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N-injective Banach spaces
and N-projective compacta
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Abstract. A Banach space F is said to be injective if for every Banach
space X and every subspace Y of X every operator t: Y — FE has an
extension T: X — FE. We say that FE is N-injective (respectively, uni-
versally R-injective) if the preceding condition holds for Banach spaces X
(respectively Y') with density less than a given uncountable cardinal X. We
perform a study of R-injective and universally R-injective Banach spaces
which extends the basic case where X = N; is the first uncountable cardi-
nal. When dealing with the corresponding “isometric” properties we arrive
to our main examples: ultraproducts and spaces of type C(K). We prove
that ultraproducts built on countably incomplete R-good ultrafilters are
(1, N)-injective as long as they are Lindenstrauss spaces. We characterize
(1, N)-injective C(K) spaces as those in which the compact K is an Fx-
space (disjoint open subsets which are the union of less than X many closed
sets have disjoint closures) and we uncover some projectiveness properties
of Fx-spaces.

1. Introduction

A Banach space F is said to be injective if for every Banach space X and every
subspace Y of X, each operator t: Y — E admits an extension 7: X — E. In this
paper we consider two weak forms of injectivity that arise by limiting the size of
either the subspace Y or the containing space X in the preceding definition. Let us
label them right now. Recall that the density character dens(X) of a topological
space X is the smallest cardinal a dense subset of X can have.

Definition 1.1. Let F be a Banach space, X an uncountable cardinal and A > 1
a real number. We say that E is N-injective if for every Banach space X with
dens(X) < N and each subspace Y C X, every operator t: Y — E can be extended
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to an operator T: X — E. We say that E is (A, R)-injective if we can always find
some extension T such that ||T']] < Al|t||. Replacing the condition dens(X) < X by
dens(Y') < X one obtains the definitions of universally N-injective and universally
(A, N)-ingective spaces.

The choice X = Ry (the first infinite cardinal) would not be too interesting to
us: all Banach spaces would be “universally Ng-injective”. Asking for an uniform
bound on the norm of the extension, that is, considering “(universally) (A, Rg)-
injective” spaces one arrives to the class of Z,.-spaces which has been widely
studied in Banach space theory in connection with the extension of compact ope-
rators; see Section 4 of [39]. Moving to the first uncountable cardinal X; one
obtains the classes of separably injective and universally separably injective Banach
spaces, which also attracted attention. (Admittedly, that the resulting name for
separably injective spaces turns out to be “Nj-injective” is perhaps surprising.
Nevertheless, we have followed the uses of set theory were properties labeled by
a cardinal N always indicate that something happens for sets whose cardinality is
strictly less than N.) It is worth noticing that Zippin proved in the late seventies
that every infinite dimensional separable and separably injective Banach space has
to be isomorphic to ¢g, the space of all null sequences with the sup norm, and so
even in the case X = Ny one is mainly concerned with nonseparable Banach spaces.
We refer the reader to [39], [4] for an account and further references.

Let us describe the plan of the paper and highlight its main results. Section 2
is preliminary; it contains some definitions together with the minimal background
on exact sequences of Banach spaces one needs to read the paper. In Section 3
we extend a variety of results in [4] about (universal) separably injective Banach
spaces to higher cardinals. However, we found no reasonable generalization for a
considerable portion of the results proved in [4] for X; and so the resulting picture is
rather incomplete. In contrast to Section 3, which deals mainly with “isomorphic”
properties, the ensuing Section 4 is of “isometric nature” and studies some special
properties of (1, N)-injective spaces and their universal relatives. We use ideas of
Lindenstrauss to give a characterization of (1, R)-injective spaces by means of in-
tersection properties of balls (Lemma 4.1) and we prove that under the generalized
continuum hypothesis (1, R)-injective spaces are in fact universally (1, X)-injective.
The characterization just mentioned opens the door to the main examples worked
in Sections 5 and 6: spaces of continuous functions on compacta and ultraproducts.
Theorem 5.2 unifies and extends several characterizations of (1, N)-injective C(K)-
spaces in terms of properties of the compact space K. The space { /co = C(N*)
is shown to be (1, N;)-injective but not (1, Ng)-injective. Theorem 6.2 establishes
that ultraproducts via N-good ultrafilters become (1, R)-injective whenever they
are Lindenstrauss spaces. As a corollary we solve a question of Bankston by show-
ing that ultracoproducts of arbitrary compact spaces over R-good ultrafilters are
Fy-spaces. The characterization of (1,N)-injective C'(K) spaces as those in which
the compact K is an Fy-space will lead us to study projectiveness properties of
these compacta which are interesting in its own right. As it is well-known, a Ba-
nach space is l-injective if and only if it is isometrically isomorphic to C(K) for
some extremely disconnected compact space K. On the other hand, such compacta



N-INJECTIVE BANACH SPACES 577

are precisely the projective elements in the category of compacta and continuous
maps, a classical result by Gleason. This means that if o: L — M is a continu-
ous surjection then any continuous map ¢: K — M lifts to L in the sense that
there is ¢: K — L such that ¢ = 0 o ¢. Motivated by these correspondences, in
Section 7 we explore the projectiveness properties of compact Fy-spaces since, as
mentioned before, a compact space K is an Fy-space precisely when the Banach
space C(K) is (1, N)-injective. According to a result of Neville and Lloyd, totally
disconnected Fy-spaces can be characterized as those compact spaces which are
projective with respect to surjections o: L — M between compacta of weight less
than N. Theorem 7.4 states that this is also equivalent to projectiveness with re-
spect to compacta that are hereditarily of Lindel6f number below X. At the end
of Section 7 we present a characterization of Fy-spaces without any connectedness
hypothesis, namely, that a compact space is an Fy-space if and only if it is “projec-
tive” with respect to all affine surjections between compact convex sets of weight
less that N.

We close with a few open problems that arise naturally from the content of the
paper and we were unable to resolve.

2. Preliminaries

2.1. Notations, conventions

All Banach spaces will be assumed to be real. All the results in this paper can
be translated to the complex case, sometimes with some extra effort, but we have
preferred not to do that.

Our notation is fairly standard, as in [27], except perhaps in that given a
cardinal number R we denote by £ (R) the space of all bounded functions defined
on an unspecified set I" with |I'| = X, endowed with the sup norm and ¢y(R) the
closed subspace spanned by the characteristic functions of the singletons of I". By
£1(X) we denote the space of absolutely summable families of scalars indexed by T’
with the sum norm. A Banach space X is said to be a £ y-space if every finite
dimensional subspace F' of X is contained in another finite dimensional subspace
of X whose Banach-Mazur distance to the corresponding ¢7 is at most A\. A Z.-
space is just a £, y-space for some A > 1. A Lindenstrauss space is a % 14+-space,
that is a Banach space which is a £ y-space for all A > 1.

As usual, given a compact space K we denote by C(K) the Banach space of
all real-valued continuous functions on K, with the sup norm. In this paper all
topological spaces are assumed to be Hausdorff. An M-space is a Banach lattice
where ||z 4+ y|| = max(||z]], ||y||) provided x,y are disjoint. Each M-space can be
represented as a sublattice of some C(K)-space.

Throughout the paper, ZFC denotes the usual setting of set theory with the
axiom of choice, while CH denotes the continuum hypothesis (X; = 2% = ¢)
and GCH denotes the generalized continuum hypothesis (namely that Xt = 2%
holds for all infinite cardinals R).
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2.2. Exact sequences

A short exact sequence of Banach spaces is a diagram
(2.1) 0—Y 55X -7 -—0

where Y, X and Z are Banach spaces and the arrows are operators in such a way
that the kernel of each arrow coincides with the image of the preceding one. By the
open mapping theorem 1 embeds Y as a closed subspace of X and Z is isomorphic
to the quotient X /2(Y").

