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On 2D nonlinear Schrödinger equation

on non-trapping exterior domains

Farah Abou Shakra

Abstract. Global existence and scattering for the nonlinear defocusing
Schrödinger equation in 2 dimensions are known for domains exterior to
star-shaped obstacles and for nonlinearities that grow at least as the quin-
tic power. In this paper, we extend the global existence result for all
non-trapping obstacles and for nonlinearities with power strictly greater
than quartic. For such nonlinearities, we also prove scattering for a class
of so-called almost star-shaped obstacles.

1. Introduction and background

We are interested in this paper in the nonlinear Schrödinger equation (NLS) in
exterior domains Ω = R

n \ V , where V is a non-trapping obstacle with smooth
boundary with Dirichlet boundary condition⎧⎪⎨⎪⎩

i∂tu+Δu = ±|u|p−1u in Ω = R
n \ V, p ≥ 1,

u|R×∂Ω = 0,

u(0, x) = u0(x).

(1.1)

The class of solutions to (1.1) is invariant by the scaling

(1.2) u(t, x) −→ λ2/(p−1) u(λ2 t, λx).

This scaling defines a notion of criticality, specifically, for a given Banach space of
initial data u0, the problem is called critical if the norm is invariant under (1.2).
The problem is called subcritical if the norm of the rescaled solution diverges
as λ → ∞; if the norm shrinks to zero, then the problem is supercritical. More-
over, considering the initial value problem (1.1) for u0 ∈ Ḣs(Rn), the problem is
critical when s = sc := d/2− 2/(p− 1), subcritical when s > sc, and supercritical
when s < sc.

Mathematics Subject Classification (2010): Primary 35Q55; Secondary 35L70, 35L20.
Keywords: Schrödinger equation, scattering, almost star-shaped.



658 F. Abou Shakra

Now, denote by

(1.3) M(u) =

∫
Ω

|u|2dx and E(u) =
1

2

∫
Ω

|∇u|2dx± 1

p+ 1

∫
Ω

|u|p+1dx,

the mass and the energy which are conserved.

For the case of 3D exterior domains, Planchon and Vega obtained in [19] an L4
t,x

Strichartz estimate and they used it along with local smoothing estimates near
the boundary to prove the local well-posedness of the family of nonlinear equa-
tions (1.1) for 1 < p < 5 and u0 ∈ H1

0 (Ω), and that the solution is global for
the defocusing case (+ sign in (1.1)). They also proved scattering for the cubic
defocusing nonlinear equation outside star-shaped obstacles for initial data in H1

0 .
For the energy critical case p = 5, Ivanovici proved in [11] local well-posedness for
solutions with initial data in H1 and global well-posedness for small data, outside
strictly convex obstacles using the Melrose–Taylor parametrix. Scattering results
were also obtained for all subquintic defocusing nonlinearities. Ivanovici and Plan-
chon then extended in [12] the local well posedness (and global for small energy
data) to the quintic nonlinear Schrödinger equation for any non-trapping domain
in R

3 using the smoothing effect in L5
x(L

2
t ) for the linear equation. Their local

result also holds for the Neumann boundary condition. They also extended the
scattering of solutions to the defocusing nonlinear equation outside star-shaped
obstacles with initial data in H1

0 for 3 ≤ p < 5. A very recent result was obtained
by Killip, Visan, and Zhang in [15] for the quintic defocusing NLS in the exterior
of strictly convex 3D obstacles with the Dirichlet boundary condition, where they
proved global well-posedness and scattering for all initial data in the energy space.

Our main interest here is exterior domains in 2 dimensions which is known to
be the most difficult one regarding scattering questions even in the case of the full
space R

n. In fact, after the results of Ginibre and Velo [10] for R
n (n ≥ 3) for

the H1 subcritical case that corresponds to the case 0 < sc < 1, the obstruction of
the dimension was removed by Nakanishi [18] (in dimensions 1 and 2, all powers p
have an sc that is less than 1), but his techniques are not well suited for the domains
case. However, a fundamental contribution to the existence and scattering theory
in the whole space and that turned out later [19] to be suitable for the case of
exterior domains, was by Colliander, Keel, Staffilani, Takaoka, and Tao ([8], [9])
through introducing the Morawetz interactive inequalities. Similar problem with
low dimensions appears due to the sign of the bilaplacian term that comes from
the use of a convex weight which is the Euclidean distance. The sign turns out
to be wrong for dimensions less than 3. This obstruction was then overcome
simultaneously and independently by Colliander, Grillakis, and Tzirakis in [6] as
well as by Planchon and Vega in [19].

In [19] the authors also used the bilinear multiplier technique to obtain their
results for exterior domains in 3D. Again, just like in the whole space, the obstruc-
tion of the dimension appears as a result of the sign of the bilaplacian. That is why
the local smoothing (Proposition 2.7 in [19]), which is a key ingredient in the proof
of existence and scattering, was given in dimension 3 and higher. However, Plan-
chon and Vega recently removed this restriction in [20] and they obtained global
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existence and scattering results in 2D domains exterior to star-shaped obstacles to
the nonlinear defocusing problem with initial data in H1

0 and for p ≥ 5.
The main idea in [20] was using the tensor product technique (as developed e.g.

in [7] to obtain a quadrilinear Morawetz interaction estimate in R) by constructing
v(x, y) = u(x)u(y) solution of the nonlinear Schrödinger in Ω×Ω, and then using
the local smoothing inequality obtained from Morawetz’s multipliers in dimension
n = 4 thus resolving the issue of the wrong sign of the bilaplacian in dimension 2.
Their local smoothing estimate is a key step to get that D1/2(|u|2) is in L2

t,x for
both the nonlinear and linear solutions which leads to obtain the global in time
Strichartz estimate Lp−1

t L∞
x (for the case of star-shaped obstacles) which is the

key factor to get their result.
In this paper we extend the result of Planchon and Vega in two directions, the

range of nonlinearities and the class of obstacles under consideration. First, we
extend the local existence for p > 4 and for any non-trapping obstacle by using the
following set of Strichartz estimates obtained by Blair, Smith, and Sogge in [2]:

Theorem 1.1 (Theorem 1.1 in [2]). Let Ω = R
n \ V be the exterior domain to a

compact non-trapping obstacle with smooth boundary, and Δ the standard Laplace
operator on Ω, subject to either Dirichlet or Neumann conditions. Suppose that
p > 2 and q <∞ satisfy ⎧⎪⎪⎨⎪⎪⎩

3

p
+

2

q
≤ 1, n = 2,

1

p
+

1

q
≤ 1

2
, n ≥ 3.

Then for eitΔf solution to the linear Schrödinger equation with initial data f , the
following estimates hold:

‖eitΔf‖Lp([0,T ];Lq(Ω)) ≤ C‖f‖Hs(Ω),

provided that
2

p
+
n

q
=
n

2
− s.

For Dirichlet boundary conditions, the estimates hold with T = ∞.

