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Boundary measures, generalized Gauss—Green
formulas, and mean value property in metric
measure spaces

Niko Marola, Michele Miranda jr. and Nageswari Shanmugalingam

Abstract. We study mean value properties of harmonic functions in
metric measure spaces. The metric measure spaces we consider have a
doubling measure and support a (1, 1)-Poincaré inequality. The notion of
harmonicity is based on the Dirichlet form defined in terms of a Cheeger
differentiable structure. By studying fine properties of the Green function
on balls, we characterize harmonic functions in terms of a mean value
property. As a consequence, we obtain a detailed description of Poisson
kernels. We shall also obtain a Gauss—Green type formula for sets of
finite perimeter which posses a Minkowski content characterization of the
perimeter. For the Gauss—Green formula we introduce a suitable notion
of the interior normal trace of a regular ball.

1. Introduction

Solving the Dirichlet problem on a smooth domain in R™ is equivalent to con-
structing harmonic measure on the boundary of the domain. More precisely, it is
known that the classical harmonic measure can be expressed in terms of a Poisson
kernel which is given by the Radon—Nikodym derivative of harmonic measure with
respect to the Hausdorff boundary measure; that is,

dv,
P(z,y) = an_l (y).

In general metric measure spaces with a doubling measure and a Poincaré
inequality, the Dirichlet problem has been solved for Sobolev type boundary data
in [24], and also for all continuous boundary values in [4]. In [4] the authors
provide an integral representation for the solution to the Dirichlet problem, and
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hence extend the solvability to L' boundary data. In this general setting, however,
due to lack of a natural choice of boundary Hausdorff measure one has to replace

a Poisson kernel with a Poisson kernel-like object for which

dv,

Py, (z,y) = (y).

dvy,

It was shown in [4] that for a fixed z9 € ©Q, where Q is a bounded open subset
of X, there exists a Radon measure v, concentrated on 0€), i.e., v, is a harmonic
measure on Jf) evaluated at zo, and a real-valued function P, on €2 x 92 such that
whenever f € L'(99Q,v,,) the following expression for the harmonic extension Hf
is valid:

Hf('r) = 00 f(y) Py, (.Z‘, Y) dvpg, (y)a

and moreover, for each y € 9 the function P, (-,y) is harmonic in .

Our main objective is to find a relationship between the Poisson kernel that
generates solutions to the Dirichlet problem in terms of Cheeger differentiable
structure, and the perimeter measure of a ball of finite perimeter in metric mea-
sure spaces. Our framework is a complete geodesic metric measure space with a
doubling Borel measure, and we moreover assume that the space supports a (1, 1)-
Poincaré inequality. These conditions are discussed in detail in Section 2. We
shall describe the Poisson kernel in terms of an analog of a normal derivative of
the Green function at the boundary.

We also study divergence-measure fields along the lines of Ziemer [27] in this

general context. We consider an L2-vector field, F , from a metric measure space X
to R¥ for which div F is a real-valued signed Borel measure with finite mass.

To investigate divergence-measure fields we shall provide a meaningful defini-
tion for the divergence operator in metric measure spaces. We then generalize
some results obtained in [27] to the metric setting. In particular, we obtain the
Gauss—Green type integration by parts formula for sets of finite perimeter which
possess a Minkowski content characterization of the perimeter. For the Gauss—
Green formula we introduce a suitable notion of the interior normal trace of a
regular ball.

We mention a related paper by Thompson and Thompson [26] in which the
authors define divergence and prove an analogue of the Gauss—Green theorem in
Minkowski spaces, i.e., in finite-dimensional real normed spaces with smooth and
strictly convex unit ball.

We use the results for the divergence operator to characterize the Laplace op-
erator of the Green function on regular balls as the sum of the Dirac point mass
and a measure concentrated on the boundary of the ball. This characterization
allows us to give a precise description of the Poisson kernel defined in [4]. In the
setting of Heisenberg groups, we explain the relation between this measure and the
perimeter measure or the codimension one Hausdorff measure.
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2. Preliminaries

Here we recall some basic definitions and the notation we shall use in this paper.
Our framework is given by a complete metric measure space (X, d, 1), where p is
doubling, that is, there is a constant ¢ > 0 such that for every ball B = B,.(z),
re X andr >0,

(2.1) 0 < u(2B) < cu(B) < cc.

We write B,(x) for the ball centered at = with radius » > 0, and AB = B),(x) for
any A > 0. The smallest value of ¢ for which (2.1) is valid is called the doubling
constant of X, and we shall denote it as cq.

An upper gradient for an extended real-valued function u: X — [—o0, +00] is
a Borel function g: X — [0, o] such that

(22) [u(3(0)) = ur@,))| < [ gds

¥
for every nonconstant compact rectifiable curve v : [0,1,] = X. We say that g is
a p-weak upper gradient of u if (2.2) holds for p-almost every curve; the notion of
p-almost every curve is in the sense of the p-modulus of a curve family I' defined as

Mod,(T") = inf {/ oV du = o > 0 is a Borel function, / ods > 1 for all v € I‘}.
X Y
If w has an upper gradient in LP(X, i), then it is possible to prove the existence of
a unique minimal p-weak upper gradient g, € LP(X, ) of u, where g, < g u-a.e.
for every p-weak upper gradient g € LP(X, ) of u. We refer to [24] for the case
p > 1, and for the case p =1 to [12].

In what follows, the metric space is supposed to support a weak (1, 1)-Poincaré
inequality: there exist constants ¢ > 0 and A\ > 1 such that for all balls B, with
B, C X, for any Lipschitz function f € Lip(X) and minimal p-weak upper
gradient gy of f we have

(2.3) ]{B = fa,

dp < cr][ gr dp,
B

where

f5, = ]{Brfdu = @/Brfdu

is the integral average of f on B, (z).

It is well known that the doubling condition and the Poincaré inequality imply
the quasiconvexity of the metric space X, see [17] and [13]. Therefore, up to a bi-
Lipschitz change of the metric, the space X can be assumed to be geodesic, that is,
given z,y € X there is a curve y with end points z, y and length d(x, y). Moreover,
for a geodesic space the weak (1, 1)-Poincaré inequality implies the (1, 1)-Poincaré
inequality, i.e., (2.3) holds with A = 1. Therefore, as most of the properties of
metric spaces we consider are bi-Lipschitz invariant, it is not restrictive to assume
that X is a geodesic space and supports a (1,1)-Poincaré inequality.
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We remark here that up to Proposition 4.2 assuming only a (1,2)-Poincaré
inequality would suffice. However, in Proposition 4.2, and what follows thereafter,
a (1,1)-Poincaré inequality is needed, for instance, to conclude that the minimal
1-weak upper gradient is equal p-a.e. to its pointwise Lipschitz-constant function.

As proved by Cheeger in [7], in our setting the following differentiable structure
is given. There exists a countable measurable covering U, of X, and Lipschitz
coordinate charts X* = (Xf,..., X2 ) : X — RF~ such that u(Us) > 0 for each a,
(X \ U, Ua) = 0 and for all a the following holds: the charts (X{',..., X7 ) are
linearly independent on U, and 1 < k, < N, where N is a constant depending
on the doubling constant and the constants from the (1,1)-Poincaré inequality
satisfying the following condition: For any Lipschitz function f : X — R there is
an associated unique (up to a set of zero p-measure) measurable function d, f :
U, — R¥e for which the following Taylor-type approximation

(2'4) f(l‘) = f(-rO) +do f(0) - (Xa('r) - Xa(-fo)) + O(d(fﬂafﬂo))

holds for p-a.e. xg € U,.

The previous construction implies, in particular, that for x € U, there exists
a norm || - ||, on R¥e equivalent to the Euclidean norm | - |, such that gs(z) =
|dof(z)||l: for almost every = € U,. Moreover, it is possible to show that there
exists a constant ¢ > 1 such that

" 0s(w) < )| < cgs()

for all Lipschitz functions f and p-a.e. x € X. By df () we mean d,, f(x) whenever
x € U,. Indeed, one can choose the cover such that U, N Up is empty whenever
o # B

Formula (2.4) implies in particular linearity of the operator f — df and also
the Leibniz rule d(fg) = fdg + g df holds for all Lipschitz functions f and g.

For the definition of the Sobolev spaces N1*(X, i) we will follow [23]. Since we
assume X to satisfy the (1, 1)-Poincaré inequality, the Sobolev space N1P(X, p),
1 < p < o0, can also be defined as the closure of the collection of Lipschitz functions
on X in the following N'P-norm

[|ul 1llj,p H“Hip(x) + |‘9u|‘§p(x)-
The space NVP(X, 1), equipped with the N1P-norm, is a Banach space and a
lattice [23].

