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Roth’s theorem in the Piatetski-Shapiro primes

Mariusz Mirek

Abstract. Let P denote the set of prime numbers and, for an appropriate
function h, define a set Ph = {p ∈ P : ∃n∈N p = �h(n)�}. The aim of
this paper is to show that every subset of Ph having positive relative
upper density contains a nontrivial three-term arithmetic progression. In
particular the set of Piatetski-Shapiro primes of fixed type 71/72 < γ < 1,
i.e., {p ∈ P : ∃n∈N p = �n1/γ�} has this feature. We show this by proving
the counterpart of the Bourgain–Green restriction theorem for the set Ph.

1. Introduction and statement of results

Let A be a subset of positive integers. For any N ∈ N we define the density
�A(N) of A to be the number �A(N) = 1

N |A ∩ [1, N ]|, and then we define the
upper density of A to be the quantity �̄(A) = lim supN→∞ �A(N). We will say
that A contains a three-term arithmetic progression if there are a ∈ A and d �= 0
such that a, a+ d, a+ 2d ∈ A. Let N ∈ N. Then r3(N) denotes the Erdös–Turán
constant, which is the density of the largest set A ⊆ {1, 2, . . . , N} containing no
nontrivial three-term arithmetic progression.

Before we formulate our results we begin with a sketch of the historical back-
ground for motivation. On the one hand, in 1953 Roth [26] proved that any subset
of N having positive upper density contains infinitely many nontrivial three-term
arithmetic progressions. In fact, thanks to this remarkable result we know much
more. Namely, that r3(N) = O((log logN)−1). After that there was no devel-
opment until Heath-Brown [12] and Szemerédi [29]. They showed that r3(N) =
O((logN)−c) for some small c > 0. The next advance was made by Bourgain,
who proposed a new approach based on analysis of Bohr sets, instead of passing to
short subprogressions, and obtained r3(N) = O((log logN)1/2(logN)−1/2) in [3],
and almost a decade later, in [4], showed that r3(N) = O((log logN)2(logN)−2/3).
Not long afterwards, Sanders [27] refined Bourgain’s arguments in [4] and proved
that r3(N) = O((logN)−3/4+o(1)). The best currently known result in this field is
also due to Sanders [28] and gives r3(N) = O((log logN)5(logN)−1).
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On the other hand, the same kind of question (about the existence of non-
trivial three-term arithmetic progressions) can be asked for subsets of integers
with vanishing upper density. The set of the prime numbers P turned out to
be a natural candidate to study, especially in view of the Van der Corput the-
orem [32], which establishes that the set P contains infinitely many arithmetic
progressions of length three. Recently there was found a common generaliza-
tion of the theorems of Roth and Van der Corput to the set of primes. Namely,
Green [7] showed that every A ⊆ P with positive relative upper density, i.e.,
lim supN→∞ |A ∩ [1, N ]|/|P ∩ [1, N ]| > 0, contains a nontrivial three-term arith-
metic progression. At almost the same time Green and Tao [8] proved the coun-
terpart of Szemerédi’s theorem [30] for the set of primes. More precisely, they
established the existence of arbitrarily long arithmetic progressions in subsets of
the primes having positive relative upper density. It is worth pointing out that
Green’s theorem [7] provides some quantitative result. Namely, it shows that if
|A ∩ [1, N ]| ≥ CN(log log log log logN)1/2(logN)−1(log log log logN)−1/2 for some
N ≥ N0, (N0 ∈ N and C > 0 are absolute constants) then A ∩ [1, N ] contains a
nontrivial arithmetic progression of length three. The lower bound has been sub-
sequently relaxed to N log log logN(logN)−1(log logN)−1/3 by Helfgott and De
Roton [13], and recently to N(logN)−1(log logN)−1+o(1) by Naslund [22].

Finally, it should be emphasized that there are also interesting random con-
structions of sparse subsets of integers which contain nontrivial three-term arith-
metic progressions, see [15], [10] and the references given there, or the recent
paper [5] of Conlon and Gowers, which introduces new very powerful methods.

In spite of the fact that our knowledge of arithmetic structure of the set of
prime numbers is satisfactory, not much has been developed for the set of Piatetski-
Shapiro primes Pγ of fixed type γ < 1 (γ sufficiently close to 1), i.e.,

Pγ =
{
p ∈ P : ∃n∈N p = 	n1/γ
}.

In 1953 Piatetski-Shapiro [24] (see also [6]) established the asymptotic formula∣∣Pγ ∩ [1, x]
∣∣ ∼ xγ

log x
as x→ ∞,

for every γ ∈ (11/12, 1), which obviously implies that Pγ has a vanishing relative
upper density in P. It is worth emphasizing that the range γ ∈ (11/12, 1) in
the asymptotic formula of Piatetski-Shapiro [24] was improved by Kolesnik [16],
Graham (unpublished), Leitmann (unpublished), Heath-Brown [11], Kolesnik [17],
and Liu–Rivat [20]. Recently, Rivat and Sargos [25] improved the range for γ to
(2426/2817, 1). This is the best known result to date.

However, more to the point, it can be observed that neither the theorem of
Green [7] nor the theorem of Green and Tao [8] settles whether Pγ contains non-
trivial arithmetic progressions of length at least three, since Pγ has zero density
inside P.

Motivated by this observation and the recent achievements in the field of ad-
ditive combinatorics, we prove in this paper a counterpart of Roth’s theorem for
the Piatetski-Shapiro primes.
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Theorem 1.1. Assume that γ ∈ (71/72, 1). Then every A ⊆ Pγ with positive
relative upper density, i.e., lim supN→∞ |A ∩ [1, N ]|/|Pγ ∩ [1, N ]| > 0, contains a
nontrivial three-term arithmetic progression.

However, the proof of Theorem 1.1 will follow from the much more general
Theorem 1.7, which treats subsets of the prime numbers of the form

Ph =
{
p ∈ P : ∃n∈N p = 	h(n)
},

where h is an appropriate function. Before we formulate Theorem 1.7 we need
to define the functions h that we will consider. We encourage the reader, when
reading the paper, to keep in mind the set of Piatetski-Shapiro primes as the
principal example that will facilitate understanding generalizations.

Throughout the whole paper, unless otherwise stated, we will use the conven-
tion that C > 0 stands for a large positive constant whose value may vary from
occurrence to occurrence. For two quantities A > 0 and B > 0 we say that A � B
(A � B) if there exists an absolute constant C > 0 such that A ≤ CB (A ≥ CB).
We will write A �δ B (A �δ B) to indicate that the constant C > 0 depends on
some δ > 0. If A � B and A � B hold simultaneously then we will write A � B.

Definition 1.2. Let c ∈ [1, 2) and let Fc be the family of functions h : [x0,∞) �→
[1,∞) (for some x0 ≥ 1) satisfying:

(i) h ∈ C3([x0,∞)) and

h′(x) > 0, h′′(x) > 0, for every x ≥ x0.

(ii) There exists a real valued function ϑ ∈ C2([x0,∞)) and a constant Ch > 0
such that

h(x) = Chx
c�h(x), where �h(x) = e

∫ x
x0

ϑ(t)/t dt
, for every x ≥ x0,(1.3)

and if c > 1, then

lim
x→∞ϑ(x) = 0, lim

x→∞xϑ′(x) = 0, lim
x→∞x2ϑ′′(x) = 0.(1.4)

(iii) If c = 1, then ϑ(x) is positive and decreasing and for every ε > 0,

1

ϑ(x)
�ε x

ε, and lim
x→∞

x

h(x)
= 0.(1.5)

Furthermore,

lim
x→∞ϑ(x) = 0, lim

x→∞
xϑ′(x)
ϑ(x)

= 0, lim
x→∞

x2ϑ′′(x)
ϑ(x)

= 0.(1.6)

Henceforth, having defined the family Fc, we will focus our attention on subsets
of the prime numbers P which have the form{

p ∈ P : ∃n∈N p = 	h(n)
},
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where h ∈ Fc. Let ϕ : [h(x0),∞) �→ [1,∞) be the function inverse to h and let
πh(x) denote the cardinality of the set Ph,x = Ph ∩ [1, x]. The family Fc was
introduced by Leitmann in [19], where he showed that

πh(x) ∼ ϕ(x)

log x
as x→ ∞,

for every h ∈ Fc with c ∈ [1, 12/11). However, it is worth mentioning that Leit-
mann’s original definition of his family was more complicated. At the expense of
additional effort, we have eliminated these complications keeping the same class of
functions and having more convenient formulations.

Among the functions belonging to the family Fc are (up to multiplicative con-
stant Ch > 0)

h1(x) = xc logA x, h2(x) = xceA logB x, h3(x) = x logC x,

h4(x) = xeC logB x, h5(x) = xlm(x),

where c ∈ (1, 2), A ∈ R, B ∈ (0, 1), C > 0, l1(x) = log x and lm+1(x) = log(lm(x)),
for m ∈ N.

Our main result is the following.

Theorem 1.7. Assume that c ∈ [1, 72/71) and h ∈ Fc. Then every A ⊆ Ph

with positive relative upper density, i.e., lim supN→∞ |A ∩ [1, N ]|/|Ph ∩ [1, N ]| > 0,
contains a nontrivial three-term arithmetic progression.

Taking h(x) = x1/γ and γ ∈ (71/72, 1) in the above theorem we immediately
obtain Theorem 1.1. The proof of Theorem 1.7 is based to a large extent on the
ideas of Green pioneered in [7], see also [9]. The main ingredient will be a variant
so-called Hardy–Littlewood majorant property for the set Ph. Namely:

Theorem 1.8. Assume that c ∈ [1, 16/15), γ = 1/c, and h ∈ Fc. Suppose that
(an)n∈N is a sequence of complex numbers such that |an| ≤ 1 for any n ∈ N. Then,
for any r > (26− 24γ)/(16γ − 15), we have∥∥∥ ∑

p∈Ph,N

ape
2πipξ

∥∥∥
Lr(T,dξ)

�r,γ

∥∥∥ ∑
p∈Ph,N

e2πipξ
∥∥∥
Lr(T,dξ)

,(1.9)

where the implied constant depends on r and on γ, but does not depend on N ∈ N.

In fact, in order to get Theorem 1.8, we prove, as in [7], a somewhat stronger
result (see Theorem 4.3), which we call a restriction theorem for the set Ph. The
strategy of our proof is simple. We shall reduce the estimate over p ∈ Ph,N in
Theorem 1.8 to the estimate over p ∈ PN = P ∩ [1, N ] and use the result of
Green [7]. Our task then will be reduced to studying the error term. For this
purpose we have to prove the following.
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Lemma 1.10. Assume that c ∈ [1, 16/15). Let h ∈ Fc, let ϕ be its inverse and let
γ = 1/c. Let q ∈ N and let 0 ≤ a ≤ q − 1 be such that (a, q) = 1. If χ > 0 satisfies
16(1 − γ) + 28χ < 1, then there exists χ′ > 0 such that for every N ∈ N and for
every ξ ∈ [0, 1],

∑
p∈Ph,N

p≡a(modq)

ϕ′(p)−1 log p e2πiξp =
∑

p∈PN
p≡a(modq)

log p e2πiξp +O
(
N1−χ−χ′)

.(1.11)

The implied constant is independent of ξ and N ∈ N.

Loosely speaking, the second sum in (1.11) represents the term that will be
treated using the result of Green [7]. The error term provides a decay that de-
termines the range r > (26 − 24γ)/(16γ − 15) in Theorem 1.8. In the proof of
Lemma 1.10 we will not use the circle method of Hardy and Littlewood, which was
one of the main tools in Green’s work. This is caused by the completely different
nature of our problem. Our problem requires Van der Corput methods/inqualities
to estimate trigonometric polynomials, instead of the Weyl–Vinogradov inequality.
This is forced by the nonpolynomial character of functions belonging to the fam-
ily Fc. A variant of formula (1.11) was proved by Balog and Friedlander [1] and by
Kumchev [18] in the context of Piatetski-Shapiro primes. They used this result to
show that the ternary Goldbach problem has a solution in the Piatetski-Shapiro
primes (with different parameters γ) instead of primes. Their theorem has been
recently extended by the author [21] to functions belonging to Fc. On the other
hand using some variant of (1.11) we were able to establish in [21] Lr-pointwise er-
godic theorems along the set Ph for any r > 1. The proof of Lemma 1.10 will be a
consequence of combining methods developed by Heath-Brown [11] with techniques
from the standard proof of the Vinogradov inequality from the ternary Goldbach
problem; see [6] or [23]. However, our approach differs from the one presented by
Balog and Friedlander, or Kumchev due to the complexity of functions h ∈ Fc. We
obtain a qualitative improvement of their result at the expense of losing the quan-
titative aspects of their lemma. We encourage the reader to compare Lemma 1.10
with the results from [1] and [18].

The paper is organized as follows. In Section 2 we give the necessary properties
of a function h ∈ Fc and its inverse ϕ. In Section 3 we gathered all the tools
which will be used in the other sections. Assuming Lemma 1.10 we give proofs
of Theorem 1.8 and Theorem 1.7 in Section 4 and Section 5 respectively. In the
penultimate section we estimate some exponential sums which allows us to give
the proof of Lemma 1.10, which has been postponed to Section 7.

