Rev. Mat. Iberoam. **31** (2015), no. 2, 601–608 DOI 10.4171/RMI/846

A note on theta divisors of stable bundles

Sonia Brivio

Abstract. Let *C* be a smooth complex irreducible projective curve of genus $g \geq 3$. We show that if *C* is a Petri curve with $g \geq 4$, a general stable vector bundle *E* on *C*, with integer slope, admits an irreducible and reduced theta divisor Θ_E , whose singular locus has dimension g - 4. If *C* is non-hyperelliptic of genus 3, then actually Θ_E is smooth and irreducible for a general stable vector bundle *E* with integer slope on *C*.

1. Introduction

Let C be a smooth, irreducible, complex projective curve of genus $g \geq 3$, and let ω_C be the canonical line bundle on C. We recall that C is said a *Petri curve* if for any line bundle L on the curve, the Petri map, given by multiplication of sections,

(1.1)
$$\mu_L \colon H^0(L) \otimes H^0(\omega_C \otimes L^{-1}) \to H^0(\omega_C),$$

is injective, see [1].

Let $\mathcal{U}(r, d)$ denote the moduli space of S-equivalence classes of semistable vector bundles of rank $r \geq 2$ and degree d on C. It is a normal irreducible projective variety of dimension $r^2(g-1) + 1$. Except when r = g = 2 or r and d are coprime, $\mathcal{U}(r, d)$ is singular and the open subset $\mathcal{U}(r, d)^s \subset \mathcal{U}(r, d)$ of smooth points corresponds to isomorphism classes of stable bundles. Moreover, $\mathcal{U}(r, d) \simeq \mathcal{U}(r, d')$ whenever d'-d = kr, $k \in \mathbb{Z}$. In particular, if d = r(g-1) a natural Brill–Noether locus is defined as follows:

(1.2)
$$\Theta_r = \left\{ [E] \in \mathcal{U}(r, r(g-1)) \mid h^0(\operatorname{gr}(E)) \ge 1 \right\},$$

where [E] denotes the S-equivalence class of E and gr(E) is the polystable bundle defined by a Jordan–Hölder filtration of E, see [13]. Actually, Θ_r is an integral Cartier divisor, see [6], which is called *theta divisor* of $\mathcal{U}(r, r(g-1))$.

Mathematics Subject Classification (2010): Primary 14H60; Secondary 14H10. Keywords: Vector bundles.

For semistable vector bundles with integer slope we can introduce the notion of theta divisors, see [2]. Let E be a semistable vector bundle on C with integer slope $m = d/r \in \mathbb{Z}$. We set h = g - 1 - m. The tensor product defines a map:

(1.3)
$$\tau: \mathcal{U}(r, rm) \times \operatorname{Pic}^{h}(C) \longrightarrow \mathcal{U}(r, r(g-1)),$$

sending $([E], N) \to [E \otimes N]$. We can consider the pull-back $\tau^* \Theta_r$ of Θ_r . When the intersection $\tau^* \Theta_r \cdot [E] \times \operatorname{Pic}^h(C)$ is proper, it defines an effective divisor Θ_E on $\operatorname{Pic}^h(C)$ which is called the *theta divisor* of E, see [12], [11], and [3], which is set theoretically:

(1.4)
$$\Theta_E = \left\{ N \in \operatorname{Pic}^h(C) \mid h^0(\operatorname{gr}(E) \otimes N) \ge 1 \right\}.$$

If det $E \simeq M^{\otimes r}$, with $M \in \operatorname{Pic}^m(C)$, then it is well known that

(1.5)
$$\Theta_E \in |r\Theta_M|,$$

where $\Theta_M = \{N \in \operatorname{Pic}^h(C) \mid h^0(M \otimes N) \ge 1\}$, is a translate of the canonical theta divisor $\Theta \subset \operatorname{Pic}^{g-1}(C)$. Our result is the following:

Theorem 1.1. Let $r \geq 2$ and $m \in \mathcal{Z}$.