Let E C X be a Borel set. The p-capacity of E is defined as usual to be the

number
Cap,,(E) = inf (/ |u|P du —|—/ |dul|? du),
u X b'e

where the infimum is taken over all u € N'P(X, pu) for which u = 1 on E. We
say that a property holds p-quasieverywhere, p-q.e. for short, if the set of points
for which the property does not hold has p-capacity zero. For instance, if u,v €
N'P(X,p) and u = v p-ae., then u = v p-qe. and ||u —v|1, = 0. If we,
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moreover, redefine a function u € NVP(X, ) on a set of zero p-capacity, then it
remains a representative of the same equivalence class in NP (X, ).

We shall also use Sobolev spaces defined on a domain Q (i.e., a non-empty
open pathconnected set) of X; the space N12(€, i) is defined in the same way the
space N12(X, 1) is, but considering €2 as the ambient space. The space of Sobolev
functions with zero boundary values is instead defined as

No?(Qpu) = {u€ N"P(X,p) :u=0p-qe. on X\Q}.

We have that Ng*(€, u) = N'P(X, u) as Banach spaces if and only if Cap, (X \
2)=0.

In what follows, let p = 2. By [10], the Cheeger differentiable structure extends
to all functions in N*2(X, i) and N*2(Q, 1), and hence we define an inner product
on NY2(X, ) by the Dirichlet form

E(u,v) = /X (du, dv) dp,

for all u,v € NV2(X, u). It can be proved that such a form is strongly regular with
the domain, or core, given by NY2(X, p).

We recall that a Dirichlet form is said to be strongly regular if there exists a
subset K of the domain of the Dirichlet form, dense in both this domain and in
the class of Lipschitz functions on X, such that the distance dg : X x X — [0, 00]
defined, in our case, by

de(z,y) = sup {p(z) — p(y) : |dp(z)] < 1}

is a metric on X that induces the same topology on X as the original metric
topology on X. In fact, under the doubling property and a Poincaré inequality
dg is bi-Lipschitz equivalent to the original metric d on X, and so the Dirichlet
form £(u,v) is strongly regular. The set K is called a core of £. We refer to [25]
and [11] for more details.

For each o > 0 we define the bilinear form

Ealu,v) = a/ wvdp+ E(u,v).
p's

We thus have on N*2(X, 1) the norm || - ||, induced by &, which is equivalent to
the NV2-norm. In this way, N%?(X, u) with the norm |||, is a Hilbert space with
inner product &,. Note that & by itself is not an inner product on NY2(X, p);
E(u,u) = 0if and only if u is a constant (see [7]). If, for example, p(X) < oo, then
E(u,u) = 0 does not imply that u = 0.

The fact that the bilinear form &, yields a Hilbert space can be seen as follows.
Since the N12-norm is comparable to the £,-norm, we have that N'2(X, p) is
complete also with respect to the £,-norm. In this way the £,-norm is well defined
for any v € NY2(X, u). By approximation and the linearity of the map u — du,
the Leibniz rule follows for functions u and v in NY2(X, ) (we refer for these
properties to the paper [10]).
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Remark 2.1. We point out that the convergence of a sequence (uy)x to a func-
tion u in N12(X, 1) is same as the convergence of the two sequences (uy —u); and
(Guy—u)k to 0 in L2(X, ).

In general, the convergence of uy, to u in L?(X, u1) together with the convergence
of gu, to g, in L?(X, ) does not imply that uy converges to u in NV2(X, ). As
a counterexample, consider the metric space X = R? with the distance induced
by the norm ||(z,y)||1 = |z| + |y| and with p the Lebesgue measure; in this case
the upper gradient is determined by the dual norm ||(z,y)||cc = max{|z|, |y|}. Tt
suffices to verify this for a Lipschitz function u. For such function, by Theorem 4.38
in [7], denoting by B,(,l)(mo,yo) the ball in the norm || - ||; with radius r centered
at (20, y0), we have that

lu(z, y) — u(zo,yo)|

Gu(T0,90) = lim sup
(z,y)€B (w0,y0)

= max, (Vu(o,0),0) s = [[Vu(xo, 40) [l oo-

The sequence uy(x,y) = = + fir(y), where fi(y) = dist(y, %Z) converges to the
function u(z,y) = x, but for a.e. point

Guy, (2,Y) = [Vur(z,9)[|ec = 1 = [[Vu(z,y) |0 = gulz,y)

and
Gur—u(@,y) = [|[Vur(z,y) — Vu(@,y)llc = [V Ie(y)llec = 1.

Nevertheless, it is possible to use Mazur’s lemma to prove that for a convex combi-
nation the aforementioned property holds true, both for the Cheeger differentiable
structure and for the upper gradient. For the Cheeger differentiable structure,
however, it is not necessary to take convex combinations. Indeed, in this case the
sequence of gradients duy, is bounded in L?(X,R* 1), and so it is weakly conver-
gent to some o € L?(X,R* 1). Mazur’s lemma is then needed only to show that
¢ = du. We can consider convex combinations

N (k)
v = Z )\Z(-k)ui

i=1

with strong convergence vy — u in L?(X, u) and dvi, — ¢ in L2(X,RF ), that is
v — uin N¥2(X, ), and we may then conclude that ¢ = du. We then obtain

lim |du — duy|? du:/ |du|? dp + lim (/ |duk|2du—2/ (du, duy) du)
k— o0 X X k— o0 X X

:2/ |du|2du72/<du,go>d,u:0
p's X

by the weak convergence.
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3. Metric Laplace operator

In this section we construct a metric Laplace operator Ax on the metric measure
space (X,d, ). Recall that a Dirichlet form & is strongly local if whenever u, v are
in the domain of £ and w is constant on the support of v, then £(u,v) = 0. Having
a strongly local Dirichlet form at one’s disposal it is rather standard argument to
construct an operator associated to the form. Most of the statements (without
detailed proofs) can be found in the book of Fukushima, Oshima and Takeda [11],
but we provide complete proofs for the reader’s convenience. Since this operator
plays the role of the Laplace operator on X, we shall denote it by Ax. Setting

Dom(Ax) = {u € N"?(X, ) : there exists f € L*(X, p)

such that S(u,v):f/ fodp for allv e NY*(X, p)},
X

the Laplace operator is defined by
Ax’u, = f

We summarize the main properties of this operator in the following theorem.
The main point is to construct the resolvent operator R, i.e., an operator that
gives for any « > 0 the formal solution of the problem

(3.1) (a —Ax)u=f,
and to deduce from this the main properties of Ax.

Theorem 3.1. For each a > 0, there is an injective bounded linear operator
Ro : L*(X, ) — NY2(X, 1) such that for allv € N¥2(X, 1)

/X fodp = Ea(Raf,v) = € (Raf,v) + 0 (Raf,0).

This operator satisfies:

1) for any f € L*(X, p), [|Rafllz < 5 | fll2:

2) for any o, B > 0, Ro(L?(X,pn)) = Rg(L?(X, ), and the resolvent equation
holds true

(3.2) Rof —Rgf =(B—a)RaRsf

for all f € L*(X, p);
3) for any f € L*(X, ), we have the following limit in the L?(X, u)-norm:

(3.3) ILm aR.f=F
Properties 2) and 3) imply that R, (L*(X, 1)) is dense in L*(X, u). In addition,
Dom(Ax) = Ra(L3(X, 1))

for any a > 0, and for u = Ry f, Axu:= au — [ is independent of .
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Proof. Let us fix f € L?(X, ). Then we can define the linear operator Ty : N*2(X)
— R by T¢(v) = (f,v)2 := [y fvdu. We have that

7501 < 12 ol < L2 w02

Therefore Ty is a bounded linear operator on the Hilbert space (N12(X, ), &4), so
by the Riesz representation theorem, there exists an element of N'2(X, 1), denoted
by Raf, such that Tf(v) = Eu(Raf,v). The map R, : L*(X,pu) — NV2(X, u)
defined above is linear by the linearity of the defining operator f +— T'.

Since

o (Rafv ’U)Q = Ea(Raf, U) - S(Raf, U) = (fv ’U)Q - S(Rafv ’U),
choosing v = R,, f and applying Holder’s inequality, we see that

0 < a||Rafl = (Raf, Raf)2 = (f, Raf)2 — E(Raf, Raf)
< (f, Raf)2 < [fll2l|Rafll2-

Thus we obtain Claim 1 of the theorem, namely,
al|Ra fll2 < [If]]2-

Thus R, as an operator mapping L?(X, ) to L?(X, i) is bounded with image in
NY2(X, ) € L*(X, u) and its operator norm given by

(3.4) |Rall := | Rall 222 <

Q|+

We now prove the resolvent equation (3.2). Let us take f € L?*(X,u) and
v € NY2(X, ). Then

Ea(Raf — Rpf + (o= B)RaRpf,v)
= Ea(Raf,v) — ga(Rﬁfav) + (a - B) Ea(RaRgf,v)
= (fiv)2 —E(Rpf,v) —a(Raf,v)2 + (a— B)(Raf.v)2
= (f,v)2 — E3(Raf,v) = 0.