Acknowledgements. I would like to thank Christoph Thiele for drawing my at-
tention to Ben Green’s article [7], which turned out to be invaluable for this paper.
The author is grateful to the referee for careful reading the manuscript and useful
remarks that led to the improvement of the presentation.
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2. Basic properties of the functions h and ϕ

In this section we formulate all necessary properties of the function h ∈ Fc and its
inverse ϕ. We begin with the following.

Lemma 2.1. Assume that c ∈ [1, 2) and h ∈ Fc. Then for every i = 1, 2, 3 there
exists a function ϑi : [x0,∞) �→ R such that

xh(i)(x) = h(i−1)(x)(αi + ϑi(x)), for every x ≥ x0,(2.2)

where αi = c− i+ 1, ϑ1(x) = ϑ(x),

ϑi(x) = ϑi−1(x) +
xϑ′i−1(x)

αi−1 + ϑi−1(x)
, for i = 2, 3 and(2.3)

lim
x→∞ϑi(x) = 0, for i = 1, 2, 3.

If c = 1, then there exist constants 0 < c1 ≤ c2 and a function � : [x0,∞) �→ [c1, c2]
such that

ϑ2(x) = ϑ(x)� (x), for every x ≥ x0 and lim
x→∞

xϑ′2(x)
ϑ2(x)

= 0.(2.4)

In particular (2.2) with i = 2 reduces to

xh′′(x) = h′(x)ϑ(x)� (x), for every x ≥ x0.(2.5)

The cases for i = 1, 3 remain unchanged.

Proof. We may assume, without loss of generality, that the constant Ch = 1. Since
h(x) = xc�h(x) and x�

′
h(x) = �h(x)ϑ(x), then

h′(x) = xc−1�h(x)(c+ ϑ(x)),

thus taking ϑ1(x) = ϑ(x) we obtain (2.2) for i = 1. Generally, we see that if (2.2)
holds for i− 1 ≥ 1 instead of i, then this guarantees that

h(i−2)(x)

x
=

h(i−1)(x)

αi−1 + ϑi−1(x)

holds for all x ≥ x0, and we have

h(i)(x) =
(h(i−1)(x)

x
− h(i−2)(x)

x2

)
(αi−1 + ϑi−1(x)) +

h(i−2)(x)

x
ϑ′i−1(x)

=
h(i−1)(x)

x

((
1− 1

αi−1 + ϑi−1(x)

)
(αi−1 + ϑi−1(x)) +

xϑ′i−1(x)

αi−1 + ϑi−1(x)

)
=
h(i−1)(x)

x

(
c− i+ 1 + ϑi−1(x) +

xϑ′i−1(x)

αi−1 + ϑi−1(x)

)
.
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Thus we have proved that (2.2) holds with αi = c− i + 1 and ϑi(x) = ϑi−1(x) +
xϑ′

i−1(x)

αi−1+ϑi−1(x)
. We now easily see that

ϑ′i(x) = ϑ′i−1(x) +

(
ϑ′i−1(x) + xϑ′′i−1(x)

)(
αi−1 + ϑi−1(x)

)− xϑ′i−1(x)
2(

αi−1 + ϑi−1(x)
)2 ,

and consequently limx→∞ ϑi(x) = 0 for any i = 1, 2, 3 by (1.4).
In order to get (2.4) and (2.5) we note that

ϑ2(x) = ϑ(x)
(
1 +

xϑ′(x)
ϑ(x)(1 + ϑ(x))

)
.

Taking �(x) = 1 + xϑ′(x)
ϑ(x)(1+ϑ(x)) we immediately see that there exist constants 0 <

c1 ≤ c2 such that c1 ≤ � (x) ≤ c2, by (1.6). The calculations stated above yield

xh′′′(x) = h′′(x)(−1 + ϑ3(x)), where ϑ3(x) = ϑ(x) + xϑ′(x)
1+ϑ(x) +

xϑ′
2(x)

ϑ2(x)
. The only

point remaining concerns the behaviour of ϑ3(x). We only need to prove that
limx→∞ xϑ′2(x)/ϑ2(x) = 0. Namely, by (1.6) we have

lim
x→∞

xϑ′2(x)
ϑ2(x)

= lim
x→∞

xϑ′(x)(1+ϑ(x))
ϑ(x) + (xϑ′(x)+x2ϑ′′(x))(1+ϑ(x))−x2ϑ′(x)2

ϑ(x)(1+ϑ(x))

1 + ϑ(x) + xϑ′(x)
ϑ(x)

= 0.

The proof of the lemma is completed. �

Lemma 2.6. Assume that c ∈ [1, 2), h ∈ Fc, γ = 1/c and let ϕ : [h(x0),∞) �→
[x0,∞) be its inverse. Then there exists a function θ : [h(x0),∞) �→ R such that
xϕ′(x) = ϕ(x)(γ + θ(x)) and

ϕ(x) = xγ�ϕ(x), where �ϕ(x) = e
∫ x
h(x0)

θ(t)/t dt+D
,(2.7)

for every x ≥ h(x0), where D = log(x0/h(x0)
γ) and limx→∞ θ(x) = 0. Moreover,

θ(x) =
1

(c+ ϑ(ϕ(x)))
− γ = − ϑ(ϕ(x))

c(c+ ϑ(ϕ(x)))
.(2.8)

Additionally, for every ε > 0,

lim
x→∞x−εL(x) = 0 and lim

x→∞xεL(x) = ∞,(2.9)

where L(x) = �h(x) or L(x) = �ϕ(x). In particular, for every ε > 0,

xγ−ε �ε ϕ(x) and lim
x→∞

ϕ(x)

x
= 0.(2.10)

Finally, x �→ xϕ(x)−δ is increasing for every δ < c (if c = 1, even δ ≤ 1 is
allowed ), and for every x ≥ h(x0) we have

ϕ(x) � ϕ(2x) and ϕ′(x) � ϕ′(2x).(2.11)
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Proof. Lemma 2.1 yields limx→∞ xh′(x)/h(x) = c, so taking θ(x) = xϕ′(x)/ϕ(x)
−γ we see that limx→∞ θ(x) = 0 and xϕ′(x) = ϕ(x)(γ + θ(x)). Now observe that

ϕ′(x)
ϕ(x)

=
γ

x
+
θ(x)

x
.

Thus (2.7) with D = log(x0/h(x0)
γ) follows from

logϕ(x) =

∫ x

h(x0)

ϕ′(t)
ϕ(t)

dt+ log x0 = log xγ +

∫ x

h(x0)

θ(t)

t
dt+ log x0 − log h(x0)

γ .

In view of ϕ(x)h′(ϕ(x)) = h(ϕ(x))(c+ϑ(ϕ(x))) = x(c+ϑ(ϕ(x))) we easily get (2.8)
since

θ(x) =
xϕ′(x)
ϕ(x)

− γ =
x

ϕ(x)h′(ϕ(x))
− γ =

1

(c+ ϑ(ϕ(x)))
− γ = − ϑ(ϕ(x))

c(c+ ϑ(ϕ(x)))
.

To prove (2.9) we may assume, without loss of generality, that |ϑ(x)| ≤ ε/2 for
every x ≥ x0, and observe

x−ε e
∫ x
x0

ϑ(t)/t dt+C ≤ x−ε e
ε/2

∫ x
x0

dt/t+C
= x−ε xε/2 eC

x→∞−−−−→ 0.

On the other hand,

xε e
∫

x
x0

ϑ(t)/t dt+C ≥ xε e
−ε/2

∫
x
x0

dt/t+C
= xε x−ε/2 eC

x→∞−−−−→ ∞.

The rest of the proof (the case of �ϕ) runs as before. The first inequality in (2.10)
can be drawn from (2.9), whereas the limit in (2.10) is equal to 0 by (1.5), since
limx→∞ ϕ(x)/x = limx→∞ ϕ(x)/h(ϕ(x)) = 0. Now we show that x �→ xϕ(x)−δ is
increasing for every δ < c. Indeed,( x

ϕ(x)δ

)′
=
ϕ(x)δ − δxϕ(x)δ−1ϕ′(x)

ϕ(x)2δ
=

1− δγ − δθ(x)

ϕ(x)δ
> 0 ⇐⇒ δ < c.

If c = 1 then δ ≤ 1 is allowed, since θ(x) < 0 by (2.8). The proof will be finished
if we show (2.11). It suffices to show (2.11) only for large x ≥ h(x0), therefore we
may assume that |θ(x)| ≤ γ/4 and |θ(2x)| ≤ γ/4 and observe

ϕ(x) ≤ ϕ(2x) =
2xϕ′(2x)

γ + θ(2x)− θ(x)/2 + θ(x)/2
≤ 2xϕ′(x)
γ/2 + θ(x)/2

� ϕ(x).

The proof of Lemma 2.6 is completed. �

The next lemma provides a very useful formula expressing the characteristic
function of the set Ph in a more handy form.

Lemma 2.12. Assume that h ∈ Fc and let ϕ : [h(x0),∞) �→ [x0,∞) be its inverse.
Then

p ∈ Ph ⇐⇒ 	−ϕ(p)
 − 	−ϕ(p+ 1)
 = 1,(2.13)

for all sufficiently large p ∈ Ph.



Roth’s theorem in the Piatetski-Shapiro primes 625

Proof. First of all notice that h′(x) ≥ 1 for every large enough x ≥ x0, thus
h(x+ 1)− h(x) ≥ 1. It suffices to show that

∃n∈N p = 	h(n)
 ⇐⇒ 	−ϕ(p)
 − 	−ϕ(p+ 1)
 = 1.

Assume that p = 	h(n)
, this is equivalent to p ≤ h(n) < p + 1 ⇐⇒ ϕ(p) ≤ n <
ϕ(p + 1), and implies that ϕ(p + 1) ≤ ϕ(h(n) + 1) ≤ ϕ(h(n + 1)) = n + 1, hence
−n − 1 ≤ −ϕ(p + 1) < −n ≤ −ϕ(p), and we get 	−ϕ(p + 1)
 = −n − 1 and
−n ≤ 	−ϕ(p)
. Thus we see

1 = n+ 1− n ≤ 	−ϕ(p)
 − 	−ϕ(p+ 1)


< ϕ(p+ 1)− ϕ(p) + 1 =

∫ p+1

p

ϕ′(x) dx + 1 < 2,

for all sufficiently large p ∈ Ph, since ϕ′(x) = 1/h′(ϕ(x)) and 	−ϕ(p + 1)
 >
−ϕ(p+ 1)− 1.

Now assume that 	−ϕ(p)
−	−ϕ(p+1)
 = 1, hence 	−ϕ(p)
 = 1+	−ϕ(p+1)
 ≤
−ϕ(p), thus

ϕ(p) ≤ −	−ϕ(p+ 1)
 − 1 < ϕ(p+ 1) + 1− 1 = ϕ(p+ 1).

Therefore, taking n = −	−ϕ(p+ 1)
 − 1 we obtain

ϕ(p) ≤ n < ϕ(p+ 1) ⇐⇒ p ≤ h(n) < p+ 1,

as desired. The proof of Lemma 2.12 is completed. �

We look now more closely at the function ϕ, the inverse function to the function
h ∈ Fc, and collect all required properties of its derivatives in the following:

Lemma 2.14. Assume that c ∈ [1, 2), γ = 1/c, h ∈ Fc, and let ϕ : [h(x0),∞) �→
[x0,∞) be its inverse. Then there exist functions θi : [h(x0),∞) �→ R, for i = 1, 2, 3,
such that

xϕ(i)(x) = ϕ(i−1)(x)(βi + θi(x)), for every x ≥ h(x0),(2.15)

where βi = γ − i + 1 and limx→∞ θi(x) = 0. If c = 1, then there exist a po-
sitive function σ : [h(x0),∞) �→ (0,∞) and a function τ : [h(x0),∞) �→ R such
that (2.15) with i = 2 reduces to

xϕ′′(x) = ϕ′(x)σ(x) τ(x), for every x ≥ h(x0) and lim
x→∞

x θ′2(x)
θ2(x)

= 0.(2.16)

The cases for i = 1, 3 remain unchanged. Moreover, σ(x) is decreasing, σ(x)−1 �ε

xε for every ε > 0, limx→∞ σ(x) = 0 and σ(2x) � σ(x). Finally, there are
constants 0 < c3 ≤ c4 such that c3 ≤ −τ(x) ≤ c4 for every x ≥ h(x0).
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Proof. The proof is based on simple computations. However, for the reader’s
convenience, we give the details. In fact, (2.15) for i = 1 with θ1(x) = θ(x), has
been shown in Lemma 2.6. Arguing as in the proof of Lemma 2.1 we obtain (2.15)
for i = 2, 3. More precisely,

θ1(x) = θ(x) = − ϑ(ϕ(x))

c(c+ ϑ(ϕ(x)))
=

1

c+ ϑ(ϕ(x))
− γ,(2.17)

θ2(x) = θ(x) +
x θ′(x)
γ + θ(x)

=
1

c+ ϑ(ϕ(x))
− γ − ϑ′(ϕ(x))ϕ(x)

(c+ ϑ(ϕ(x)))2
,(2.18)

since

θ′(x) =
( 1

c+ ϑ(ϕ(x))
− γ

)′
= − ϑ′(ϕ(x))ϕ′(x)

(c+ ϑ(ϕ(x)))2
,

and

θ3(x) = θ(x) +
x θ′(x)
γ + θ(x)

+
x θ′2(x)

γ − 1 + θ2(x)
,(2.19)

where

(2.20) θ′2(x) = − (ϑ′′(ϕ(x))ϕ(x)+2ϑ′(ϕ(x)))(c + ϑ(ϕ(x)))−2ϑ′(ϕ(x))2ϕ(x)
(c+ ϑ(ϕ(x)))3

ϕ′(x),

since

θ′2(x) =
( 1

c+ ϑ(ϕ(x))
− γ − ϑ′(ϕ(x))ϕ(x)

(c+ ϑ(ϕ(x)))2

)′
= − ϑ′(ϕ(x))ϕ′(x)

(c+ ϑ(ϕ(x)))2

− (ϑ′′(ϕ(x))ϕ′(x)ϕ(x) + ϑ′(ϕ(x))ϕ′(x))(c + ϑ(ϕ(x))) − 2ϑ′(ϕ(x))2ϕ(x)ϕ′(x)
(c+ ϑ(ϕ(x)))3

.