1. Let C be a Petri curve of genus $g \ge 4$. For a general stable vector bundle $[E] \in \mathcal{U}(r, rm), \Theta_E$ is an irreducible and reduced divisor, whose singular locus

$$\operatorname{Sing}(\Theta_E) = \{ N \in \operatorname{Pic}^h(C) \mid h^0(E \otimes N) \ge 2 \}, \quad h = g - 1 - m,$$

has dimension g - 4.

2. Let C be a non-hyperelliptic curve of genus 3. A general stable vector bundle $[E] \in \mathcal{U}(r, rm)$ admits a smooth irreducible and reduced theta divisor Θ_E .

The above description of $\operatorname{Sing}(\Theta_E)$ actually holds for a general stable bundle E on any smooth curve, this is also proved with different arguments in [14], see also [5] for a generalization. Petri condition is required to prove the dimensional formula.

2. Preliminary results

Before proving our result we will recall some facts on the theta divisor Θ_r of the moduli space $\mathcal{U}(r, r(g-1))$. For any $k \geq 1$, we can define the following Brill–Noether loci:

(2.1) $B(r, r(g-1), k) = \{ [F] \in \mathcal{U}(r, r(g-1))^s \mid h^0(F) \ge k \},\$

(2.2)
$$\tilde{B}(r, r(g-1), k) = \{ [F] \in \mathcal{U}(r, r(g-1)) \mid h^0(gr(F)) \ge k \},\$$

which are closed subschemes of their moduli spaces. Note that

(2.3)
$$\tilde{B}(r, r(g-1), 1) = \Theta_r$$

Moreover, we recall Laszlo's singularity theorem, see [8]:

Theorem 2.1. The multiplicity of Θ_r at a stable point $[F] \in \Theta_r$ is $h^0(F)$.

This implies that

(2.4)
$$B(r, r(g-1), 2) = \{ [F] \in \mathcal{U}(r, r(g-1))^s \mid [F] \in \operatorname{Sing}(\Theta_r) \}.$$

Brill–Noether loci have a determinantal description, which gives the following general results, see for instance [4] and [9].

Lemma 2.2. For (r, r(g-1), k), the Brill-Noether number is the following:

(2.5)
$$\beta(r, r(g-1), k) = r^2(g-1) + 1 - k^2.$$

If B(r, r(g-1), k) is not empty and $B(r, r(g-1), k) \neq \mathcal{U}(r, r(g-1))^s$, then we have the following properties:

- (1) Every irreducible component of B(r, r(g-1), k) has dimension $\geq \beta(r, r(g-1), k)$;
- (2) $B(r, r(g-1), k+1) \subset \operatorname{Sing}(r, r(g-1), k);$
- (3) The tangent space of B(r, r(g-1), k) at a point [F] with $h^0(F) = k$ can be identified with the dual of the cokernel of the Petri map, given by multiplication of sections:

$$\mu_F \colon H^0(F) \otimes H^0(\omega_C \otimes F^*) \longrightarrow H^0(F \otimes F^* \otimes \omega_C);$$

(4) B(r, r(g-1), k) is smooth of dimension $\beta(r, r(g-1), k)$ at [F] if and only if the Petri map μ_F is injective.

It is easy to produce semistable vector bundles $[F] \in \tilde{B}(r, r(g-1), k)$, however the non-emptiness of B(r, r(g-1), k) is a more delicate question. For k = 2 we have the following result:

Theorem 2.3. Let C be a smooth curve of genus $g \ge 3$. Then for any $r \ge 2$, the Brill–Noether locus B(r, r(g-1), 2) is non-empty.

This follows from a result of [10], which extends to arbitrary smooth curves the result of [15].

As an application of the study of moduli spaces of coherent systems we have the following:

Theorem 2.4. Let C be a Petri curve of genus $g \ge 3$ and $r \ge 2$. Then the Brill–Noether locus B(r, r(g-1), 2) is irreducible of dimension

$$\beta(r, r(g-1), 2) = r^2(g-1) - 3 = \dim \mathcal{U}(r, r(g-1))^s - 4.$$

For the proof see [4], Theorem 11.11.