The sequence (2.1) is said to be trivial, or to split, if there is an operator
p: X — Y such that pp = 1y (i.e., o(Y) is complemented in X); equivalently,
there is an operator s : Z — X such that 7s = 1. When properly classified and
organized, the set of all possible exact sequences of the form (2.1) become a linear
space, denoted by Ext(Z,Y"), whose zero is the class of trivial sequences; see [8], [9]
for explanations. For this reason one often writes Ext(Z,Y) = 0 to indicate that
every sequence of the form (2.1) is trivial.

A property &2 is said to be a 3-space property if X has & whenever there is
an exact sequence of the form (2.1) in which both Y and Z have .

2.3. The push-out and pull-back constructions

A thorough description of the pull-back and push-out constructions in Banach
spaces can be seen in [4], [3], [9]. Everything we need to know for this paper is that
given an exact sequence (2.1) and an operator ¢: Y — B there is a commutative
diagram

0 y —° X T~ s Z 0
= TR
0 B —" 4 PO A 0

called the associated push-out diagram, in which the lower row is an exact sequence
which splits if and only if ¢ extends to X, that is, there is an operator T: X — B
such that Tw = t.

Proceeding dually one obtains the associated pull-back sequence. Given an
exact sequence (2.1) and an operator u: A — Z there is a commutative diagram

0 y —° X T . Z 0
= |
0 Y PB —" s A 0

whose lower sequence is exact, and which shall be referred to as a pull-back dia-
gram. The splitting criterion is now as follows: the lower sequence splits if and
only if w lifts to X, that is, there is an operator U: A — X such that 7U = u.
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2.4. Filters

Recall that a family .# of subsets of a given set [ is said to be a filter if it is closed
under finite intersection, does not contain the empty set and one has A € #
provided B C A and A € %. An ultrafilter on [ is a filter which is maximal
with respect to inclusion. If X is a (Hausdorfl) topological space, f: I — X
is a function, and z € X, one says that f(i) converges to = along .# (written
x = limg f(4) to short) if whenever V is a neighborhood of z in X the set f~1(V) =
{i € I: f(i) € V} belongs to .%. The obvious compactness argument shows that
if X is compact, and .% is an ultrafilter on I, then for every function f: I — X
there is a unique = € X such that z = limg f(7).

2.5. The set-theoretic ultraproduct construction

It will be used in Section 6. Let us recall some definitions, and fix notations.

Let (S;)icr be a family of sets indexed by I and let % be an ultrafilter on I.
The set-theoretic (or model-theoretic) ultraproduct (S;) is the product set [, S;
factored by the equivalence (s;) = (t;) & {i € I : s; = t;} € %. The class of (s;)
in (S;)a is denoted ((s;))# . If we are given functions f;: S; — K, where K is
some compact space, we can define another function f: (S;)o — K by f({si)a ) =
lime, () fi(s:). Keisler’s paper [22] contains a good introduction to this topic and
many related things.

3. N-injective Banach spaces

In this section we extend some results proved in [4] for separably injective Banach
spaces. Recall that a Banach space E is separably injective (N;-injective according
to Definition 1.1) when E-valued operators extends to separable super-spaces, and
that E is universally separably injective (universally N;-injective) when E-valued
operators extend from separable subspaces. Our first result generalizes Proposi-
tion 3.2 in [4].

Proposition 3.1. For a Banach space E and a cardinal X, the following assertions
are equivalent:
(1) E is R-injective.
(2) For every cardinal k < R, every operator from a subspace of ¢1(k) into E
extends to l1(k).

(3) For every Banach space X and each subspace Y such that dens(X/Y) < N,
every operator t: Y — E extends to X.

(4) If X is a Banach space containing E and dens(X/E) < N, then E is com-
plemented in X.

Proof. Tt is clear that (3) = (1) = (2). To show that (2) = (4), observe that if
dens(X/FE) < N then there is a quotient map ¢: ¢1(k) — X/E for some k < .
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The operator ¢ can be lifted to an operator @ : ¢1(k) — X whose restriction Qg
to ker ¢ actually takes values in F. One therefore has a commutative diagram

0 — kerq —~ hk) —2— X/E —— 0

@] g H

0—— E X X/E — 0.

J p

By (2), there is a linear continuous extension @y : ¢i1(k) — E of Qp. Since
(Q — 7Q1)i = 0, there is an operator v : X/E — X such that vg = Q — j Q1.
Since pv g = q, the expression P = 1x — vp defines a projection on X onto the
subspace E.

Now, to show that (4) = (3) just form the push-out diagram
0 y —4— X " — X)Y —— 0
L H
0 E —Y PO PO /E — 0.

Since PO/FE = X/Y, the cardinality assumption is preserved and E must be
complemented in PO by a projection P. Thus, Pt yields an extension of ¢ as
required. O

Our next result yields a homological characterization of (2%)*-injectivity:

Proposition 3.2. A Banach space E is (28)*-injective if and only if it is com-
plemented in every superspace W such that W/ E is a quotient of {oo(N).

Proof. Every quotient of /.. (R) has density character at most 2%; so the necessity
is clear by (4) in the preceding proposition.

We prove now the sufficiency as follows: we will show that F-valued operators
from subspaces of £ (R) can be extended to the whole o, (X); which in combination
with the fact that £1(2%) is a subspace of /o, (R) and Proposition 3.1 (2) provides
the result. Thus, let ¢: Z — E be an operator defined on a subspace Z of £ (R).
One thus gets a push-out diagram

0 Z loo(R) —— L o(N)/Z —— 0
d s H
0 E PO —— PO/Z —— 0.

By hypothesis, E is complemented in PO and thus there is a linear continuous
projection P: PO — E. The operator Pt': {o(X) — FE extends t. Thus, it has
been shown that every operator t: Z — E from a subspace of - (R) can be
extended to the whole ¢, (X). To finish the proof it remains to prove the following
result; probably it is known, but we were unable to find an explicit reference:

CrAM: £1(2%) is a subspace of £ (R).
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Proof of the claim. The dual ball of £1(2%) in its weak*-topology is homeomorphic
to the product [—1,1]2" which is a continuous image of {0,1}2". This space has
density R, as we show now: observe that subsets of 2% can be interpreted as
elements of {0, 1}2N via their characteristic functions. Let us show that with this
interpretation the clopen sets of 2% form a dense set of {0, 1}2N: take a basic open
set U; i.e., take points p1,...,p, and q1,...,¢mn from 2% and form the basic open

set
U={z¢ {0,1}2R : ap, =1 and x4, =0}.

Find a clopen C of 2% such that py,...,p, arein C, but qi,..., g, do not belong
to C. The characteristic function 1¢ € U. Thus, since 2% has X many clopens,
the dual ball of £1(2%) in its weak*-topology has density N; and thus £ (2%) in its
weak*-topology has density N; and therefore £1(2%) can be embedded into £, (R),
and the claim is proved. O

The stability properties of the classes of (universally) R-injective spaces are
gathered in the following proposition (compare to Proposition 3.7 in [4]).

Proposition 3.3. Let R be an infinite cardinal.
(1) The class of N-injective spaces has the 3-space property.
(2) The quotient of an N-injective space by an N-injective subspace is N-injective.

(3) If 5« < XN, the quotient of a universally W-injective space by a sc-injective
subspace is universally s»-injective.

Proof. The proof of (1) follows from part (2) in Proposition 3.1: let us consider an

exact sequence 0 —» F —25 E —5 G — 0 in which both F and G are R-injective.
Let ¢: K — E be an operator from a subspace K of ¢1(k) with k < X, and
let 1: K — ¢1(k) denote the natural embedding; then 7¢ can be extended to an
operator ® : ¢1(k) — G, which can in turn be lifted to an operator ¥ : ¢;(k) — E.
The difference ¢ — W1 takes values in F' and can thus be extended to an operator
e:l1(k) — F. The desired operator is ¥ + je.