The proof will be completed if we elaborate the case c = 1. We know that xϕ′′(x) =
ϕ′(x)θ2(x), with

θ2(x) = − ϑ(ϕ(x))

1 + ϑ(ϕ(x))
− ϑ′(ϕ(x))ϕ(x)

(1 + ϑ(ϕ(x)))2

= ϑ(ϕ(x))
(
− 1

1 + ϑ(ϕ(x))
− ϑ′(ϕ(x))ϕ(x)
ϑ(ϕ(x))(1 + ϑ(ϕ(x)))2

)
.

Therefore (2.16) is proved with σ(x) = ϑ(ϕ(x)) and

τ(x) = −
( 1

1 + ϑ(ϕ(x))
+

ϑ′(ϕ(x))ϕ(x)
ϑ(ϕ(x))(1 + ϑ(ϕ(x)))2

)
.

In order to show that σ(2x) � σ(x) it is enough to prove that ϑ(2x) � ϑ(x). Notice
that for some ξx ∈ (0, 1) we have∣∣∣ϑ(2x)

ϑ(x)
− 1

∣∣∣ = ∣∣∣(x + ξxx)ϑ
′(x+ ξxx)

ϑ(x + ξxx)

∣∣∣ x

x+ ξxx

ϑ(x+ ξxx)

ϑ(x)

≤
∣∣∣(x + ξxx)ϑ

′(x+ ξxx)

ϑ(x + ξxx)

∣∣∣ x→∞−−−−→ 0,
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since ϑ(x) is decreasing. It is easy to see that

σ(x)−1 � xε, for every ε > 0,

since ϑ(x)−1 �ε xε for every ε > 0 and by (2.10). Furthermore, there exist
0 < c3 ≤ c4 such that c3 ≤ −τ(x) ≤ c4 for every x ≥ h(x0), by (1.6). There
remains to verify that limx→∞ xθ′2(x)/θ2(x) = 0. Indeed, by (1.6) we have

lim
x→∞

x θ′2(x)
θ2(x)

= lim
x→∞

(ϑ′′(ϕ(x))ϕ(x)2+2ϑ′(ϕ(x))ϕ(x))(1+ϑ(ϕ(x)))−2ϑ′(ϕ(x))2ϕ(x)2

ϑ(ϕ(x))(1+ϑ(ϕ(x)))4

1
1+ϑ(ϕ(x)) +

ϑ′(ϕ(x))ϕ(x)
ϑ(ϕ(x))(1+ϑ(ϕ(x)))2

= 0.

This completes the proof. �

3. Necessary tools

Here we state all lemmas and facts from analytic number theory which will be used
in the sequel. All of these results can be found in [6], [14] and [23].

3.1. Van der Corput’s results

Lemma 3.1 (Van der Corput). Assume that a, b ∈ R and a < b. Let F ∈ C2([a, b])
be a real valued function and let I be a subinterval of [a, b]. If there exists η > 0
and r ≥ 1 such that

η � |F ′′(x)| � rη, for every x ∈ I,

then ∣∣∣∑
k∈I

e2πiF (k)
∣∣∣ � r|I|η1/2 + η−1/2.

Proof of Lemma 3.1 can be found in [14], see Corollary 8.13, page 208.

Lemma 3.2 (Weyl and Van der Corput inequality). Let H ≥ 1 be fixed and zh ∈ C

be any complex number with H < h ≤ 2H and I ⊆ (H, 2H ] be an interval. Then
for every R ∈ N we have∣∣∣∑

h∈I

zh

∣∣∣2 ≤ H +R

R

∑
|r|≤R

(
1− |r|

R

) ∑
h,h+r∈I

zhzh+r.

The proof of Lemma 3.2 can be found in [11], Lemma 5, page 258.

3.2. Fourier expansions

Define Φ(x) = {x} − 1/2 and expand Φ as a Fourier series (see Section 2 in [11])
to obtain

Φ(t) =
∑

0<|m|≤M

1

2πim
e−2πimt +O

(
min

{
1,

1

M‖t‖
})
,(3.3)
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for M > 0, where ‖t‖ = minn∈Z |t − n| is the distance of t ∈ R to the nearest
integer. The parameter M will give us some margin of flexibility in our further
calculations and will allow us to produce the estimates with the adequate decay.
Moreover,

min
{
1,

1

M‖t‖
}
=

∑
m∈Z

bme
2πimt,(3.4)

where

|bm| � min
{ logM

M
,

1

|m| ,
M

|m|2
}
.(3.5)

3.3. Basic facts from analytic number theory

Throughout the paper, we will use the following version of summation by parts
(see [23], Theorem A.4, page 304).

Lemma 3.6. Assume that a and b are real numbers such that 0 ≤ a < b. Let u(n)
and g(n) be arithmetic functions and U(t) =

∑
a<n≤t u(n) be the sum function of

u(n). If g ∈ C1([a, b]), then

∑
a<n≤b

u(n) g(n) = U(b) g(b)−
∫ b

a

U(t) g′(t) dt.

Let μ(n) be the Möbius function,

μ(n) =

⎧⎪⎨⎪⎩
1, if n = 1,

(−1)k, if n is the product of k distinct primes,

0, if n is divisible by the square of a prime.

Therefore, μ(n) �= 0 if and only if n is square-free. Let Λ(n) be the von Mangoldt’s
function, defined by

Λ(n) =

{
log p, if n = pm for some m ∈ N and p ∈ P,

0, otherwise.

For the estimates of exponential sums we will use:

Lemma 3.7 (Vaughan’s identity). Let v and w be positive real numbers. If v > n,
then

Λ(n) =
∑

k1k2=n
k2≤w

log k1 μ(k2)−
∑

k1k2k3=n
k2≤v,k3≤w

Λ(k2)μ(k3) +
∑

k1k2=n
k1>v,k2>w

Λ(k1)
( ∑

d|k2
d>w

μ(d)
)

=
∑
kl=n
l≤w

log k μ(l)−
∑
l≤vw

∑
kl=n

Πv,w(l) +
∑
kl=n

k>v,l>w

Λ(k) Ξw(l),(3.8)
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where

Πv,w(l) =
∑
rs=l

r≤v,s≤w

Λ(r)μ(s), and Ξw(l) =
∑
d|l

d>w

μ(d).(3.9)

If v = w (this will be our case) we will shortly write Πv(l) instead of Πv,v(l).
Vaughan’s identity will be crucial for us. The proof of Lemma 3.7 can be found
in [14], see Proposition 13.4, page 345, or in [6], Lemma 4.12, page 49.

Theorem 3.10 (Siegel–Walfisz). If B > 0, 1 ≤ q ≤ logB N and (a, q) = 1, then

ψ(N ; q, a) =
∑

p∈PN
p≡a(modq)

log p =
N

φ(q)
+O

( N

logB N

)
,(3.11)

for all N ≥ 2, where φ denotes the Euler function and the implied constant depends
only on B.

For the proof of Siegel–Walfisz theoremwe refer to [14], Corollary 5.29, page 124.
Now using Theorem 3.10 and formula (1.11) we derive the following.

Theorem 3.12. Assume that c ∈ [1, 12/11), γ = 1/c, h ∈ Fc and ϕ be its inverse.
If B > 0, 1 ≤ q ≤ logB N and (a, q) = 1, then

ψh(N ; q, a) =
∑

p∈Ph,N
p≡a(modq)

log p =
ϕ(N)

φ(q)
+O

( ϕ(N)

logB N

)
,(3.13)

πh(N ; q, a) =
∑

p∈Ph,N
p≡a(modq)

1 =
1

φ(q)

ϕ(N)

logN
+O

( ϕ(N)

log2N

)
,(3.14)

for all N ≥ 2, where the implied constant depends only on h and B.

Theorem 3.12 was proved by Leitmann in [19]. For c ∈ [1, 16/15) the proof can
be easily derived with the aid of formula (1.11) with ξ = 0, summation by parts
and (3.11).

4. A restriction theorem for the set Ph, and the proof of
Theorem 1.8

This section is intended to prove Theorem 4.3, which we will call a restriction
theorem for the set Ph. The case of the prime numbers P, see Theorem 4.1 below,
was proved by Bourgain in [2] and recently it has been rediscovered by Green [7]
in the context of arithmetic progressions. Throughout this section we will assume
that c ∈ [1, 16/15), γ = 1/c, h ∈ Fc and ϕ is the inverse function to h. Moreover, r′

will denote the conjugate exponent to r > 1, i.e., 1/r + 1/r′ = 1. We begin by
recalling the results of Green from [7] and by introducing necessary notation. Let
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b ∈ N∪{0}, m,N ∈ N such that 1 ≤ m ≤ logN and 0 ≤ b ≤ m−1 with (b,m) = 1.
Define a set

Λb,m,N =
{
0 ≤ n ≤ N : mn+ b ∈ P

}
.

It is easy to see that Λb,m,N has size about mN/(φ(m) log(mN)) by the Siegel–
Walfisz theorem. Let us define a measure λb,m,N on Λb,m,N by setting

λb,m,N (n) =

⎧⎨⎩
φ(m) log(mn+ b)

mN
, if n ∈ Λb,m,N ,

0, otherwise.

Let FZ[f ](ξ) =
∑

n∈Z
f(n) e2πiξn denote the Fourier transform on Z and let f̂(n) =∫

T
f(ξ) e−2πiξndξ denote the Fourier transform on T. For any measure space X

let C(X) denote the space of all continuous functions on X and define a linear
operator T : C(Λb,m,N) → C(T) as follows:

T (f)(ξ) = FZ

[
f λb,m,N

]
(ξ).

Theorem 4.1 (Bourgain–Green). Suppose r > 2 is a real number. Then there is
a finite constant Cr > 0 such that for all functions f ∈ L2(Λb,m,N , λb,m,N ) we have

(4.2) ‖Tf‖Lr(T) ≤ Cr N
−1/r ‖f‖L2(Λb,m,N ,λb,m,N ).

Before we formulate a counterpart of Bourgain–Green’s theorem for Ph, let us
introduce the set

Λh
b,m,N =

{
0 ≤ n ≤ N : mn+ b ∈ Ph

}
.

According to Theorem 3.12, the set Λh
b,m,N has size comparable to

ϕ(mN)/(φ(m) log(mN)).

Therefore, as above, it is natural to define a measure λhb,m,N on Λh
b,m,N by setting

λhb,m,N (n) =

⎧⎨⎩
φ(m) log(mn+ b)

mNϕ′(mn+ b)
, if n ∈ Λh

b,m,N ,

0, otherwise.

Our task now is to prove a restriction theorem for the set Ph.

Theorem 4.3. Assume that c ∈ [1, 16/15), γ = 1/c, h ∈ Fc and ϕ be its inverse.
Suppose that r > (26 − 24γ)/(16γ − 15) is a real number. Then there is a finite
constant Cr,γ > 0 such that for all functions f ∈ L2(Λh

b,m,N , λ
h
b,m,N) we have

‖Thf‖Lr(T) ≤ Cr,γN
−1/r‖f‖L2(Λh

b,m,N
,λh

b,m,N
),(4.4)

where Th : C(Λh
b,m,N) → C(T) is a linear operator given by

Th(f)(ξ) = FZ

[
fλhb,m,N

]
(ξ).
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Proof. In the proof we will exploit Green’s ideas from [7] reducing the matters to
Theorem 4.1. As in [7] the main tool will be TT ∗ argument and an appropriate
interpolation giving some restriction on the range of r > (26 − 24γ)/(16γ − 15).
Let us briefly recall the role of TT ∗ method. First, notice that the relation

〈Thf, g〉L2(T) =

∫
T

FZ

[
fλhb,m,N

]
(ξ) g(ξ) dξ

=
∑
n∈Z

f(n) ĝ(n) λhb,m,N(n) =
〈
f, T ∗

hg
〉
L2(Λh

b,m,N ,λh
b,m,N )

,

shows that the operator T ∗
h : C(T)∗ → C(Λh

b,m,N)∗ = C(Λh
b,m,N) is given by

T ∗
h (g)(n) = ĝ(n)|Λh

b,m,N
= ĝ(n) · 1Λh

b,m,N
(n).