Remark 1.2. Remark that as an application to the nonlinear Schrödinger equa-
tion in 3D exterior domains, the authors used their above result and interpola-
tion to establish the L4

tL
∞
x Strichartz estimate and present a simple proof to the

well-posedness result for small energy data to the quintic nonlinear Schrödinger
equation, a result first obtained by Ivanovici and Planchon [12].

We will use in this paper the Besov spaces which are defined here using the spec-
tral localization associated to the domain. We refer to [13] for a detailed discussion
and references, and we provide only basic definitions here. Let ψ(·) ∈ C∞

0 (R\ {0})
and ψj(·) = ψ(2−2j ·). On the domain Ω, one has the spectral resolution of the
Dirichlet laplacian, and we may define smooth spectral projections Δj = ψj(−ΔD)
as continuous operators on L2 (they are also continuous on Lp for all p). Moreover,
just like the whole space case, these projections obey Bernstein estimates.
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Definition 1.3. Let f ∈ S
′
(Ω) and let Δj = ψ(−2−2jΔD) be a spectral localiza-

tion with respect to the Dirichlet laplacian ΔD such that
∑

j Δj = Id. We say f

belongs to Ḃs,q
p (Ω) (s ∈ R, 1 ≤ p, q ≤ +∞) if(

2js‖Δjf‖Lp

) ∈ lq,

and
∑

j Δjf converges to f in S
′
.

Note that Ḃ1,2
2 = Ḣ1

0 and by analogy we set Ḣs to be just Ḃs,2
2 . The Banach

space Ḃs,q
p is equipped with following norm:

‖f‖Ḃs,q
p

:=
(∑

j∈Z

‖2jsΔjf‖qLp

)1/q

.

Remark 1.4. In our range of interest, this intrinsic definition may be proved
to be equivalent with the more well-known definition using the restriction to the
domain Ω of functions in Ḃs,q

p (Rn). However, we will not need this equivalence.

We first obtain the following result:

Theorem 1.5. Let Ω be R
2 \ V , where V is a non-trapping obstacle, and u0 ∈

Ḃsc,1
2 (Ω). Then, there exists T (u0) such that the nonlinear equation⎧⎪⎨⎪⎩

i∂tu+Δu = ±|u|p−1u, x ∈ Ω, t ∈ R, p > 4,

u|R×∂Ω = 0,

u(0, x) = u0(x),

admits a unique solution u in the function space

C
(
[0, T ]; Ḃsc,1

2 (Ω)
) ∩ Lp−1

(
[0, T ];L∞(Ω)

)
.

Moreover, if u0 ∈ H1
0 (Ω), then the solution stays in H1

0 (Ω) and it is global in time
for the defocusing equation.

Then, we prove the scattering for the defocusing equation with initial data in
H1

0 (Ω) for a class of almost star-shaped obstacles satisfying the following geometric
condition: given 0 < ε ≤ 1,

(1.4) (x1, εx2) · nx > 0 for x = (x1, x2) ∈ ∂V,

where nx is the exterior unit normal to ∂V .

Remark 1.6. In fact, for ε = 1, which corresponds to the star-shaped case, we do
not need strictness in (1.4) (see [20]).

Almost star-shaped obstacles that are a natural generalization of the star-
shaped were introduced by Ivrii in [14] in the setting of local energy decay for
the linear wave equation. In Subsection 3.2.1, we provide an explicit definition for
such obstacles as well as an interpretation of the geometric condition (1.4).

We obtain the following theorem:



On 2D NLS on non-trapping exterior domains 661

Theorem 1.7. Let Ω be R
2 \ V , where V is an almost star-shaped obstacle sa-

tisfying the condition (1.4), and u0 ∈ H1
0 (Ω). Then the global solution for the

defocusing equation⎧⎪⎨⎪⎩
i∂tu+Δu = |u|p−1u x ∈ Ω, t ∈ R, p > 4,

u|R×∂Ω = 0,

u(0, x) = u0(x),

scatters in H1
0 .

Acknowledgements. I would like to thank Fabrice Planchon for suggesting the
problem and commenting on the manuscript.

2. Proof of the local and global existence (Theorem 1.5)

We want to solve⎧⎪⎨⎪⎩
i∂tu+Δu = ±|u|p−1u in Ω = R

2 \ V, p > 4,

u|R×∂Ω = 0,

u(0, x) = u0(x).

(2.1)

We will set p = 3/(1− ε0) + 1, with 0 < ε0 < 1.
Note that the Sobolev space with the invariant norm under the scaling (1.2)

is Ḣsc with sc = 1/3 + 2ε0/3.
Using the estimate obtained by Blair, Smith, and Sogge (Theorem 1.1), we

can obtain another linear estimate in the Besov space Ḃsc,1
2 . This is stated in the

following proposition:

Proposition 2.1. Let Ω = R
2\V , where V is a non-trapping obstacle with smooth

boundary, and Δ is the Dirichlet laplacian. Then for eitΔf solution to the linear
Schrödinger equation with initial data f , we have

(2.2) ‖eitΔf‖L3/(1−ε0)([0,+∞];L∞(Ω)) � ‖f‖Ḃsc,1
2 (Ω)

Proof. For exterior domains in R
2 and given any 0 < ε < 1, we have the following

Strichartz estimate obtained by Blair, Smith, and Sogge:

(2.3) ‖eitΔf‖
L

3/(1−ε)
t L

2/ε
x

≤ C(ε)‖f‖Ḣ(1−ε)/3

On a dyadic block Δjf , where Δj is defined via the Dirichlet laplacian Δ, the
Blair–Smith–Sogge estimate is written as follows:

(2.4) ‖Δj (e
itΔf)‖

L
3/(1−ε)
t L

2/ε
x

� 2j(1−ε)/3 ‖Δjf‖L2

for any 0 < ε < 1. This can be easily obtained using (2.3) and the fact that Δj

commutes with eitΔ as well as a Bernstein’s inequality.
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Now, we choose ε = ε0, we have

2ε0j‖Δj (e
itΔf)‖

L
3/(1−ε0)
t L

2/ε0
x

� 2j(1+2ε0)/3 ‖Δjf‖L2 .

But by Bernstein we have

‖Δj (e
itΔf)‖L∞

x
� 2jε0‖Δj (e

itΔf)‖
L

2/ε0
x

,

hence

‖eitΔf‖
L

3/(1−ε0)
t L∞

x
≤
∑
j

‖Δj(e
itΔf)‖

L
3/(1−ε0)
t L∞

x
�
∑
j

2jε0‖Δj(e
itΔf)‖

L
3/(1−ε0)
t L

2/ε0
x

�
∑
j

2j(1+2ε0)/3 ‖Δjf‖L2

(
=

∥∥f∥∥
Ḃsc,1

2

)
.

Hence we get the following linear estimate:∥∥ eitΔf∥∥
L

3/(1−ε0)
t L∞

x

� ‖f‖Ḃsc,1
2

,

which ends the proof of Proposition 2.1. �

Now, using the estimate (2.2), we can solve the nonlinear equation (2.1) with
initial data in Ḃsc,1

2 locally in time in the function space ET given by: for T > 0

ET = C
(
[0, T ]; Ḃsc,1

2 (Ω)
) ∩ L3/(1−ε0)

(
[0, T ];L∞(Ω)

)
.