To prove (2) let us consider an exact sequence 0 — F — E - G — 0
in which both F' and F are N-injective. Let ¢: Y — G be an operator from a
subspace Y of a space X with dens X < N. Consider the pull-back diagram

0 F E ——- @G 0
H f[o o
0 F PB — 9% .y 0

and observe that since F' is R-injective, the lower exact sequence splits, so Q) admits
a linear continuous selection s : Y — PB. By the R-injectivity of F, there exists
an operator T: X — E agreeing with ®s on Y. Then 77T : X — G is the desired
extension of ¢ since 7Ty = 7®Ps = ¢Qs = ¢.

To prove (3), assume that E is universally R-injective and F' is »-injective. The
previous proof, reproduced verbatim, shows that G is universally s-injective. O
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It is perhaps worth to remark that an abstract homological proof that all prop-
erties having the form Ext(X,—) = 0 are 3-space properties can be found in [8].
The connection with Proposition 3.3 (1) is that Proposition 3.1 (4) can be read in
this language: a Banach space E is R-injective if and only if it verifies Ext(F, E) = 0
for all Banach spaces F' with dens ' < N.

It would be interesting to know whether the class of universally R-injective
spaces enjoys the 3-space property. This is not known even for X = N;. It was
claimed in Proposition 5.3 of [4] that universal separable injectivity is a 3-space
property; but the “proof” contains a gap we have been unable to fill. Conse-
quently, other claims also remain without proper justification, namely Proposi-
tions 5.4 and 5.6 and Theorem 5.5 in [4], and Example 4.5(a) and the second part
of Proposition 5.1 in [5]. All other statements in [4] and [5] are independent from
Proposition 5.3 in [4]. Note that universally R-injectivity is equivalent with the
property of {.-super-saturation: every separable subspace of E is contained in a
copy of o, contained in E; see Proposition 5.2 in [4]. This characterization could
be useful, but apparently there is no higher cardinal analogue for such property.
Indeed, the obvious extension fails because there exist injective Banach spaces
with arbitrarily large density character, like the spaces Lo () for finite p, that do
not contain subspaces isomorphic to £ (X1) —this is so since a family of mutually
disjoint sets of positive measure on a finite measure space must be countable. We
can obtain a partial analogue introducing the following concept.

Definition 3.4. Let N be an infinite cardinal. We say that a subspace Y of a
Banach space X if ¢o(R)-supplemented if there exists another subspace Z of X
isomorphic to ¢o(R) such that YN Z = 0 and the sum Y + Z is closed. In this case
we will also say that Z is a co(R)-supplement of Y.

Lemma 3.5. Each subspace of Lo (R) with density character < R is co(R)-supple-
mented.

Proof. Let I have cardinality ® and let {I; : j € J} be a family of disjoint subsets
of I with |I;| = Xfor every j and |J| = N. Let Y be a subspace of £ (I) with density
character < X. Since dens (s (I;)) > R, for each j € J we can find z; € (oo ()
with [|z;|| = 1 and dist(x;,Y") > 1/2. In this way we obtain a family {z, : j € J}
in ¢o(I) isometrically equivalent to the basis of co(I). Let m: loo(I) = loo(I)/Y
denote the quotient map. Since inf{||7(z;)| : j € J} > 1/2 > 0, by Theorem 3.4
in [34] there exists J; C J with |J;| = |J| such that the restriction of 7 to the
closed subspace generated by {z; : j € J} is an isomorphism. That space is a
¢o(N)-supplement of Y. O

We thus get the partial extension result announced above.

Theorem 3.6. Let X be a universally N -injective Banach space and let Y be a
co(R)-supplemented subspace of X with dens(Y) < X. Then Y is contained in a
subspace of X isomorphic to s (R).

Proof. Let Yy be a subspace of £, (X) isomorphic to Y and let ¢: Yy — Y be a
(bijective) isomorphism with |[¢~!|| = 1. By Lemma 3.5, Yj is co(X)-supplemented
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in £oo(R). We can find projections P on X and @ on £ (R) such that Y C ker P,
Yy C ker @), and both ranges ran P and ran () are isomorphic to £ (R).

Indeed, let 7: X — X/Y be the quotient map. Let Ly and L denote co(X)-
supplements for Yy and Y. The isomorphism ¢: Yy — Y admits an extension
t:Yy® Lo — Y @ L, and the universal Rt-injectivity of X allows us to find an
operator I: o (R) — X extending ¢, hence 7I is an isomorphism on a copy Lo
of ¢o(N). A classical result of Rosenthal (Theorem 1.3 in [34]) yields that 71 is also
an isomorphism on a copy My of {5 (R) inside £ (R). Therefore M = I(My) is a
subspace of X isomorphic to £ (X) where the restriction of 7 is an isomorphism.
Now X/Y = n(M) @ N, with N a closed subspace. Hence X = M & 7~ }(N),
and it is enough to take as P the projection with range M and kernel 7~ !(NV).
Similarly, the quotient map mp : oo (R) — €50 (N)/ Y} is an isomorphism on Ly, and
Rosenthal’s result implies that 7 is an isomorphism on a subspace My of £ (N)
isomorphic to £ (R). Thus £o(N)/ Yy = 7o(Mo) ® No, with Ny a closed subspace.
Hence £, (R) = My @ 5 ' (Ny), and it is enough to take as @ the projection with
range My and kernel 7, ' (Ny).

Since ker P and ker () are universally N-injective spaces, there are operators
U: X = kerQ and V: £o(X) — ker P such that Vl]y, =t and U]y = t~!. Note
that ||U]| > 1. Let W : £5(R) — ran P be an operator satistying |[Wz|| > ||z| for
all z. We will show that the operator

T=V+W(L_—UV):le(R) — X

is an isomorphism (into). Since ranV C ker P and ran W C ran P, there exists
C > 0 such that

1T]| > Cmax {[|[Val, [W(Le o — UV)al }

for every @ € (oo(N). Now, if ||[Vz| < 2||U])7 =], then |[UVz| < (1/2)||];
hence
WL ooy = UVl 2 [(Le vy = UV > [l]|/2.

Thus || Tz|| > C(2||U||)~!||z|| for every x € X; hence Y is contained in the range
of T, which is isomorphic to £ (R). O

By the Lindenstrauss—Rosenthal theorem [26] any isomorphism between two
separable subspaces of /., can be extended to an automorphism of /. As a
consequence of Theorem 3.6 we can prove that universally N*-injective spaces
enjoy a similar property.

Theorem 3.7. Let X be a universally N -injective Banach space, and let Yy
and Yy be isomorphic co(R)-supplemented subspaces of X with dens(Y;) < X. Then
every isomorphism from Y1 onto Ys extends to an automorphism of X.

Proof. Note that we can modify the proof of Theorem 3.6 in such a way that the
subspace Z isomorphic to ¢ (X) that contains Y has a complement isomorphic
to X. Indeed, if we write ran(P) as the direct sum of two copies of £ (X) and
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take W so that its image is contained in one of the summands, then the comple-
ment Z' of Z in X contains a subspace isomorphic to £ (X); hence

7'~ 7" B loo(N) ~ Z" D lo(R) D Loo(N) ~ 7' ©lo(N) ~ Z' B Z ~ X.

So, for each i = 1,2, we can assume that Y; is contained in a subspace Z; isomorphic
t0 oo (X) such that the complement of Z; in X is isomorphic to X. Therefore,
given an isomorphism 7T': Y7 — Y5, since the quotients Z;/Y; and Z2/Y> are not
reflexive, we first extend T to an isomorphism 7 from Z; onto Z,, which clearly
can be extended to an automorphism of X.

The extension from T: Y7 — Y5 to 7: Z1 — Z5 can be obtained as in the proof
of part (i) of Theorem 2.£.12 in [27]. First, as in the proof of Theorem 3.6, we
get projections P; on Z; (i = 1,2) with ¥; C ker P, and both ker P; and ran P;
isomorphic to £oo (R).