Therefore, we have that the map ThT
∗
h : C(T)∗ → C(T)∗ is given by

ThT
∗
hf(ξ) = f ∗ FZ

[
λhb,m,N

]
(ξ).

In the sequel we will consider the operator ThT
∗
h as a mapping acting on Lr(T)

spaces (it makes sense, since Lr(T) naturally embeds into C(T)∗ for any r ≥ 1).
Now it is easy to see that

‖Thf‖Lr(T) ≤ ‖ThT ∗
h‖1/2Lr′(T)→Lr(T)

‖f‖L2(Λh
b,m,N ,λh

b,m,N ),

which is the heart of the matter and allows us to prove that ThT
∗
h satisfies the

bound

‖ThT ∗
h‖Lr′(T)→Lr(T) ≤ Cr,γN

−2/r.

The strategy of our proof will be based on the reduction of our estimate to the es-
timate from Bourgain–Green’s restriction theorem. For this we proceed as follows.
For every r > (26− 24γ)/(16γ − 15) ≥ 2, observe that∥∥ThT ∗

hf
∥∥
Lr(T)

=
∥∥ f ∗ FZ

[
λhb,m,N

]∥∥
Lr(T)

≤ ∥∥ f ∗ FZ

[
λb,m,N

]∥∥
Lr(T)

+
∥∥ f ∗ FZ

[
λhb,m,N − λb,m,N

]∥∥
Lr(T)

≤ ‖TT ∗‖Lr′(T)→Lr(T)‖f‖Lr′(T) +
∥∥ f ∗ FZ

[
λhb,m,N − λb,m,N

]∥∥
Lr(T)

.

In view of Bourgain–Green’s theorem, ‖TT ∗‖Lr′(T)→Lr(T) ≤ CrN
−2/r for every

r > 2. Therefore, there only remains to deal with the Lr(T) norm of the error term.
Namely, we will be concerned with illustrating that for any r>(26−24γ)/(16γ−15)
we have ∥∥ f ∗ FZ

[
λhb,m,N − λb,m,N

]∥∥
Lr(T)

≤ Cr,γN
−2/r‖f‖Lr′(T).

In order to achieve this bound it is convenient to find first an L2(T) → L2(T)
estimate, and second, an L1(T) → L∞(T) estimate and interpolate between them.
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Notice that∥∥ f ∗ FZ

[
λhb,m,N − λb,m,N

]∥∥
L2(T)

= ‖f̂(λhb,m,N − λb,m,N )‖2(Z)
≤ ‖λhb,m,N − λb,m,N‖∞(Z)‖f̂‖2(Z) = ‖λhb,m,N − λb,m,N‖∞(Z)‖f‖L2(T)

≤ (‖λhb,m,N‖∞(Z) + ‖λb,m,N‖∞(Z)

)‖f‖L2(T) �
log2N

ϕ(N)
‖f‖L2(T).(4.5)

On the other hand, we see that∣∣FZ

[
λhb,m,N − λb,m,N

]
(ξ)

∣∣
=
φ(m)

mN

∣∣∣∣ ∑
p∈[b,mN+b]∩Ph

p≡b(modm)

ϕ′(p)−1 log p e2πi
ξ
mp −

∑
p∈[b,mN+b]∩P

p≡b(modm)

log p e2πi
ξ
mp

∣∣∣∣.
Therefore, Lemma 1.10 yields∥∥ f ∗ FZ

[
λhb,m,N − λb,m,N

]∥∥
L∞(T)

≤ ∥∥FZ

[
λhb,m,N − λb,m,N

]∥∥
L∞(T)

‖f‖L1(T)(4.6)

� 1

Nχ+ε
‖f‖L1(T),

for any χ > 0 such that 16(1−γ)+28χ < 1 and some ε > 0. Thus the Riesz–Thorin
interpolation theorem guarantees (since 1/r = (1− θ)/2) that∥∥ f ∗ FZ

[
λhb,m,N − λb,m,N

]∥∥
Lr(T)

≤ ‖λhb,m,N − λb,m,N‖2/r∞(Z) ·
∥∥FZ

[
λhb,m,N − λb,m,N

]∥∥1−2/r

L∞(T)
· ‖f‖Lr′(T)

�
( log2N
ϕ(N)

)2/r

·
( 1

Nχ+ε

)1−2/r

‖f‖Lr′(T)

� N−2/r ·
( 1

Nγ−δ−1

)2/r

·
( 1

Nχ+ε

)1−2/r

‖f‖Lr′(T),

for appropriately small δ > 0, since xγ−ε1 �ε1 ϕ(x) and log x �ε2 x
ε2 for suitable

choices of ε1, ε2 > 0. Thus there remains to verify that

2
γ − δ − 1

r
+

(
1− 2

r

)
(χ+ ε) > 0 ⇐⇒ (r − 2)(χ+ ε)

2
> 1− γ + δ.

If γ = 1, we just take 0 < δ < (r− 2)(χ+ ε)/2. If γ ∈ (15/16, 1) then it suffices to
take χ = 2(1− γ)/(r − 2) > 0 and 0 < δ < ε(r − 2)/2, since

16(1− γ) + 28χ < 1 ⇐⇒ 16(1− γ)(r − 2) + 56(1− γ) < r − 2

⇐⇒ 16r(1− γ) + 24(1− γ) < r − 2

⇐⇒ 2 + 24(1− γ)

1− 16(1− γ)
< r ⇐⇒ (26− 24γ)/(16γ − 15) < r,

and the proof of Theorem 4.3 is completed. �
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We end this section by proving Theorem 1.8.

Proof of Theorem 1.8. Let (an)n∈N be a sequence of complex numbers such that
|an| ≤ 1 for any n ∈ N. It suffices to use Theorem 4.3 with m = 1, b = 0 and
f(n) = anϕ

′(n)/logn. Then for any r > (26− 24γ)/(16γ − 15) we have∫
T

∣∣∣ ∑
p∈Ph,N

f(p)ϕ′(p)−1 log p e2πiξp
∣∣∣rdξ �r N

r/2−1
( ∑

p∈Ph,N

f(p)2ϕ′(p)−1 log p
)r/2

.

Thus ∫
T

∣∣∣ ∑
p∈Ph,N

ap e
2πiξp

∣∣∣rdξ �r N
r/2−1

( ∑
p∈Ph,N

ϕ′(p)
log p

)r/2

�r
1

N

(ϕ(N)

logN

)r

,

since summation by parts implies that

∑
p∈Ph,N

ϕ′(p)
log p

� ϕ′(N)ϕ(N)

log2N
+

∫ N

2

ϕ(x)

log x

∣∣x2ϕ′′(x) log x− xϕ′(x)
∣∣

x2 log2 x
dx

� ϕ(N)2

N log2N
+
ϕ(Nε)2

log2N
+

ϕ(N)2

N log2N

∫ N

Nε

dx

x log x
� ϕ(N)2

N log2N
,

for sufficiently small ε > 0. Finally, it is not difficult to see that∫
T

∣∣∣ ∑
p∈Ph,N

e2πiξp
∣∣∣rdξ � ∫

|ξ|≤1/(100N)

∣∣∣ ∑
p∈Ph,N

e2πiξp
∣∣∣rdξ � 1

N

(ϕ(N)

logN

)r

.

This completes the proof. �

5. Proof of Theorem 1.7

In this section our main result will be proved. The scheme of the proof is similar in
spirit to Green’s proof [7]. We encourage the reader to compare this section with
Section 6 form [7]. However, due to some technical differences we will present all
the details. First we prove a transference principle which allows us to throw our
problem to positive integers; after that we will make use of the restriction theorem
for the set Ph (see Theorem 4.3); and finally, thanks to Sanders’s refinements of
Roth theorem [28], we conclude the proof. Throughout this section we assume that
c ∈ [1, 72/71), γ = 1/c, h ∈ Fc and ϕ is the inverse function to h. As in Section 4,
r > (26− 24γ)/(16γ − 15) and r′ denotes the conjugate exponent to r > 1.

5.1. Transference principle

Here we give a general principle which permits us to transfer our problem to
ZN = Z/NZ. Before we do that we need the following.
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Lemma 5.1. Assume that A0 ⊆ Ph and lim supn→∞
logn
ϕ(n) |A0 ∩Ph,n| > 0. Then

lim sup
n→∞

|A0 ∩Ph,n,2n| logn
ϕ(n)

> 0,

where Ph,x,y = Ph ∩ [x, y].

Proof. If lim supn→∞
log n
ϕ(n) |A0 ∩ Ph,n| > 0 then there exists α0 > 0 such that

for infinitely many n ∈ N we have |A0 ∩ Ph,n| > α0 ϕ(n)/logn. Notice that
there is n1 ∈ N such that for every n ≥ n1 we have |Ph,n| ≤ 2ϕ(n)/logn,
by (3.14). Lemma 2.6 yields that ϕ(x) = xγ�ϕ(x), and that, for every t > 0,
limx→∞ �ϕ(tx)/�ϕ(x) = 1. Now fix t > 0 such that α0/16 > tγ and observe that
there exists n2,t ∈ N such that for every n ≥ n2,t we have t ≥ n−1/2 and

ϕ(tn) = tγϕ(n)
�ϕ(tn)

�ϕ(n)
= tγϕ(n)

( �ϕ(tn)
�ϕ(n)

− 1
)
+ tγϕ(n) ≤ 2tγϕ(n).

Thus notice that 2/logn ≥ 1/log tn, which implies that the inequality

|A0 ∩Ph,tn,n| ≥ α0
ϕ(n)

logn
− |Ph,tn| ≥ α0

ϕ(n)

logn
− 2ϕ(tn)

log(tn)

≥ α0
ϕ(n)

logn
− 8tγ

ϕ(n)

logn
≥ α0

2

ϕ(n)

logn
,

holds for infinitely many n ≥ max{n1/t, n2,t}. Now it is easy to see that∑
1≤k≤log(1/t)

∣∣A0 ∩Ph,2k−1tn,2ktn

∣∣ ≥ α0

2

ϕ(n)

logn
,

and hence, by the pigeonhole principle, there is some 1 ≤ k ≤ log(1/t) such that

|A0 ∩Ph,2k−1tn,2ktn| ≥
α0

2 log(1/t)

ϕ(2ktn)

log(2ktn)
.

This shows that one can produce infinitely many n ∈ N such that |A0 ∩Ph,n,2n| >
αϕ(2n)/log(2n) for some α > 0, and the lemma follows. �

Lemma 5.2. Assume that c ∈ [1, 72/71) and let γ = 1/c, h ∈ Fc and ϕ be its
inverse. Assume that A0 ⊆ Ph has a positive relative upper density:

lim sup
n→∞

logn

ϕ(n)
|A0 ∩Ph,n,2n| > α0 > 0,

and does not contain any arithmetic progression of length three. Then there exists a
positive real number α (which may depend on ϕ and γ) and there are infinitely many
primes N ∈ P with the following properties. For every such N ∈ P there exists a
set A = AN ⊆ {1, 2, . . . , 	N/2
} and an integer W ∈ [1/8 log logN, 1/2 log logN ]
such that
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• A does not contain any arithmetic progression of length three,

• λhb,m,N (A) ≥ α for some 0 ≤ b ≤ m−1 with (b,m) = 1, where m =
∏

p∈PW
p.

Proof. Take any n ∈ N such that α0 > 1/logn with |A0∩Ph,n/2,n| > α0ϕ(n)/logn.
Let W = 	1/4 log logn
 and m =

∏
p∈PW

p. Thus we have

m � (1/4 log logn)
1/4 log log n

log(1/4 log log n) ≤ (logn)1/4.

Moreover, choose any N ∈ [2n/m, 4n/m] ∩ P which is possible due to Bertrand’s
postulate. Now we see that W ∈ [1/8 log logN, 1/2 log logN ] and

m−1∑
b=0

(b,m)=1

n∑
k=n/2

1A0∩Pb,m
(k) = |A0 ∩Ph,n/2,n| − |A0 ∩ [1,m− 1]|

≥ α0
ϕ(n)

logn
−m ≥ α0

2

ϕ(n)

logn
,

where Pb,m = {j ∈ N : j ≡ b(modm)}. Moreover, xϕ′(x) � ϕ(x) and ϕ(2x) � ϕ(x)
by Lemma 2.6. Thus, there exists a finite constant Cϕ > 0 such that

m−1∑
b=0

(b,m)=1

n∑
k=n/2

1A0∩Pb,m
(k)ϕ′(k)−1 log k ≥ Cϕ α0 n.