Set F (x) = |x|3/(1−ε0)x (or −|x|3/(1−ε0)x in the focusing case) and choose T
small enough so that ‖eitΔu0‖L3/(1−ε0)

[0,T ]
L∞

x

< c for a small constant c to be deter-

mined and which is linked to the size of the Besov norm of u0. The larger the
latter is, the smaller the former will have to be.

Remark 2.2. Remark that the smallness of this quantity can be made explicit
if u0 is in H1 (not just Ḃsc,1

2 ), and then T will be like an inverse power of the
norm Ḣ1 of u0 (see for example page 22 of [5] for a similar reasoning). Moreover,
for the defocusing case, the H1 norm is controlled and thus the local time of
existence is uniform and one can consequently iterate the local existence result to
a global result.

We define the following mapping for w ∈ ET

φ(w)(t) :=

∫
s<t

ei(t−s)ΔF
(
eisΔu0 + w(s)

)
ds

then we have

‖φ(w)‖ET � ‖F (eitΔu0 + w)‖L1([0,T ];Ḃsc,1
2 )(2.5)

� ‖eitΔu0 + w‖L∞
T Ḃsc,1

2
‖eitΔu0 + w‖3/(1−ε0)

L
3/(1−ε0)

T L∞
x

The first part can be shown using the linear estimate (2.2), as for the second part,
it is due to the following lemma (for the special case f = eitΔu0 + w and g = 0):
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Lemma 2.3. Consider f, g ∈ L∞
T Ḃ

s,q
p ∩ Lα−1

T L∞
x , with 0 < s < 2. Then if

F (x) = |x|α−1x (or |x|α) and α ≥ 3, we have

‖F (f)−F (g)‖L1
T Ḃs,q

p
� ‖f − g‖L∞

T Ḃs,q
p

(‖f‖α−1

Lα−1
T L∞

x

+ ‖g‖α−1

Lα−1
T L∞

x

)
+ ‖f − g‖Lα−1

T L∞
x

(‖f‖L∞
T Ḃs,q

p
‖f‖α−2

Lα−1
T L∞

x

+ ‖g‖L∞
T Ḃs,q

p
‖g‖α−2

Lα−1
T L∞

x

)
Proof. This lemma can be proved by writing

F (f)− F (g) = (f − g)

∫ 1

0

F
′(
θf + (1 − θ)g

)
dθ,

and splitting this difference into two paraproducts. For a detailed proof, we refer
to Lemma 4.10 in [12] which is given for functions in Ḃs,q

p ∩ Lr. In fact, we
are considering a special case of that lemma with r = ∞. The time norms are
harmless and can be easily inserted using Hölder. Note that such a result is by
now classical if the domain is just Rn, and where the easiest path to prove it is to
use the characterization of Besov spaces using finite differences. By contrast, on
domains, [12] provides a direct proof using paraproducts which are based on the
spectral localization. �

Choosing the small constant c such that c3/(1−ε0)‖u0‖Ḃsc,1
2


 1, (2.5) shows

that one can have a small ball in w of ET that maps into itself. A similar argument
on ‖φ(w)− φ(w′)‖ET for w′ ∈ ET shows that φ is a contraction on the small ball:
by Lemma 2.3 (with α = 3/(1− ε0) + 1), if u = eitΔu0 + w and v = eitΔu0 + w′,

‖φ(w)−φ(w′)‖ET � ‖F (u)− F (v)‖L1([0,T ];Ḃsc,1
2 )

� ‖w − w′‖L∞
T Ḃsc,1

2

(‖u‖α−1

Lα−1
T L∞

x

+ ‖v‖α−1

Lα−1
T L∞

x

)
+ ‖w − w′‖Lα−1

T L∞
x

(‖u‖L∞
T Ḃsc,1

2
‖u‖α−2

Lα−1
T L∞

x

+ ‖v‖L∞
T Ḃsc,1

2
‖v‖α−2

Lα−1
T L∞

x

)
.

Note that the smallness comes from the || · ||α−k factors, with k = 1, 2. Hence,
by the fixed point theorem, there exists a unique w in the small ball such that
φ(w) = w and thus u set as u = eitΔu0+w is a solution to the nonlinear Schrödinger
equation (2.1) that satisfies

(2.6) u = eitΔu0 +

∫
s<t

ei(t−s)ΔF (u(s)) ds.

Now, we will show that if the initial data u0 ∈ H1
0 , then the solution u remains

in H1
0 . In fact, if u0 ∈ H1

0 then u0 ∈ L2 = Ḃ0,2
2 and u0 ∈ Ḣ1 = Ḃ1,2

2 (from now
on Ḣ1 will always correspond to Ḣ1

0 ). Using the interpolation inequality

‖u0‖Ḃsc,1
2

� ‖u0‖scḂ1,∞
2

‖u0‖1−sc
Ḃ0,∞

2

and the fact that

‖u0‖Ḃ1,∞
2

≤ ‖u0‖Ḃ1,2
2

and ‖u0‖Ḃ0,∞
2

≤ ‖u0‖Ḃ0,2
2
,
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we get that
‖u0‖Ḃsc,1

2
� ‖u0‖scḢ1

‖u0‖1−sc
L2 .

Thus u0 ∈ Ḃsc,1
2 and the nonlinear equation (2.1) with initial data u0 ∈ H1

0 (Ω) has
a local solution in ET given by the Duhamel formula (2.6). Hence, we have

‖u‖CT Ḣ1 ≤ ‖u0‖Ḣ1 +
∥∥|u|3/(1−ε0)u

∥∥
L1

T Ḣ1 ≤ ‖u0‖Ḣ1 + ‖u‖3/(1−ε0)

L
3/(1−ε0)

T L∞
x

‖u‖L∞
T Ḣ1 ,

where the nonlinearity is again dealt with by Lemma 2.3 (with s = 1, p = q = 2).
We also have

‖u‖CTL2
x
≤ ‖u0‖L2

x
+ ‖u‖3/(1−ε0)

L
3/(1−ε0)

T L∞
x

‖u‖L∞
T L2

x
.

As the solution u is constructed such that its L
3/(1−ε0)
T L∞

x norm is sufficiently
small, the above inequalities yield that u ∈ C([0, T ];H1

0 ).

3. Scattering for the defocusing equation (proof of Theo-
rem 1.7)

In this section, we will show that for the defocusing case with initial data in H1
0

and for domains Ω exterior to star-shaped obstacles as well as for a class of almost
star-shaped obstacles (see Subsection 3.2.1), the solution to the nonlinear equation
scatters in H1

0 . To prove that is suffices to show that given any interval I of

time where the solution exists the L
3/(1−ε0)
I L∞

x norm is controlled by a universal
constant that is independent I. To achieve this we will use the conservation laws of
the mass and energy (1.3), as well as additional space-time control of the solution.