Since the space ran(lz, — P») is injective and contains Ya, there exists an
extension S1: Z7 — ran(lyz, — P») of T, and similarly there is an extension
So: Zy — ran(lz, — P;) of T~!. Let R be an isomorphism from Z; onto ran(P,)
with |[R™Y| > 1, and define T : Z; — Zo by T = S; + R(1z, — S251). Since
(1z, — S251)|y, = 0 it follows that T is an extension of T, and as in the proof of
part (i) of Theorem 2.f.12 in [27], we can check that T is an into isomorphism.

Note that the subspace T( ran(lyz, — Pl)) is complemented in Z with comple-
ment W isomorphic to Zs. Let Ry be an isomorphism from ran P, onto W. The op-
erator 7 = Ry P, JrT(lZ1 — Py) is an isomorphism from Z; onto Z extending 7. O

Further differences between N-injectivity and separable injectivity is that Sobc-
zyk’s theorem has no simple counterpart for higher cardinals: indeed, ¢o(R) is never
No-injective just because its complemented subspace ¢g is not: recall from [4] and [9]
the existence of the Johnson—Lindenstrauss nontrivial exact sequences

0 Co JL C()(Nl) — 0.

Perhaps the role of ¢y could be played by Hasanov’s “filter version” of ¢y (see [17]).
Recall that a filter .% on a set S is called N-complete if whenever A; € .% for all
i € I with [I| <X then (,c; A; is again in .%. The space ¢ (S) is the closed linear
span in ¢ (S) of the set {x € (o (S) : limg z = 0}. Hasanov shows in [17] that
if .Z is N-complete, then cf (S) is at most 2-complemented in any superspace E
such that dens(E/cg (S)) < R. Thus, it is (2, R)-injective.

4. (1, N)-injective Banach spaces

The (1, N)-injective spaces can be characterized as follows (this result can be es-
sentially found as the remark after Corollary 2, p. 56, in [24]; the “if part” is due
to Aronszajn and Panitchpakdi, see Theorem 3 in [2]).

Lemma 4.1. A Banach space E is (1,R)-injective if and only if every family of
less than N mutually intersecting balls of E has nonempty intersection.

Proof. SUFFICIENCY. Take an operator t: Y — E, where Y is a closed subspace
of X, where dens X < X. We may and do assume |[|t|| = 1. Let z € X\Y and let Yj
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be a dense subset of Y forming a linear space over the rational numbers with
|Yo| < N and, for each y € Yy, consider the ball B(ty, ||y — z||) in E. Any two of
these balls intersect, since for yi,y2 € Yy we have

lty2 = tyall < lElllly2 — wall < lly2 — 2l + llyr — 2]l
The hypothesis is that there is

fe () Blty,ly—=l) = () Blty, ly - =l)-

yeYy yey

It is clear that the map T: Y + (z) — E defined by T(y + ¢z) = ty + ¢f is an
extension of ¢ with ||T'|| = 1. The rest is clear: use Zorn lemma.

NECESSITY. We begin with the observation that if two closed balls of a Banach
space have a common point, then the distance between the centers is at most the
sum of the radii. In ¢ (R) that necessary condition is sufficient. On the other hand,
in £, (N), every family of mutually intersecting balls has nonempty intersection
—this is trivial. So, let E be (1,X)-injective and suppose B(e;,r;) is a family of
less than N mutually intersecting balls in F. Let Y be the closed subspace of
spanned by the centers, so that densY < X. Let j5: Y — £ (R) be any isometric
embedding. Notice that even if By (e;,r;) = B(e;, ;) N'Y need not be mutually
intersecting in Y, any two balls of the family B(y(e;),r;) meet in ¢ (X) because
the distance between the centers does not exceed the sum of the radii. Therefore

the intersection
ﬂ B(y(ei),m:)
i

contains some point, say ¢ € {5 (X). Let X be the subspace spanned by z and
7 (Y) in £ (R). The hypothesis on E allows one to extend the inclusionz: Y — E
through 7 : Y — X to an operator I: X — FE without increasing the norm; i.e.,
Iy =1. Since || I(z)—e;|| = [[I(x—je;)|| < ||z—7e;| one gets I(x) € (), B(ei,r;). O

Proposition 6.2 of [4] asserts that, under CH, 1-separably injective spaces are
universally 1-separably injective. This admits a higher cardinal counterpart, which
stems from remark 6, p. 223, in [25].

Proposition 4.2. Under GCH, every (1, R)-injective Banach space is universally
(1, R)-ingective.

Proof. Let E be an (1, X)-injective Banach space and let Y be a density character X
subspace of a space X and let t: Y — F be an operator. Let j: Y — £ (R) be an
isometric embedding; and observe that, under GCH, the space £ (R) has density
character NT. Since a set of cardinal R* can be written as the union of an increasing
chain of sets of cardinal N, write {5 (X) as the union of an increasing chain of
subspaces with density character R. There is no loss of generality in assuming that
the first set of the chain is Y. Use transfinite induction and the (1, R)-injectivity
of E to extend t to an operator T': £o(X) — F with the same norm (see Lemma 6.1
in [4] for details). Extend j to an operator J: X — ¢ (X) with the same norm.
The composition T'J is the desired equal norm extension of ¢. O
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5. Spaces of continuous functions

The following omnibus result summarizes what is known about the interplay be-
tween the (1, N)-injectivity of C'(K), the topological properties of K and the lat-
tice structure of C'(K). We will need a simple lemma which can be found in [4]
(Lemma 6.4).

Lemma 5.1. Let K, L and M be compact spaces and let f: K — M be a contin-
wous map, with 3= f°: C(M) — C(K) its induced operator, and let v : C(M) —
C(L) be a positive norm one operator. Suppose that S: C(L) — C(K) is an oper-
ator with ||S|| =1 and Sv=j. Then S is a positive operator.

Recall that a cozero set in a topological space K is an open set of the form
{z € K: f(z) # 0} for some f € C(K). One has:

Theorem 5.2. For a compact space K and a cardinal number X > Ry, the follow-
g statements are equivalent:

(a) C(K) is (1,R)-injective.
(b) Given subsets L and U of C'(K) with |L|,|U| < Y such that f < g for every

f €L and g € U, there exists h € C(K) separating them, that is, such that
f<h<gforall feL andgeU.

(¢) Every family of mutually intersecting balls in C(K) of cardinal less than R
has nonempty intersection.

(d) Every couple of disjoint open sets G and H of K which are the union of less
than N many closed sets have disjoint closures.

(e) Ewvery couple of disjoint open sets G and H of K which are the union of less
than X many cozero sets have disjoint closures.

Proof. We first prove the implications (a) = (b) = (c) = (a), in that order. Let L
and U be as in (b). We consider C(K) as a subalgebra of £o (K). Let n € {oo(K)
such that f < n < g forall f € L and g € U. Let A be the least unital closed
subalgebra of l (K) containing L,U and 7, and let B = AN C(K). Clearly,
dens A < X. By (a), the inclusion of B into C(K) extends to a norm-one operator
I: A — C(K). Let L be the maximal ideal space of A and M that of B. By
general representation theorems we have A = C(L), B = C'(M) (see for instance
Theorem 4.2.5 in [1]) and a commutative diagram

By Lemma 5.1, I is a positive operator, hence In separates L from U.
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We check now (b) = (c). Let (B;)ier be a family of mutually intersecting balls,
where |I| < N. Writing B; = B(f;,7;), we have ||f; — f;|| < ri+rj forall 4,5 € I,
that is,

fi—ri < fj+71; (i,5 € I).
By (b) there is h € C(K) such that

fi—ri <h < fj+r; (i,j €1).

In particular f; —r; < h < f; +r;, that is, h € [, B;. The implication (c) = (a)
is contained in Lemma 4.1.

