu dμ.

Therefore the density function Gu ≤ gu μ-a.e.
To prove the equality it suffices to prove that the function Gu is an upper

gradient of u. We take a sequence (uj)j of Lipschitz functions converging to u in
L1(X,μ) and with

lim
j→∞

∫
X

guj dμ = |Du|(X).

The sequence of measures gujdμ is bounded, and so, up to a subsequence, it con-
verges weakly to a measure μ∞ that is still absolutely continuous with respect
to μ, i.e., dμ∞ = g∞ dμ. To see that μ∞ is absolutely continuous with respect
to μ, it suffices to show that whenever E ⊂ X is compact with μ(E) = 0, we have
μ∞(E) = 0. To this end, we note that because E is compact, for every ε > 0 we
can cover E with a finite number of balls Bε

i with μ(∂Bε
i ) = 0 so that the open

set Aε = ∪iB
ε
i contains E and is such that μ(Aε) < ε and μ(∂Aε) = 0. It follows

that |Du|(∂Aε) = 0 because of the absolute continuity of |Du| established above.
Therefore, by Remark 4.1 we have

lim
j→∞

∫
Aε

guj dμ = |Du|(Aε) ≤
∫
Aε

gu dμ ≤ Lε,

which implies that μ∞(Aε) ≤ Lε. It follows that μ∞(E) = 0. For more general
sets E ⊂ X with μ(E) = 0, there is a Borel set E0, containing E, such that
μ(E0) = 0. Because μ∞ is a Borel measure, μ∞(E0) is the supremum of all
μ∞(K), the supremum taken over all compact sets K ⊂ E0. Given that μ(K) = 0
and so μ∞(K) = 0, it follows that μ∞(E0) = 0 and so μ∞(E) = 0. Then guj

converges to g∞ weakly in L1(X,μ).
To summarize, we have uj → u in L1(X) and guj → g∞ weakly in L1(X).

Now, an invocation of the Mazur lemma, together with Lemma 3.1 in [16], shows
that g∞ is a weak upper gradient of u; it follows that gu ≤ g∞ a.e. in X .
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Given that balls have finite μ-measure, when x ∈ X , for almost every r > 0 we
have μ(∂Br(x)) = 0. For such r > 0, by (4.2) with A = Br(x),

|Du|(Br(x)) ≤
∫
Br(x)

g∞ dμ ≤ lim inf
j→∞

∫
Br(x)

guj dμ = |Du|(Br(x)) =

∫
Br(x)

Gu dμ,

and so we get g∞(x) = Gu(x) for x ∈ X that are Lebesgue points for both Gu

and g∞. It follows that Gu ≤ gu ≤ g∞ = Gu a.e. in X , and the claim follows. �

From now on, we assume that X is also a geodesic space. This is not an overly
restrictive assumption, since X , by the virtue of supporting a Poincaré inequality
and being complete, is a quasiconvex space. It follows that in our setting, a bi-
Lipschitz change in the metric does result in a geodesic space.

Let us fix a point x0 ∈ X . Since X is assumed to be a geodesic space, by the
results in [7], the function ux0(x) = d(x, x0) is Lipschitz with Lip(ux0) = gux0

≡ 1.
Moreover, we may write Bt(x0) = {ux0 < t} and so by the coarea formula (4.3)
we obtain for any positive r > 0 that∫ r

0

P
(
Bt(x0), X

)
dt = μ

(
Br(x0)

)
< ∞.

Thus the map t �→ P (Bt(x0), X) is a measurable locally integrable function. This
implies that for almost every r > 0,

P (Br(x0), X) = lim
ε→0

1

ε

∫ r

r−ε

P (Bt(x0), X) dt = lim
ε→0

1

ε

∫ r+ε

r

P (Bt(x0), X) dt

= lim
ε→0

1

2ε

∫ r+ε

r−ε

P (Bt(x0), X) dt.

In particular, for almost every r > 0 the perimeter measure coincides with the
Minkowski content

(4.4) P (Br(x0), X) = lim
ε→0

μ(Br(x0))− μ(Br−ε(x0))

ε
.

For a ballBr(x0) satisfying (4.4), we can consider the sequence of functions (uε)ε>0,
where

(4.5) uε(x) = max
{
min

{r − d(x0, x)

ε
, 1
}
, 0
}
= min

{1

ε
d
(
x,X \Br(x0)

)
, 1
}
.