This in turn yields

n∑
k=n/2

k≡b(modm)

1A0∩Pb,m
(k)ϕ′(k)−1 log k ≥ Cϕ α0 n

φ(m)
,(5.3)

for some 0 ≤ b ≤ m − 1, with (b,m) = 1. Let us define A = 1
m

(
A0 ∩ {	n/2
 +

1, . . . , n} − b
)
and observe that A ⊆ {1, 2, . . . , 	N/2
} and does not contain any

three-term arithmetic progression when considered as a subset of ZN = Z/NZ.
Moreover, (5.3) implies

N∑
k=0

mk+b∈Ph

1A(k)
φ(m) log(mk + b)

ϕ′(mk + b)
≥ Cϕα0n,

therefore λhb,m,N (A) ≥ Cϕα0n/(mN) ≥ Cϕα0/4. It suffices to take α = Cϕα0/4
> 0 and the lemma follows. �

5.2. Fourier analysis on ZN and trilinear forms

We have reduced the matters to the set of integers and we are going to show that A,
considered as a subset of ZN = Z/NZ, contains a nontrivial three-term arithmetic
progression. Fourier analysis on ZN will be invaluable here.
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If f : ZN → C is a function, then FZN [f ] denotes its Fourier transform on ZN ,

FZN [f ](ξ) =
∑
x∈ZN

f(x) e−2πiξx/N , for any ξ ∈ ZN .

Since ZN embeds naturally into Z thus it makes sense to consider f : ZN → C as
a function on Z and then FZN [f ](ξ) = FZ(ξ/N). We will denote by F−1

ZN
[f ] the

inverse Fourier transform of f on ZN ,

F−1
ZN

[f ](x) =
∑
ξ∈ZN

f(ξ) e2πiξx/N , for any x ∈ ZN .

It is not difficult to see that for every function f : ZN → C we have the following
identity:

F−1
ZN

[FZN [f ]
]
(x) = N · f(x), for any x ∈ ZN ,

which is called the Fourier inversion formula. The convolution of two functions
f, g : ZN → C is f ∗ g(x) =

∑
y∈ZN

f(x − y)g(y) for x ∈ ZN . Products and
convolutions are related by

FZN [f ∗ g](ξ) = FZN [f ](ξ) · FZN [g](ξ), for any ξ ∈ ZN .

Let us introduce the trilinear form

Λ3(f, g, h) =
∑

x,d∈ZN

f(x)g(x+ d)h(x + 2d),

for any f, g, h : ZN �→ C. Roughly speaking, one can think that the quantity
Λ(1A,1A,1A) measures the portion of arithmetic progressions (x, x + d, x + 2d)
in ZN which are contained in A. It is easy to see that if N is odd (this is always
our case) then we have the identity

Λ3(f, g, h) = N−1
∑
ξ∈ZN

FZN [f ](ξ) FZN [g](−2ξ) FZN [h](ξ).(5.4)

Indeed, by the Fourier inversion formula we have

Λ3(f, g, h)

= N−3
∑

ξ1,ξ2,ξ3∈ZN

FZN [f ](ξ1) FZN [g](ξ2) FZN [h](ξ3) Λ3

(
e

2πiξ1·
N , e

2πiξ2·
N , e

2πiξ3·
N

)
,

and this proves (5.4), since

Λ3

(
e

2πiξ1·
N , e

2πiξ2·
N , e

2πiξ3·
N

)
=

∑
x,d∈ZN

e
2πiξ1x

N e
2πiξ2(x+d)

N e
2πiξ3(x+2d)

N

= N2 1{ξ2=−2ξ1,ξ3=ξ1}(ξ1).
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Lemma 5.5. Let N ∈ P and W ∈ [1/8 log logN, 1/2 log logN ] be the integers as
in Lemma 5.2. Then for sufficiently large N , we have

sup
ξ∈ZN\{0}

∣∣FZN [λ
h
b,m,N ](ξ)

∣∣ ≤ 4 log logW/W.(5.6)

Proof. The proof of (5.6) will be a consequence of Green’s inequality

sup
ξ∈ZN\{0}

∣∣FZN [λb,m,N ](ξ)
∣∣ ≤ 2 log logW/W

(see Lemma 6.2 in [7]), and the identity (1.11),∑
p∈Ph,N

p≡b(modm)

ϕ′(p)−1 log p e2πiξp =
∑

p∈PN
p≡b(modm)

log p e2πiξp +O(N1−χ−χ′
),

with some χ > 0 and χ′ > 0, which holds uniformly for ξ ∈ [0, 1]. Indeed,

sup
ξ∈ZN\{0}

∣∣FZN [λ
h
b,m,N ](ξ)

∣∣
≤ sup

ξ∈ZN\{0}

∣∣FZN [λ
h
b,m,N ](ξ)−FZN [λb,m,N ](ξ)

∣∣+ 2 log logW/W

= sup
ξ∈ZN\{0}

∣∣∣∣ ∑
0≤n≤N

mn+b∈Ph

φ(m) log(mn+ b)

mNϕ′(mn+ b)
e

2πiξn
N −

∑
0≤n≤N
mn+b∈P

φ(m) log(mn+ b)

mN
e

2πiξn
N

∣∣∣∣
+ 2 log logW/W

= sup
ξ∈ZN\{0}

∣∣∣∣ ∑
0≤n≤N

mn+b∈Ph

φ(m) log(mn+ b)

mNϕ′(mn+ b)
e

2πiξ(mn+b)
mN

−
∑

0≤n≤N
mn+b∈P

φ(m) log(mn+ b)

mN
e

2πiξ(mn+b)
mN

∣∣∣∣+ 2 log logW/W

� N−χ + 2 log logW/W ≤ 4 log logW/W,

sinceW ∈ [1/8 log logN, 1/2 log logN ]. This completes the proof of the lemma. �

Let us define a new measure a on ZN by setting

a(D) =
∑
x∈ZN

1A∩D(x)λhb,m,N (x), for any D ⊆ ZN .

Then a(ZN ) ≥ α. However, we need to construct another measure a1 on ZN .
Before we do that we have to introduce some additional definitions. Let

R =
{
ξ ∈ ZN : |FZN [a](ξ)| ≥ δ

}
,

for some δ ∈ (0, 1) which will be specified later. Let ‖x‖ denote the distance of
x ∈ R to the nearest integer. Write R = {ξ1, ξ2, . . . , ξk} with k = |R| and write

B = B(R, ε) =
{
x ∈ ZN : ∀1≤i≤k

∥∥∥xξi
N

∥∥∥ ≤ ε
}
,
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for the Bohr ε–neighbourhood of R with ε ∈ (0, 1) which will be chosen later. By
the pigeonhole principle one can see that |B| ≥ εkN – see Lemma 4.20 in [31]. Set
β(x) = |B|−11B(x) and define a1 = a ∗ β ∗ β. It is easy to see that a1(ZN ) ≥ α.

Lemma 5.7. Suppose that εk ≥ log logW/W . Then there exists a finite constant
Cϕ ≥ 2 such that ‖a1‖∞(ZN ) ≤ Cϕ/N .

Proof. By the Fourier inversion formula F−1
ZN

[FZN [f ]
]
(x) = Nf(x), and Lemma 5.5

we have

a1(x) = a ∗ β ∗ β(x) ≤ λhb,m,N ∗ β ∗ β(x)
= N−1

∑
ξ∈ZN

FZN [λ
h
b,m,N ](ξ) F2

ZN
[β](ξ) e2πiξx/N

≤ N−1FZN [λ
h
b,m,N ](0) F2

ZN
[β](0)

+N−1 sup
ξ∈ZN\{0}

|FZN [λ
h
b,m,N ](ξ)|

∑
ξ∈ZN\{0}

|FZN [β](ξ)|2

� N−1 + |B|−1 sup
ξ∈ZN\{0}

|FZN [λ
h
b,m,N ](ξ)| � N−1 +

log logW

W |B| ≤ Cϕ/N,

since |B| ≥ εkN . �

The next lemma will be essential in the sequel. This is a discrete version of our
restriction theorem and sometimes is called a discrete majorant property.

Lemma 5.8. Suppose that r > (26 − 24γ)/(16γ − 15). Then there exists a finite
constant C′

r,γ > 0 such that ∥∥FZN [a]
∥∥r
r(ZN )

≤ C′
r,γ .

Proof. We shall use Theorem 4.3 from the previous section. Then the operator
Thf = FZ[fλ

h
b,m,N ] obeys the inequality

‖Thf‖Lr(T) ≤ Cr,γN
−1/r‖f‖2(Λh

b,m,N ,λh
b,m,N ),

for any r > (26− 24γ)/(16γ − 15). This shows that

‖FZN [a]‖rr(ZN ) =
∑
ξ∈ZN

|FZN [a](ξ)|r =

N−1∑
ξ=0

|FZ[a](ξ/N)|r �r,γ N

∫
T

|FZ[a](ξ)|rdξ

= N

∫
T

|FZ[1Aλ
h
b,m,N ](ξ)|rdξ �r,γ ‖1A‖r2(Λh

b,m,N ,λh
b,m,N ) ≤ C′

r,γ ,

where the first inequality follows from the Marcinkiewicz–Zygmund theorem (see
Lemma 6.5 in [7]). �
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5.3. Estimates for the trilinear form and completing the proof

If A has no proper arithmetic progressions of length 3, then the only progressions
(x, x + d, x+ 2d) which can lie in A are those for which x ∈ A and d = 0, hence

Λ3(a, a, a) =
∑

x,d∈ZN

a(x) a(x+ d) a(x + 2d) =
∑
x∈ZN

a(x)3(5.9)

≤
∑
x∈ZN

λhb,m,N (x)3 � N log6N

ϕ(N)3
� 1

N3γ−9ε1−1
� 1

N3/2
,

since γ > 71/72 > 5/6 and xγ−ε1 �ε1 ϕ(x) for any ε1 > 0.

Lemma 5.10. For any r > (26−24γ)/(16γ−15), there is a finite constant C1 > 0
such that the following upper bound holds:

Λ3(a1, a1, a1) ≤ C1N
−3/2 + C1N

−1
(
ε2δ−r + δ2−r/r′).(5.11)

Proof. Recall that
∣∣FZN [β](ξ)

4 FZN [β](−2ξ)2 − 1
∣∣ ≤ 212ε2 for every ξ ∈ R (the

proof can be found in [7], Lemma 6.7). By (5.9) and the identity (5.4) we have

Λ3(a1, a1, a1) ≤ Λ3(a1, a1, a1)− Λ3(a, a, a) + CN−3/2

= CN−3/2 +N−1
∑
ξ∈ZN

FZN [a](ξ)
2 FZN [a](−2ξ)

(FZN [β](ξ)
4 FZN [β](−2ξ)2 − 1

)
.

Firstly observe that, if γ > 71/72 then 2 < (26 − 24γ)/(16γ − 15) < 3. Thus for
any r ∈ (

(26− 24γ)/(16γ − 15), 3
)
we have∣∣∣∑

ξ∈R

FZN [a](ξ)
2 FZN [a](−2ξ)

(FZN [β](ξ)
4 FZN [β](−2ξ)2 − 1

)∣∣∣
≤ 212 ε2 |R| ≤ C ε2 δ−r,

by Lemma 5.8 with r ∈ (
(26− 24γ)/(16γ − 15), 3

)
. Indeed,

δr|R| ≤
∑
ξ∈R

|FZN [a](ξ)|r ≤
∑
ξ∈ZN

|FZN [a](ξ)|r ≤ C′
r,γ .

Second, notice that 1 < r′ < 2 and 1 < r/r′ = r − 1 < 2, since 2 < r < 3. Thus
again by Lemma 5.8 with r ∈ (

(26− 24γ)/(16γ − 15), 3
)
, we have∣∣∣∑

ξ 	∈R

FZN [a](ξ)
2 FZN [a](−2ξ)

(
1−FZN [β](ξ)

4 FZN [β](−2ξ)2
)∣∣∣

≤ 2 sup
ξ 	∈R

|FZN [a](ξ)|2−r/r′
( ∑

ξ∈ZN

(|FZN [a](ξ)|r/r
′)r′)1/r′( ∑

ξ∈ZN

|FZN [a](ξ)|r
)1/r

≤ 2 δ2−r/r′
∑
ξ∈ZN

|FZN [a](ξ)|r ≤ C δ2−r/r′ .

This completes the proof of Lemma 5.10. �
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The next lemma provides a lower bound for Λ3(a1, a1, a1). In the proof we will
follow the argument pioneered by Varnavides [33].