We pass to the string (b) = (d) = (e) = (b). Assume that (b) holds and let G
and H be as in (d), so that G = {J,c; Co and H = |J,c; Do, where C, and D,
are closed subsets of K and |I| < X. For every a € I, let f, € C(K), 0 < fo <1,
such that fo|x\e = 0 and fo|c, = 1, and let g, € C(K), 0 < go < 1, such that
golk\m = 1 and go|p, = 0. Thesets L = {fo : a € [} and U = {go : @ € I}
satisfy the assumptions of condition (b). The function h € C'(K) that separates L
and U has the property that h|g = 1 and h|g = 0, hence G N H = @. That (d)
implies (e) is a consequence of the fact that each cozero set is the union of countably
many closed sets, namely for f € C(K),

{zeK:fla)#0}=|J{zecK:|f(x)>1/n}.
neN
Assume now that (e) holds. As a first step towards (b), we prove it modulo a given
positive ¢.

CLAIM. Given U and L like in (b) and given € > 0, there exists h € C(K) such
that f—e <h<g+eforevery f€ Land geU.

Proof of the claim. By homogeneity, it is enough to consider the case ¢ = 1. Let
N € N be such that —N < fy < go < N for some fy € L and gy € U. Let
I={neN:—-N<n<N}. Foreveryn eI, let

Gn={z€K: f(z)>nforsome feL}= U ft(n,4+00),
feL

H, ={z € K:g(z) <nforsomegeclU} = U g (—o0,n).
geU
For each n, G,, and H,, are disjoint open sets which are the union of less than N
cozero sets, because |L|, |U| < R and f~1(n,+00) is itself a cozero set (it is the
complement of the zero set of max{f—n,0}). Hence G,,N H,, = @, therefore there
exists h, € C(K), =1 < h,, <1 such that h,|g, = 1 and h,|g, = —1. We shall
check that h =23 _; h, € C(K) is the desired function. For f € L and z € K,

nel
o) =5 Y@ =5 X M+ Y )
nel nel,n< f(x) nel,n>f(x)
. l{nef,n<f(m)}|g|{n€I,nzf(x)}| > ) - 1.

Similarly, one gets that h(z) < g(x) + 1 for all g € U and z € K. O
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Now, if U and L are sets like in (b) we construct inductively a sequence of
new sets U,, L, C C(K) and functions h,, € C(K) as follows: Ly = L, Uy = U;
hn, € C(K) is such that f — 27" < h, < g+ 27" for all f € L,, g € Uy;
Lyy1 =LpU{hy—2""}, Upty1 = U,U{h,+27"}. This can be performed because
of the preceding claim. Notice that the sequence (h,)nen is uniformly convergent
because for m < n, hy,, —27™ € Ly, hyy +27™ € U, hence

By = 27™ = 27" < hyy S Ry +27™ 427" = ||y — hy|| < 27

We can consider thus h = lim, h,. This function belongs to C(K) and satisfies
f<h<gfor fe LandgeU. O

Remark 5.3. The preceding theorem summarizes or generalizes many earlier re-
sults. The equivalence between (a), (d) and (e) can be traced back to Theorem 2
in [2], although Aronszajn and Panitchpakdi manage a condition intermediate be-
tween (d) and (e); see also Henriksen’s note [21]. Neville’s Theorem 2 in [31] is
clearly related to the equivalence between (a) and (b). The equivalence between (b)
and (e) when X = Ny if due to Seever (see Theorem 2.5 in [35]).

As a consequence of Theorem 5.2 we get (cf. Section 4.3 in [4]):
Proposition 5.4. The space C(N*) =l /cq is (1, Ny)-injective.

Recall that N* = SN\ N. We show now that no cardinal improvement is
possible.

Proposition 5.5. C(N*) is not (1, Ng)-injective.

Proof. A classical construction in set theory known as the Hausdorff gap [18] yields
the existence of two wi-sequences of clopen sets in N*| say (a;) and (b;) where
i € wi, such that (a;) is increasing, (b;) is decreasing, a;, C b; for all 7,5 and
with the additional property that for no clopen set ¢ one may have a; C ¢ C b;
for all 7,j € w;. Considering the characteristic functions of those clopen sets,
condition (b) of Theorem 5.2 is violated for X = Ny (take into account that zero-
dimensional compacta are in fact strongly zero-dimensional, that is, disjoint zero
sets can be put into disjoint clopen sets). O

If we deal with N-injectivity instead of (1,N)-injectivity, the matter becomes
more complicated: since C'(N*) contains an uncomplemented copy of itself [10]
it is not ¢T-injective. We do not know whether it is consistent that C(N*) is
Na-injective.

6. Ultraproducts

Perfect examples of compact spaces as those of Theorem 5.2 —the objects that we
will study in the next section— can be obtained via ultraproducts. Let us briefly
recall the definition and some basic properties of ultraproducts of Banach spaces.
For a detailed study of this construction at the elementary level needed here we
refer the reader to Heinrich’s survey paper [19] or Sims’ notes [36].



N-INJECTIVE BANACH SPACES 589

Let (X;)ier be a family of Banach spaces indexed by I and let % be an ultrafil-
ter on I. The space ¢+ (X;) endowed with the supremum norm is a Banach space,
and ¢ (X;) = {(zi) € loo(X;) : limgy () ||| = 0} is a closed subspace of fo(X;).
The ultraproduct of the spaces (X;);er following % is defined as the quotient

(Xilo = loo(Xi)/c (X)),

with the quotient norm. We denote by [(x;)] the element of [X;]4 which has
the family (z;) as a representative. It is not difficult to show that ||[(z;)]|| =
limg ;) [|4]|. In the case X; = X for all i, we denote the ultraproduct by X, and
call it the ultrapower of X following % .

There is an obvious connection between [X;]4 and the set-theoretic ultrapro-
duct (X;)r defined in Subsection 2.5: indeed, the former space can be obtained
from the latter, first taking the elements for which the seminorm

(@) — S [l

is finite (we may consider the original norms on the X; as taking values on the
extended ray [0, o0]), and then taking quotient by the kernel of the seminorm.

If (X;);er is a family of Banach algebras, then £ (X;) is also a Banach algebra,
with the coordinatewise product. Thus, if % is an ultrafilter on I, ¢ (X;) is an
ideal in £ (X;) and [X;]e becomes a Banach algebra with product

()] - [(ya)] = [(i - a)l-

Thus, if (K;)ier is a family of compact spaces, the algebra [C(K;)] is isome-
trically isomorphic to C(K), for some compact space K; see Theorem 4.2.5 in [1].
This compact is called the (topological) ultracoproduct of (K;);er, and it is denoted
by (K;)%; actually (K;)% is the maximal ideal space of [C(K;)]% equipped with
the relative weak® topology. We refer the reader to Section 5 in [7] for a purely
topological description of the ultracoproduct construction, although we will not
use it.

An ultrafilter % on a set I is countably incomplete if here is a decreasing
sequence (I,,) of subsets of I such that I,, € % for all n, and (", I,, = @.

Notice that % is countably incomplete if and only if there is a function n: I — N
such that n(i) — oo along % (equivalently, there is a family () of strictly positive
numbers converging to zero along % ). It is obvious that any countably incomplete
ultrafilter is non-principal and also that every non-principal (or free) ultrafilter
on N is countably incomplete.

In order to present the main result of the Section we need Keisler’s notion of
an N-good ultrafilter [11], [7].

Definition 6.1. Let fin(S) denote the set of finite subsets of a given set S. If %
is an ultrafilter on I, we say that f: fin(S) — % is monotone (respectively, multi-
plicative) if f(A) D f(B) whenever A C B (respectively, if f(AUB) = f(A)Nf(B)).
The ultrafilter % is said to be R-good if, for every S with |S| < N, and every
monotone f: fin(S) — %, there is a multiplicative g: fin(S) — % such that
g(A) C f(A) for all A.
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Every set of cardinality N supports RT-good ultrafilters (see Theorem 10.4
in [12] or Theorem 6.1.4 in [11]). Every countably incomplete ultrafilter is Ry-good.
Since an T T-good ultrafilter on set of cardinality N is necessarily fixed (by sat-
uration and Proposition 4.2.2 in [11]), R*-good ultrafilters will be simply called
“good ultrafilters”.