For a such function uε, we have that guε =
1

ε
χBr(x0)\Br−ε(x0) and∫

X

guε dμ =
1

ε

∫
Br(x0)\Br−ε(x0)

dμ → P (Br(x0), X),

that is, the sequence uε converges to χBr(x0) in variation. This also means that
the sequence of vector valued measures (|duε|dμ)ε is equibounded:

|Dcuε| (X) =

∫
X

|duε| dμ ≤ c < ∞
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for some positive constant c. Therefore there exists a subsequence εj → 0 such
that, setting uj = uεj , the sequence of vector-valued measures duj dμ is weakly
convergent to some vector valued measure �μ∞. This measure is absolutely con-
tinuous with respect to both |DcχBr(x0)| and |DχBr(x0)|. Indeed, if, for instance,
|DcχBr(x0)|(E) = 0, where E ⊂ X is compact, we can find for every ε > 0 an open
set Aε ⊃ E such that |DcχBr(x0)|(∂Aε) = 0 and |DcχBr(x0)|(Aε) < ε. Reasoning
as in the proof of Proposition 4.2 we may conclude that

|�μ∞| (E) ≤ |�μ∞| (Aε) ≤ lim inf
j→∞

∫
Aε

|duj | dμ = |DcχBr(x0)| (Aε) < ε.

We may hence write

�μ∞ = νx0,r|DcχBr(x0)| = σx0,r|DχBr(x0)|
for some vector-valued |DcχBr(x0)|-measurable function νx0,r and |DχBr(x0)|-mea-
surable function σx0,r. In particular, the function σx0,r plays the role of the normal
vector at the boundary of Br(x0). In this context, it is not clear from the definition
if it is a unit vector. For the sake of simplicity, if no confusion may arise, we simply
denote the functions νx0,r and σx0,r by ν and σ, respectively.

We can summarize the previous construction in the following definition.

Definition 4.3. We shall call a ball Br(x0) regular if the equation (4.4) is valid and
if there exists a sequence εj → 0 such that for the sequence of functions uj = uεj ,
referred to as an optimal sequence and defined in (4.5), the following hold true:

(1) guj dμ converges weakly to d |DχBr(x0)|;
(2) duj dμ converges weakly to σ d |DχBr(x0)| for some |DχBr(x0)|-measurable

vector-valued function σ = σx0,r.

Almost every ball is regular in the sense that for every x0 ∈ X and for almost
every r > 0 the ball Br(x0) is regular. However, the vector σ is not a priori unique
and it is not clear whether it depends on the sequence εj we consider.

The given notion of regularity relates to interior regularity of a ball. One
can also consider the notions of outer and two-sided regularity and obtain that
for almost every radius r > 0 the ball Br(x0) has inner, outer, and two-sided
regularity.

5. Divergence measures and Gauss–Green formulas

Here we consider divergence-measure fields, i.e., a class of vector fields �F : X → R
k

belonging to the space L2(Ω,Rk, μ) and for which div �F is a measure. In the
metric space framework of the present paper, we generalize some results obtained
by Ziemer in [27].

Previously, Thompson and Thompson in [26] constructed a divergence form in
the setting of Minkowski spaces, and they proved a Minkowski space analogue of
the Gauss–Green theorem.
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The aim of this section is to study the operator div on Lipc(Ω) with values

in the space of measures, that is, we want to define for �F ∈ L2(Ω,Rk, μ) the
distribution

(5.1) 〈u, div �F 〉 := −
∫
Ω

〈�F , du〉 dμ,

for u ∈ Lipc(Ω). In the following we adopt the notation from [8] and [27].

Definition 5.1. We say that �F ∈ L2(Ω,Rk, μ) is in the class DM2(Ω) if there is

a signed finite Radon measure, denoted by div �F ∈ Mb(Ω), on Ω such that

(5.2)

∫
Ω

u d div �F = −
∫
Ω

〈�F , du〉 dμ for all u ∈ Lipc(Ω).

Remark 5.2. By an argument similar to the proof of Lemma 3.6, we can prove
that if �F ∈ DM2(Ω), then the measure div �F does not charge sets with zero 2-capa-
city. Therefore, condition (5.2) can be extended to any u ∈ N1,2

0 (Ω, μ)∩L∞(Ω, μ).