This means that for f € NV2(X, i), and then by density also for f € L%(X, ), we
have the identity

Rof —Raf + (a— B)RaRgf = 0.
Moreover, if we consider f € NY2(X, ), we have (denoting &, (f, f)l/2 =:[[flla)
04||aRo¢f - f”g <&, (aRa.f —faRyf — f)

= a?Ea(Raf,Raf) + IfI2 — 20 Ea(Raf. f)
=a*(f,Raf)2 +E(f, f) — | fl3.
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By Holder’s inequality and by using (3.4), we also get

(3.5) a(f,Raf)2 = IfI3 < a|Rafl2 Ifll2— |3 <O.
Therefore,
lim [l Raf — flla < lim &L
a—»00 a—»00 «

To extend this limit to be valid for any f € L?(X, u), we use the boundedness
of Rq, by fixing f. € NY2(X, ) such that ||f — f.|l2 < . In this way we get that

laRaf = fllz <l Rafe = fellz + a|[Ra(f = fo)ll2 + If = fell2
< ”aRafs _sz2+25’

and hence
limsup || R f — fll2 < 2e.
a—0

From this Claim 3 of the theorem follows since ¢ was arbitrary.

We have now proved that R, is a strongly continuous resolvent (see [11]) for
any a > 0. Let us next prove injectivity of R,. Suppose f € L?(X, p) is such that
Rgf =0 for some § > 0. Then by the resolvent equation (3.2),

0= Raf — Rﬂf + (a - 6)RaRﬂf = Ra.fv

that is, R, f = 0 for every a > 0. Now by equation (3.3), we see that f = 0, that
is, R, is injective. We can therefore define the inverse map R, : Ry (L?(X,pn)) —
L*(X, ). We claim that

Dom(Ax) = Ro(L*(X, 1), Axu=au— R, u.

For this definition to be consistent, we first show that the set R, (L?(X, 1)) and the
operator A,u = au— R, u do not depend on a. By the resolvent equation (3.2),

Rgf = Ra(f + (a—B)Rsf).
Therefore, for every f € L%(X, ), Rgf € Ro(L*(X,p)), and hence
Ry (LA(X. ) © Ra(L3(X, ).

By the symmetry of the argument, we have the required result R, (L?(X,pu)) =
Rg(L*(X, p)). Let us write D = Rg(L*(X, u)).
Ifue Danda,B >0, then Agu— Agu = (a— )u— R;lquRglu. Therefore,

Ro(Aqu — Agu) = aRqu — BRou — u + RaRglu.

On the other hand, since D = Rg(L?(X, i), there exists f € L?(X, u) such that
Rgf = u. Hence we have, by the resolvent equation (3.2), that

Ro(Aqu — Agu) = aRRaf — BRoRgf — Rgf + Ra f
=R.f—Rgf+ (a— B)RoRpf =0.

By injectivity of R,, we see that Aou — Agu =0, i.e., Aqu = Agu.
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Let us now show that R, (L?(X, 1)) C Dom(Ax). Let u € Ry (L*(X, 1t)). Then
there exists f € L?(X,u) such that u = R, f. The identity £, (Raf,v) = (f,v)2
for any v € NL2(X, i) can be written out as follows:

/}((du, dv) dp = E(u,v) = Eq(u,v) — alu,v)s = Eo(Ra f,v) — a(u,v)2

= (f,v)2 —a(u,v)s = —/ (au — flvdu

X

for all v € N%2(X, ). This simply means that v € Dom(Ax) and that Axu =
au— f=au— R;lu= A,u.

For the reverse inclusion, Dom(Ax) C Ra(L?(X, 1)), let us consider u €
Dom(Ax). Thus there exists f € L?(X,u) such that for all v € NV2(X, 1) we

have
/ (du, dv) dp = 7/ fvdu.
X s

Then consider w := R, (ou — f); we obtain that

Ea(w,v):(auff,v)g:a/Xuvdu7/)(fvdu:a/)<uvdu+8(u,v):Sa(u,v),

that is w = u, which means that v € R,(L*(X,p)). The identity f = Axu =
au — R, 1u follows easily.

In addition to the density of Dom(Ax) in L?(X, i), we also have that Dom(Ax )
is dense in N12(X, u). In fact, by (3.4) and (3.5), for any f € NY2(X, i), we have
that

loRaf = fII2 = Ea(aRaf — f.aRaf — f)
= OCQSQ(Roefa Raf) - QQSQ(R(XJC’]C) + 8a(faf)
:az(vaaf)2 7a(f7f)2+g(f7f) < g(fvf),

that is the sequence (aRnf — f)a is bounded in N%2(X, u). Therefore, for any
sequence of positive real numbers (o, ), so that lim, a, = co, the corresponding
sequence of functions oy, R, f — f is a bounded sequence, and hence by Mazur’s
lemma we have a sequence of convex combinations converging in N12(X, u1);

N(n)
( Z Ai,naiRaif) —f o we NY(X, p).

On the other hand, limy oo @Re f = f in L?(X, ). Thus w = 0 p-a.e. in X, and
hence by the fact that w € N%?(X, u) we know that w = 0 p-q.e. in X. There-
fore, it must be that w = 0. Observe that the sequence of convex combinations
Zij\;(:) Nin@; R, f lies in Dom(Ax) and converges to f € NY2(X, i), so the proof
is completed. O

We can now give the definition of a Cheeger harmonic function in the obvious
way.
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Definition 3.2. A function u € N%2(Q, i) is said to be Cheeger harmonic (re-
ferred to in this paper as harmonic) if

/ (du,dv)dp =0
Q

for all v € Ng*?(€2, ), i.e., u is harmonic if and only if u € Dom(Agq) and Aqu = 0.
Here Agq is the operator defined in Remark 3.4 below.

Remark 3.3. The notion of Cheeger harmonicity refers to the fact that we are
using the Cheeger differentiable structure. This notion has been previously consid-
ered in the paper [19], where Lipschitz regularity of Cheeger harmonic functions
has been investigated. We also underline that Cheeger harmonicity can be equiv-
alently be given in terms of a minimizer of the Dirichlet energy: wu is Cheeger
harmonic if and only if for any ball B,

[ lauPdu< [ ok,
B, B,

ks

for all v such that v — u € Ny*(By, ).

Remark 3.4. Let Q@ C X be a bounded domain satisfying a (1, 2)-Poincaré in-
equality with Cap,(X \ ) > 0. The previous construction of Ax can also be
used to construct a Laplace operator on the subdomain ). There are essentially
two different Laplace operators; the first is just the restriction of Ax to Q and is
defined by

Dom(Agq) = {u € NY2(Q, u) : there exists f € L?(Q, u) such that

L(du,dv)du:—/gfvd,u for allvGN&’Q(Q,,u)},

and the operator is given by
AQU = f

The second alternative, adapted to the inhomogeneous Dirichlet problem, is the
operator defined by

Dom(Af) = {u € Ny?(, p) : there exists f € L*(Q, ) such that

/(du,dv> dy = —/ fudp for all v € N&’Q(Q,u)},
Q Q
and

ABu=f.

To define the latter operator, the previous procedure has to be modified by con-
sidering the Hilbert space N&’Q(Q,u) with the inner product &, for all a > 0, to
obtain the resolvent operator R : Ny *(Q, 1) — Ny*(2, p) with

S(X(Rgfav) = (fa’U)Q
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whenever v € Nj*?(€2, ). Since the vector subspace Lipy () of Nj'(Q, ) is also a
dense subspace of L?(2, 1), we may extend R to be an injective map from L?((2)
to N& 2(Q) These properties, like the one proved for R, in Theorem 3.1, are the
essential properties for the definition of the operator Ag .

It is easy to verify that the operator Agq is the restriction of Ax to € in the
following sense: If v € Dom(Ax), then

On the other hand, the operator AJ is the restriction of Ag to the space N3’2(Q, ),
that is

Dom(AL) = Dom(Ag) N Ny?(€2, )
with ASu = Agu for u € Dom(Ag) N Ny 2(Q, ).

3.1. Measure-valued Laplace operator

Let 2 be a domain in X. We give the following definition of the measure-valued
Laplace operator Z¢ on . By #,(2) we denote the space of all bounded signed
Borel measures on €, i.e., v € () is a real-valued signed Borel measure on {2
with bounded total variation

V]() = sup {/ngdy ¢ € Lip (), ¢lloe <1} < .

We remark that to compute the total variation of a measure we test in the
space Lip,(€) of Lipschitz functions on € with compact support instead of the
space C.(Q2) of continuous functions with compact support; we may do this since
Lip.(€) is clearly dense in C.(2).