Lemma 5.12. There are absolute constants C2, C3 > 0 such that

Λ3(a1, a1, a1) ≥ C2N
−1e−C3α

−1 log5(1/α).(5.13)

Proof. Recall that Sanders’s result on three-term arithmetic progressions in the
integers [28] guarantees that there is a constant B1 > 0 such that if

M ≥ eB1α
−1 log5(1/α),

then any subset of {1, 2, . . . ,M} of density at least α/4Cϕ contains a nontrivial
three-term arithmetic progression. Let A′ = {x ∈ ZN : a1(x) ≥ α/CϕN}, where
Cϕ ≥ 2 is the constant from Lemma 5.7. Thus by Lemma 5.7 we have

α ≤
∑
x∈ZN

a1(x) ≤ Cϕ|A′|
N

+
α

CϕN
(N − |A′|),

which implies that |A′| ≥ αN/2Cϕ. Let Z denote the number of three-term arith-
metic progressions in A′. It is clear that∑

x,d∈ZN

a1(x) a1(x + d) a1(x+ 2d) ≥ α3Z/C3
ϕN

3.(5.14)

We will find a lower bound for Z. Let Pa,d = {a, a+ d, . . . , a + (M − 1)d} be an
arithmetic progression of length M in ZN , where a, d ∈ ZN , d �= 0 and M ≤ N . If
A′ ∩ Pa,d ⊆ ZN has at least αM/4Cϕ elements then Sanders’s theorem yields the
existence at least one nontrivial arithmetic progression of length three. Fix d �= 0
and observe that ∑

a∈ZN

|A′ ∩ Pa,d| =M |A′| ≥ αMN

2Cϕ
,

since there are exactly N different arithmetic progressions (with the difference
d �= 0) of length M in ZN and thus each element of A′ is contained in exactly M
of them. Now we see that

αMN

2Cϕ
≤

∑
a∈ZN

|A′ ∩ Pa,d| =
∑

a∈ZN : |A′∩Pa,d|≥αM/4Cϕ

|A′ ∩ Pa,d|

+
∑

a∈ZN : |A′∩Pa,d|<αM/4Cϕ

|A′ ∩ Pa,d|,

which in turn implies that

αMN

4Cϕ
≤

∑
a∈ZN : |A′∩Pa,d|≥ αM

4Cϕ

|A′ ∩ Pa,d| ≤
∣∣{a ∈ ZN : |A′ ∩ Pa,d| ≥ αM/4Cϕ

}∣∣M.
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We have just shown that the inequality |A′ ∩ Pa,d| ≥ αM/4Cϕ holds for at least
αN/4Cϕ values of a ∈ ZN . Therefore, there are at least αN2/4Cϕ arithmetic
progressions Pa,d for which |A′ ∩ Pa,d| ≥ αM/4Cϕ, whence, as we said above,
Sanders’s result allows us to find at least one nontrivial arithmetic progression of
length three in A′ ∩ Pa,d. Each nontrivial arithmetic progression of length three
in ZN can be contained in at most M2 arithmetic progressions Pa,d. Hence, when
we count the arithmetic progressions of length three in A′ ∩ Pa,d we are counting
each such progression at most M2 times. Thus we have shown that

Z ≥ αN2

4CϕM2
.(5.15)

Taking M =
⌈
eB1α

−1 log5(1/α)
⌉
and combining (5.14) with (5.15), provided that

M ≤ N , we see that

Λ3(a1, a1, a1) ≥ α3Z/C3
ϕN

3 ≥ α4

8C4
ϕNe

2B1α−1 log5(1/α)
≥ C2N

−1e−C3α
−1 log5(1/α).

If M > N the bound (5.13) is trivial since Z always contains trivial arithmetic
progression. This completes the proof of the lemma. �

Proof of Theorem 1.7. Now we gathered all ingredients necessary to conclude The-
orem 1.7. Indeed, combining (5.11) and (5.13) we see that for some C > 0 we have

e−C3α
−1 log5(1/α) ≤ C N−1/2 + C ε2 δ−r + C δ2−r/r′ ,(5.16)

for any γ > 71/72 and r ∈ (
(26 − 24γ)/(16γ − 15), 3

)
. Our task now is to show

that there are constants C4 > 0, and C5 > 0 such that if we take

δ = e−C4α
−1 log5(1/α) and ε = e−C5α

−1 log5(1/α),

then (5.16) is impossible and this will have contradicted to the assumption that A
does not contain any arithmetic progression of length three. Rewriting (5.16) we
obtain

e−C3α
−1 log5(1/α) ≤ C N−1/2 + C e−(2C5−rC4)α

−1 log5(1/α)

+ C e−C4(2−r/r′)α−1 log5(1/α),

thus

e−C3α
−1 log5(1/α)

(
1− Ce−(2C5−rC4−C3)α

−1 log5(1/α)

− Ce−(C4(2−r/r′)−C3)α
−1 log5(1/α)

) ≤ CN−1/2,

It is enough to take C4, C5 > 0 such that

Ce−(2C5−rC4−C3)α
−1 log5(1/α) ≤ 1/4 and Ce−(C4(2−r/r′)−C3)α

−1 log5(1/α) ≤ 1/4,
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then

(5.17) e−C3α
−1 log5(1/α) ≤ 2C N−1/2.

We know that εk ≥ log logW/W and k ≤ Cδ−r by Lemma 5.10, thus δ > 0

and ε > 0 must satisfy εCδ−r ≥ log logW/W . In other words,

C erC4α
−1 log5(1/α) · C5 α

−1 log5(1/α) � log
( log logN

log log log logN

)
.(5.18)

Taking

α ≥ C′ (log log log log logN)6

log log log logN
,

for some C′ > 0, we easily see that (5.18) is satisfied for sufficiently large N , but
we have a contradiction with (5.17). This completes the proof of Theorem 1.7. �

6. Estimates for some exponential sums

The task now is to show the estimate (6.2) which will be the main ingredient in
the proof of Lemma 1.10 and allows us to gain a suitable error term in (1.11).
Our proof will be based on Vaughan’s trick (see Lemma 3.7) and on Vinogradov’s
ideas from the ternary Goldbach problem. See for instance [23] or [6]. However,
we only touch on a few aspects of Vinogradov’s theory and instead of Weyl’s type
estimates we will use Van der Corput’s inequality (see Lemma 3.1). In order to
get a better understanding of the estimate (6.2) we refer the reader to Section 7,
where its need naturally arises. Throughout the last two sections we assume that
c ∈ [1, 16/15), γ = 1/c, h ∈ Fc and ϕ is the inverse function to h.

Lemma 6.1. Assume that P ≥ 1, ξ ∈ [0, 1] and M = P 1+χ+εϕ(P )−1 with χ > 0
such that 16(1−γ)+28χ < 1 and 0 < ε < χ/100. Let q ∈ N and 0 ≤ a ≤ q−1 such
that (a, q) = 1 and define Λa,q(k) = Λ(k)1Pa,q (k), where Pa,q = {j ∈ N : j ≡ a
(mod q)}. Then for every 0 < |m| ≤M we have∣∣∣ ∑

P<k≤P1≤2P

Λa,q(k) e
2πi(ξk+mϕ(k))

∣∣∣ � |m|1/2 log2 P1 σ(P1)
−1/2ϕ(P1)

1/2P
3/8
1

+ |m|1/6 log6 P1 σ(P1)
−1/6ϕ(P1)

−1/6P
13/12
1 .(6.2)

If c > 1 then the function σ is constantly equal to 1.

The proof of Lemma 6.1 falls naturally into the scheme based on Vaughan’s
identity from Lemma 3.7, which permits us to split the sum from (6.2) into four
sums simpler to deal with. We are going to describe this procedure in the proof of
Lemma 6.1.
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Proof. It is easy to see that

1Pa,q (k) =
1

q

q−1∑
s=0

e2πis(k−a)/q =

{
1, if k ≡ a (mod q),

0, otherwise.

This implies that∑
P<k≤P1≤2P

Λa,q(k) e
2πi(ξk+mϕ(k))

=
1

q

q−1∑
s=0

e−2πisa/q
∑

P<k≤P1≤2P

Λ(k) e2πi((ξ+s/q)k+mϕ(k)).

In view of this identity it suffices to establish the bounds, for 0 < m ≤M ,∣∣∣ ∑
P<k≤P1≤2P

Λ(k) e2πi(αk+mϕ(k))
∣∣∣ � m1/2 log2 P1 σ(P1)

−1/2ϕ(P1)
1/2P

3/8
1(6.3)

+m1/6 log6 P1 σ(P1)
−1/6ϕ(P1)

−1/6P
13/12
1 ,

uniformly with respect to α = ξ + s/q where 1 ≤ s < q and ξ ∈ [0, 1]. According

to Lemma 3.7 with v = w = ϕ(P1)P
−5/8
1 , we immediately see that∑

P<n≤P1≤2P

Λ(n)e2πi(αn+mϕ(n)) =
∑
l≤v

∑
P/l<k≤P1/l

log k μ(l) e2πi(αkl+mϕ(kl))

−
(∑

l≤v

+
∑

v<l≤v2

) ∑
P/l<k≤P1/l

Πv(l) e
2πi(αkl+mϕ(kl))

+
∑

v<l≤P1/v

∑
P/l<k≤P1/l

k>v

Λ(k) Ξv(l) e
2πi(αkl+mϕ(kl)) = S1 − S21 − S22 + S3,(6.4)

where Πv(l) = Πv,v(l) and Ξv(l) were defined in (3.9).
We are reduced to estimate the sums S1, S21, S22 and S3. The proof of (6.2) is

completed by showing that

|S1|, |S21| � m1/2 log2 P1 σ(P1)
−1/2ϕ(P1)

1/2P
3/8
1 ,(6.5)

and

|S22|, |S3| � m1/6 log6 P1 σ(P1)
−1/6ϕ(P1)

−1/6P
13/12
1 .(6.6)

The proofs of (6.5) and (6.6) are carried over into the next two subsections. �

Before we derive the inequalities (6.5) and (6.6) we need the following.

Lemma 6.7. For every m ∈ Z \ {0}, l ∈ N, j ≥ 0 and X ≥ 1 we have∣∣∣ ∑
1≤k≤X

e2πi(αjkl+mϕ(kl))
∣∣∣ � |m|1/2 log(lX) lX

(
σ(lX)ϕ(lX)

)−1/2
.(6.8)

If c > 1, then σ is constantly equal to 1.
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This lemma is essential for us and will be applied repeatedly in the sequel with
j = 0 or 1.

Proof. Let Uj,l(X) denote the sum in (6.8), however it will be more handy to work
with its dyadic counterpart. For this purpose, one splits Uj,l(X) into logX dyadic
pieces which have the following form

∑
Y <k≤Y ′≤2Y e

2πi(αjkl+mϕ(kl)), where Y ∈
[1, X ]. We have just reduced the matters to find an upper bound for the last sum.
We may assume, without loss of generality, thatm > 0 and let F (t) = αjlt+mϕ(lt)
for t ∈ [Y, 2Y ]. If c > 1 then t2ϕ′′(t) = ϕ(t)(γ + θ1(t))(γ − 1 + θ2(t)) and

|F ′′(t)| = |ml2ϕ′′(lt)| � |ml2ϕ′′(lY )| � ml2
ϕ(lY )

(lY )2
.

If c = 1 then t2ϕ′′(t) = ϕ(t)(γ + θ1(t))σ(t)τ(t) and

|F ′′(t)| = |ml2ϕ′′(lt)| � ml2σ(lY )ϕ(lY )

(lY )2
.

Thus by Lemma 3.1 we obtain (if c > 1 one can think that σ is constantly equal
to 1)∣∣∣ ∑
Y <k≤Y ′≤2Y

e2πi(αklq+mϕ(kl))
∣∣∣ � Y

(ml2σ(lY )ϕ(lY )

(lY )2

)1/2

+
( (lY )2

ml2σ(lY )ϕ(lY )

)1/2

� m1/2l Y
(
σ(lY )ϕ(lY )

)−1/2
.

Finally we obtain that

|Uj,l(X)| � logX sup
Y ∈[1,X]

m1/2 l Y
(
σ(lY )ϕ(lY )

)−1/2

� m1/2 log(lX) l X
(
σ(lX)ϕ(lX)

)−1/2
,

since x �→ x
(
σ(x)ϕ(x)

)−1/2
is increasing. The proof of Lemma 6.7 follows. �

6.1. The estimates for S1 and S21

Let Ul(x) =
∑

P/l≤k≤x e2πi(αlk+mϕ(lk)). Applying summation by parts to the
inner sum in S1 we see that

S1 =
∑
l≤v

μ(l)
∑

P/l<k≤P1/l

log k e2πi(αkl+mϕ(kl))

=
∑
l≤v

μ(l)
(
Ul(P1/l) log(P1/l)−

∫ P1/l

P/l

Ul(x)
dx

x

)
.

This gives

|S1| ≤ logP1

∑
l≤v

sup
P/l≤x≤P1/l

|Ul(x)|.
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In a similar way (having in mind that v = ϕ(P1)P
−5/8
1 ) we get

|S21| ≤
∑
l≤v

|Πv(l)| |Ul(P1/l)| � logP1

∑
l≤v

|Ul(P1/l)|,

since |Πv(l)| ≤
∑

k|l Λ(k) = log l. Now Lemma 6.7 applied to Ul(x) allows us to
conclude that

|S1|, |S21| ≤ logP1

∑
l≤v

sup
P/l≤x≤P1/l

|Ul(x)|

� logP1

∑
l≤v

sup
P/l≤x≤P1/l

|m|1/2 log(lx) lx(σ(lx)ϕ(lx))−1/2

� ϕ(P1)P
−5/8
1 log2 P1 |m|1/2P1

(
σ(P1)ϕ(P1)

)−1/2

= |m|1/2 log2 P1 σ(P1)
−1/2ϕ(P1)

1/2P
3/8
1 .

In the third inequality we have used the fact that the function x �→x
(
σ(x)ϕ(x)

)−1/2

is increasing. The proof of (6.5) follows.