3.1. The case of star-shaped obstacles

For star-shaped obstacles, in addition to the conservation laws of the mass and
energy, we will use the fact that the L4

tL
8
x norm is controlled, which is a consequence

of the following result by Planchon and Vega [20]:

Proposition 3.1. (Planchon–Vega, [20]) Let Ω be R2\V , where V is a star-shaped
and bounded domain. Then the solution u of{

i∂tu+Δu = |u|p−1u p ≥ 1,

u|R×∂Ω = 0,

satisfies
‖D1/2(|u|2)‖L2

tL
2
x
�M3/4E1/4,

where u is extended by zero for x �∈ Ω to make sense of the half-derivative operator.

Remark 3.2. Remark that this result is also true for the linear equation, and it
plays the key role in proving the Lp−1

t L∞
x (with p− 1 ≥ 4) Strichartz estimate for

star-shaped obstacles in their paper. This is what restricted the range of p in [20],
whereas the result of Blair, Smith, and Sogge (Theorem 1.1) allows us to get that
estimate with a p > 4.
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This proposition combined with a Sobolev embedding yields that

‖u‖L4
IL

8
x
�M3/8E1/8.

Hence we now know that the solution u to the defocusing equation exterior to
star-shaped obstacles is such that

u ∈ L4
IL

8
x ∩ L∞

I Ḣ
1 .

But, using the fact that L8 is continuously included in Ḃ0,8
8 and Ḣ1 = Ḃ1,2

2 , as
well as the following inequalities for Besov spaces:

q1 ≤ q2 =⇒ ‖u‖Ḃs,q2
p

≤ ‖u‖Ḃs,q1
p

,

p1 ≤ p2 =⇒ ‖u‖
Ḃ

s−n(1/p1−1/p2),q
p2

� ‖u‖Ḃs,q
p1
,

we get the following continuous embeddings:

L8
x ⊂ Ḃ−1/4,∞

∞ and Ḣ1 ⊂ Ḃ0,∞
∞ .

So, the solution u is such that

u ∈ L4
I(Ḃ

−1/4,∞
∞ ) ∩ L∞

I (Ḃ0,∞
∞ ) .

Thus using the well-known interpolation inequalities for Lebesgue and Besov
spaces, we get that

u ∈ Lq
I(Ḃ

γ,∞
∞ ) ,

with
1

q
=
α

4
+

1− α

∞ =
α

4
and γ =

−α
4

+ 0× (1− α) =
−α
4

for any α ∈ (0, 1). We conveniently choose α = 8
9 (1− ε0) (based on the scaling of

the space L
3/(1−ε0)
T L∞

x ), and get that u ∈ L
9

2(1−ε0)

I

(
Ḃ

− 2
9 (1−ε0),∞

∞
)
, and

‖u‖
L

9
2(1−ε0)

I Ḃ
− 2

9
(1−ε0),∞

∞
� ‖u‖α

L4
I(Ḃ

−1/4,∞
∞ )

‖u‖1−α

L∞
I (Ḃ0,∞

∞ )

� ‖u‖αL4
IL

8
x
‖u‖1−α

L∞
I Ḣ1

≤ C(M,E) .(3.1)

Now, given any interval I of time where the solution exists, and given any η > 0
there is a finite number of disjoint intervals I1, . . . , IN such that ∪N

j=1Ij = I with
N = N(η) and

‖u‖
L

9
2(1−ε0)

Ij
Ḃ

− 2
9
(1−ε0),∞

∞
= η, j < N(η),

‖u‖
L

9
2(1−ε0)

Ij
Ḃ

− 2
9
(1−ε0),∞

∞
≤ η, j = N(η).

Hence, due to (3.1),
N(η) � C(M,E)η−1.

Now, we fix an ε (to be chosen later) such that 0 < ε < ε0 and we introduce the
following lemma:
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Lemma 3.3. Let Ω = R
2 \ V , where V is a non-trapping obstacle with smooth

boundary, and Δ is the Dirichlet laplacian. Then for eitΔf solution to the linear
Schrödinger equation with initial data f , we have

(3.2) ‖eitΔf‖
L

3/(1−ε)
t Ḃ

2(ε0−ε)/3,1
∞

� ‖f‖Ḃsc,1
2

Proof. To prove this we will use again the Blair–Smith–Sogge estimate on a dyadic
block Δjf :

‖Δj(e
itΔf)‖

L
3/(1−ε)
t L

2/ε
x

� 2j(1−ε)/3 ‖Δjf‖L2.

Thus,
2j(2ε0+ε)/3 ‖Δj(e

itΔf)‖
L

3/(1−ε)
t L

2/ε
x

� 2j(1+2ε0)/3 ‖Δjf‖L2 .

But by Bernstein we have

‖Δj(e
itΔf)‖L∞

x
� 2jε‖Δj(e

itΔf)‖
L

2/ε
x

hence

2
2(ε0−ε)

3 j ‖Δj(e
itΔf)‖

L
3

1−ε
t L∞

x

� 2
2ε0+ε

3 j ‖Δj(e
itΔf)‖

L
3

1−ε
t L

2/ε
x

� 2
1+2ε0

3 j ‖Δjf‖L2
x

and thus get

‖eitΔf‖
L

3/(1−ε)
t Ḃ

2(ε0−ε)/3,1
∞

≤
∑
j

22j(ε0−ε)/3 ‖Δj(e
itΔf)‖

L
3/(1−ε)
t L∞

x
� ‖f‖Ḃsc,1

2
. �

Using the Duhamel formula (2.6) and the above estimate (3.2) shows that the

solution we constructed locally is also in L
3/(1−ε)
I Ḃ

2(ε0−ε)/3,1
∞ , and in particular we

have by Duhamel on Jj(t) = [tj , t] ⊂ Ij = [tj , tj+1):

(3.3) ‖u‖
L

3/(1−ε)

Jj(t)
Ḃ

2(ε0−ε)/3,1
∞

� ‖u(tj)‖Ḃsc,1
2

+ ‖u‖3/(1−ε0)

L
3/(1−ε0)

Jj(t)
L∞

x

‖u‖L∞
Jj(t)

Ḃsc,1
2

.