We define

Dom(Z¢q) = {u € NY2(Q, u) : there exists v € .#,(X) such that

(3.6) E(u,v) = —/ vdy for all v € Lipc(Q)},
Q
and then we set
Dou =v.
Example 3.5. As an example, we can consider the Euclidean space (R", || -||) and

modify its metric structure in two ways, which essentially lead to the same metric
measure structure. We fix Q C R™ an open set with regular boundary and we can
modify either the measure by considering du = (1 + xq)dL™, or the differential
structure du = (1 4+ axyq)Vu, where a = V2 - 1.

In both cases we have, for u,v € CZ(R"),

/ (du,dv)d,u:/ Vu~Vvd:c+/Vu~Vvdm
n n Q

= —/ vAudr — / vAudm—i—/ oV - vo dH L.
Q o0

Then u € Dom(Ag») if and only if Vu - vg = 0 on Q and Au € L2(R").
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In addition, in the case p = (14 xq)L" with the standard differential structure
we also have

Apnu = Au.
In the second case, where p = £ and du = (1 + axq)Vu, we obtain
Apnu = (1 4+ xa)Au.

In a similar fashion, Dom(Zg~) is given by those functions u for which Au €
LY(R™) and the trace of Vu - vg € L1(0Q,H""1), and

Dt = Aup — Vu - vo H 1L 09,

It can be verified that Dom(Zq) is a vector space and that Zq is linear. We
wish to expand the class of test functions in the definition of the domain Dom(Zg)
from Lip,(2) to allow for test-functions v in Ng'*(§2, ), see Proposition 3.8. For
that, we need the following lemma.

Lemma 3.6. If E C Q is a Borel set such that Capy(E) = 0, then for every
u € Dom(Zq), |Zqu|(E) = 0.

Proof. By the Jordan decomposition theorem, the measure Zqu can be decom-
posed into its positive and negative parts, @Eu and Zqu; this means that we
can decompose {2 into two disjoint Borel sets Q = QT U Q™ in such a way that
Dqu(B) > 0 for every B C QT and Zqu(B) < 0 for every B C Q~. Hence
we may, without loss of generality, consider £ C QF; in fact we can decompose
E = ETUE~ and use the monotonicity of capacity. Further, we may also assume
that F is a compact set, since as Radon measures both @gu and Zgu are inner
measures and F is a Borel set.

Since Cap,(F) = 0, we have also that the relative capacity Cap,(F, ) is zero.
This can be seen by multiplying those Lipschitz test-functions which were used for
computing Cap,(FE) by another Lipschitz function 1 which is 1 on a neighborhood
of the compact set E and has compact support in 2. We can then find a sequence of
Lipschitz functions (¢;); so that 0 < ¢; <1lon X, ¢; = 1 on E, and [|¢;|[ny1.2(x) <
27" and ; are compactly supported in 2. We may assume that the sequence
(p;): converges pointwise to zero outside of the compact set E (we can do so by
choosing ¢; to have support in the open set |, B(x,1/i)). We have

[ eiazan] =| [ @wdeyan] < ([ 1l an)”( [ o)

) 1/2
< (/X|du| dﬂ) llill iz (x )

which tends to 0 as i — oo.
On the other hand, since ¢; are all bounded by 1 and |Zq|(X) < oo, by the
Lebesgue dominated convergence theorem we have

1—00

lim pidPqu = Pqu(E) = qu(E)
X

A similar argument shows that Zou(E) = 0, and hence the proof follows. O
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Remark 3.7. The requirement that E is a Borel set in the above lemma is not
a serious restriction, because if E C Q is a set with Cap,(F) = 0, then there is a
Borel set Ey with E C Ep C Q such that Cap,(Fp) = 0.

The following proposition tells us that we do not have to restrict ourselves to
having test-functions v only in Lip,(X) in (3.6).

Proposition 3.8. Let u € Dom(Zq). Then for every v € Ny (Q, 1) N L=(Q, 1)
the following holds:

E(u,v) = 7/ vdZqu.
Q

Proof. We first assume that v has compact support in 2. Note that by the
(1,2)-Poincaré inequality we can approximate compactly supported functions in
NY2(Q, ) by Lipschitz functions. So we can find a sequence of compactly sup-
ported Lipschitz functions (p;); on Q that converge to v in the N12(£2, y)-norm.
By passing to a subsequence if necessary, we may also assume that ¢; — v point-
wise outside a set of zero 2-capacity; we refer to [23]. Since v is bounded, we can
also assume that the approximating compactly supported Lipschitz functions ¢;
are also uniformly bounded by M := ||v||~. Applying ¢; as in (3.6), we see that

/%- dDqu = —/(dgpi,du) dp — —/(dv,du) dpu.
Q Q Q

By Lemma 3.6, we know that ¢; — v almost everywhere with respect to the
total variation measure |Zqu|. By the Lebesgue dominated convergence theorem
applied to the uniformly bounded functions ¢; with respect to the positive and
negative parts Zqu™, Zqu~ of the signed Borel measure Zqu, we may conclude

that
/(pid@QU%/Ud@QU.
Q Q

Hence equation (3.6) holds for all compactly supported functions v € N12(Q, 1) N
L(Q, ).

To pass to any v € Ny™>(€2, ) N L (R, ), we note that functions in Ny**(€2, x)
with compact support in  form a dense subclass of N&’2(Q, w) (see [24]). Hence,
if v is in Nol’z(Q,,u) N L*>(, 1), we can find a sequence of compactly supported
functions v; from Ny 2(Q, 1) N L>(Q, 1) such that v; — v in No*>(€2, p). As before,
we can also ensure that v; — v 2-capacity almost everywhere in 2. Hence

/(du,dv) dp = lim [ (du,dv;)dp=— lim [ v; dZqu,
Q

1—r 00 Q 1—> 00 Q

and then if v is bounded in Q we have

lim Uid@QU:/Ud@QU,
Q Q

i—00

giving the desired result for all bounded functions in N& ’Q(Q, ). O
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We shall also need the following lemma, which is based on the Lebesgue de-
composition of the measure Zq given by
dDqu = fudu+ dP4u,

where f, = dZqu/du is the absolutely continuous part and 7%, the singular part
of @Q

Lemma 3.9. Let u € Dom(2q). If the singular part 2%, of Dqu is zero and if
the Radon—Nikodym derivative f, € L*(Q, 1), then u € Dom(Aq) with Aqu = f,.

Proof. From the discussion in Section 3, if Z¢,u = 0 and the absolutely continuous
part is represented by f, € L?(€, 1), then

(3.7) E(u,v) = —/quv du

for all v € Ny?(€, )N L (Q, u). When f,, € L*(Q, 1), we can use a truncation ar-
gument and the Lebesgue dominated convergence theorem to show that (3.7) holds
for any v € Ny *(Q, 11). So we conclude that u € Dom(Ag) and Aqu = f,. O

Remark 3.10. Tt can be seen that Dom(Ag) C Dom(Zq); moreover, if u,v €
Dom(Z2gq) and a € R, the following hold true:

1) spt(Zqu) C spt(u); also, if u is constant on an open set U, then spt(Zqu) C
Q\U;

2) u+v,au € Dom(Zq) with Zq(u+v) = Zou+ Zquv and Zq(au) = a Zqu;
3) if in addition u and v are bounded, then uv € Dom(Zq) with
d2q(w) =vdZqu+ wdPqv + 2 (du,dv) du.

Note here that since u, v are in N%2(Q), it follows that they are well-defined
up to sets of Capy-zero; such null sets are not charged by Zqu, Zqv, see
Lemma 3.6.

3.2. Inhomogeneous Dirichlet problem

In this section we consider the inhomogeneous Dirichlet problem on bounded open
domains €2 such that (X \ Q) > 0; we assume that a metric space X satisfies a
(1,2)-Poincaré inequality. More precisely, given two functions f € L?*(X,u) and
v € NY2(X, i), we wish to find u € Dom(Ag) such that

{ Aqgu=f on €,

3.8
(35) u—ve Ny Q, p).