Theorem 6.2. Let % be a countably incomplete, X-good ultrafilter on I and let X;
be a family of Banach spaces indexed by I. If [X;|a is a Lindenstrauss space, then
it is (1, N)-injective.

Proof. The key point is the saturation property of the set-theoretic ultraproducts
via good ultrafilters. Let (.S;)ies be a family of sets and let % be an ultrafilter on 1.
A subset A of (S;)a is called internal if there are sets A; C S; such that A = (4;)9 .
It can be proved (see Theorem 4.2.5 in [11] or Theorem 13.9 in [12]) that if % is
countably incomplete and N-good, then every family of less than N internal subsets
of (S;)o having the finite intersection property has nonempty intersection.

Let (B*)qer be a family of mutually intersecting balls in [X;]4 , with |T'] < Y.
Let us write B = B(z%, 1) and let (&) be fixed representations of z®. Clearly,
(B(z$,ro+1/m)) is alifting of B(z®,r,+1/m) in the set-theoretic ultraproduct
(Xi)ar. As [Xi]a is a Lindenstrauss space, the original family (B®) has the finite
intersection property (see the equivalence between (4.12) and (4.13) in Theorem 4.1
of [39]). This implies the same for the family of internal sets

(<B(xza7 Ta + 1/m)>%)(o¢,m)€FXN'

Indeed, if F is a finite subset of I' x N, we may assume it is of the form E x
{1,...,k} for some finite £ C I'. Then there exists z € [, cp B*. Thus, if (2;)
is a representative of z, the sets {i € I : ||z¢ — z|| < 1/k} belong to % for every
a € Eand ((z:))7 € Namyer(B@f,ra +1/m))a.

Since |I' x N| < N and % is R-good, there is € (X;)# in the nonempty

intersection
(| (B@{ra+1/m)),.
(a,m)eTl'xN
It is clear that if (x;) is any representation of x, then

[(z:)] € [ Bz ra +1/m) = (] B,

ael
which completes the proof. O

A combination of [4] and [3], see also [5], shows that there exist universally
1-separably injective spaces not isomorphic to any C'(K) space. A higher cardinal
generalization is as follows.

Example 6.3. For every cardinal X there exists a space of density 2% such that

(a) Tt is (1,NT)-injective but it is not isomorphic to a complemented subspace
of any M-space.
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(b) After suitable renorming, it is still (1,X%)-injective and its unit ball has
extreme points.

Proof. (a) Let G be the Guraril space. If % is a countably incomplete good
ultrafilter on a set of cardinality N, then Gy is an (1,X")-injective Banach space
of density 2% by Theorem 6.2. The assertion in (a) now follows from [3].

(b) The space of Gurarii is isomorphic to the space A(P) of continuous affine
functions on the Poulsen simplex as proved by Lusky [29]. See also [15] and [28].
Hence Gy is isomorphic to A(P)4, in turn isometric to the space of continuous
affine functions on certain simplex S, by Proposition 2.1 in [20]. Thus, the unit ball
of A(S) = A(P)« has extreme points: 1g is one. However, A(S), being isomorphic
to Gg, cannot be complemented in an M-space. As before, the density character
of A(S) equals 2% and A(S9) is (1, XF)-injective. O

The preceding examples are as bad as the generalized continuum hypothesis
allows. Indeed, if a Banach space is (1, R )-injective and has density character N,
then it is 1-injective and then isometric to a C(K)-space; see for instance Corol-
lary 1 in [31]. The presence of an extreme point in part (b) is reminiscent from
the early studies on injectivity (cf. [30], [23], [2]).

7. Projectiveness properties of compact spaces

The compact spaces arising in Theorem 5.2 constitute a well known class ([6], [7],
and [37]) we consider now.

Definition 7.1. A compact space K is said to be an Fy-space if every couple of
disjoint open subsets of K which are the union of less than Y many closed sets
have disjoint closures.

The Fy,-spaces are called simply F-spaces. Regarding Theorem 5.2 let us
mention that a topological space is called (Qn)-space [2] if every couple of disjoint
open subsets of K which are the union of less than N many closures of open
sets have disjoint closures. This property is formally weaker than condition (d)
in Theorem 5.2, and stronger than (e), because every cozero set is the union of
countably many closures of open sets, f~1(R\ {0}) = J f~1(R\ [-1/n,1/n]), so
it is actually equivalent to both of them in the case of compact spaces.

The following proposition generalizes a result of Bankston (Theorem 2.3.7 (ii)
in [6]) and solves Question 2.3.8 in [6] by showing that the extra condition of being
Boolean is not necessary. Its proof is immediate after Theorems 5.2 and 6.2.

Proposition 7.2. Fvery topological ultracoproduct via a countably incomplete,
RN-good ultrafilter is an Fyx-space.

As we mentioned before, a Banach space is 1-injective if and only if it is isomet-
rically isomorphic to C'(K) for some extremely disconnected compact space K (see
Theorem 2.1 in [39]) and such compacta are precisely the projective elements in
the category of compacta and continuous maps, a classical result by Gleason [16]
that can be seen in Theorem 10.51 of [38]. Which means that if 0: L — M is a
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continuous surjection then any continuous map ¢: K — M lifts to L in the sense
that there is ¢: K — L such that ¢ = 0 o ¢. Of course this can be rephrased by
saying that C'(K) is injective in the category of commutative C*-algebras. One may
wonder if some natural relativization of this result holds, meaning whether the fact
that the space C'(K) is injective with respect to a subcategory of Banach spaces is
reflected dually by K being projective with respect to some subcategory of compact
spaces. If € is some class of continuous surjections between compact spaces, we
say that a compact space K is projective with respect to € if for every continuous
surjection w: L — M that belongs to ¥ and every continuous map f: K — M
there exists a continuous function g: K — M such that mg = f. The first guess
would be that C'(K) being injective with respect to Banach spaces of density less
than X should be equivalent to the Banach space K being projective with respect
to compact spaces of weight less than R. There is however a serious obstruction for
this approach: if 7 is any surjection from the Cantor set A onto the unit interval I
and K is any connected F-space, then the only liftable maps f: K — I are the
constant ones (Proposition 7.2 provides a good number of such spaces: it is not
difficult to realize that ultracoproducts preserve connectedness since a compact
space K is connected if and only if the only idempotents in C(K) are 0 and 1).
There are two ways of avoiding this problem. The first way is to assume K to be
totally disconnected or, which is the same, zero-dimensional (Theorem 7.4). The
other way is to reduce the subcategory we are dealing with and to consider only
compact convex sets and affine maps between them (Theorem 7.10). Before going
further let us remark:

Lemma 7.3. Let N be a cardinal number, and K a compact space. The following
are equivalent:

(1) Ewery open cover of every subspace of K has a subcover of cardinality less
than N.

(2) Every open subset of K is the union of less than X many closed subsets of K .

Proof. Suppose (1) holds and let U be an open subset of K. Simply consider an
open cover of U by open sets V with V C U. Conversely, assume (2) and let S C K
and {U; : i € I'} a cover of S by open subsets of K. Consider U = J,.; U;. By (2),
U is the union of less than X many compact sets, so it is enough to take a finite
subcover of each. O

We denote by HLy the class of compact spaces satisfying the conditions of the
preceding lemma. Observe that this class is stable under continuous images and
that it contains all compact spaces of weight less than X. A compact space belongs
to HLy, if and only if it is hereditarily Lindel6f, if and only if it is perfectly normal.
An example of a hereditarily Lindeldf space of uncountable weight is the double
arrow space: the lexicographical product of ordered sets [0,1] x {0,1} endowed
with the order topology. The equivalence of (1), (2) and (3) in the next result
is due to Neville and Lloyd [32]. The fourth condition states that Fyx spaces are
projective with respect to a larger class of spaces than those of weight less than N.
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Theorem 7.4. For a compact space K the following are equivalent:
(1) K is a zero-dimensional Fx-space.
(2) K is projective with respect to surjections w: L — M such that w(L) < X.