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Let C be a smooth curve of genus $g \ge 3$. We will consider the map defined in (1.3):

$$\tau: \mathcal{U}(r, rm) \times \operatorname{Pic}^{h}(C) \longrightarrow \mathcal{U}(r, r(g-1))$$

sending $([E], N) \to [E \otimes N]$. Note that the restriction

$$\tau_N = \tau_{|\mathcal{U}(r,rm)\times N} \colon \mathcal{U}(r,rm) \longrightarrow \mathcal{U}(r,r(g-1))$$

is an isomorphism for any $N \in \operatorname{Pic}^{h}(C)$. We will consider the restriction of τ to stable bundles and we will denote it by τ_s :

(3.1)
$$\tau_s : \mathcal{U}(r, rm)^s \times \operatorname{Pic}^h(C) \longrightarrow \mathcal{U}(r, r(g-1))^s.$$

Note that τ_s is a smooth morphism whose fibers are biregular to $\operatorname{Pic}^h(C)$. Let $p_i, i = 1, 2$, denote the projections of $\mathcal{U}(r, rm)^s \times \operatorname{Pic}^h(C)$ onto factors. Let us consider the pull-back $\tau_s^* \Theta_r$ of Θ_r and the restriction of p_2 to $\tau_s^* \Theta_r$:

(3.2)
$$p_{2|\tau_*^*\Theta_r} \colon \tau_s^*\Theta_r \longrightarrow \operatorname{Pic}^h(C).$$

It is a surjective map whose fibers are all isomorphic to $\Theta_{r|\mathcal{U}(r,r(g-1))^s}$, since the restriction $\tau_{s|\mathcal{U}(r,rm)^s \times N}$ is an isomorphism for any N. So all fibers are irreducible of the same dimension. This implies that $\tau_s^*\Theta_r$ is an irreducible subscheme of codimension 1 of $\mathcal{U}(r,rm)^s \times \operatorname{Pic}^h(C)$. Moreover, since τ_s is smooth, by (2.4) we have:

$$\operatorname{Sing}(\tau_s^*\Theta_r) = \tau_s^* \left\{ [F] \in \mathcal{U}(r, r(g-1))^s \mid [F] \in \operatorname{Sing}(\Theta_r) \right\} = \tau_s^* B(r, r(g-1), 2).$$

By Theorem 2.4, B(r, r(g-1), 2) is an irreducible subscheme of $\mathcal{U}(r, r(g-1))^s$ of codimension 4. By the same argument used above, we can conclude that $\tau_s^* B(r, r(g-1), 2)$ is also an irreducible subscheme of $\mathcal{U}(r, rm)^s \times \operatorname{Pic}^h(C)$ of codimension 4.

Let us consider the restriction of p_1 to $\tau_s^*(\Theta_r)$:

(3.3)
$$p_{1|\tau_s^*(\Theta_r)} \colon \tau_s^*(\Theta_r) \longrightarrow \mathcal{U}(r, rm)^s,$$

for general $[E] \in \mathcal{U}(r, rm)^s$ the fiber at [E] is actually the theta divisor Θ_E . Let us consider the open subset of smooth points of $\tau_s^*(\Theta_r)$:

(3.4)
$$X = \tau_s^*(\Theta_r) \setminus \tau_s^* B(r, r(g-1), 2),$$

and look at the restriction of p_1 to X:

$$p_{1|X} \colon X \longrightarrow \mathcal{U}(r, rm)^s.$$

It is a dominant map, moreover since X and $\mathcal{U}(r, rm)^s$ are smooth and irreducible, by generic smoothness, see [7], there exists an open subset

$$V \subset \mathcal{U}(r, rm)^{\varepsilon}$$

such that $p_{1|X \cap p_1^{-1}(V)} \colon X \cap p_1^{-1}(V) \to V$ is a smooth morphism. This implies that for $[E] \in V$ the fiber $\Theta_E \cap X$ is smooth, that is,

(3.5)
$$\operatorname{Sing}(\Theta_E) = \Theta_E \cdot \tau_s^* B(r, r(g-1), 2) = \left\{ N \in \operatorname{Pic}^h(C) \mid h^0(E \otimes N) \ge 2 \right\}.$$

By the above considerations, we can conclude that for a general vector bundle $[E] \in \mathcal{U}(r, rm)^s$, the divisor Θ_E is irreducible and reduced, and its singular locus is described in (3.5). So Theorem 1.1 follows from the next two lemmas.

