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A note on theta divisors of stable bundles

Sonia Brivio

Abstract. Let C be a smooth complex irreducible projective curve of
genus g ≥ 3. We show that if C is a Petri curve with g ≥ 4, a general
stable vector bundle E on C, with integer slope, admits an irreducible and
reduced theta divisor ΘE, whose singular locus has dimension g − 4. If C
is non-hyperelliptic of genus 3, then actually ΘE is smooth and irreducible
for a general stable vector bundle E with integer slope on C.

1. Introduction

Let C be a smooth, irreducible, complex projective curve of genus g ≥ 3, and
let ωC be the canonical line bundle on C. We recall that C is said a Petri curve
if for any line bundle L on the curve, the Petri map, given by multiplication of
sections,

(1.1) μL : H
0(L)⊗H0(ωC ⊗ L−1) → H0(ωC),

is injective, see [1].

Let U(r, d) denote the moduli space of S-equivalence classes of semistable vector
bundles of rank r ≥ 2 and degree d on C. It is a normal irreducible projective
variety of dimension r2(g − 1) + 1. Except when r = g = 2 or r and d are
coprime, U(r, d) is singular and the open subset U(r, d)s ⊂ U(r, d) of smooth points
corresponds to isomorphism classes of stable bundles. Moreover, U(r, d) � U(r, d′)
whenever d′−d = kr, k ∈ Z. In particular, if d = r(g−1) a natural Brill–Noether
locus is defined as follows:

(1.2) Θr =
{
[E] ∈ U(r, r(g − 1)) | h0(gr(E)) ≥ 1

}
,

where [E] denotes the S-equivalence class of E and gr(E) is the polystable bundle
defined by a Jordan–Hölder filtration of E, see [13]. Actually, Θr is an integral
Cartier divisor, see [6], which is called theta divisor of U(r, r(g − 1)).
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For semistable vector bundles with integer slope we can introduce the notion
of theta divisors, see [2]. Let E be a semistable vector bundle on C with integer
slope m = d/r ∈ Z. We set h = g − 1−m. The tensor product defines a map:

(1.3) τ : U(r, rm) × Pich(C) −→ U(r, r(g − 1)),

sending ([E], N) → [E ⊗ N ]. We can consider the pull-back τ∗Θr of Θr. When
the intersection τ∗Θr · [E] × Pich(C) is proper, it defines an effective divisor ΘE

on Pich(C) which is called the theta divisor of E, see [12], [11], and [3], which is
set theoretically:

(1.4) ΘE =
{
N ∈ Pich(C) | h0(gr(E)⊗N) ≥ 1

}
.

If detE � M⊗r, with M ∈ Picm(C), then it is well known that

(1.5) ΘE ∈ |rΘM |,
where ΘM = {N ∈ Pich(C) | h0(M ⊗N) ≥ 1}, is a translate of the canonical theta
divisor Θ ⊂ Pic g−1(C). Our result is the following:

Theorem 1.1. Let r ≥ 2 and m ∈ Z.

1. Let C be a Petri curve of genus g ≥ 4. For a general stable vector bundle
[E] ∈ U(r, rm), ΘE is an irreducible and reduced divisor, whose singular
locus

Sing(ΘE) = {N ∈ Pich(C) | h0(E ⊗N) ≥ 2}, h = g − 1−m,

has dimension g − 4.

2. Let C be a non-hyperelliptic curve of genus 3. A general stable vector bundle
[E] ∈ U(r, rm) admits a smooth irreducible and reduced theta divisor ΘE.

The above description of Sing(ΘE) actually holds for a general stable bundle E
on any smooth curve, this is also proved with different arguments in [14], see also [5]
for a generalization. Petri condition is required to prove the dimensional formula.

2. Preliminary results

Before proving our result we will recall some facts on the theta divisor Θr of the
moduli space U(r, r(g − 1)). For any k ≥ 1, we can define the following Brill–
Noether loci:

B(r, r(g − 1), k) =
{
[F ] ∈ U(r, r(g − 1))s | h0(F ) ≥ k

}
,(2.1)

B̃(r, r(g − 1), k) =
{
[F ] ∈ U(r, r(g − 1)) | h0(gr(F )) ≥ k

}
,(2.2)

which are closed subschemes of their moduli spaces. Note that

(2.3) B̃(r, r(g − 1), 1) = Θr.