By definition of Ag, we interpret (3.8) in the weak sense, i.e., u is a solution of (3.8)
if u—ve Ny?(Q,u) and for all ¢ € N3*(Q, 1),

E(u, ) = */Qfsodw
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As in the classical linear theory, a solution u to (3.8) can be written as the sum of
two functions, ug and u;, where ug is harmonic in § such that ug —v € N&’2(Q, 1)
and u; € N3’2(Q, p) is a particular solution to the problem ARu; = f with
1,2
uy € NO (Q, /'L)
The function ug is constructed in [19] as the minimum of the energy functional

min /|du|2d,u.
u—'UENé’Q(Q,u) Q

For the second part, we use the functional F' : Ng’Q (Q, u) — R given by

1
F(u):5/9|du|2d,u+/ﬂufdu,

which is the sum of a linear functional and a strictly convex energy. Hence F itself
is strictly convex. Then, if F' has a minimum, it is unique and the minimum is
the desired solution u;. To prove the existence, it is enough to use the Sobolev
inequality, i.e., if u € N&’2(Q, 1) there exists a constant ¢s > 0 such that

l[ulls < eslldul]2-

Given that € is bounded and p(X \ 2) > 0, the above Sobolev inequality holds;
we refer to [13] and [18] for the details. Then, for any u € NJ'*(Q, 1) we have that,
using the inequality ab < ea?/2 + b?/2¢ with a,b,e > 0,

1 1 1
Pl = 5 Il + [ af die = 5l = 171 e > 5l = . 7
1 ecs 5  Cs 5
> (= — =) ||duf? - = .
> (5 =55 Idulls = 2 1£13

If we fix € < 1/cs, the preceding inequality gives us that F' is bounded from below
by —27te~tes|| f||3. Therefore,

m = inf  F(u)
u€Né’2(Q,;L)

is finite, and in particular, the infimum is a minimum as seen by taking a minimiz-
ing sequence and applying Mazur’s lemma. The minimizing function u; is a weak
solution to the desired equation, that is

(3.9) /Q<duhds0> dp = */Qﬂpd/«t

for all ¢ € Ny*(2, p). From (3.9) it is immediate to see that u; is the desired
solution; in addition, if in (3.9) we take ¢ = uy, we have the Caccioppoli type
estimate

[duall2 < es|l fll2-
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4. Functions of bounded variation and the perimeter measure

The aim of this section is to study some properties of the perimeter measure
of a ball in metric space. The properties we have in mind are needed in the
characterization of a singular function which will be constructed in Section 6.

Following [21], the definition of the total variation of a function u € L'(X, i)
is given by

(4.1) |Du|(X) = inf { limjinf/X Gu; A uy € Lipyo(X, 1), uj — win Li (X, u)}

A function w is said to have bounded variation, that is, v € BV (X, pu), if
|Du|(X) < oo. Moreover, a Borel set E C X with finite measure is said to have
finite perimeter if xgp € BV(X,pu). We denote the perimeter measure of E by
P(E, X) = | Dxs|(X).

To each function of bounded variation we associate a Borel regular measure,
its total variation measure. This measure is defined on every open set A C X
using (4.1), that is,

|Du|(A) = inf { limjinf/Aguj dp:uj € Lip,, (A, 1), uj = uin Llloc(A,u)}.

We extend this measure to act on any Borel set B C X by the Carathéodory
construction

|Du|(B) = inf {|Du|(A) : A open and B C A};

for more details on this construction in the metric measure setting see Theorem 3.4
in [21].

An equivalent definition can be also given by way of the Cheeger differentiable
structure as follows:

|Deul(X) = inf{ﬁmjinf/x |dug| dpp : wj € Lipyoo (X, 1), uj — win Lige(X, M)},

and we shall say that u has bounded total Cheeger variation if |D.u|(X) < oo; a
set with Cheeger finite perimeter is a Borel set F with finite measure such that
| Dexe|(X) < oo.

By the results contained in [7], it follows that these two definitions are equiva-
lent, in the sense that u has bounded total variation if and only if it has bounded
total Cheeger variation. There exists a constant ¢ > 1 such that

%|Du|(X) < [Deu|(X) < | Dul(X).

Also using the Cheeger differentiable structure, we have that |D.u| defines a finite
Radon measure; the argument is similar to the case of |Du| and so we refer to [21]
for the proof.

A sequence of Lipschitz functions (u;); is said to converge in variation to a
function u € BV (X, ) if u; converges to u in L (X, ) and

loc

[ s due > Dul(x),
X
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The preceding definition of total variation does not specify the optimal sequence,
i.e., the sequence which converges to v in variation.

It is proved in Theorem 3.8 of [21] that the discrete convolution gives an approx-
imation that is only comparable in variation with the optimal one. Note that for
the optimal sequence, the vector valued measures dji; = du; du, have uniformly
bounded total variation. So, up to subsequences, they converge to some vector
valued finite measure fi.

Remark 4.1. A sequence (u;); converging to w in variation is optimal not only
for the variation in X, but also for the variation in all open subsets A with
|Du|(0A) = 0. In fact, by definition, we have that

[ Dul|(A) Sliminf/ Gu, A,
j—o0 A
but also that

|Du|(X \ A) < hmsup/  Gu,; dp < limsup (/ Gu; dp — / Gu; du)
X X A

Jj—oo \A j—o0

= |Dul(X) ~ limint [ ., du < |Dul(X\ 4)
© A

J1—

The preceding inequalities are indeed equalities if [ Du[(0A) = 0 and so [Du[(X\ A)
= |Du|(X \ A). Hence the following two limits exist:

lim Gu; dp = |Du|(X '\ A),
J—00 X\A
and
(4.2) lim [ gy, du = |[Du|(A).
j—=o0 J 4

An important tool in the theory of functions of bounded variation is the coarea
formula. The version we work with in the present paper is a direct consequence of
Proposition 4.2 in [21]. For any u € BV (X, ) and any Borel measurable function
f: X — R, the following identities hold:

(4.3) /X fd|Dul = / /X f(2)d|Dx, |(x) dt

and

/X fd|Deu| = /R /X F(2)d|Dex () dr,

where E; = {u > t}, t € R, is the super-level set of u. We point out that in these
formulae, due to the fact that the measures |Du| and |D.u| are not absolutely
continuous with respect to the measure p, it is important to consider the function f
and not an equivalent representative. Since the perimeter measure does not charge
sets with zero 1-capacity, we can modify the function f on such negligible sets.
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If w is Lipschitz, (4.3) can be written as

/ngudu:/R/deWXEtl(x) dt.

This follows by an argument contained in Theorem 6.2.2 of [6], and summarized in
the following proposition. We will provide a proof here for the reader’s convenience.

Proposition 4.2. Let u € Lip(X). Then the total variation measure d|Dul| is
given by g,du.

Proof. Lipschitz continuity of u implies that |Dul is absolutely continuous with
respect to p with density given by some function G,. To see this, note that u; = u
is a possible competitor in the definition of |Du|, and so for every open set A C X
(and hence for every set A C X) we have

|Dul(4) < /A gudpt.

Therefore the density function G, < g, p-a.e.

To prove the equality it suffices to prove that the function G, is an upper
gradient of u. We take a sequence (u;); of Lipschitz functions converging to u in
LY (X, 1) and with

lim [ g, du = [Dul(X).

J*}OO X
The sequence of measures g,;du is bounded, and so, up to a subsequence, it con-
verges weakly to a measure po, that is still absolutely continuous with respect
to w, i.e., ditoo = goo dpr. To see that po, is absolutely continuous with respect
to w, it suffices to show that whenever £ C X is compact with u(E) = 0, we have
loo(E) = 0. To this end, we note that because F is compact, for every ¢ > 0 we
can cover E with a finite number of balls Bf with u(0B$) = 0 so that the open
set A. = U;Bf contains E and is such that p(A:) < e and p(0A:) = 0. It follows
that |Du|(0A:) = 0 because of the absolute continuity of |Du| established above.

Therefore, by Remark 4.1 we have

Jj—oo

i [ gu, dp = Dul(4) < [ gudu< Le
Ac

Ac

which implies that peo(As) < Le. Tt follows that peo(E) = 0. For more general
sets £ C X with u(E) = 0, there is a Borel set Ep, containing E, such that
u(Ep) = 0. Because poo is a Borel measure, jioo(Ep) is the supremum of all
oo (K), the supremum taken over all compact sets K C Fy. Given that u(K) =0
and 50 fioo(K) = 0, it follows that jieo(Eo) = 0 and 50 fiee(£) = 0. Then g,
converges to go, weakly in L'(X, p).

To summarize, we have u; — u in L'(X) and g,, — goo weakly in L'(X).
Now, an invocation of the Mazur lemma, together with Lemma 3.1 in [16], shows
that g is a weak upper gradient of u; it follows that g, < goo a.e. in X.
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Given that balls have finite p-measure, when x € X, for almost every r > 0 we
have (0B, (z)) = 0. For such r > 0, by (4.2) with A = B, (),

DulB, (@) < [ gmdp<limint [ g, du=Dul(By(e) = [ Gudn
B, (x) )70 JB,.(x) B, (x)

and so we get goo(z) = Gy(x) for © € X that are Lebesgue points for both G,

and goo. It follows that Gy, < gy < goo = Gy, a.e. in X, and the claim follows. O

From now on, we assume that X is also a geodesic space. This is not an overly
restrictive assumption, since X, by the virtue of supporting a Poincaré inequality
and being complete, is a quasiconvex space. It follows that in our setting, a bi-
Lipschitz change in the metric does result in a geodesic space.

Let us fix a point g € X. Since X is assumed to be a geodesic space, by the
results in [7], the function u,,(z) = d(z, o) is Lipschitz with Lip(uz,) = gu,, = 1.
Moreover, we may write By(zg) = {us, < t} and so by the coarea formula (4.3)
we obtain for any positive r > 0 that

/OTP(Bt(:cO),X) dt = p(By(20)) < 0.