Lemma 3.1. Let C be a non-hyperelliptic curve of genus 3. Then, for a general stable $[E] \in \mathcal{U}(r, rm)^s$, the intersection $\Theta_E \cdot \tau_s^* B(r, 2r, 2)$ is empty.

Proof. If C is non-hyperelliptic of genus 3 then

dim
$$\tau_s^* B(r, 2r, 2) = 2r^2 < \dim \mathcal{U}(r, rm)^s = 2r^2 + 1.$$

Let us consider the restriction of p_1 to $\tau_s^* B(r, 2r, 2)$:

(3.6)
$$p_{1|\tau_s^*B(r,2r,2)} \colon \tau_s^*B(r,2r,2) \longrightarrow \mathcal{U}(r,rm)^s.$$

The image of $p_{1|\tau_s^*B(r,2r,2)}$ is a closed subvariety of $\mathcal{U}(r,rm)^s$, so we can conclude for general $[E] \in \mathcal{U}(r,rm)^s$ the intersection $\Theta_E \cdot \tau_s^*B(r,2r,2)$ is empty. \Box

Lemma 3.2. Let C be a Petri curve of genus $g \ge 4$. Then, for a general stable $[E] \in \mathcal{U}(r, rm)^s$, the intersection $\Theta_E \cdot \tau_s^* B(r, r(g-1), 2)$ has dimension g - 4.

Proof. Let us consider the restriction of p_1 to $\tau_s^* B(r, r(g-1), 2)$:

(3.7)
$$p_{1|\tau_s^*B(r,r(g-1),2)} \colon \tau_s^*B(r,r(g-1),2) \longrightarrow \mathcal{U}(r,rm)^s.$$

We prove that the map (3.7) is dominant, hence a general fiber has dimension g-4.

For $([E], N) \in \mathcal{U}(r, rm)^s \times \operatorname{Pic}^h(C)$ let $d(p_1)_{[E],N}$ be the induced map on tangent spaces:

$$d(p_1)_{[E],N} \colon T_{[E]}(\mathcal{U}(r,rm)) \times T_N(\operatorname{Pic}^h(C)) \longrightarrow T_{[E]}(\mathcal{U}(r,rm)),$$

whose kernel is the tangent space $T_{[E],N}([E] \times \operatorname{Pic}^{h}(C))$ of the fiber of p_{1} at [E]. For a general $([E], N) \in \tau_{s}^{*}B(r, r(g-1), 2)$, let us consider the restriction

$$d(p_1)_{[E],N|T_{[E],N}(\tau_s^*B(r,r(g-1),2))} \colon T_{[E],N}(\tau_s^*B(r,r(g-1),2)) \longrightarrow T_{[E]}(\mathcal{U}(r,rm)),$$

it is a surjective map if and only we have:

(3.8)
$$\dim T_{[E],N}(\tau_s^* B(r, r(g-1), 2)) \cap T_{[E],N}([E] \times \operatorname{Pic}^h(C)) = g - 4.$$

We recall that for any $([E], N) \in \mathcal{U}(r, rm)^s \times \operatorname{Pic}^h(C)$ we have:

$$T_{[E],N}([E] \times \operatorname{Pic}^{h}(C)) \simeq H^{1}(O_{C}),$$

$$T_{[E],N}(\tau_{s}^{*}B(r, r(g-1), 2)) = \tau_{s}^{*}(T_{[E\otimes N]}(B(r, r(g-1), 2))).$$

Finally if $h^0(E \otimes N) = 2$, by Lemma 2.2, we have:

$$T_{[E\otimes N]}(B(r,r(g-1),2)) \simeq (\operatorname{coker} \mu_{E\otimes N})^* \subset H^1(E\otimes E^*),$$

where $\mu_{E\otimes N}$ is the Petri map of $E\otimes N$, and

$$H^{1}(E \otimes E^{*}) \simeq T_{[E]} (\mathcal{U}(r, rm)) \simeq T_{[E \otimes N]} (\mathcal{U}(r, r(g-1))).$$