Moreover, we recall Laszlo’s singularity theorem, see [8]:

Theorem 2.1. The multiplicity of Θr at a stable point [F ] ∈ Θr is h0(F ).
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This implies that

(2.4) B(r, r(g − 1), 2) =
{
[F ] ∈ U(r, r(g − 1))s | [F ] ∈ Sing(Θr)

}
.

Brill–Noether loci have a determinantal description, which gives the following gen-
eral results, see for instance [4] and [9].

Lemma 2.2. For (r, r(g − 1), k), the Brill–Noether number is the following:

(2.5) β(r, r(g − 1), k) = r2(g − 1) + 1− k2.

If B(r, r(g − 1), k) is not empty and B(r, r(g − 1), k) �= U(r, r(g − 1))s, then we
have the following properties:

(1) Every irreducible component of B(r, r(g − 1), k) has dimension ≥ β(r, r(g −
1), k);

(2) B(r, r(g − 1), k + 1) ⊂ Sing(r, r(g − 1), k);

(3) The tangent space of B(r, r(g − 1), k) at a point [F ] with h0(F ) = k can be
identified with the dual of the cokernel of the Petri map, given by multiplica-
tion of sections:

μF : H0(F )⊗H0(ωC ⊗ F ∗) −→ H0(F ⊗ F ∗ ⊗ ωC);

(4) B(r, r(g − 1), k) is smooth of dimension β(r, r(g − 1), k) at [F ] if and only if
the Petri map μF is injective.

It is easy to produce semistable vector bundles [F ] ∈ B̃(r, r(g − 1), k), however
the non-emptiness of B(r, r(g − 1), k) is a more delicate question. For k = 2 we
have the following result:

Theorem 2.3. Let C be a smooth curve of genus g ≥ 3. Then for any r ≥ 2, the
Brill–Noether locus B(r, r(g − 1), 2) is non-empty.

This follows from a result of [10], which extends to arbitrary smooth curves the
result of [15].

As an application of the study of moduli spaces of coherent systems we have
the following:

Theorem 2.4. Let C be a Petri curve of genus g ≥ 3 and r ≥ 2. Then the
Brill–Noether locus B(r, r(g − 1), 2) is irreducible of dimension

β(r, r(g − 1), 2) = r2(g − 1)− 3 = dim U(r, r(g − 1))s − 4.

For the proof see [4], Theorem 11.11.
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3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Let C be a smooth curve of genus g ≥ 3.
We will consider the map defined in (1.3):

τ : U(r, rm) × Pich(C) −→ U(r, r(g − 1))

sending ([E], N) → [E ⊗N ]. Note that the restriction

τN = τ|U(r,rm)×N : U(r, rm) −→ U(r, r(g − 1))

is an isomorphism for any N ∈ Pich(C). We will consider the restriction of τ to
stable bundles and we will denote it by τs:

(3.1) τs : U(r, rm)s × Pich(C) −→ U(r, r(g − 1))s.

Note that τs is a smooth morphism whose fibers are biregular to Pich(C). Let
pi, i = 1, 2, denote the projections of U(r, rm)s × Pich(C) onto factors. Let us
consider the pull-back τ∗sΘr of Θr and the restriction of p2 to τ∗sΘr:

(3.2) p2|τ∗
sΘr

: τ∗sΘr −→ Pich(C).

It is a surjective map whose fibers are all isomorphic to Θr |U(r,r(g−1))s , since the
restriction τs|U(r,rm)s×N is an isomorphism for any N . So all fibers are irreducible
of the same dimension. This implies that τ∗sΘr is an irreducible subscheme of
codimension 1 of U(r, rm)s × Pich(C). Moreover, since τs is smooth, by (2.4) we
have:

Sing(τ∗sΘr) = τ∗s
{
[F ] ∈ U(r, r(g − 1))s | [F ] ∈ Sing(Θr)

}
= τ∗sB(r, r(g − 1), 2).

By Theorem 2.4, B(r, r(g − 1), 2) is an irreducible subscheme of U(r, r(g − 1))s

of codimension 4. By the same argument used above, we can conclude that
τ∗sB(r, r(g− 1), 2) is also an irreducible subscheme of U(r, rm)s ×Pich(C) of codi-
mension 4.