On the other hand, we have the following interpolation inequality:

‖u‖Ḃ0,1
∞ � ‖u‖β

Ḃ
− 2

9
(1−ε0),∞

∞
‖u‖1−β

Ḃ
2
3
(ε0−ε),∞

∞

with 0 = − 2
9β(1− ε0) +

2
3 (1− β)(ε0 − ε). For simplicity, we choose ε = 2ε0/3, and

thus β = ε0. Using the fact that Ḃ0,1
∞ is continuously included in L∞ and that

‖u‖
Ḃ

2
9
ε0,∞

∞
≤ ‖u‖

Ḃ
2
9
ε0,1

∞

we get that
‖u‖L∞

x
� ‖u‖ε0

Ḃ
−2

9
(1−ε0),∞

∞
‖u‖1−ε0

Ḃ
2
9
ε0,1

∞

hence,

(3.4) ‖u‖
L

3/(1−ε0)

Jj(t)
L∞

x

� ‖u‖ε0
L

9
2(1−ε0)

Jj(t)
Ḃ

− 2
9
(1−ε0),∞

∞

‖u‖1−ε0

L
3/(1−ε)

Jj(t)
Ḃ

2
9
ε0,1

∞
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Note that n(t) = ‖u‖
L

3/(1−ε0)

Jj(t)
L∞

x

is a continuous function and n(tj) = 0. Now,

since

‖u‖Ḃsc,1
2

� ‖u‖sc
Ḣ1

‖u‖1−sc
L2 ≤ K ,

where K is a constant that depends on the conserved mass and energy, (3.3)
and (3.4) yield

‖u‖
L

3/(1−ε0)

Jj(t)
L∞

x

� ‖u‖ε0
L

9
2(1−ε0)

Jj(t)
Ḃ

− 2
9
(1−ε0),∞

∞

K1−ε0
(
1 + ‖u‖3/(1−ε0)

L
3/(1−ε0)

Jj(t)
L∞

x

)1−ε0

� ηε0 K1−ε0
(
1 + ‖u‖3

L
3/(1−ε0)

Jj(t)
L∞

x

)
.

Choosing η such that ηε0K1−ε0 is small enough, we conclude that ‖u‖
L

3/(1−ε0)

Ij
L∞

x

remains bounded by a universal constant C1 independent of the time interval of
existence I. Therefore,

‖u‖
L

3/(1−ε0)

I L∞
x

≤ C1N � C(M,E).

Hence, our global solution satisfies

‖u‖
L

3/(1−ε0)

R
L∞

x

≤ C(M,E).

Finally, defining u+ ∈ H1
0 as

u+ = u0 +

∫ ∞

0

eiτΔ|u|p−1u(τ) dτ

and similarly for u−, we get the scattering

‖u(·, t)− eitΔu±‖ = o(1) t→ ±∞.

3.2. The case of almost star-shaped obstacles

In this section, we will prove the scattering for the defocusing equation for almost
star-shaped obstacles V satisfying the following geometric condition: given an ε
such that 0 < ε < 1,

(3.5) (x1, εx2) · nx > 0 for x = (x1, x2) ∈ ∂V

where nx is the exterior unit normal to ∂V .

In this case, we lost the L4
tL

8
x control which was obtained under the star-shaped

assumption. However, we will establish a similar control in some La
tL

b
x norm that

will play the same role in proving the scattering.
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3.2.1. Geometry of the obstacle. In 1969, Ivrii introduced the notion of al-
most star-shaped obstacles in the setting of the linear wave equation. He proved
in [14] local energy decay results for domains exterior to such obstacles in odd
dimensions n > 1. An almost star-shaped obstacle V (Ω = R

n \ V ) is defined as
follows:

Definition 3.4. A bounded open region V with a boundary in class C1 is said
to be almost star-shaped if there exists a D bounded open neighborhood of V , a
real-valued function φ ∈ C2(D ∩ Ω) and a constant c0 such that:

• φ(x) < c0, x ∈ D ∩ Ω, φ(x) = c0, x ∈ ∂D.

• |∇φ(x)| ≥ const > 0, x ∈ D ∩ Ω.

• The level surfaces φ(x) = c are strongly convex; the radius of curvature in
all directions at all points of Ω ∩D is uniformly bounded from above.

• At points of intersection of the level surfaces with ∂V their outer normals
and the outer normal to ∂V form an angle which is not greater than a right
angle.

These obstacles are a natural generalization of the star-shaped obstacles. If
the level surfaces are spheres with a common center, then V is star-shaped and
conversely. According to the above definition, an almost star-shaped obstacle
with ellipses as level surfaces satisfies the geometric condition (3.5), where the
strict inequality corresponds to an angle strictly less than a right angle in the 4th
condition of Definition 3.4. More explicitly, the function φ is given by φ(x) =√
x21 + εx22 and this corresponds to what is called the gauge function of the convex

body delimited by the ellipse given by the equation x21 + εx22 = c2.

We also remark that the case of almost star-shaped obstacles corresponds to
the works of Strauss [21] and Morawetz [17] that followed in 1975 (independently
of Ivrii’s work which was unknown to them at that time) on local energy decay
for the linear wave equation. Moreover, in the same setting and around the same
time in the 70’s, another generalization to the star-shaped case was introduced
which is the illuminating geometry. Decay results were obtained for the so-called
illuminated from interior and illuminated from exterior obstacles (see [3], [4], [16]).
Furthermore, scattering results were recently obtained for the 3D critical nonlinear
wave equation in domains exterior to such obstacles ([1]). However, we opted
to work here with almost star-shaped obstacles and use the gauge function of
the ellipse rather than the illuminating geometry (that would impose using the
distance to the ellipse) mainly because the computation is much easier with the
gauge function. The dog bone like obstacle in Figure 1 below is an almost star-
shaped obstacle (and also illuminated from interior).

3.2.2. Space-time control of the solution. In this part, we will prove that
the norm of u in some La

tL
b
x is controlled by a constant depending on the mass

and the energy. This will be a consequence of the following proposition which is
an alternative to Proposition 3.1 that is restricted to the star-shaped case:
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Figure 1. Dog bone.

Proposition 3.5. Let Ω be R2\V , with V is an obstacle satisfying condition (3.5).
Assume u is a solution to{

i∂tu+Δu = α|u|p−1u in Ω, p > 1,

u|R×∂Ω = 0,

with α = {0, 1}. Then we have

(3.6) ‖D−1/2(|v|2)‖L2
t,X

�M7/4E1/4 ,

where v(X) = v(x, y) = u(x)u(y) is the solution to{
i∂tv +Δv = α

(|u|p−1(x) + |u|p−1(y)
)
v in Ω× Ω,

v|∂(Ω×Ω) = 0,

and where we extend v(·) by zero for x �∈ Ω or y �∈ Ω, so that (3.6) makes sense
for x ∈ R

4.

This proposition means that (the extension to R
4 of) |v|2 ∈ L2

t Ḣ
−1/2
X and its

norm is controlled by a constant depending on the mass and the energy of the
solution u.

From now on we will use the notation C(M,E) to denote a constant that
depends on the conserved mass and energy of u. This constant may vary from line
to line. Moreover, all implicit constants are allowed to depend on the geometry
of the obstacle (in particular, they may and will depend on ε appearing in (3.5)).
Finally, we also have:

Lemma 3.6. Let v be again the extension by zero of our solution v to the whole
space R

4. Then |v|2 ∈ L∞
t H

s
X , ∀ 0 < s < 1 and its norm is controlled by C(M,E).