6.2. The estimates for S22 and S3

Here we shall bound S22 and S3. We start with some preliminary reductions which
allow us to deal with both sums in a unified way. Similarly as for S1 and S2 we
will be working with dyadic sums. Observe that for S22, we have

|S22| =
∣∣∣ ∑
v<l≤v2

∑
P/l<k≤P1/l

Πv(l) e
2πi(αkl+mϕ(kl))

∣∣∣
� log2 P1 sup

L∈[v,v2]

K∈[P/v2,P1/v]

sup
L′∈[L,2L]

K′∈[K,2K]

∣∣∣ ∑
L<l≤L′≤2L

∑
K<k≤K′≤2K

P<kl≤P1

Πv(l) e
2πi(αkl+mϕ(kl))

∣∣∣,(6.9)

and for S3, we have

|S3| =
∣∣∣ ∑
v<l≤P1/v

∑
P/l<k≤P1/l

k>v

Λ(k) Ξv(l) e
2πi(αkl+mϕ(kl))

∣∣∣
� log2 P1 sup

L∈[v,P1/v]

K∈[v,P1/v]

sup
L′∈[L,2L]

K′∈[K,2K]

∣∣∣ ∑
L<l≤L′≤2L

∑
K<k≤K′≤2K

P<kl≤P1

Λ(k) Ξv(l) e
2πi(αkl+mϕ(kl))

∣∣∣,(6.10)

where Πv(l) and Ξv(l) are defined as in (3.9). Now it is not difficult to observe
that ∑

L<l≤2L

|Πv(l)|2 � L log2 L, and
∑

L<l≤2L

|Ξv(l)|2 � L log3 L.(6.11)

In view of these decompositions it remains to show:
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Lemma 6.12. Let K,L ∈ N, m ∈ Z \ {0}. Assume that |m|min{K,L} ≤
σ(KL)ϕ(KL) and ϕ(KL) ≤ min{K,L}4. Then

(6.13)
∣∣∣ ∑
L<l≤L′≤2L

∑
K<k≤K′≤2K

P<kl≤P1

Δ1(l)Δ2(k)e
2πi(αkl+mϕ(kl))

∣∣∣
� |m|1/6 log2 L log2K

(
σ(KL)ϕ(KL)

)−1/6
min{K,L}1/6 KL,

for every sequences of complex numbers (Δ1(l))l∈(L,2L], and (Δ2(k))k∈(K,2K] such
that ∑

L<l≤2L

|Δ1(l)|2 � L log3 L, and
∑

K<k≤2K

|Δ2(k)|2 � K log3K.(6.14)

Assuming momentarily Lemma 6.12 we are in a position to derive the bounds
for S22 and S3. Recall that M = P 1+χ+εϕ(P )−1, with χ > 0 such that 16(1 −
γ) + 28χ < 1, and 0 < ε < χ/100. The inequalities in (6.14) are satisfied with
a suitable choice of Δ1(l) and Δ2(k) for both dyadic subsums of S22 and S3,
by (6.11). Observe that for sufficiently large P1 � P and an appropriate choice of
ε1 > 0, we have

P1/v = P1

(
ϕ(P1)P

−5/8
1

)−1
= P

13/8
1 ϕ(P1)

−1 ≤ P
13/8+ε1−γ
1 ≤ P

3/4
1 ,

P1/v
2 = P1

(
ϕ(P1)P

−5/8
1

)−2
= P

18/8
1 ϕ(P1)

−2 ≥ P
1/4
1 ,

v = ϕ(P1)P
−5/8
1 ≥ P

γ−ε1−5/8
1 ≥ P

1/4
1 , and v2 = (ϕ(P1)P

−5/8
1

)2 ≤ P
3/4
1 ,

since γ > 15/16 > 7/8. Therefore, in both cases K,L ∈ [P
1/4
1 , P

3/4
1 ] and KL � P1,

hence P
1/4
1 ≤ min{K,L} ≤ P

1/2
1 . Thus, we see that ϕ(KL) ≤ min{K,L}4, if not,

then min{K,L}4 < ϕ(KL) ≤ ϕ(P1) ≤ P1, hence min{K,L} < P
1/4
1 contrary

to what we have just shown. Finally, it remains to verify that |m|min{K,L} ≤
σ(KL)ϕ(KL). Indeed, by assumption 3/2+χ+4ε−2γ < 1/2(4(1−γ)+10χ−1) < 0,
thus

|m|min{K,L} ≤MP
1/2
1 = P

3/2+χ+ε
1 ϕ(P1)

−2σ(P1)
−1σ(P1)ϕ(P1)

� P
3/2+χ+4ε−2γ
1 σ(P1)ϕ(P1) � P

1/2(4(1−γ)+10χ−1)
1 σ(P1)ϕ(P1)

� σ(KL)ϕ(KL).

Therefore, (6.13) yields∣∣∣ ∑
L<l≤L′≤2L

∑
K<k≤K′≤2K

P<kl≤P1

Δ1(l)Δ2(k) e
2πi(αkl+mϕ(kl))

∣∣∣
� |m|1/6 log2 L log2K

(
σ(KL)ϕ(KL)

)−1/6
min{K,L}1/6 KL

� |m|1/6 log4 P1

(
P

1/2
1

)1/6
P1

(
σ(P1)ϕ(P1)

)−1/6

� |m|1/6 log4 P1 P
13/12
1 ϕ(P1)

−1/6σ(P1)
−1/6.
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The proof of the estimates (6.6) is completed, since in view of the dyadic decom-
positions (6.9) and (6.10), at the expense of log2 P1 factor we obtain

|S22|, |S3| � |m|1/6 log6 P1 σ(P1)
−1/6ϕ(P1)

−1/6P
13/12
1 .

Proof of Lemma 6.12. We divide the proof into three steps. We will follow the
ideas from [11] Section 5, or [6] Section 4. In the first two steps we collect necessary
tools which allows us to illustrate the proof of inequality (6.13) in the third step.
The symmetry between the variables k, l in the sums in (6.13) allows us to always
arrange the parameters K,L to satisfy K ≤ L.

Step 1. For r ∈ Z define

Er =
∑

L<l≤2L

∑
K<k,k+r≤K′≤2K
P<kl,(k+r)l≤P1

Δ2(k)Δ2(k + r) e2πi(αkl+mϕ(kl)−α(k+r)l−mϕ((k+r)l)).

Notice that

|E0| ≤
∑

L<l≤2L

∑
K<k≤K′≤2K

|Δ2(k)|2 � L
∑

K<k≤2K

|Δ2(k)|2 � LK log3K.(6.15)

Moreover, for any r ∈ Z \ {0} we have

Er =
∑

max{K,K−r}<k≤min{K′,K′−r}
Δ2(k)Δ2(k + r) S̃(k, r),

where

S̃(k, r) =
∑

max{L,Pk , P
k+r }<l≤min{2L,

P1
k ,

P1
k+r }

e2πi(αkl+mϕ(kl)−α(k+r)l−mϕ((k+r)l)).

One can see that for every R ≥ 1 we have∑
1≤|r|≤R

|Er| �
∑

1≤|r|≤R

∑
K<k,k+r≤K′

|Δ2(k)|2|S̃(k, r)|+ |Δ2(k + r)|2|S̃(k + r,−r)|

≤
∑

1≤|r|≤R

∑
K<k,k+r≤K′

|Δ2(k)|2|S̃(k, r)|

+
∑

1≤|r|≤R

∑
K<k,k−r≤K′

|Δ2(k)|2|S̃(k,−r)|

�
∑

1≤|r|≤R

∑
K<k,k+r≤K′

|Δ2(k)|2|S̃(k, r)|

=
∑

K<k≤K′
|Δ2(k)|2

∑
1≤|r|≤R

|S̃(k, r)|1(K,K′](k + r),(6.16)

since |S̃(k, r)| = |S̃(k + r,−r)|.
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Step 2. We are going to show that for every m ∈ N and k ∈ (K, 2K] and R ≥ 1
we have

1

R

∑
1≤|r|≤R

|S̃(k, r)| 1(K,2K](k + r)(6.17)

� m1/2R1/2KL
(
σ(KL)ϕ(KL)

)−1/2
K−1/2.

For this purpose we proceed as in Lemma 6.7. Let

F (x) = αkx+mϕ(kx)− α(k + r)x −mϕ((k + r)x)),

for x ∈ (L, 2L] and note that according to Lemma 2.14 and the mean value theorem,
for some η ∈ (0, 1) and ηk,r = k + ηr if r > 0 and ηk,r = k + r − ηr if r < 0, we
have

|F ′′(x)| = ∣∣mk2ϕ′′(kx)−m(k + r)2ϕ′′((k + r)x))
∣∣

=
∣∣ r(2mηk,r ϕ

′′(xηk,r) +mη2k,r xϕ
′′′(x ηk,r)

)∣∣
=

∣∣ r mηk,r ϕ
′′(x ηk,r)(2 + β3 + θ3(x ηk,r))

∣∣
� |mrK ϕ′′(KL)|

� m |r|Kσ(KL)ϕ(KL)
(KL)2

,

since k, k + r ∈ (K, 2K] and ηk,r ∈ (K, 2K]. Therefore by Lemma 3.1 we obtain
(as before we think that σ is constantly equal to 1, if c > 1)

|S̃(k, r)| � L
(m |r|Kσ(KL)ϕ(KL)

(KL)2

)1/2

+
( (KL)2

m |r|Kσ(KL)ϕ(KL)
)1/2

� (m |r|L)1/2 +KL
(
σ(KL)ϕ(KL)

)−1/2
K−1/2

� m1/2|r|1/2KL(σ(KL)ϕ(KL))−1/2
K−1/2,

and (6.17) follows.

Therefore combining (6.16) with (6.17) we obtain that

1

R

∑
1≤|r|≤R

|Er| �
∑

K<k≤K′
|Δ2(k)|2 1

R

∑
1≤|r|≤R

|S̃(k, r)|1(K,K′](k + r)(6.18)

� K log3K ·m1/2R1/2KL
(
σ(KL)ϕ(KL)

)−1/2
K−1/2.

Step 3. By the Cauchy–Schwartz inequality and Lemma 3.2, applied with
H = K and an integer 1 ≤ R ≤ K which will be specified later, we immediately
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see that∣∣∣ ∑
L<l≤L′≤2L

∑
K<k≤K′≤2K

P<kl≤P1

Δ1(l)Δ2(k) e
2πi(αkl+mϕ(kl)

∣∣∣2
≤

( ∑
L<l≤2L

|Δ1(l)|2
) ∑

L<l≤L′≤2L

∣∣∣ ∑
K<k≤K′≤2K

P<kl≤P1

Δ2(k) e
2πi(αkl+mϕ(kl)

∣∣∣2
� L log3 L

∑
L<l≤2L

∣∣∣ ∑
K<k≤K′≤2K

P<kl≤P1

Δ2(k) e
2πi(αkl+mϕ(kl)

∣∣∣2

� L log3 L
K +R

R

∑
|r|≤R

(
1− |r|

R

)
|Er|

� L2K log3 L log3K
K +R

R
+ L log3 L

K + R

R

∑
1≤|r|≤R

|Er|

� log3 L log3K
(L2K2

R
+K2Lm1/2R1/2KL

(
σ(KL)ϕ(KL)

)−1/2
K−1/2

)
,(6.19)

where we have used the estimate (6.15) for |E0| and the inequality (6.18). Now we

are able to finish our proof. Taking R = �m−aK−bLc
(
σ(KL)ϕ(KL)

)−d� for some
a, b, c, d ∈ R, we see that the last expression in (6.19) is bounded by

log3 L log3K
(
maK2+bL2−c

(
σ(KL)ϕ(KL)

)d
+m1/2−a/2K5/2−b/2L2+c/2

(
σ(KL)ϕ(KL)

)−d/2−1/2)
.

We will impose some restrictions on a, b, c, d ∈ R which make the last two terms
equal. It suffices to take a = b = 1/3, c = 0, d = −1/3. We now easily see that

1 ≤ m−1/3K−1/3
(
σ(KL)ϕ(KL)

)1/3 ≤ K by our assumptions, thus 1 ≤ R � K
and consequently (6.13) follows, since∣∣∣∣ ∑

L<l≤L′≤2L

∑
K<k≤K′≤2K

P<kl≤P1

Δ1(l)Δ2(k) e
2πi(αkl+mϕ(kl)

∣∣∣∣
� m1/6 log2 L log2K

(
σ(KL)ϕ(KL)

)−1/6
K1/6 KL.

�

7. Proof of Lemma 1.10

This section provides a detailed proof of Lemma 1.10. We are going to follow the
ideas of Heath-Brown [11]. We shall split the proof of (1.11) into three steps. In
the third step we will be able to use estimate carried by Lemma 6.12 which will
turn out to be decisive there and permits us to complete the proof.
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7.1. The first reduction

We start with the following.

Lemma 7.1. Let Φ(x) = {x} − 1/2 and Λ(n) denote von Mangoldt’s function as
in Section 3 and γ, χ > 0 satisfy conditions from Lemma 1.10. Then for every
q ∈ N and 0 ≤ a ≤ q − 1 such that (a, q) = 1, N ∈ N and 0 < ε < χ/100 we have

(7.2)
∑

p∈Ph,N
p≡a(modq)

ϕ′(p)−1 log p e2πiξp =
∑

p∈PN
p≡a(modq)

log p e2πiξp

+

N∑
k=1

ϕ′(k)−1
(
Φ(−ϕ(k + 1))− Φ(−ϕ(k)))Λa,q(k) e

2πiξk +O
(
N1−χ+ε

)
,

where Λa,q(k) = Λ(k)1Pa,q (k) and Pa,q = {j ∈ N : j ≡ a(modq)}.