(3) K s projective with respect to surjections m: L — M such that w(M) < R
and w(L) <N,

(4) K is projective with respect to surjections w: L — M with L € HLy.

Proof. Notice that the implications (4) = (2) and (3) = (2) are trivial. We prove
first that (2) implies (1). In order to show that K is a zero-dimensional Fy-space
we shall show that for any disjoint open subsets A and B, which are the union
of k < N many closed subsets of K there exists a clopen set C' such that A C C
and BNC = @. Suppose A = J,.,. Co and B = UJ,.,. Do where each C, and
each D, are closed sets. For every a < k let f, : K — [—1,1] be a continuous
function such that

° fa|Ca = _17
° fa|A S 07
* falr\(aum) =0,

° fa|3207 and

° fa|Da =1

Consider the map f: K — [—1,1]" given by f(2) = (fa(z))a<xr- Let also
L =10,1]" x {—-1,1}, m: L — [—1,1]" be given by w(z,t) = (t - Ta)a<x and
M = 7(L). Notice that the image of f is contained in M, hence we are in a
position to apply the projectiveness property so that there exists g: K — L with
wg = f. But then g(A4) C [0,1]* x {—1} and g(B) C [0,1]" x {1}, hence there are
disjoint clopen sets which separate A and B. Conversely, we prove now that (1)
implies (3) and (4). So assume now that K is a zero-dimensional Iy space. We
assume that we are given an onto map m: L — M like either in (3) or (4), and
f: K — M, and we will find g: K — L with g = f.

CASE 1. We suppose that M € HLy, L C M x {0,1} and w: L — M is the
first-coordinate projection. Consider

A=K\ [ RLAM x (1)),
B =K\ {7 [=(LNM x {0})].

These are two disjoint open subsets of K which are moreover the union of less
than N many closed sets, because M € HLy. Therefore, since K is a totally
disconnected Fy space, there exists a clopen set C' C K such that A € C and
B C C = @. The desired function g: K — L can be defined now as g(z) = (z,0)
if v € C and g(x) = (z,1)if x ¢ C.

CASE 2. We suppose that L € HLy,L C M x [0,1] and 7: L — M is the
first-coordinate projection. Let g: 2¢ — [0,1] be a continuous surjection from
the Cantor set onto the unit interval. Let L' = {(z,t) € M x2% : (x,q(t)) € L} and



594 A. AVILES ET AL.

let 7': L’ — M be the first coordinate projection. We shall find a continuous map
g': K — L’ such that g’ = f. From ¢’ we easily obtain the desired function g
by composing with ¢ in the second coordinate. For every n < m < w let p* :
M x 2™ — M x 2™ be the natural projection which forgets about coordinates i > n
in2™. Let L, = p¥(L’). Each L,, C Lx2™is a member of HLx. Hence, by repeated
application of the Case 1 proved above, we can construct inductively continuous
maps g, : K — L, such that go = f and 7%"1g, 11 = g,. These functions must
be of the form g,(z) = (f(x),v(z),...,yn—1(x)) for some continuous functions
~vi: K — 2, i < w. The function ¢': K — L' C M x 2% is defined as ¢'(x) =
(f(x),'yo(m),%(x), - )

GENERAL CASE. We view L as a closed subset of a cube L C 2U, where T
is some cardinal. If we are dealing with condition (3), then I' = X. Let G =
{(z,7(x)) : » € L} C [0,1]" x M be the graph of m, and let m: G — L and
w9 : G — M be the two coordinate functions. We shall find a continuous function
h: K — G such that moh = f. From this we immediately get the desired lifting
as g =mih.

For every a < § < T let pg : 20 % M — 2% x M be the natural projection and
let G, = pL(G). If we assume condition (3) then all spaces G, have weight less
than X, while if we assume (4), then all these spaces belong to HLy because G is
homeomorphic to L and this class is stable under taking continuous images. We
construct by transfinite induction continuous functions h, : K — G, such that
mohe = f and such that they are coherent: p2hg = h, for @ < 3. In the one
immediate successor step of the induction, in order to obtain hqy1 from h, we are
in a position to apply Case 2 above. In the limit step, the function hg is uniquely
determined by the functions h, with o < 3, similarly as we did in Case 2. O

Corollary 7.5. The following spaces are “projective” with respect to all continuous
surjections between metrizable compacta:

o N*, the growth of the integers in its Stone-Cech compactification.

e Ultracoproducts of families of totally disconnected compacta built over count-
ably incomplete ultrafilters.

Corollary 7.6. Totally disconnected F-spaces are projective with respect to heredi-
tarily Lindeldf compact spaces.

Some particular cases of Corollary 7.6 are proven by Przymusiiiski [33] to the
effect of showing that every hereditarily Lindel6f compact space is a continuous
image of N*. Yet his arguments require some extra hypotheses which are unne-
cessary at the end. In the following corollary, we denote by RO(X) the set of all
regular open subsets of X, that is, those open sets which are interiors of closed sets.

Corollary 7.7. Let K be a totally disconnected Fy-space. Then K is projective
with respect to surjections w: L — M in which w(M) < X and |[RO(M)| < N.

Proof. Let f: K — L as usual, and let p: G — M be the Gleason cover of M. We
refer to [38] for an explanation about Gleason covers. We just recall the facts that



N-INJECTIVE BANACH SPACES 595

we need about it: the space G is an extremely disconnected space (that is, projec-
tive with respect to the full category of compact spaces), w(G) = |[RO(M)| and,
and p: G — M is an onto continuous map. Since w(G) < Y and w(M) < X, by
Theorem 7.4 there exists h : K — G such that ph = f. Since G is projective, there
exists u: G — L such that mu = p. Take g = uh. O

Corollary 7.8 (Neville and Lloyd). If k is a cardinal for which k™ = 2%, and K
s a totally disconnected compact F,+-space, then K is projective with respect to
all surjections w: L — M such that w(M) < k.

Proof. Apply the preceding Corollary for X = k¥, and notice that one always has
|[RO(M)| < 2*(M) because every open set is the union of a family of open sets
from a basis. O

Neville and Lloyd [32] asked whether the assumption that ™ = 2% can be
removed. We point out that the compact space constructed by Dow and Hart [13]
we used in Theorem 7 of [4] provides a negative answer to their question.

Theorem 7.9. It is consistent that there exists a zero-dimensional compact F -
space K which is not projective with respect to surjections w: L— M with w(M)=2Ry.

Proof. Under the assumption that ¢ = Ny and that (N)/fin contains a chain of
order type wg, Dow and Hart (Theorem 5.10 in [13]) construct a zero-dimensional
compact F-space K which does not map onto SN. Let M = aN be the one-point
compactification of the natural numbers, L = SN and 7: SN — M defined as
m(n) =nforn € N, and n(z) = oo if € SN\ N. Let f: K — M be a continuous
surjection. We claim that any continuous map ¢: K — L with 7g = f must be
onto, hence there is no such g. The reason is that for every n € N, if xz,, is such
that f(z,) =n, mg(x,) = n, hence g(z,,) = n. Therefore N C g(K), and since N
is dense in L, we conclude that g is onto, as desired. O

In the next theorem, by a compact convex set we mean a compact convex set
lying inside some locally convex space E. Actually, every such set L is affinely
homeomorphic to a closed convex subset of a cube [0, 1]¥, where the size of ' can
be as small as the weight of L. This is a consequence of the fact that continuous
linear functionals on E separate points (see Corollary 3.33 in [14]): one takes
takes I' as the set of these functionals and then the correspondence  — (f(z))fer
shows that L is affinely homeomorphic to a compact convex subset of R, indeed
by compactness to a subset of a product of intervals [[[a,, b,], which is in turn
affinely homeomorphic to [0, 1]F.