Proof. We have u ∈ H1 thus, ∀0 < s < 1, u ∈ Hs and consequently (by Sobolev
embedding), u ∈ Lm for all m < ∞. Now, given any 2 < p < ∞, we can easily
prove that |u|2 ∈ Lp(R2) and |u|2 ∈ W 1,q(R2) with 1/q = 1/2 + 1/p. Hence, by
Sobolev interpolation inequality, |u|2 ∈ H1−2/p(R2). So, for any 0 < s < 1, we
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have |u|2 ∈ Hs and its norm is controlled by C(M,E). Now, we have

∥∥ |v|2∥∥2
Ḣs =

∫
R4

(|ξ|2 + |ζ|2)s∣∣ |̂v|2(ξ, ζ)∣∣2 dξ dζ
≤ Cs

∫
R4

(|ξ|2s + |ζ|2s)∣∣ |̂u|2(ξ)∣∣2∣∣ |̂u|2(ζ)∣∣2 dξ dζ
≤ 2Cs

∥∥ |u|2∥∥2
Ḣs(R2)

‖u‖4L4(R2) ≤ C(M,E) ,

and it is easy to see that∥∥ |v|2∥∥
L2(R4)

= ‖u‖4L4(R2) ≤ C(M,E) . �

Fix 0 < s < 1 to be chosen later. We have∥∥ |v|2∥∥
L

(1+2s)/s
t L2

X

�
∥∥ |v|2∥∥2s/(1+2s)

L2
t Ḣ

−1/2
X

∥∥ |v|2∥∥1−2s/(1+2s)

L∞
t Hs

X

≤ C(M,E) .

Consequently, we get our desired control (which now makes sense irrespective of
x ∈ R

2 or x ∈ Ω)
‖u‖

L
4(1+2s)/s
t L4

x
≤ C(M,E).

Now, we are ready to continue the proof which is practically the same as in Sec-
tion 3.1. The solution u is such that

u ∈ L
4(1+2s)/s
I L4

x ∩ L∞
I Ḣ

1 .

So
u ∈ L

4(1+2s)/s
I (Ḃ−1/2,∞

∞ ) ∩ L∞
I (Ḃ0,∞

∞ ) .

Using the well known interpolation inequalities for Lebesgue and Besov spaces,
we get that

‖u‖Lq
I(Ḃ

γ,∞
∞ ) ≤ C(M,E)

with q = 4(1 + 2s)/(sα) and γ = −α/2 for any α ∈]0, 1[. Here, the conve-
nient choice is α = 4

3 (1− ε0)(1 + 2s)/(1 + 3s) based on the scaling of the space

L
3/(1−ε0)
T L∞

x . However, to assure that 0 < α < 1, we need to choose s such that
(1− 4ε0)/(1 + 8ε0) < s < 1. Note that when 1/4 ≤ ε0 < 1 (p ≥ 5) any 0 < s < 1
will do, but for 0 < ε0 < 1/4 (4 < p < 5), we have a restriction on the choice
of s. Now, as in Section 3.1, we decompose any given interval I of time where
the solution exists: Given any η > 0 there is a finite number of disjoint intervals
I1, . . . , IN such that ∪N

j=1Ij = I with N = N(η) and

‖u‖Lq
Ij

Ḃγ,∞
∞ = η, j < N(η), and ‖u‖Lq

Ij
Ḃγ,∞

∞ ≤ η, j = N(η).

On the other hand, recalling that Jj(t) = [tj , t], (3.3) still holds

‖u‖
L

3/(1−ε)

Jj(t)
Ḃ

2(ε0−ε)/3,1
∞

� ‖u(tj)‖Ḃsc,1
2

+ ‖u‖3/(1−ε0)

L
3/(1−ε0)

Jj(t)
L∞

x

‖u‖L∞
Jj(t)

Ḃsc,1
2

.
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We choose ε = sε0/(1 + 3s) < ε0 and we get the following inequality:

‖u‖L∞ � ‖u‖ε0
Ḃγ,∞

∞
‖u‖1−ε0

Ḃ
2
3
(ε0−ε),1

∞
.

Hence
‖u‖

L
3/(1−ε0)

Jj(t)
L∞

x

� ‖u‖ε0
Lq

Jj(t)
Ḃγ,∞

∞
‖u‖1−ε0

L
3/(1−ε)

Jj(t)
Ḃ

2
3
(ε0−ε),1

∞
,

and the rest follows exactly as in Section 3.1.

3.2.3. Proof of Proposition 3.5. In this section we will provide the proof of
Proposition 3.5 following an approach similar to one used by Planchon and Vega
in [20] to prove Proposition 3.1. First, we will state the following remark that will
be useful in our computations:

Remark 3.7. If H is a function in R
2n of the form

H(x) =
√
x21 + · · ·+ x2n + ε (x2n+1 + · · ·+ x22n)

with 0 < ε < 1. Then,

Δ2H =
A

H3
+
B(x2n+1 + · · ·+ x22n)

H5
+
C(x2n+1 + · · ·+ x22n)

2

H7
,

with

A = −n(n+ 2)ε2 − 2n(n− 3)ε− n2 + 4n− 3,

B = 2ε(ε− 1)(3(ε+ 1)(n+ 2)− 15),

C = −15ε2(ε− 1)2 < 0.

Moreover, when n ≥ 3 then A,B < 0 ∀ 0 < ε < 1, and hence Δ2H < 0.

Now, we have the following proposition:

Proposition 3.8. Let Ω be R2\V , with V is an obstacle satisfying condition (3.5).
Assume u is a solution to{

i∂tu+Δu = α|u|p−1u in Ω, p > 1,

u|R×∂Ω = 0,

with α = {0, 1}. Then we have the estimate

(3.7)

∫∫
∂Ω×Ω×Ω×Ω

|∂n∂V
u(x)|2

ρ1(x, y, z, w)
|u(y)|2|u(z)|2|u(w)|2 dσx dy dz dw dt �M7/2E1/2

where

ρ1(x, y, z, w) =
√
x21 + y21 + z21 + w2

1 + ε(x22 + y22 + z22 + w2
2)

and M and E are the conserved mass and energy.
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Proof. First, define v(x, y) = u(x)u(y) solution to the problem{
i∂tv +Δv = α(|u|p−1(x) + |u|p−1(y))v in Ω× Ω,

v|∂(Ω×Ω) = 0.

For star-shaped obstacles, in order to obtain local smoothing near the boundary,
Planchon and Vega ([20]) considered∫

Ω×Ω

|v|2(x, y, t)h(x, y) dx dy ,

with h(x, y) =
√|x|2 + |y|2, and computed the double derivative with respect

to time of the 4D integral thus overcoming the problem of the wrong sign of
the bilaplacian in 2D. To generalize their procedure to obstacles satisfying con-
dition (3.5), we should take a weight of the form

√
x21 + εx22 + y21 + εy22 to ensure

that the boundary term has a right sign. However, this will not be enough to cover
all epsilons with 0 < ε < 1 since the bilaplacian will not always have the right
sign (see Remark 3.7). This problem can be solved by increasing the dimension
through applying the tensor product technique again. Remark that to ensure a
right sign of the bilaplacian it is enough to be in 6D; but to preserve the symmetry
of the computations (which is essential in Proposition 3.5), we will apply the ten-
sor product technique again for v. Thus we define U(x, y, z, w) = v(x, y)v(z, w) =
u(x)u(y)u(z)u(w) solution to the 8D problem{

i∂tU +ΔU = αN(u)U in Ω× Ω× Ω× Ω,

U |∂(Ω×Ω×Ω×Ω) = 0,

with
N(u) = |u|p−1(x) + |u|p−1(y) + |u|p−1(z) + |u|p−1(w).