We also recall that $E \otimes E^*$ is the sheaf of endomorphisms of E and the trace homomorphism tr defines the subsheaf of tracenull endomorphisms:

$$(3.9) 0 \to \operatorname{End}_0(E) \to E \otimes E^* \to O_C \to 0.$$

If E is stable then $H^0(E \otimes E^*) = \{\lambda \cdot \mathrm{id}_E | \lambda \in \mathcal{C}\} \simeq H^0(O_C)$, so that we have

(3.10)
$$H^1(E \otimes E^*) = H^1(\operatorname{End}_0(E)) \oplus H^1(O_C);$$

moreover, $H^1(O_C)$ is the image of the tangent space of $[E] \times \operatorname{Pic}^h(C)$:

(3.11)
$$d(\tau_E)_N \colon H^1(O_C) \longrightarrow H^1(E \otimes E^*).$$

So to prove (3.8), it is enough to prove that for a general stable vector bundle $E \otimes N \in B(r, r(g-1), 2)$ we have that

(3.12)
$$\dim \left(H^1(O_C) \cap \left(\operatorname{coker} \mu_{E \otimes N} \right)^* \right) = g - 4.$$

By taking dual spaces of (3.10), let

(3.13)
$$\pi_E \colon H^0(E \otimes E^* \otimes \omega_C) \longrightarrow H^0(\omega_C)$$

be the natural projection map. Then condition (3.12) is satisfied if and only if we require that the composition of the Petri map $\mu_{E\otimes N}$ with π_E has maximal rank:

$$H^{0}(E \otimes N) \otimes H^{0}(\omega_{C} \otimes E^{*} \otimes N^{*}) \xrightarrow{\mu_{E \otimes N}} H^{0}(E \otimes E^{*} \otimes \omega_{C})$$

$$\downarrow^{\pi_{E}}$$

$$\downarrow^{\pi_{E}}$$

$$H^{0}(\omega_{C}).$$

Note that actually π_E can be identified with the map induced on global sections from the exact sequence (3.9) tensored with the canonical line bundle ω_C .

Finally, we prove by induction on r that the map $\pi_{grF} \cdot \mu_{grF}$ has maximal rank for a general $[F] \in \tilde{B}(r, r(g-1), 2)$.

Let r = 1: for a general line bundle $L \in B(1, g - 1, 2) = W_{g-1}^1$, the Petri map is injective

$$\mu_L \colon H^0(L) \otimes H^0(\omega_C \otimes L^*) \longrightarrow H^0(\omega_C)$$

since C is Petri, and the map π_L is the identity.

Let $G \in B(r-1, (r-1)(g-1), 2)$ be a general stable bundle satisfying the claim. Let us consider the following semistable vector bundle:

(3.14)
$$F = G \oplus L, \quad L \in \operatorname{Pic}^{g-1}(C), \quad h^0(L) = 0.$$

606

Then $H^0(F) \simeq H^0(G)$ and $H^0(\omega_C \otimes F^*) \simeq H^0(\omega_C \otimes G^*)$, so we can conclude that $[F] \in \tilde{B}(r, r(g-1), 2)$. Let $i: H^0(G \otimes G^* \otimes \omega_C) \hookrightarrow H^0(F \otimes F^* \otimes \omega_C)$ be the natural inclusion. We have the following commutative diagram:

$$\begin{array}{cccc} H^{0}(G) \otimes H^{0}(\omega_{C} \otimes G^{*}) & \stackrel{\mu_{G}}{\longrightarrow} & H^{0}(G \otimes G^{*} \otimes \omega_{C}) & \stackrel{\pi_{G}}{\longrightarrow} & H^{0}(\omega_{C}) \\ & \simeq & & i & & & & \\ H^{0}(F) \otimes H^{0}(\omega_{C} \otimes F^{*}) & \stackrel{\mu_{F}}{\longrightarrow} & H^{0}(F \otimes F^{*} \otimes \omega_{C}) & \stackrel{\pi_{F}}{\longrightarrow} & H^{0}(\omega_{C}). \end{array}$$