Thus the map ¢ — P(B(zp), X) is a measurable locally integrable function. This
implies that for almost every r > 0,

r r4+e

P(By(0), X) = lim = [ P(Bi(wo), X)dt = lim = [ P(By(ap), X) dt

e—0 ¢ ree e—0 ¢ r

1 r+e
= lim —/ P(B:(xo), X) dt.

In particular, for almost every r > 0 the perimeter measure coincides with the
Minkowski content

(4.4) P(B,(2), X) = lim MBr(@0) = 1(Br—c(20))

e—0 3

For a ball B, (z0) satisfying (4.4), we can consider the sequence of functions (u¢)e>0,
where

B . (7T —d(zo,2) g1
(4.5)  wue(r) = max { min {7’ 1}, O} = min {E d(z, X \ By(20)), 1}.
1
For a such function u., we have that g, = - X B, (20)\By—. (o) and

1
/ Gu, A = — / dp — P(B,(x0), X),
X € JB,(20)\Br_<(z0)

that is, the sequence u. converges to xp, (z,) in variation. This also means that
the sequence of vector valued measures (|duc|du). is equibounded:

|Doue| (X) = / |[due|dp < ¢ < o0
p's
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for some positive constant c¢. Therefore there exists a subsequence €; — 0 such
that, setting u; = u.;, the sequence of vector-valued measures du; dyu is weakly
convergent to some vector valued measure fio,. This measure is absolutely con-
tinuous with respect to both |D.X g, (z)| and [Dxp, (z4)|- Indeed, if, for instance,
|DeX B, (z0)| (E) = 0, where E' C X is compact, we can find for every € > 0 an open
set Ac D E such that [Dcxp, (20)|(0A:) = 0 and |D.X B, (24)|(Ac) < €. Reasoning
as in the proof of Proposition 4.2 we may conclude that

el (B) < ] (A2) < limint [ [dus| dye = Do, | (42) <
< JA,

We may hence write

floo = on,r|DcXBT(a:o)| = Uxo,T|DXBT(xo)|

for some vector-valued |D.X g, (z,)|-measurable function vy, , and [Dxp, (5,)|-mea-
surable function o, . In particular, the function o, , plays the role of the normal
vector at the boundary of B, (zg). In this context, it is not clear from the definition
if it is a unit vector. For the sake of simplicity, if no confusion may arise, we simply
denote the functions vy, , and 04, , by v and o, respectively.

We can summarize the previous construction in the following definition.

Definition 4.3. We shall call a ball B,.(xq) regular if the equation (4.4) is valid and
if there exists a sequence €; — 0 such that for the sequence of functions u; = .,
referred to as an optimal sequence and defined in (4.5), the following hold true:

(1) gu, dp converges weakly to d|DXp, (z0)];

(2) dujdp converges weakly to o d|Dxp, (2,)| for some |Dxp, (4,)|-measurable
vector-valued function o = oy ;.

Almost every ball is regular in the sense that for every xg € X and for almost
every r > 0 the ball B,.(z¢) is regular. However, the vector ¢ is not a priori unique
and it is not clear whether it depends on the sequence e; we consider.

The given notion of regularity relates to interior regularity of a ball. One
can also consider the notions of outer and two-sided regularity and obtain that
for almost every radius r > 0 the ball B,(x¢) has inner, outer, and two-sided
regularity.

5. Divergence measures and Gauss—Green formulas

Here we consider divergence-measure fields, i.e., a class of vector fields F:X >Rk
belonging to the space L?(2,R* 1) and for which div F is a measure. In the
metric space framework of the present paper, we generalize some results obtained
by Ziemer in [27].

Previously, Thompson and Thompson in [26] constructed a divergence form in
the setting of Minkowski spaces, and they proved a Minkowski space analogue of
the Gauss—Green theorem.
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The aim of this section is to study the operator div on Lip,(Q2) with values
in the space of measures, that is, we want to define for F € L2(€2, R u) the
distribution

(5.1) (u,div F) := — /Q (F, du) dp,

for u € Lip,.(£2). In the following we adopt the notation from [8] and [27].

Definition 5.1. We say that F € L(Q,R*, 1) is in the class DM?(Q) if there is
a signed finite Radon measure, denoted by div F' € .#4(2), on §2 such that

(5.2) /uddivﬁ = 7/<F",du> dp for all u € Lip,(€).
Q Q

Remar_l; 5.2. By an argument similar to Ehe proof of Lemma 3.6, we can prove
that if F' € DM2(Q), then the measure div F' does not charge sets with zero 2-capa-
city. Therefore, condition (5.2) can be extended to any u € Ny (€2, ) N L™(Q, ).

Note that when F € L2 (2, R*, ;1) the operator Tp: Ng’z(Q, 1) — R given by

is a bounded linear operator on the Hilbert space (Ng’Q(Q,,u),Sl). Therefore, by
the Riesz representation theorem, there exists a function v € NO1 2(Q, ) such that
whenever u € NJ2(Q, ), Ti(u) = &1 (v,u). Hence, if F € DM?(Q), then for all
u € Nol’z(Q,u) we obtain

/(ﬁ,du) du:/uvdqu/(du,dv) dp,
Q Q Q

/uddivﬁ—i—/uvdu = —/(du,dv>d,u.
Q Q Q

It follows that v € Dom(Zq) with

that is,

dPqv = —vdp — ddiv F.
This proves the following lemma.

Lemma 5.3. Given a domain Q0 C X, a map F e L2(S,R¥ 1) is in the class
DM?(Q) if and only if there exists v € Dom(Zq) such that

dPqv = —vdp — ddiv F
in the sense of distributions on Nj*(Q, ).

We can also state the following simple properties of the divergence measure.
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Lemma 5.4. Let F € DM?(Q). Then spt(div F) C spt(F). Moreover, if v €
Dom(Zq), then dv € DM?(Q) with div dv = Zquv.

Proof. The first statement follows by considering A = '\ Spt(ﬁ), so we have that
v ] (4) =sup{ [ ddiv Fs g € Lip,(4), ol < 1}
A
= sup{/(ﬁ,dgp) dp : ¢ € Lip.(A4), |l¢lle < 1} =0.
A

For the second part, let v € Dom(Z¢q). Then there exists a signed finite Radon
measure Zqu € #(X) such that

/(dv,du) dp = —/ uwdPaqv
Q Q

for all u € N&’z (Q, )N L>®(, p). From this and by Remark 5.2, we may conclude
that dv € DMQ(Q) with divdv = Zqv, and the claim follows. O

We now state the following two propositions on the Gauss—Green type integra-
tion by parts formula for vector fields in DM (Q), that is for vector fields F' in
L®(Q,R*, 1) N DM?(Q).

Proposition 5.5. Let F € DM™(Q) N C(QLRF) and B, (x¢) C Q be a regular
ball. The following Gauss—Green formula

/ fddivﬁ+/ (F,df) du:f/ F(F, 040.0) d|DXB, (20):
B, (x0) B, (zo) Q

holds for all f € Lip.(2). If the support of F is disjoint from 0B, (xq), then the
requirement that F is continuous can be removed.

Proof. We can consider an optimal sequence of locally Lipschitz functions (u;);

converging to X p, (z,) in variation as in (4.5). Then we have by the Leibniz rule
that

/ujfddivﬁzf/ <ﬁ,d(ujf)>du:f/uj (F,df}duf/ F(F, dug) dp.
Q Q Q Q
We notice that

(5.3) ‘/Qujfddivﬁ—/B( )fddivﬁ’gHfHooldivﬁ!(B,«(mo)\B,n_gj(xo)),

and that the right-hand side of (5.3) tends to 0 as j — co. Thus we may conclude
that

lim ujfddivﬁz/ fddivFE.

J—ro0 Q B-,v(aio)
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Also, by the fact that both F and df are in L>(Q), by an application of the
Lebesgue dominated convergence theorem we obtain

lim [ w;(F,df)dp= / (F,df) dp
Br(z0)

J—0o0 Q

We also have, due to the continuity of F, that

lim f<F duj) dp = /f F 1 Ozo.r) A DXB, (w0)]s

j—o0

and so the proof is completed. O

Remark 5.6. We point out that property (5.3) is a consequence of the choice
of an optimal sequence (u;); to be an inner approximation of the characteristic
function xp, (). If we chose, for instance, an outer approximation, then the
preceding integration by parts formula would be as follows:

L fddivﬁ+/ (F,df)dp = —/ F(F Gy d|DXB, (20
By (z0) B (x0) Q

for all f € Lip.(f2), where &, , is the density of the vector-valued measure obtained
as a weak limit by way of the gradients of this new sequence as in Definition 4.3.