Now, we consider

Mρ1(t) =

∫
Ω×Ω×Ω×Ω

|U |2(x, y, z, w, t) ρ1(x, y, z, w) dx dy dz dw

for

ρ1 =
√
x21 + y21 + z21 + w2

1 + ε(x22 + y22 + z22 + w2
2)

with x = (x1, x2), y = (y1, y2), z = (z1, z2), w = (w1, w2), and we compute
d2

dt2Mρ1(t). This is a standard computation and similar to the one [19] and [20], up
to slight modifications to the nonlinear term. We replicate this computation here
so that the argument will be self-contained: we have

i ∂t(|U |2) = UΔU − UΔU = div(U∇U − U∇U) = −2i div(ImU∇U) .

Hence, by integration by parts and using the Dirichlet boundary condition, we get

d

dt
Mρ1(t) = −2 Im

∫
ρ1div(U∇U) = 2 Im

∫
U∇U · ∇ρ1 .
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Now,

d2

dt2
Mρ1(t) = 2 Im

∫
(∂tU∇U+U∇∂tU) · ∇ρ1 = −2 Im

∫
∂tU(2∇U · ∇ρ1 + UΔρ1)

= −2Re

∫
(ΔU − αN(u)U)(2∇U · ∇ρ1 + UΔρ1)

= −4Re

∫
ΔU∇U · ∇ρ1 + 2

∫
|∇U |2Δρ1 + 2Re

∫
U∇U · ∇(Δρ1)

+ 2α

∫
N(u)∇(|U |2)∇ρ1 + 2α

∫
N(u)|U |2Δρ1

= −4Re

∫
ΔU∇U · ∇ρ1 + 2

∫
|∇U |2Δρ1 −

∫
|U |2Δ2ρ1 − 2α

∫
|U |2∇N · ∇ρ1.

Integrating by parts again,∫
ΔU∇U · ∇ρ1 = −

∫
|∂nU |2∂nρ1 −

∫
∇U · ∇(∇U · ∇ρ1) ,

where n is the normal pointing into the domain. Thus

2Re

∫
ΔU∇U · ∇ρ1 = −2

∫
|∂nU |2∂nρ1 −

∫
∇(|∇U |2) · ∇ρ1

− 2

∫
Hess ρ1(∇U,∇U)

= −2

∫
|∂nU |2∂nρ1 +

∫
|∇U |2Δρ1 − 2

∫
Hess ρ1(∇U,∇U) .

Moreover, by integrating by parts we have

−2α

∫
|U |2∇N · ∇ρ1 =

2(p− 1)

p+ 1
α

∫
|U |2(|u|p−1(x)Δxρ1 + |u|p−1(y)Δyρ1

+ |u|p−1(z)Δzρ1 + |u|p−1(w)Δwρ1
)
,

and we finally obtain

d2

dt2
Mρ1(t) = −

∫
|U |2Δ2ρ1 + 2

∫
|∂nU |2∂nρ1 + 4

∫
Hess ρ1(∇U,∇U)

+
2(p− 1)

p+ 1
α

∫
|U |2(|u|p−1(x)Δxρ1 + |u|p−1(y)Δyρ1(3.8)

+ |u|p−1(z)Δzρ1 + |u|p−1(w)Δwρ1
)
.

From our choice of the convex function ρ1 we have that the terms with the Hessian
as well as those with the laplacian are positive.

We also have from Remark 3.7 that the 8D bilaplacian (n = 4) Δ2ρ1 is negative
for all 0 < ε < 1. Now, we deal with boundary term. First, we look at the term
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∂nρ1, with n the normal pointing into Ω× Ω× Ω× Ω. We have

n = (nx, 0, 0, 0) if x ∈ ∂Ω, y, z, w ∈ Ω,

n = (0, ny, 0, 0) if y ∈ ∂Ω, x, z, w ∈ Ω,

n = (0, 0, nz, 0) if z ∈ ∂Ω, x, y, w ∈ Ω,

n = (0, 0, 0, nw) if w ∈ ∂Ω, x, y, z ∈ Ω.

Hence, if x ∈ ∂Ω,

∂nρ1 =
(x1, εx2) · nx

ρ1
,

which is strictly positive by the geometric condition we imposed (3.5). Moreover,

∂nρ1 ≥ C

ρ1
,

and we also have

|∂nU |2 = |∂nxu(x)|2|u(y)|2|u(z)|2|u(w)|2,
and we deal similarly when y, z, or w ∈ ∂Ω. Hence, (3.8) yields∫ ∫

∂Ω×Ω×Ω×Ω

|∂nxu(x)|2
ρ1

|u(y)|2|u(z)|2|u(w)|2 dσ dt �M7/2E1/2 ,

which ends the proof of Proposition 3.8. �

Due to the fact that we are doing the tensor product technique more than once,
and we are dealing now with four 2D variables, we will need extra estimates on
the boundary. We have the following proposition:

Proposition 3.9. Under the conditions of Proposition 3.8, we have the estimate

(3.9)

∫∫
∂Ω×Ω×Ω×Ω

|∂nxu(x)|2|u(y)|2|u(z)|2|u(w)|2√|x|2 + |z|2 + |y ± w|2 dσx dy dz dw dt �M7/2E1/2 .

Remark 3.10. Remark that Proposition 3.9 is obviously improving over Propo-
sition 3.8, as the new weight has less decay in some directions (actually, no decay
in direction y − w or y + w for example!), whereas ρ1 is uniformly decaying in all
directions.

Proof. To prove the estimates (3.9), we do the same standard procedure as in
Proposition 3.8 with the weight ρ2 defined as

ρ2 =

√
x21 + εx22 + z21 + εz22 +

(y1 − w1√
2

)2

+ ε
(y2 − w2√

2

)2

+

√
x21 + εx22 + z21 + εz22 +

(y1 + w1√
2

)2

+ ε
(y2 + w2√

2

)2

:= ρ−2 + ρ+2 .
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Again, we consider

Mρ2(t) =

∫
Ω×Ω×Ω×Ω

|U |2(x, y, z, w, t) ρ2(x, y, z, w) dx dy dz dw ,

and we compute d2

dt2 Mρ2(t) to get

d2

dt2
Mρ2(t) = −

∫
|U |2Δ2ρ2 + 2

∫
|∂nU |2∂nρ2 + 4

∫
Hess ρ2(∇U,∇U)

+
2(p− 1)

p+ 1
α

∫
|U |2(|u|p−1(x)Δxρ2 + |u|p−1(y)Δyρ2(3.10)

+ |u|p−1(z)Δzρ2 + |u|p−1(w)Δwρ2
)
.