Let us consider the restriction of p1 to τ∗s (Θr):

(3.3) p1|τ∗
s (Θr) : τ

∗
s (Θr) −→ U(r, rm)s,

for general [E] ∈ U(r, rm)s the fiber at [E] is actually the theta divisor ΘE . Let
us consider the open subset of smooth points of τ∗s (Θr):

(3.4) X = τ∗s (Θr) \ τ∗sB(r, r(g − 1), 2),

and look at the restriction of p1 to X :

p1|X : X −→ U(r, rm)s.

It is a dominant map, moreover since X and U(r, rm)s are smooth and irreducible,
by generic smoothness, see [7], there exists an open subset

V ⊂ U(r, rm)s
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such that p1| X∩p1
−1(V ) : X ∩ p1

−1(V ) → V is a smooth morphism. This implies
that for [E] ∈ V the fiber ΘE ∩X is smooth, that is,

Sing(ΘE) = ΘE · τ∗sB(r, r(g − 1), 2) =
{
N ∈ Pich(C) | h0(E ⊗N) ≥ 2

}
.(3.5)

By the above considerations, we can conclude that for a general vector bundle
[E] ∈ U(r, rm)s, the divisor ΘE is irreducible and reduced, and its singular locus
is described in (3.5). So Theorem 1.1 follows from the next two lemmas.

Lemma 3.1. Let C be a non-hyperelliptic curve of genus 3. Then, for a general
stable [E] ∈ U(r, rm)s, the intersection ΘE · τ∗sB(r, 2r, 2) is empty.

Proof. If C is non-hyperelliptic of genus 3 then

dim τ∗sB(r, 2r, 2) = 2r2 < dim U(r, rm)s = 2r2 + 1.

Let us consider the restriction of p1 to τ∗sB(r, 2r, 2):

(3.6) p1|τ∗
s B(r,2r,2) : τ

∗
sB(r, 2r, 2) −→ U(r, rm)s.

The image of p1|τ∗
s B(r,2r,2) is a closed subvariety of U(r, rm)s, so we can conclude

for general [E] ∈ U(r, rm)s the intersection ΘE · τ∗sB(r, 2r, 2) is empty. �

Lemma 3.2. Let C be a Petri curve of genus g ≥ 4. Then, for a general stable
[E] ∈ U(r, rm)s, the intersection ΘE · τ∗sB(r, r(g − 1), 2) has dimension g − 4.

Proof. Let us consider the restriction of p1 to τ∗sB(r, r(g − 1), 2):

(3.7) p1|τ∗
s B(r,r(g−1),2) : τ

∗
sB(r, r(g − 1), 2) −→ U(r, rm)s.

We prove that the map (3.7) is dominant, hence a general fiber has dimension g−4.

For ([E], N) ∈ U(r, rm)s×Pich(C) let d(p1)[E],N be the induced map on tangent
spaces:

d(p1)[E],N : T[E](U(r, rm)) × TN (Pich(C)) −→ T[E](U(r, rm)),

whose kernel is the tangent space T[E],N([E] × Pich(C)) of the fiber of p1 at [E].
For a general ([E], N) ∈ τ∗sB(r, r(g − 1), 2), let us consider the restriction

d(p1)[E],N |T[E],N (τ∗
s B(r,r(g−1),2))

: T[E],N

(
τ∗sB(r, r(g − 1), 2)

) −→ T[E]

(U(r, rm)
)
,

it is a surjective map if and only we have:

(3.8) dim T[E],N

(
τ∗sB(r, r(g − 1), 2)

) ∩ T[E],N

(
[E]× Pich(C)

)
= g − 4.

We recall that for any ([E], N) ∈ U(r, rm)s × Pich(C) we have:

T[E],N

(
[E]× Pich(C)

) � H1(OC),

T[E],N

(
τ∗sB(r, r(g − 1), 2)

)
= τ∗s

(
T[E⊗N ](B(r, r(g − 1), 2))

)
.
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Finally if h0(E ⊗N) = 2, by Lemma 2.2, we have:

T[E⊗N ]

(
B(r, r(g − 1), 2)

) � (cokerμE⊗N )∗ ⊂ H1(E ⊗ E∗),

where μE⊗N is the Petri map of E ⊗N , and

H1(E ⊗ E∗) � T[E]

(U(r, rm)
) � T[E⊗N ]

(U(r, r(g − 1))
)
.