Note that when �F ∈ L2(Ω,Rk, μ) the operator T�F : N1,2
0 (Ω, μ) → R given by

T�F (u) =

∫
Ω

〈�F , du〉 dμ

is a bounded linear operator on the Hilbert space (N1,2
0 (Ω, μ), E1). Therefore, by

the Riesz representation theorem, there exists a function v ∈ N1,2
0 (Ω, μ) such that

whenever u ∈ N1,2
0 (Ω, μ), T�F (u) = E1(v, u). Hence, if �F ∈ DM2(Ω), then for all

u ∈ N1,2
0 (Ω, μ) we obtain∫

Ω

〈�F , du〉 dμ =

∫
Ω

uv dμ+

∫
Ω

〈du, dv〉 dμ,

that is, ∫
Ω

u d div �F +

∫
Ω

u v dμ = −
∫
Ω

〈du, dv〉 dμ.

It follows that v ∈ Dom(DΩ) with

dDΩv = −v dμ− d div �F .

This proves the following lemma.

Lemma 5.3. Given a domain Ω ⊂ X, a map �F ∈ L2(Ω,Rk, μ) is in the class
DM2(Ω) if and only if there exists v ∈ Dom(DΩ) such that

dDΩv = −v dμ− d div �F

in the sense of distributions on N1,2
0 (Ω, μ).

We can also state the following simple properties of the divergence measure.
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Lemma 5.4. Let �F ∈ DM2(Ω). Then spt(div �F ) ⊂ spt(�F ). Moreover, if v ∈
Dom(DΩ), then dv ∈ DM2(Ω) with div dv = DΩv.

Proof. The first statement follows by considering A = Ω \ spt(�F ), so we have that

| div �F | (A) = sup
{∫

A

ϕd div �F : ϕ ∈ Lipc(A), ‖ϕ‖∞ ≤ 1
}

= sup
{∫

A

〈�F , dϕ〉 dμ : ϕ ∈ Lipc(A), ‖ϕ‖∞ ≤ 1
}
= 0.

For the second part, let v ∈ Dom(DΩ). Then there exists a signed finite Radon
measure DΩv ∈ Mb(X) such that∫

Ω

〈dv, du〉 dμ = −
∫
Ω

u dDΩv

for all u ∈ N1,2
0 (Ω, μ)∩L∞(Ω, μ). From this and by Remark 5.2, we may conclude

that dv ∈ DM2(Ω) with div dv = DΩv, and the claim follows. �

We now state the following two propositions on the Gauss–Green type integra-
tion by parts formula for vector fields in DM∞(Ω), that is for vector fields �F in
L∞(Ω,Rk, μ) ∩DM2(Ω).

Proposition 5.5. Let �F ∈ DM∞(Ω) ∩ C(Ω,Rk) and Br(x0) ⊂ Ω be a regular
ball. The following Gauss–Green formula∫

Br(x0)

f d div �F +

∫
Br(x0)

〈�F , df〉 dμ = −
∫
Ω

f〈�F , σx0,r〉 d |DχBr(x0)|,

holds for all f ∈ Lipc(Ω). If the support of �F is disjoint from ∂Br(x0), then the

requirement that �F is continuous can be removed.

Proof. We can consider an optimal sequence of locally Lipschitz functions (uj)j
converging to χBr(x0) in variation as in (4.5). Then we have by the Leibniz rule
that∫

Ω

ujf d div �F = −
∫
Ω

〈
�F , d(ujf)

〉
dμ = −

∫
Ω

uj 〈�F , df〉 dμ−
∫
Ω

f〈�F , duj〉 dμ.

We notice that

(5.3)
∣∣∣ ∫

Ω

ujf d div �F −
∫
Br(x0)

f d div �F
∣∣∣ ≤ ‖f‖∞

∣∣div �F
∣∣(Br(x0) \Br−εj (x0)

)
,

and that the right-hand side of (5.3) tends to 0 as j → ∞. Thus we may conclude
that

lim
j→∞

∫
Ω

ujf d div �F =

∫
Br(x0)

f d div �F .
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Also, by the fact that both �F and df are in L∞(Ω), by an application of the
Lebesgue dominated convergence theorem we obtain

lim
j→∞

∫
Ω

uj〈�F , df〉 dμ =

∫
Br(x0)

〈�F , df〉 dμ.