By induction hypothesis the composition map $\pi_G \cdot \mu_G$ has maximal rank, so $\pi_F \cdot \mu_F$ has maximal rank too. Let $U \subset \tilde{B}(r, r(g-1), 2)$ be the subset corresponding to classes [F] such that the map $\pi_{grF} \cdot \mu_{grF}$ has maximal rank, U is not empty. Since this condition is open on each family of vector bundles of $\tilde{B}(r, r(g-1), 2)$, it follows that U is a non empty open subset of $\tilde{B}(r, r(g-1), 2)$. This implies that a general $[F] \in \tilde{B}(r, r(g-1), 2)$ satisfies the property too.

This concludes the proof of Theorem 1.1.

Acknowledgements. I am grateful to Alessandro Verra and Michele Bolognesi for many discussions on the matter.

References

- ARBARELLO, E., CORNALBA, M. AND GRIFFITHS, P. A.: Geometry of algebraic curves, Vol. II. Grundlehren der Mathematischen Wissenschaften 268, Springer, Heidelberg, 2011.
- [2] BEAUVILLE, A.: Some stable vector bundles with reducible theta divisors. Manuscripta Math. 110 (2003), no. 3, 343–349.
- [3] BEAUVILLE, A., NARASIMHAN, M. S. AND RAMANAN, S.: Spectral curves and the generalized theta divisor. J. Reine Angew. Math 398 (1989), 169–179.
- [4] BRADLOW, S. B., GARCÍA-PRADA, O., MUÑOZ, V. AND NEWSTEAD, P. E.: Coherent systems and Brill–Noether theory. Internat. J. Math. 14 (2003), no. 7, 683–733.
- [5] CASALAINA-MARTIN, S. AND TEIXIDOR I BIGAS, M.: Singularities of Brill–Noether loci for vector bundles on a curve. Math. Nachr. 284 (2011), no. 14-15, 1846–1871.
- [6] DREZET J. M. AND NARASIMHAN, M. S.: Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques. *Invent. Math.* 97 (1989), no. 1, 53–94.
- [7] HARTSHORNE, R.: Algebraic geometry. Graduate texts in Mathematics 52, Springer-Verlag, New York-Heidelberg, 1977.
- [8] LASZLO, Y.: Un théorème de Riemann pour les diviseurs thêta sur les espaces de modules de fibrés stables sur une courbe. Duke Math. Journ. 64 (1991), no. 2, 333–347.
- [9] MERCAT, V.: Le problème de Brill-Noether: présentation, 2001. Available at http://www.liv.ac.uk /~newstead/presen/presenta.ps.
- [10] MERCAT, V.: Le probléme de Brill-Noether et le theoréme de Teixidor. Manuscripta Math. 98 (1999), no. 1, 75–85.

- [11] NARASIMHAN, M. S. AND RAMANAN, S.: Moduli of vector bundles on a compact Riemann surface. Ann. of Math. (2) 89 (1969), 14–51.
- [12] NARASIMHAN, M. S. AND RAMANAN, S.: Vector bundles on curves. In Algebraic geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), 335–346. Oxford Univ. Press, London, 1969.
- [13] SESHADRI, C. S.: Fibrés vectoriels sur les courbes algébriques. Asterisque 96, Société Mathématique de France, Paris, 1982.
- [14] TEIXIDOR I BIGAS, M.: A Riemann singularity theorem for generalised Brill–Noether loci. Math. Nachr. 196 (1998), 251–257.
- [15] TEIXIDOR I BIGAS, M.: Brill-Noether theory for stable vector bundles. Duke Math. J. 62 (1991), no. 2, 385–400.

Received May 14, 2013.

SONIA BRIVIO: Dipartimento di Matematica "F. Casorati", Universitá di Pavia, Via Ferrata 1, 27100 Pavia, Italy.

E-mail: sonia.brivio@unipv.it