We also recall that E ⊗ E∗ is the sheaf of endomorphisms of E and the trace
homomorphism tr defines the subsheaf of tracenull endomorphisms:

(3.9) 0 → End0(E) → E ⊗ E∗ → OC → 0.

If E is stable then H0(E ⊗ E∗) = {λ · idE |λ ∈ C} � H0(OC), so that we have

(3.10) H1(E ⊗ E∗) = H1(End0(E))⊕H1(OC);

moreover, H1(OC) is the image of the tangent space of [E]× Pich(C):

(3.11) d(τE)N : H1(OC) −→ H1(E ⊗ E∗).

So to prove (3.8), it is enough to prove that for a general stable vector bundle
E ⊗N ∈ B(r, r(g − 1), 2) we have that

(3.12) dim
(
H1(OC) ∩ (cokerμE⊗N )

∗)
= g − 4.

By taking dual spaces of (3.10), let

(3.13) πE : H0(E ⊗ E∗ ⊗ ωC) −→ H0(ωC)

be the natural projection map. Then condition (3.12) is satisfied if and only if we
require that the composition of the Petri map μE⊗N with πE has maximal rank:

H0(E ⊗N)⊗H0(ωC ⊗ E∗ ⊗N∗)

πE ·μE⊗N

������
����

����
����

����
μE⊗N�� H0(E ⊗ E∗ ⊗ ωC)

πE

��
H0(ωC).

Note that actually πE can be identified with the map induced on global sections
from the exact sequence (3.9) tensored with the canonical line bundle ωC .

Finally, we prove by induction on r that the map πgrF ·μgrF has maximal rank

for a general [F ] ∈ B̃(r, r(g − 1), 2).
Let r = 1: for a general line bundle L ∈ B(1, g − 1, 2) = W 1

g−1, the Petri map
is injective

μL : H
0(L)⊗H0(ωC ⊗ L∗) −→ H0(ωC)

since C is Petri, and the map πL is the identity.
Let G ∈ B(r − 1, (r − 1)(g − 1), 2) be a general stable bundle satisfying the

claim. Let us consider the following semistable vector bundle:

(3.14) F = G⊕ L, L ∈ Picg−1(C), h0(L) = 0.
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Then H0(F ) � H0(G) and H0(ωC ⊗F ∗) � H0(ωC ⊗G∗), so we can conclude that
[F ] ∈ B̃(r, r(g−1), 2). Let i : H0(G⊗G∗⊗ωC) ↪→ H0(F ⊗F ∗⊗ωC) be the natural
inclusion. We have the following commutative diagram:

H0(G) ⊗H0(ωC ⊗G∗)
μG−−−−→ H0(G⊗G∗ ⊗ ωC)

πG−−−−→ H0(ωC)

�
⏐⏐
� i

⏐⏐
�

∥∥
∥

H0(F )⊗H0(ωC ⊗ F ∗)
μF−−−−→ H0(F ⊗ F ∗ ⊗ ωC)

πF−−−−→ H0(ωC).

By induction hypothesis the composition map πG ·μG has maximal rank, so πF ·μF

has maximal rank too. Let U ⊂ B̃(r, r(g − 1), 2) be the subset corresponding to
classes [F ] such that the map πgrF ·μgrF has maximal rank, U is not empty. Since

this condition is open on each family of vector bundles of B̃(r, r(g−1), 2), it follows
that U is a non empty open subset of B̃(r, r(g− 1), 2). This implies that a general
[F ] ∈ B̃(r, r(g − 1), 2) satisfies the property too. �

This concludes the proof of Theorem 1.1.

Acknowledgements. I am grateful to Alessandro Verra and Michele Bolognesi
for many discussions on the matter.
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Math. 98 (1999), no. 1, 75–85.



608 S. Brivio

[11] Narasimhan, M. S. and Ramanan, S.: Moduli of vector bundles on a compact
Riemann surface. Ann. of Math. (2) 89 (1969), 14–51.

[12] Narasimhan, M. S. and Ramanan, S.: Vector bundles on curves. In Algebraic
geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), 335–346. Oxford
Univ. Press, London, 1969.

[13] Seshadri, C. S.: Fibrés vectoriels sur les courbes algébriques. Asterisque 96, Société
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