We also have, due to the continuity of �F , that

lim
j→∞

∫
Ω

f〈�F , duj〉 dμ =

∫
Ω

f〈�F , σx0,r〉 d |DχBr(x0)|,

and so the proof is completed. �

Remark 5.6. We point out that property (5.3) is a consequence of the choice
of an optimal sequence (uj)j to be an inner approximation of the characteristic
function χBr(x0). If we chose, for instance, an outer approximation, then the
preceding integration by parts formula would be as follows:∫

Br(x0)

f d div �F +

∫
Br(x0)

〈�F , df〉 dμ = −
∫
Ω

f〈�F , σ̃x0,r〉 d |DχBr(x0)|,

for all f ∈ Lipc(Ω), where σ̃x0,r is the density of the vector-valued measure obtained
as a weak limit by way of the gradients of this new sequence as in Definition 4.3.

We also point out that the previous proposition can be extend to more general
sets E ⊂ Ω with finite perimeter whenever a Minkowski content characterization
of the perimeter, analogous to (4.4), holds. In this case, the boundary of E has to
be considered as the essential, or the measure-theoretic, boundary of E, i.e., the
set of all points at which the density of E is neither 0 nor 1.

We prove the following main theorem of this section, which is a generalization
of Proposition 5.5, without requiring continuity of the vector field. This theorem
should be thought of as the generalization of the Gauss–Green theorem of the
Euclidean setting.

Theorem 5.7. Let �F ∈ DM∞(Ω) and let Br(x0) ⊂ Ω be a regular ball. Then the
following extended Gauss–Green formula

(5.4)

∫
Br(x0)

f d div �F +

∫
Br(x0)

〈�F , df〉 dμ =

∫
Ω

f (�F · ν)−∂Br(x0)
d |DχBr(x0)|,

holds for all f ∈ N1,2(Ω, μ)∩L∞(Ω, μ), where (�F ·ν)−∂Br(x0)
is the interior normal

trace of �F on ∂Br(x0).

Proof. We use the optimal sequence (uj)j defined in (4.5). Then, as in the proof

of Proposition 5.5, by the definition of div�F (Definition 5.1) and the Lebesgue
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dominated convergence theorem

lim
j→∞

∫
Ω

f〈�F , duj〉 dμ = lim
j→∞

(∫
Ω

〈
�F , d(ujf)

〉
dμ−

∫
Ω

uj〈�F , df〉 dμ
)

= − lim
j→∞

( ∫
Ω

ujf d div �F +

∫
Ω

uj〈�F , df〉 dμ
)

= −
∫
Br(x0)

f d div �F −
∫
Br(x0)

〈�F , df〉 dμ.

For the sequence (Lj)j of operators given by

Lj(f) :=

∫
Ω

f〈�F , duj〉 dμ,

we have that |Lj(f)| ≤ C ‖ �F‖∞‖f‖∞, where the positive constant C is given by

C = sup
j∈N

∫
Ω

|duj | dμ < ∞.

Indeed, C is finite since the ball Br(x0) has finite perimeter. In particular, C is

independent of both f and �F and so, by the above argument, the operator

L(f) := lim
j→∞

Lj(f)

is bounded over Lipc(Ω) and admits an extension to Cc(Ω). This in turn implies
that there exists a measure ν ∈ Mb(Ω) such that, for any f ∈ Cc(Ω),

L(f) =

∫
Ω

f dν.

The measure ν is concentrated on ∂Br(x0); in fact take any compact set K such
that K ∩ ∂Br(x0) = ∅, an open set A ⊃ K such that dist(A, ∂Br(x0)) > 0, and
take εj < dist(A, ∂Br(x0)). Then, since spt(duj) ∩ A = ∅, we obtain for any
f ∈ Lipc(A), ∫

Ω

f dν = lim
j→∞

∫
Ω

f〈�F , duj〉 dμ = 0,

that is |ν|(K) = |ν|(A) = 0. This property extends to any Borel set E such that
E ∩ ∂Br(x0) = ∅ since

|ν|(E) = sup
K⊂E

|ν|(K) = 0.

Also ν can be seen to be absolutely continuous with respect to |DcχBr(x0)|; indeed,
if E is a Borel set such that |DcχBr(x0)|(E) = 0, then there exists an open set Aε

such that |DcχBr(x0)|(Aε) < ε. Fix a compact set K ⊂ E and an open set A ⊃ K
such that Ā ⊂ Aε. Then, for any f ∈ Lipc(A) with ‖f‖∞ ≤ 1 we have that∣∣∣ ∫

A

f〈�F , duj〉 dμ
∣∣∣ ≤ lim sup

j→∞
‖ �F‖∞

∫
A

|duj| dμ ≤ ‖ �F‖∞|DcχBr(x0)|(Ā) < ε‖ �F‖∞,

that is |ν|(A) < ε. Therefore, since ε is arbitrary, |ν|(K) = 0. Finally, by taking
the supremum over K ⊂ E, we obtain that |ν|(E) = 0, and hence ν is absolutely
continuous with respect to |DcχBr(x0)|.
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To conclude, there exists (�F · ν)−∂Br(x0)
∈ L1(|DχBr(x0)|) such that

L(f) = −
∫
Ω

f(�F · ν)−∂Br(x0)
d |DχBr(x0)|.