We also point out that the previous proposition can be extend to more general
sets F/ C € with finite perimeter whenever a Minkowski content characterization
of the perimeter, analogous to (4.4), holds. In this case, the boundary of E has to
be considered as the essential, or the measure-theoretic, boundary of F, i.e., the
set of all points at which the density of E is neither 0 nor 1.

We prove the following main theorem of this section, which is a generalization
of Proposition 5.5, without requiring continuity of the vector field. This theorem
should be thought of as the generalization of the Gauss—Green theorem of the
Euclidean setting.

Theorem 5.7. Let ' € DM™(Q) and let B, (x0) C Q be a regular ball. Then the
following extended Gauss—Green formula

(5.4) / fddivﬁ+/ <ﬁ,df>d,,t:/f(F.V)C,;Br(xo)d|DXBT(xo)|,
B (o) B, (z0) Q

holds for all f € NY2(Q, u) N L> (2, 1), where (ﬁw)gBr(%) is the interior normal
trace of F on 8B, (x).

Proof. We use the optimal sequence (u;); defined in (4.5). Then, as in the proof
of Proposition 5.5, by the definition of divF (Definition 5.1) and the Lebesgue
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dominated convergence theorem
lim | f(F, du)du= hm (/Q <ﬁ,d(ujf)> du — /Quj<l3,df) du)

j— Jo
::_ﬁgi(lkﬁfdva+:LuﬂF¢Uﬂm)

:—/ fwwﬁ—/ (F,df)dp
B,.(a:o) Br(a:l))

For the sequence (L;); of operators given by
— [ £ du;)d
Q
we have that |L;(f)| < C | F|lsc |l flloo, Where the positive constant C' is given by

C= sup/ |duj| dp < oo.
jeN JQ

Indeed, C' is finite since the ball B,(zo) has finite perimeter. In particular, C is

independent of both f and F' and so, by the above argument, the operator

L(f) = lim Ly(f)

is bounded over Lip.(€2) and admits an extension to C.(€2). This in turn implies
that there exists a measure v € .#4(2) such that, for any f € C.(),

Lﬁ:Afw

The measure v is concentrated on dB,.(x¢); in fact take any compact set K such
that K N 0B, (z9) = 0, an open set A D K such that dist(A, B, (x¢)) > 0, and
take ¢; < dist(A, 0B,(x¢)). Then, since spt(du;) N A = ), we obtain for any
[ € Lip.(4),

/fdl/— lim f(F duj)dp =0,

j*)OO

that is |v|(K) = |v|(A) = 0. This property extends to any Borel set E such that
EN9dB,(x) = 0 since
WI(B) = sup [r|(K) =0.
KCE

Also v can be seen to be absolutely continuous with respect to |Dcx g, (z)|; indeed,
if I/ is a Borel set such that [D.x g, (z,)|(E) = 0, then there exists an open set A,
such that [Dcxp, (20)|(Ae) < €. Fix a compact set K C E and an open set A D K
such that A C A.. Then, for any f € Lip.(A) with || f||cc <1 we have that

| [ dus) d] < timsop | Bl [ sl < 1F el Do, o |0 < 21l
j—oo

that is |v|(A) < e. Therefore, since ¢ is arbitrary, |v|(K) = 0. Finally, by taking

the supremum over K C FE, we obtain that |v|(E) = 0, and hence v is absolutely

continuous with respect to |Dex B, (o)l
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To conclude, there exists (F - V)é;Br(zo) € L'(|DxBg, (s4)|) such that

Mﬁ=—AﬂﬁW&MwmemL

This map defines, in the metric setting, the interior normal trace of F on 0B, (z0),
and the integration by parts formula (5.4) holds. O

Remark 5.8. The term interior normal trace can be justified by the following
facts. If F € DM™>(2) N C(Q,R¥), then by Proposition 5.5 we get that

—

(F : V)QBT(%) = _<F’ 0'96077“>-

In addition, also when F is not continuous, recalling that with ug, (z) = d(z, zo),

1
du;(2) = = — iz (2) XB, (20)\ B, ., (20) (%),
J

and by using the coarea formula (4.3), we can write

/Qf (F, duy) dp = — 1 F(F, dug,) du

8\7 B’V‘(xo)\B’V‘—EJ' (x())

I =
=— —./ /f<F’duxo>d|D><Bt<xo>|dt-
€j Jr—e; JO

Therefore, we have obtained that

J—ooo €5

, -~ . 1 r ,
| HE )5,y AIDXB | = =l = [ [ 7P d1Dx, o
Q r—ej JQ
which gives meaning to the following equality in terms of the trace:

/Qf(ﬁ ) V)EBT(%) dlDXB,,.(zo)| = _/Qf<ﬁ>duafo>d|DXBr(zo)|>

and to the fact that the vector du,, defines in a weak sense the normal vector o, ,
to aBT(JT())

Remark 5.9. Observe that in the proof of Proposition 5.7 we have used a par-
ticular optimal sequence. It turns out, nevertheless, that the interior normal trace

(F - V)ap. (zg) does not depend on this particular choice. This fact is a direct

consequence of equation (5.4), since then formula

/Qf(ﬁ.y)gBy.(m)deBT(w:/ fddivﬁ+/ (F,df) dp
B

(o) B (z0)

uniquely identifies the values of (F - V)gB,’.(IO).
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Remark 5.10. By Theorem 5.3 in [2] (see also [3]), formula (5.4) can also be writ-
ten as

—

[ paavFe [ (Fandu= [ fF )5 a0 dS"
B, (x0) B, (zo) 0*Br(x0)

where 0* B,.(0) is the essential boundary of B,.(x), S is the spherical Hausdorff
measure defined using the Carathéodory construction based on the gauge function

=\ _ M(Eg)
h(B,) = Y

and ¥y, » : X — [c, ¢q] is a Borel function depending, in general, on the ball B, (x),
and ¢ is a positive constant and ¢4 the doubling constant of .

)

6. Harmonicity and the mean value property

In this section, we shall follow the approach of [15] and construct, for any regular
ball B, (z9) C X and any T € B,(xo) the Green function on B, (z¢) with singularity
at Z, that is an extended real-valued function G(x) = G%’.(m)(x) such that

1) G is strictly positive and harmonic in B, (zg) \ {Z};
2) G € NY2(X \ B.(7)) for any € > 0 and Gl X\B, (zg) = 05

3) for every y € 9B, (xo),

lim G(z) = 0;
Ty
4) @G is singular at T; that is,
lim G(z) = oo;
r—x

5) forall 0 < a <0,

1

Cap, ({z € By(20) : G(z) >b},{z € By(z0): G(z) >a}) = o

In [15] the authors constructed the Green function of a relatively compact
domain with the aforementioned properties in metric measure spaces; we refer
also to [14] and [9]. We can state the existence and main properties of the Green
function in the following theorem. We assume that X supports a (1, 2)-Poincaré
inequality.

Theorem 6.1. Let Q C X be a relatively compact domain. Then there exists the
Green function G = G with singularity at € Q0. In addition, dG € L*(X\ B:(%))

for any e >0 and

P x\B.()G = —v§,

where v§ is a positive Radon measure in the dual Ny™°(X \ Be(Z))* concentrated

on 0f).
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Moreover, G admits the measure-valued Laplace operator
QXG = (55; — Vg,

in the sense that, for any v € NY2(X) continuous at Z, then

/}((dG,dv)du:/ vdv§ —v(z).

o0

Proof. We refer to [15] for the details on the construction of G. We sketch the
main steps needed in the definition. We find a harmonic function on Q\ B, (Z)

v
Gi=— 7
7 Capy(B., (7),9)

where B, (Z) is a regular ball, £; \, 0, ¢; < dist(z,09), and v; is the potential of
Be, (%) with respect to €; that is v; € N?(X) is harmonic in Q \ B, (z), v; =0
on X\ Q and v; =1 on B, (Z). It is then shown that, up to subsequences, the
functions (G;); converge locally uniformly in X \ {Z} to a function G. The limit
function G has the desired properties of a Green function.