Proof. We shall apply Lemma 2.1 to the first sum in (7.2). However, we should
remember that the identity from (2.13) holds for sufficiently large p ∈ Ph, say
p ≥ N0. Therefore, we have to split the sum in (7.2) into two parts, that over
p ∈ Ph,N0 and that over p ∈ Ph,N with p ≥ N0. When p ∈ Ph,N0 the sum can be
trivially estimated from above by N0, otherwise when p ∈ Ph,N with p ≥ N0 we
use Lemma 2.1. Finally, we complete the summation p ∈ PN with p ≥ N0 in the
second sum (after the application of Lemma 2.1) to all p ∈ PN at the expense of
additional term depending on N0 which is harmless, since we are only interested in
large values of N ≥ N0. This remark shows that one can assume that the identity
in (2.13) holds for all p ∈ Ph.

According to Lemma 2.1 and the definition of function Φ(x) = {x} − 1/2 we
obtain that for every p ∈ N there exists ξp ∈ (0, 1) such that

	−ϕ(p)
 − 	−ϕ(p+ 1)
 = ϕ(p+ 1)− ϕ(p) + Φ(−ϕ(p+ 1))− Φ(−ϕ(p))
= ϕ′(p) + ϕ′′(p+ ξp)/2 + Φ(−ϕ(p+ 1))− Φ(−ϕ(p)).

Thus∑
p∈Ph,N

p≡a(modq)

ϕ′(p)−1 log p e2πiξp

=
∑

p∈PN
p≡a(modq)

ϕ′(p)−1
(	−ϕ(p)
 − 	−ϕ(p+ 1)
) log p e2πiξp

=
∑

p∈PN
p≡a(modq)

log p e2πiξp

+
∑

p∈PN
p≡a(modq)

ϕ′(p)−1
(
Φ(−ϕ(p+ 1))− Φ(−ϕ(p))) log p e2πiξp +O(logN),
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since by Mertens theorem (see [23], Theorem 6.6, page 160) we have

O
( ∑

p∈PN
p≡a(modq)

ϕ′′(p+ ξp) log p

2ϕ′(p)
e2πiξp

)
= O

( ∑
p∈PN

ϕ′′(p) log p
ϕ′(p)

)

= O
( ∑

p∈PN

log p

p

)
= O(logN).

Now observe that∑
p∈PN

p≡a(modq)

ϕ′(p)−1
(
Φ(−ϕ(p+ 1))− Φ(−ϕ(p))) log p e2πiξp

=

N∑
k=1

ϕ′(k)−1
(
Φ(−ϕ(k + 1))− Φ(−ϕ(k)))Λa,q(k) e

2πiξk

+O
( N

ϕ(N)

∑
p∈PN :1≤ps≤N

s≥2

log p
)

=

N∑
k=1

ϕ′(k)−1
(
Φ(−ϕ(k + 1))− Φ(−ϕ(k)))Λa,q(k) e

2πiξk +O
(
N3/2−γ+ε

)
.

The last identity follows from the following observation:

O
( ∑

p∈PN :1≤ps≤N

s≥2

log p
)
= O

( ∑
p∈PN :1≤p2≤N

⌊ logN
log p

⌋
log p

)
= O

(
π
(
N1/2

)
logN

)
= O

(
N1/2

)
.

The proof is completed since O
(
N3/2−γ+ε

)
= O

(
N1−χ−ε

)
. Indeed, we easily see

that 3/2−γ+ε = 1−χ−ε+(2(1−γ)−1+2(2ε+χ))/2< 1−χ−ε, as desired. �

7.2. The second reduction

The proof of Lemma 1.10 will be completed if we show that

N∑
k=1

ϕ′(k)−1
(
Φ(−ϕ(k + 1))− Φ(−ϕ(k)))Λa,q(k) e

2πiξk = O
(
N1−χ−χ′)

,(7.3)

for χ > 0 such that 16(1− γ) + 28χ < 1 and some χ′ > 0.

Lemma 7.4. Assume that P ≥ 1 and M = P 1+χ+εϕ(P )−1 with χ > 0 such that
16(1− γ) + 28χ < 1 and 0 < ε < χ/100. Then for every q ∈ N and 0 ≤ a ≤ q − 1
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such that (a, q) = 1 we have∑
P<k≤P1≤2P

ϕ′(k)−1
(
Φ(−ϕ(k + 1))− Φ(−ϕ(k)))Λa,q(k)e

2πiξk

=
∑

0<|m|≤M

1

2πim

∑
P<k≤P1≤2P

Λa,q(k)

ϕ′(k)

(
e2πi(ξk+mϕ(k+1)) − e2πi(ξk+mϕ(k))

)
+O

(
P 1−χ−ε

)
,(7.5)

where Λa,q(k) = Λ(k)1Pa,q (k) and Pa,q = {j ∈ N : j ≡ a(modq)}.

Proof. Let S denote the first sum in (7.5). Then the Fourier expansion (3.3) of
the function Φ leads us to

S =
∑

0<|m|≤M

1

2πim

∑
P<k≤P1≤2P

Λa,q(k)

ϕ′(k)

(
e2πi(ξk+mϕ(k+1)) − e2πi(ξk+mϕ(k))

)
+O

( ∑
P<k≤P1≤2P

Λa,q(k)

ϕ′(k)

(
min

{
1,

1

M‖ϕ(k)‖
}
+min

{
1,

1

M‖ϕ(k + 1)‖
}))

.

Now we see that the only point remaining concerns the behaviour of the error
term with min

{
1, 1

M‖ϕ(k)‖
}
. The same reasoning will apply to the sum with

min
{
1, 1

M‖ϕ(k+1)‖
}
equally well. Thus by (3.4) we see

∑
P<k≤P1≤2P

Λa,q(k)

ϕ′(k)
·min

{
1,

1

M‖ϕ(k)‖
}
� logP

ϕ′(P )

∑
P<k≤P1≤2P

∑
m∈Z

bme
2πimϕ(k)

� logP

ϕ′(P )

∑
m∈Z

|bm|
∣∣∣ ∑
P<k≤P1≤2P

e2πimϕ(k)
∣∣∣.

It suffices to estimate the last sum. Namely, Lemma 6.7 applied to the inner
sum with l = 1 and j = 0 (in fact we refer to the proof of Lemma 6.7) and the
bounds (3.5) for |bm| imply that∑
m≥0

|bm|
∣∣∣ ∑
P<k≤P1≤2P

e2πimϕ(k)
∣∣∣

� P logM

M
+
( ∑

0<m≤M

+
∑

m>M

)
|bm| m1/2P(

σ(P )ϕ(P )
)1/2

� P logM

M
+

∑
0<m≤M

m1/2 logM

M

P(
σ(P )ϕ(P )

)1/2 +
∑

m>M

M

m3/2

P(
σ(P )ϕ(P )

)1/2
� P logM

M
+ logMM1/2 P(

σ(P )ϕ(P )
)1/2 .
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Taking M = P 1+χ+εϕ(P )−1, we obtain

logP

ϕ′(P )

∑
m≥0

|bm|
∣∣∣ ∑
P<k≤P1≤2P

e2πimϕ(k)
∣∣∣

� P logM logP

ϕ′(P )M
+ logMM1/2 P logP

ϕ′(P )
(
σ(P )ϕ(P )

)1/2
� ϕ(P )P−χ−ε

ϕ′(P )
log2 P +

P 3/2+χ/2+ε/2

ϕ′(P )σ(P )1/2ϕ(P )
log2 P

� ϕ(P )P−χ−ε

ϕ′(P )
log2 P

(
1 +

P 3/2+3χ/2+3ε/2

σ(P )1/2ϕ(P )2

)
� ϕ(P )P−χ−ε

ϕ′(P )
� P 1−χ−ε.

Taking 0 < ε < χ/100 we may conclude that the expression in the last parenthesis
is bounded. Indeed, due to the inequalities xγ−ε1 �ε1 ϕ(x), and (σ(x))−1 �ε2 x

ε2 ,
which hold for arbitrary ε1, ε2 > 0, we easily see (taking ε1 = ε2 = ε > 0) that
3/2+3χ/2+3ε/2+ε/2−2γ+2ε < 0, since 3+3χ+8ε−4γ < 4(1−γ)+4χ−1 < 0,
where the last inequality is obviously satisfied. This finishes the proof. �

7.3. The third reduction – completing the proof

Now we can complete the proof of Lemma 1.10. Our main tool will be Lemma 6.1.

Proof of Lemma 1.10. Recall that γ, χ > 0 satisfy 16(1 − γ) + 28χ < 1 and 0 <
ε < χ/100. Then combining Lemma 7.1 with Lemma 7.4 we immediately see that

∣∣∣ ∑
p∈Ph,N

p≡a(modq)

ϕ′(p)−1 log p e2πiξp −
∑

p∈PN
p≡a(modq)

log p e2πiξp
∣∣∣

(7.6)

� N1−χ−ε

+ logN sup
1≤P≤N

∣∣∣ ∑
P<k≤P1≤2P

ϕ′(k)−1
(
Φ(−ϕ(k + 1))− Φ(−ϕ(k)))Λa,q(k) e

2πiξk
∣∣∣

� logN
(
N1−χ−ε

+ sup
1≤P≤N

∑
0<|m|≤M

1

m

∣∣∣ ∑
P<k≤P1≤2P

Λa,q(k)

ϕ′(k)

(
e2πi(ξk+mϕ(k+1))− e2πi(ξk+mϕ(k))

)∣∣∣ ),
where M = P 1+χ+εϕ(P )−1. In order to estimate the error term in (7.6) let us
define

Um(x) =
∑

P<k≤x

Λa,q(k) e
2πi(ξk+mϕ(k))

and

φm(k) = ϕ′(k)−1
(
e2πim(ϕ(k+1)−ϕ(k)) − 1

)
.



654 M. Mirek

It is easy to verify that |φm(x)| � m and |φ′m(x)| � m/x, thus summation by parts
combined with the estimate (6.2) yield

∑
0<|m|≤M

1

m

∣∣∣ ∑
P<k≤P1≤2P

Λa,q(k)

ϕ′(k)

(
e2πi(ξk+mϕ(k+1)) − e2πi(ξk+mϕ(k))

)∣∣∣
(7.7)

�
M∑

m=1

1

m

(
|Um(P1)φm(P1)|+

∫ P1

P

|Um(x)φ′m(x)|dx
)
�

M∑
m=1

sup
x∈(P,2P ]

|Um(x)|

�
M∑

m=1

m1/2 log2 P σ(P )−1/2ϕ(P )1/2P 3/8

+

M∑
m=1

m1/6 log6 P σ(P1)
−1/6ϕ(P )−1/6P 13/12

�M3/2 log2 P σ(P )−1/2ϕ(P )1/2P 3/8 +M7/6 log6 P σ(P )−1/6ϕ(P )−1/6P 13/12.

In order to estimate the last two terms in (7.7) we will use the inequalities xγ−ε1 �ε1

ϕ(x), σ(x)−1 �ε2 x
ε2 which hold with arbitrary ε1, ε2 > 0. Since we have fixed

M = P 1+χ+εϕ(P )−1 with χ > 0 such that 16(1−γ)+28χ < 1 and 0 < ε < χ/100,
it is easy to see (taking ε1 = ε2 = ε > 0 and log x �ε x

ε/50) that

M3/2 log2 P σ(P )−1/2ϕ(P )1/2P 3/8

=
(
P 1+χ+εϕ(P )−1

)3/2
log2 P σ(P )−1/2ϕ(P )1/2P 3/8

= P 15/8+3χ/2+3ε/2ϕ(P )−1σ(P )−1/2 log2 P

� P 15/8+3χ/2+4ε−γ � P 1−χ+7/8+5χ/2+4ε−γ � P 1−χ−ε′ ,

for some ε′ > 0, since log2 P �ε P
ε and

7/8 + 3χ− γ < 0 ⇐⇒ 7 + 24χ < 8γ ⇐⇒ 8(1− γ) + 24χ < 1.

On the other hand, we get

M7/6 log6 P σ(P )−1/6ϕ(P )−1/6P 13/12

=
(
P 1+χ+εϕ(P )−1

)7/6
log6 P σ(P )−1/6ϕ(P )−1/6P 13/12

= P 27/12+7χ/6+7ε/6ϕ(P )−8/6σ(P )−1/6 log6 P

� P 27/12+7χ/6+3ε−8γ/6 � P 1−χ+15/12+13χ/6+3ε−8γ/6 � P 1−χ−ε′ .

for some ε′ > 0, since log6 P �ε P
2ε/6 and

15/12 + 14χ/6− 8γ/6 < 0 ⇐⇒ 15 + 28χ < 16γ ⇐⇒ 16(1− γ) + 28χ < 1.

This provides the desired upper bound for (7.7). The proof of Lemma 1.10 is
completed. �
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[30] Szemerédi, E.: On sets of integers containing no k elements in arithmetic progres-
sion. Acta Arith. 27 (1975), 199–245.

[31] Tao, T. and Vu, V.: Additive combinatorics. Cambridge Studies in Advanced
Mathematics 105, Cambridge University Press, Cambridge, 2006.
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