This map defines, in the metric setting, the interior normal trace of �F on ∂Br(x0),
and the integration by parts formula (5.4) holds. �

Remark 5.8. The term interior normal trace can be justified by the following
facts. If �F ∈ DM∞(Ω) ∩C(Ω,Rk), then by Proposition 5.5 we get that

(�F · ν)−∂Br(x0)
= −〈�F , σx0,r〉.

In addition, also when �F is not continuous, recalling that with ux0(x) = d(x, x0),

duj(x) = − 1

εj
dux0(x)χBr(x0)\Br−εj

(x0)(x),

and by using the coarea formula (4.3), we can write∫
Ω

f 〈�F , duj〉 dμ =− 1

εj

∫
Br(x0)\Br−εj

(x0)

f 〈�F , dux0〉 dμ

=− 1

εj

∫ r

r−εj

∫
Ω

f 〈�F , dux0〉 d |DχBt(x0)| dt.

Therefore, we have obtained that∫
Ω

f (�F · ν)−∂Br(x0)
d |DχBr(x0)| = − lim

j→∞
1

εj

∫ r

r−εj

∫
Ω

f 〈�F , dux0〉 d |DχBt(x0)| dt,

which gives meaning to the following equality in terms of the trace:∫
Ω

f(�F · ν)−∂Br(x0)
d |DχBr(x0)| = −

∫
Ω

f〈�F , dux0〉 d |DχBr(x0)|,

and to the fact that the vector dux0 defines in a weak sense the normal vector σx0,r

to ∂Br(x0).

Remark 5.9. Observe that in the proof of Proposition 5.7 we have used a par-
ticular optimal sequence. It turns out, nevertheless, that the interior normal trace
(�F · ν)−∂Br(x0)

does not depend on this particular choice. This fact is a direct

consequence of equation (5.4), since then formula∫
Ω

f(�F · ν)−∂Br(x0)
d |DχBr(x0)| =

∫
Br(x0)

f d div �F +

∫
Br(x0)

〈�F , df〉 dμ

uniquely identifies the values of (�F · ν)−∂Br(x0)
.
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Remark 5.10. By Theorem 5.3 in [2] (see also [3]), formula (5.4) can also be writ-
ten as∫

Br(x0)

f d div �F +

∫
Br(x0)

〈�F , df〉 dμ =

∫
∂∗Br(x0)

f(�F · ν)−∂Br(x0)
ϑx0,r dSh,

where ∂∗Br(x0) is the essential boundary of Br(x0), Sh is the spherical Hausdorff
measure defined using the Carathéodory construction based on the gauge function

h(B	) =
μ(B	)

�
,

and ϑx0,r : X → [c, cd] is a Borel function depending, in general, on the ball Br(x0),
and c is a positive constant and cd the doubling constant of μ.

6. Harmonicity and the mean value property

In this section, we shall follow the approach of [15] and construct, for any regular
ball Br(x0) ⊂ X and any x̄ ∈ Br(x0) the Green function on Br(x0) with singularity
at x̄, that is an extended real-valued function G(x) = Gx̄

Br(x0)
(x) such that

1) G is strictly positive and harmonic in Br(x0) \ {x̄};
2) G ∈ N1,2(X \Bε(x̄)) for any ε > 0 and G|X\Br(x0)

= 0;

3) for every y ∈ ∂Br(x0),
lim
x→y

G(x) = 0;

4) G is singular at x̄; that is,

lim
x→x̄

G(x) = ∞;

5) for all 0 < a ≤ b,

Cap2
({

x ∈ Br(x0) : G(x) ≥ b
}
,
{
x ∈ Br(x0) : G(x) > a

})
=

1

b− a
.

In [15] the authors constructed the Green function of a relatively compact
domain with the aforementioned properties in metric measure spaces; we refer
also to [14] and [9]. We can state the existence and main properties of the Green
function in the following theorem. We assume that X supports a (1, 2)-Poincaré
inequality.