Theorem 7.10. Suppose X > Ny. For a compact space K the following are equi-
valent:
(1) K is an Fy-space

(2) For every continuous affine surjection mw: L — M between compact convex
sets with w(L) < X, and every continuous function f: K — M, there erists
a continuous function g: K — L such that mg = f.
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(3) As above with w(M) <X and w(L) < N.
(4) As above with L € HLy.

Proof. Tt is clear that (3) = (2) and that (4) = (2). We shall prove that (2)
implies (1), and that (1) implies (3) and (4). Suppose first that (2) holds, and we
shall show that the second condition of Theorem 5.2 holds for any cardinal I" < N.
Let fo,ga : K — [0,1], with @ < T, be two families of continuous functions such
that f, < gg for every a, f <I'. Consider

M = { ((ta)a<rv (Sa)a<r) € [07 1]F X [07 ]-]F : Supa<1" ta § info¢<l—‘ 3a}7
L={((ta)a<r,7, (sa)a<r) € [0,1]" x [0,1]x [0, 1]" : sup,op ta <7< infacr Sa}-

Let m: L — M be the natural surjection which forgets the intermediate coordi-
nate r, and let also f: K — M be given by

f(l‘) = (fa(x)a<1",ga($)a<r).

We are in a position to apply the statement of part (2), so that there is a function
g: K — L such that m(g(x)) = f(x). If we look at the composition of g with
the projection on the central coordinate r of L, we obtain a continuous function
h: K — [0,1] such that f, < h < g, for every @ < I". This proves that K is an
Fy-space.

Now we proceed to the proof that (1) implies (3) and (4), so we suppose that
K is an Fy-space, m: L — M is a continuous affine surjection and f: K — M is a
continuous surjection. We want to show that, under the hypotheses of either (3)
or (4), we get a continuous function g: K — L such that 7g = f. We consider M
to be a closed convex subset of a cube, M C [0,1]'" and we call 7, : M — [0,1]
to the projection on the a-th coordinate. The first step is to find the desired
function g under the following assumption (which can be considered the analogue
of considering a Banach superspace of codimension 1):

STEP 1. We assume M € HLy and there exists a continuous affine function
¢: L — [0,1] such that the map (w,¢): L — M x [0,1] given by (m, ¢)(z) =
(m(z), ¢(x)) is one-to-one.

In this case, we shall view L as a closed convex subset of M x [0, 1], so that 7
and ¢ are just the projections on the first and second coordinate. To find the
desired function g: K — L is equivalent to find a continuous function v: K — [0, 1]
such that (f(x),v(z)) € L for every x € K. Let {g, : n < w} be a countable dense
subset of [0,1]. We shall define by induction continuous functions v, ,v : K —
[0,1] such that v, < 4,5 for every n,m, and then v will be chosen such that
Vo <y <At for every n,m. For each n, define

U, = {y € M : (y,t) € L for every t € [gn, 1]} \W(Lﬂ (M % [gn, 1])),
Ui ={yeM:(y,t) €L foreveryt €[0,q,]} \7(LN(M x[0,g])),

which are two disjoint open subsets of M. Since M € HLy, f~1(U,;) and f~1(U,;")
are disjoint open subsets of K which are moreover unions of less than X many closed
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sets. Since K is an Fy-space, there exist continuous functions d,, and 4,5 over K
such that
00y <qn: Oplpmry) =0 Onlprt) = o,

G <0y <1, Ol iy =dny Oyl = 1

A priori, it may be false that §,; < §F for every n, m, so in order to make sure
of this we define inductively:

v =min{d, vt m<n}, F =max{5], v, :m <n}.
It is easy to see (using the fact that if ¢; < g;, then f~1(U;) C f_l(U;) and
Y uhH o Y ;r )) that these new functions still keep the key properties that

0<% <y Malprwsy =00 W lp-rwr) = dns
dn < ’72_ < 17 ’yr—Hf—l(U,,f) = Gn, ’y;ﬂf_l(U:r) =1

Since K is in particular an F-space, there exists a continuous function v : K —
[0,1] such that v, <~ < ~;F for all n. We have to show that (f(x),v(z)) € L for
every x € K. Given z € K, let

I={te[0,1]: (f(2),t) € L} = ¢(x [f(x)))-

Since ¢ and 7 are affine, I = [a,b] is a closed interval. In order to check that
~v(x) € I, we show that ¢, < v(z) < ¢,, whenever ¢, < a and g, > b. For example,
if g, < a, then this means that f(z) € U5, z € f~Y(U,}), so ¢, = 7, (z) < y(z).
Analogously, if g, > b, then z € f~1(U,,), and v(z) < 7}, (2) = ¢m. This finishes
the proof under the assumption made in Step 1.

GENERAL CASE. We view now L as compact convex set of the Hilbert cube
[0,1]F (with T' = X when we are under the assumptions of case (3)) and we call
Xo: L — [0,1] the coordinate functions, o < I'. For every «, we consider the
map hq: L — M x [0,1]* given by hq(2) = (7(2), x8(2)s<a), and we call L, =
ho(L) C M x [0,1]* the image of this continuous function. For a < /3, we also
call p2: Lg — L, the continuous surjection which forgets about coordinates t;
with i > a. We construct by transfinite induction a sequence of coherent liftings
go: K — Lo, a < T, that is, functions satisfying go = f and p2gs = g, whenever
o < . Notice that this is actually equivalent to finding continuous functions
Yo K — [0,1] such that go(z) = (f(z),78(x)s<a) € Lo for every x € K and
a < T'. In the inductive process gqo+1 is obtained from g, by applying Step 1,
while in the limit ordinals one has to take gg(x) = (f(), Va(%)a<p). Notice that
Step 1 can be applied because L, € HLy: if we are in case (3), we took I' = |
so w(Lq) < N, while in case (4) Lo is a continuous image of L and L € HLy. Let
gr: K — M x L be the final output of this inductive construction. We have that
pigr = f. Let g: K — L be obtained by projecting gr on the second coordinate,
so that we can write ¢g''(z) = (f(%), g(x)). The fact that g'(z) € Lr implies that
m(g(x)) = f(x), so g is the map that we were looking for. O
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The fact that C(K) is (1, R)-injective when K is an Fy-space is a consequence
of Theorem 7.10. Suppose we have Y C X Banach spaces with dens X < N and
t: Y — C(K) an operator of norm 1. We can apply part (2) of Theorem 7.10 to
m: Bx+ — By» and the mapping f: K — By« given by f(x) = t*(d,). We obtain
a weak™-continuous function g: K — By« such that mg = f. Then, the formula
T(x)(k) = ||z|lg(k)(z/||x]]), x € X, k € K, defines an extension of ¢ of norm 1.

8. Open problems

(1) Find homological characterizations of R-injectivity and universal N-injecti-
vity in ZFC. Proposition 3.2 characterizes (2%)*-injectivity; in particular, it char-
acterizes No-injectivity under CH (a Banach space E is Ro-injective if and only if
it is complemented in every superspace W such that W/ E is a quotient of {~,) and
NF-injectivity under GCH (a Banach space E is NV-injective if and only if it is
complemented in every superspace W such that W/E is a quotient of £oo(R)).

(2) Find a characterization of universal (1, X)-injectivity by means of intersec-
tion of families of balls.

(3) Is universal R-injectivity a 3-space property?

(4) Is it consistent that C(N*) is Na-injective? Recall that we have already
shown that C(N*) is not (1, Rg)-injective nor ¢*-injective.

(5) Are Lindenstrauss ultraproducts via countably incomplete R-good ultrafil-
ters universally N-injective spaces in ZFC? (They are universally (1,X)-injective
under GCH.)

(6) Prove or disprove that every ultraproduct built over a countably incomplete,
N-good ultrafilter is N-injective as long as it is a .Z-space.
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