Let us fix a positive sequence (M;);>o such that M; oo, and the truncations

)

T;G := min{G, M,}.
There exists a sequence r; N\, 0 of radii such that
E; C By, (f),
where we have written E; = {z € Q : G(z) > M;}; and we may consider the case
in which r; < . Then T;G = G on X \ B:(Z) and T;G is subharmonic in X \ B (Z).
By [5] (we refer also to [20] for a detailed description in the Euclidean case) there

exists a positive Radon measure 5 in the dual Ny»*(X \ B-(Z))* such that for all
v € Lip, (X \ B:(Z)) we have

/ (dG, dv) dp = / vdv§.
X\B: () X\B-:(2)

If v € Lip,(X \ Q), the fact that G = 0 on X \ © implies dG = 0 on X \ Q, and

then
/ vdv§ :/ vdv§ :/ (dG, dv) dp = 0.
X\Bc (%) X\Q X\Q

On the other hand, the harmonicity of G in Q\ B.(Z) implies that if v € Lip,(\
B.(%)), then

/ vdv§ = / vdv§ = / (dG, dv) dp = 0.
X\B:(z) Q\Bc () Q\Bc ()

Hence the measure v§ is concentrated on 9.
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Analogously, since T;G is superharmonic in € there exists a positive Radon
measure ¢ € Ny ?(Q)* such that for all v € Lip,(€2),

/(dTiG, dv) dp = —/ vdvf.
Q

O\B,, (3)

); indeed, since T;G = G on Q\ B, (7) it
z)),

The measures v; are supported in Eﬂ (z
is harmonic. Hence, if v € Lip,(Q \ By, (

/vdViG:/ B ’UdVZ-G:/ _ (dG,dv)dp = 0.
Q OB, (z) OB, (z)

Following the argument of Serrin (see Lemma 1 and Theorem 3 in [22]), there
exists A € R such that if v € Lip,(€) is equal to 1 in a neighborhood of Z, then

/ (dG, dv) dp = M.
Q

Indeed, if vy, vo € Lip,.(£2) are two functions that are equal to 1 in a neighborhood
of z, the difference v = v1 — v2 belongs to Lip.(2 \ {Z}); hence, the harmonicity
of G in Q\ {z} implies that

/ (dG,dvy) dp — / (dG, dvg) dp = / (dG, dv) dp = 0.
Q Q Q
In particular, if v € Lip,(f2) is a function such that v =1 on B, (%), then

v (B,. (%)) = vdv® = — G, dv = — ,av = —A.
B@) = [ vivf == [ W16, dvydu= = [ (4G o) dp = -

This argument implies that A € R is negative and the measures v~ are equibounded

K3
in (). Thus, up to subsequences, Z/iG converges weakly to \dz.
To summarize, we have proved that the sequence of the measure-valued Laplace
operators

2T,G =vE —v§

admits a convergent subsequence Z7T;, G, defining the measure-valued Laplace
operator
2xG = lim 9T, G = Nz —v§.
k—o0

The fact that the limit measure is uniquely determined implies that for any
sequence M; /* oo, the measures 2 T;G converge and the limit measure is A\dz —v§.
Let us show that A = —1. Let us consider the set E = {x € Q: G(x) > 1} and
a function v € Lip,(Q2) such that v =1 on E. Since Z is an interior point of E, we

have
A= () = 7/ (dv, dG) dju.
o\E



526 N. MAROLA, M. MIRANDA JR. AND N. SHANMUGALINGAM

On the other hand, the map f = (G — v)xq\g belongs to NJ2(Q\ E) and then

0= / (df,dG) dp = / |dG|* dp — / (dv,dG) dp.
Q Q\E Q\E
These properties of G imply that G is the potential of E with respect to 2, that is,
/ |dG|? du = Capy(E,Q) = 1.
O\E

We may hence conclude that A = —1.
Finally, we point out that the identity

/)((dv,dG) dp = /émvdug —o(z)

is valid for functions v € N»?(X) that are constant in a neighborhood of Z, but
it can be generalized to functions v € N%?(X) that are continuous at z. This is a
simple consequence of the limit

/ vdr§ —v(z) = lim vdv§ — / vdv®
a0 10 90 B, (%)

= lim [ (dv,dT;G)du :/ (dv, dG) dp.
X

i—oo [y

O

Remark 6.2. Let us consider the (first) Heisenberg group H with the geodesic
distance. In this case, the natural differential structure is given by the horizontal
bundle and the Laplace operator is just the horizontal Laplace operator. In this
setting, we can use all the results of the preceding section and obtain the repre-
sentation of the measure v in terms of the perimeter measure. Notice that a ball
B, (x0) in H satisfies a ball condition as in Definition 2.1 of [1] at its boundary ex-
cept at two points; a finite collection of points is negligible. Hence, if G = G?B’T(xo) is
the Green function on B, (x¢) with singularity at Z, then whenever z is a boundary
point of B,.(zp) satisfying the ball condition,

(6.1) U (G, z,0) := sup G— sup G < Co,
Bay () Bo(z)

where 0 < p < d(x,Z)/2 and C is a positive constant that does not depend on z, Z,
or p. It follows from a covering argument together with (6.1) and Lemma 4.8
in [5] that I/gr (z0) is absolutely continuous with respect to the perimeter measure

|DXB, (20)|- Moreover, there exists a function ¥ € L'(X,|Dxp|) such that dv§ =
Yad|Dxp|. The function ¥¢ comes from the Radon—Nikodym theorem.

We give a characterization of harmonic functions via a mean value type property
with respect to boundary measures.
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Theorem 6.3. Let u € NV2(Q, u). Then the following hold:

(1) Let u be harmonic in Q. Then, for every regular ball B,.(x¢) C Q and T €
BT (1‘0),

(6.2) u(z) = / udugT(xo);
6B7v($0)

(2) If for every regular ball B (xo) C 2 and any T € By (xo), u satisfies the mean
value property (6.2), then u is harmonic in Q.

An analogous characterization holds true for sub- and superharmonic functions.
Let u € NY2(Q, u). Then the following are equivalent:

(3) Let u be subharmonic (superharmonic) in Q). Then, for every regular ball
By (z9) C Q and T € B,

u(z) S/ “dVgT(xo)’ (u(i‘) 2/ udugr(x0)>§
6B7v($0) 637,(:00)

(4) If for any regular ball B, (x¢) and any T € By (o)

u(z) §/ udugT(xo), (u(a‘c) Z/ udygr(x0)>,
6B7v($0) 637,(:00)

then w is subharmonic (superharmonic).

Proof. Suppose that u is harmonic. Then u € N%2(Q, u) N L.(Q) and we can

loc

apply Theorem 6.1. We obtain, for any regular ball B,.(x¢) and & € B,(zo),
0= / (du,dG%) du = 7/ wd? xG% = —u(z) +/ wdv§,
b'e X 0By (o)

which gives the condition (1).

On the other hand, if u is continuous, if we fix a regular ball B = B,.(x¢), we
can consider the harmonic function H, generated by u on B, that is the solution
of the problem

min{/ |dv|®> dp v —u € N3’2(B,,u)}.
B

Hence H, is harmonic in B and satisfies the mean value property, that is, for
any T € B,

(6.3) H,(z) = / H,dv§.
8B,,.($0)

The conclusion follows from continuity of u since

BSIIESGGB Hy(z) = u(y),
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and then by (6.3), H, = u on B. For a general u € NY2(Q, i), we can find a
continuous function u. such that u = u. outside a set of capacity less than ¢ and
such that ||u — ucll1,2 < &; then by an approximation argument in Section 6 of [4],
we can conclude the assertion.

The same line of reasoning carries out in the case of sub- and superharmonic
functions. O

Remark 6.4. It was proved in [4] that the harmonic extension of a function
u € NY2(Q, ) on aball B C Q can be expressed in terms of harmonic measures vz
with singularity at Z € B; by this we mean that if ¢ € C(9B), then in Theorem 5.1
of [4], its harmonic extension is given by

H,(z) = /aB pdvz.

If we move T € B,(xzg), it is possible to see that the measures vz are mutually
equivalent; in particular, if we take zp and T € B,(zo) \ {z0}, we have that vz
is absolutely continuous with respect to vy, and its density P(Z,-) is called the
Poisson kernel. In other terms, the Poisson kernel is defined as

().

_ dl/i

P(x,x) =

(z,x) -
In [4], vz was not explicitly identified. Nevertheless, from the results contained in
the previous sections, we are able to identify this measure as the outward normal
derivative Vg of the Green function.

Example 6.5. In Example 3.5, if we take 2 = B;(0), the unit ball, then all balls
except B1(0) are regular. This is due to the fact that the perimeter of B;(0)
has weight 1, that is [Dxg| = H" 'L OB. However, if we consider the optimal
sequence (u;); defined in (4.5) we have that

/ |Vuj| d/,L — 27‘[”_1(631(0)) = 2|DXBI(0)|(R").
R"L

Nevertheless, the measure Vgl(o) can still be characterized as a perimeter measure,
but with

Vg, (o) = 2(VG - vp, (0)) dH" ' LIB1(0) = 2(VG - v, (0)) d| Dxp, (0) |

On the other hand, if we take any other ball B C B;(0), it is regular and in this
case H"~1(0BNOB1(0)) = 0. Note also that if H"~*(B N dB1(0)) > 0, then since
the Green function is harmonic in B except the singular point Z, we have that
VG - vp, (o) = 0 and then

dvi = (1+ Xp,0)(VG - vp) dH" "' LOB = (VG - vp) d |Dys|

On the other hand, if we take Q2 = R™ \ B;(0), then every ball is regular. This
is due to the fact that in this paper regularity is a notion of inner regularity. If
one changes the notion to outer regularity or to two-sided regularity, then things
change.
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