Theorem 6.1. Let Ω ⊂ X be a relatively compact domain. Then there exists the
Green function G = Gx̄

Ω with singularity at x̄ ∈ Ω. In addition, dG ∈ L2(X\Bε(x̄))
for any ε > 0 and

DX\Bε(x̄)G = −νGΩ ,

where νGΩ is a positive Radon measure in the dual N1,2
0 (X \ Bε(x̄))

∗ concentrated
on ∂Ω.
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Moreover, G admits the measure-valued Laplace operator

DXG = δx̄ − νGΩ ,

in the sense that, for any v ∈ N1,2(X) continuous at x̄, then∫
X

〈dG, dv〉 dμ =

∫
∂Ω

v dνGΩ − v(x̄).

Proof. We refer to [15] for the details on the construction of G. We sketch the
main steps needed in the definition. We find a harmonic function on Ω \Bεj (x̄)

Gj =
vj

Cap2(Bεj (x̄),Ω)
,

where Bεj (x̄) is a regular ball, εj ↘ 0, εj < dist(x̄, ∂Ω), and vj is the potential of

Bεj (x̄) with respect to Ω; that is vj ∈ N1,2(X) is harmonic in Ω \ Bεj (x̄), vj = 0

on X \ Ω and vj = 1 on Bεj (x̄). It is then shown that, up to subsequences, the
functions (Gj)j converge locally uniformly in X \ {x̄} to a function G. The limit
function G has the desired properties of a Green function.

Let us fix a positive sequence (Mi)i≥0 such that Mi ↗ ∞, and the truncations

TiG := min{G,Mi}.
There exists a sequence ri ↘ 0 of radii such that

Ei ⊂ Bri(x̄),

where we have written Ei = {x ∈ Ω : G(x) > Mi}; and we may consider the case
in which ri < ε. Then TiG = G on X \Bε(x̄) and TiG is subharmonic in X \Bε(x̄).
By [5] (we refer also to [20] for a detailed description in the Euclidean case) there
exists a positive Radon measure νGΩ in the dual N1,2

0 (X \Bε(x̄))
∗ such that for all

v ∈ Lipc(X \Bε(x̄)) we have∫
X\Bε(x̄)

〈dG, dv〉 dμ =

∫
X\Bε(x̄)

v dνGΩ .

If v ∈ Lipc(X \ Ω), the fact that G = 0 on X \ Ω implies dG = 0 on X \ Ω, and
then ∫

X\Bε(x̄)

v dνGΩ =

∫
X\Ω

v dνGΩ =

∫
X\Ω

〈dG, dv〉 dμ = 0.

On the other hand, the harmonicity of G in Ω \Bε(x̄) implies that if v ∈ Lipc(Ω \
Bε(x̄)), then∫

X\Bε(x̄)

v dνGΩ =

∫
Ω\Bε(x̄)

v dνGΩ =

∫
Ω\Bε(x̄)

〈dG, dv〉 dμ = 0.

Hence the measure νGΩ is concentrated on ∂Ω.
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Analogously, since TiG is superharmonic in Ω there exists a positive Radon
measure νGi ∈ N1,2

0 (Ω)∗ such that for all v ∈ Lipc(Ω),∫
Ω

〈dTiG, dv〉 dμ = −
∫
Ω\Bri

(x̄)

v dνGi .

The measures νi are supported in Bri(x̄); indeed, since TiG = G on Ω \ Bri(x̄) it
is harmonic. Hence, if v ∈ Lipc(Ω \Bri(x̄)),∫

Ω

v dνGi =

∫
Ω\Bri

(x̄)

v dνGi =

∫
Ω\Bri

(x̄)

〈dG, dv〉 dμ = 0.

Following the argument of Serrin (see Lemma 1 and Theorem 3 in [22]), there
exists λ ∈ R such that if v ∈ Lipc(Ω) is equal to 1 in a neighborhood of x̄, then∫

Ω

〈dG, dv〉 dμ = λ.

Indeed, if v1, v2 ∈ Lipc(Ω) are two functions that are equal to 1 in a neighborhood
of x̄, the difference v = v1 − v2 belongs to Lipc(Ω \ {x̄}); hence, the harmonicity
of G in Ω \ {x̄} implies that∫

Ω

〈dG, dv1〉 dμ−
∫
Ω

〈dG, dv2〉 dμ =

∫
Ω

〈dG, dv〉 dμ = 0.

In particular, if v ∈ Lipc(Ω) is a function such that v ≡ 1 on Br1(x̄), then

νGi (Bri(x̄)) =

∫
Ω

v dνGi = −
∫
Ω

〈dTiG, dv〉 dμ = −
∫
Ω

〈dG, dv〉 dμ = −λ.

This argument implies that λ ∈ R is negative and the measures νGi are equibounded
in Mb(Ω). Thus, up to subsequences, νGi converges weakly to λδx̄.

To summarize, we have proved that the sequence of the measure-valued Laplace
operators

D TiG = νGi − νGΩ

admits a convergent subsequence D TikG, defining the measure-valued Laplace
operator

DXG = lim
k→∞

D TikG = λδx̄ − νGΩ .

The fact that the limit measure is uniquely determined implies that for any
sequenceMi ↗ ∞, the measures D TiG converge and the limit measure is λδx̄−νGΩ .

Let us show that λ = −1. Let us consider the set E = {x ∈ Ω : G(x) ≥ 1} and
a function v ∈ Lipc(Ω) such that v = 1 on E. Since x̄ is an interior point of E, we
have

λ = λv(x̄) = −
∫
Ω\E

〈dv, dG〉 dμ.
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On the other hand, the map f = (G− v)χΩ\E belongs to N1,2
0 (Ω \ E) and then

0 =

∫
Ω

〈df, dG〉 dμ =

∫
Ω\E

|dG|2 dμ−
∫
Ω\E

〈dv, dG〉 dμ.

These properties of G imply that G is the potential of E with respect to Ω, that is,∫
Ω\E

|dG|2 dμ = Cap2(E,Ω) = 1.

We may hence conclude that λ = −1.
Finally, we point out that the identity∫

X

〈dv, dG〉 dμ =

∫
∂Ω

v dνGΩ − v(x̄)

is valid for functions v ∈ N1,2(X) that are constant in a neighborhood of x̄, but
it can be generalized to functions v ∈ N1,2(X) that are continuous at x̄. This is a
simple consequence of the limit∫

∂Ω

v dνGΩ − v(x̄) = lim
i→∞

∫
∂Ω

v dνGΩ −
∫
Bri

(x̄)

v dνGi

= lim
i→∞

∫
X

〈dv, dTiG〉 dμ =

∫
X

〈dv, dG〉 dμ.

�

Remark 6.2. Let us consider the (first) Heisenberg group H with the geodesic
distance. In this case, the natural differential structure is given by the horizontal
bundle and the Laplace operator is just the horizontal Laplace operator. In this
setting, we can use all the results of the preceding section and obtain the repre-
sentation of the measure νG in terms of the perimeter measure. Notice that a ball
Br(x0) in H satisfies a ball condition as in Definition 2.1 of [1] at its boundary ex-
cept at two points; a finite collection of points is negligible. Hence, if G = Gx̄

Br(x0)
is

the Green function on Br(x0) with singularity at x̄, then whenever x is a boundary
point of Br(x0) satisfying the ball condition,

(6.1) Ψ(G, x, �) := sup
B2�(x)

G− sup
B�(x)

G ≤ C�,

where 0 < ρ ≤ d(x, x̄)/2 and C is a positive constant that does not depend on x, x̄,
or ρ. It follows from a covering argument together with (6.1) and Lemma 4.8
in [5] that νGBr(x0)

is absolutely continuous with respect to the perimeter measure

|DχBr(x0)|. Moreover, there exists a function ϑG ∈ L1(X, |DχB|) such that dνGB =
ϑGd|DχB|. The function ϑG comes from the Radon–Nikodym theorem.

We give a characterization of harmonic functions via a mean value type property
with respect to boundary measures.
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Theorem 6.3. Let u ∈ N1,2(Ω, μ). Then the following hold:

(1) Let u be harmonic in Ω. Then, for every regular ball Br(x0) ⊂ Ω and x̄ ∈
Br(x0),

(6.2) u(x̄) =

∫
∂Br(x0)

u dνGBr(x0)
;

(2) If for every regular ball Br(x0) ⊂ Ω and any x̄ ∈ Br(x0), u satisfies the mean
value property (6.2), then u is harmonic in Ω.

An analogous characterization holds true for sub- and superharmonic functions.
Let u ∈ N1,2(Ω, μ). Then the following are equivalent:

(3) Let u be subharmonic (superharmonic) in Ω. Then, for every regular ball
Br(x0) ⊂ Ω and x̄ ∈ B,

u(x̄) ≤
∫
∂Br(x0)

u dνGBr(x0)
,

(
u(x̄) ≥

∫
∂Br(x0)

u dνGBr(x0)

)
;

(4) If for any regular ball Br(x0) and any x̄ ∈ Br(x0)

u(x̄) ≤
∫
∂Br(x0)

u dνGBr(x0)
,

(
u(x̄) ≥

∫
∂Br(x0)

u dνGBr(x0)

)
,

then u is subharmonic (superharmonic).

Proof. Suppose that u is harmonic. Then u ∈ N1,2(Ω, μ) ∩ L∞
loc(Ω) and we can

apply Theorem 6.1. We obtain, for any regular ball Br(x0) and x̄ ∈ Br(x0),

0 =

∫
X

〈du, dGx̄
B〉 dμ = −

∫
X

u dDXGx̄
B = −u(x̄) +

∫
∂Br(x0)

u dνGB ,

which gives the condition (1).
On the other hand, if u is continuous, if we fix a regular ball B = Br(x0), we

can consider the harmonic function Hu generated by u on B, that is the solution
of the problem

min
{∫

B

|dv|2 dμ : v − u ∈ N1,2
0 (B, μ)

}
.

Hence Hu is harmonic in B and satisfies the mean value property, that is, for
any x̄ ∈ B,

(6.3) Hu(x̄) =

∫
∂Br(x0)

Hudν
G
B .

The conclusion follows from continuity of u since

lim
B	x→y∈∂B

Hu(x) = u(y),
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and then by (6.3), Hu = u on B. For a general u ∈ N1,2(Ω, μ), we can find a
continuous function uε such that u = uε outside a set of capacity less than ε and
such that ‖u− uε‖1,2 < ε; then by an approximation argument in Section 6 of [4],
we can conclude the assertion.

The same line of reasoning carries out in the case of sub- and superharmonic
functions. �

Remark 6.4. It was proved in [4] that the harmonic extension of a function
u ∈ N1,2(Ω, μ) on a ball B ⊂ Ω can be expressed in terms of harmonic measures νx̄
with singularity at x̄ ∈ B; by this we mean that if ϕ ∈ C(∂B), then in Theorem 5.1
of [4], its harmonic extension is given by

Hϕ(x̄) =

∫
∂B

ϕdνx̄.

If we move x̄ ∈ Br(x0), it is possible to see that the measures νx̄ are mutually
equivalent; in particular, if we take x0 and x̄ ∈ Br(x0) \ {x0}, we have that νx̄
is absolutely continuous with respect to νx0 and its density P (x̄, ·) is called the
Poisson kernel. In other terms, the Poisson kernel is defined as

P (x̄, x) =
dνx̄
dνx0

(x).

In [4], νx̄ was not explicitly identified. Nevertheless, from the results contained in
the previous sections, we are able to identify this measure as the outward normal
derivative νGB of the Green function.

Example 6.5. In Example 3.5, if we take Ω = B1(0), the unit ball, then all balls
except B1(0) are regular. This is due to the fact that the perimeter of B1(0)
has weight 1, that is |DχB| = Hn−1 ∂B. However, if we consider the optimal
sequence (uj)j defined in (4.5) we have that∫

Rn

|∇uj | dμ → 2Hn−1(∂B1(0)) = 2|DχB1(0)|(Rn).

Nevertheless, the measure νGB1(0)
can still be characterized as a perimeter measure,

but with

dνGB1(0)
= 2(∇G · νB1(0)) dHn−1 ∂B1(0) = 2(∇G · νB1(0)) d |DχB1(0)|.

On the other hand, if we take any other ball B ⊂ B1(0), it is regular and in this
case Hn−1(∂B ∩ ∂B1(0)) = 0. Note also that if Hn−1(B ∩ ∂B1(0)) > 0, then since
the Green function is harmonic in B except the singular point x̄, we have that
∇G · νB1(0) = 0 and then

dνGB = (1 + χB1(0))(∇G · νB) dHn−1 ∂B = (∇G · νB) d |DχB|
On the other hand, if we take Ω = R

n \ B1(0), then every ball is regular. This
is due to the fact that in this paper regularity is a notion of inner regularity. If
one changes the notion to outer regularity or to two-sided regularity, then things
change.
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