Note that ρ2 is convex thus the Hessian is positive, and the terms with the laplacian
are positive as well. As for the term of the bilaplacian, note that the functions ρ−2
and ρ+2 of (x, y, z, w) can be also viewed as functions of(

x, z,
y − w√

2
,
y + w√

2

)
:= (ξ1, ξ2, ξ3, ξ4) ,

with ∇ξ3ρ
+
2 = 0 and ∇ξ4ρ

−
2 = 0. Since the bilaplacian in invariant under rotation,

we have

Δ2
x,y,z,wρ

−
2 = Δ2

ξ1,ξ2,ξ3,ξ4ρ
−
2 = Δ2

ξ1,ξ2,ξ3

(√
ξ211 + ξ221 + ξ231 + ε(ξ212 + ξ222 + ξ232)

)
and by Remark 3.7, this 6D bilaplacian (n = 3) is negative. Similarly, Δ2ρ+2 < 0,
hence we have Δ2ρ2 < 0.

Now, we deal the boundary term in (3.10). First, we want to control the terms
we get on the boundary when (y, w) ∈ ∂(Ω× Ω). If y ∈ ∂Ω, then

∇yρ2 =
1

2ρ−2

(
y1 − w1, ε(y2 − w2)

)
+

1

2ρ+2

(
y1 + w1, ε(y2 + w2)

)
.

Introduce

γ =

√
x21 + εx22 + z21 + εz22 +

1

2

(
y21 + εy22 + w2

1 + εw2
2

)
.

Thus,

ρ−2 = γ

√
1− y1w1 + εy2w2

γ2
and ρ+2 = γ

√
1 +

y1w1 + εy2w2

γ2
.

Now, we write

1

ρ±2
=

1

γ
+

1

γ

( 1√
1± (y1w1 + εy2w2)/γ2

− 1
)
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and substitute in ∇yρ2 to get

∇yρ2 =
(y1, εy2)

γ

+
(y1, εy2)

2

[ 1
γ

( 1√
1−(y1w1+εy2w2)/γ2

− 1
)
+

1

γ

( 1√
1+(y1w1+εy2w2)/γ2

− 1
)]

+
(w1, εw2)

2

[ 1
γ

( 1√
1+(y1w1+εy2w2)/γ2

− 1
)
− 1

γ

( 1√
1−(y1w1+εy2w2)/γ2

− 1
)]
.

Using the fact the y is bounded and γ is large enough, there exists a positive
constant c such that |y1w1 + εy2w2|

γ2
≤ c

γ
< 1 ,

and thus∣∣∣ 1
γ

( 1√
1± (y1w1 + εy2w2)/γ2

− 1
)∣∣∣ ≤ ∣∣∣ 1

γ

( 1√
1− c/γ

− 1
)∣∣∣ � 1

γ2
.

This implies that

|∇yρ2| � 1

γ
≤

√
2

ρ1
,

so the boundary term obtained when y ∈ ∂Ω is controlled by Proposition 3.8:∫ ∫
Ω×∂Ω×Ω×Ω

|u(x)|2|∂nyu(y)|2|u(z)|2|u(w)|2|∂nρ2| dx dσy dz dw dt

�
∫ ∫

Ω×∂Ω×Ω×Ω

|u(x)|2|∂nyu(y)|2|u(z)|2|u(w)|2
ρ1

dx dσy dz dw dt �M7/2E1/2 ;

similarly for the boundary term generated when w ∈ ∂Ω.
Now, when x ∈ ∂Ω,

∂nρ2 = ∇xρ2 · nx =
( 1

ρ−2
+

1

ρ+2

)
(x1, εx2) · nx .

Again by the geometry of the obstacle, we have (x1, εx2) · nx > 0 and thus

∂nρ2 � 1

ρ−2
+

1

ρ+2
�ε

1√|x|2 + |z|2 + |y − w|2 +
1√|x|2 + |z|2 + |y + w|2

and
|∂nU |2 = |∂nxu(x)|2|u(y)|2|u(z)|2|u(w)|2 ,

and we deal similarly when z ∈ ∂Ω. So, finally (3.10) yields∫ ∫
∂Ω×Ω×Ω×Ω

|∂nxu(x)|2|u(y)|2|u(z)|2|u(w)|2√|x|2 + |z|2 + |y − w|2 dσx dy dz dw dt

+

∫ ∫
∂Ω×Ω×Ω×Ω

|∂nxu(x)|2|u(y)|2|u(z)|2|u(w)|2√|x|2 + |z|2 + |y + w|2 dσx dy dz dw dt �M7/2E1/2.

�
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Now, we are ready to prove Proposition 3.5. We proceed in a similar argument
to that in previous propositions. We consider

Mρ(t) =

∫
(Ω×Ω)×(Ω×Ω)

|U |2(X,Y, t) ρ(X,Y ) dX dY ,

where U(X,Y ) = v(X)v(Y ) = u(x)u(y)u(z)u(w), with X = (x, y), Y = (z, w) ∈
Ω× Ω, is the solution to the problem{

i∂tU +ΔU = αN(u)U in Ω× Ω× Ω× Ω,

U |∂(Ω×Ω×Ω×Ω) = 0,

with
N(u) = |u|p−1(x) + |u|p−1(y) + |u|p−1(z) + |u|p−1(w)

for

ρ(X,Y ) = |X − Y |+ |X ′ + Y |+ |X ′ − Y |+ |X + Y |
=

√
|x− z|2 + |y − w|2 +

√
|x+ z|2 + |y − w|2

+
√
|x− z|2 + |y + w|2 +

√
|x+ z|2 + |y + w|2 ,

where X ′ = (x,−y). Doing the same standard computation, we get

d2

dt2
Mρ(t) = −

∫
|U |2Δ2ρ+ 2

∫
|∂nU |2∂n ρ+ 4

∫
Hess ρ(∇U,∇U)

+
2(p− 1)

p+ 1
α

∫
|U |2(|u|p−1(x)Δxρ+ |u|p−1(y)Δyρ(3.11)

+ |u|p−1(z)Δz ρ+ |u|p−1(w)Δwρ
)
.

The weight ρ is convex and thus the Hessian term and the laplacian terms are
positive. Moreover, we have

−Δ2ρ = 12
( 1

|X − Y |3 +
1

|X ′ + Y |3 +
1

|X ′ − Y |3 +
1

|X + Y |3
)
.

Now, we control the boundary term. If x ∈ ∂Ω and y, z, w ∈ Ω then ∂nρ = ∇xρ ·nx

and we have

∇xρ =
x− z

|X − Y | +
x+ z

|X ′ + Y | +
x− z

|X ′ − Y | +
x+ z

|X + Y | .

Setting λ2− = |x|2 + |z|2 + |y − w|2 and λ2+ = |x|2 + |z|2 + |y + w|2, we have

|X − Y |2 = λ2−
(
1− 2x · z

λ2−

)
, |X ′ + Y |2 = λ2−

(
1 +

2x · z
λ2−

)
,

|X ′ − Y |2 = λ2+

(
1− 2x · z

λ2+

)
, |X + Y |2 = λ2+

(
1 +

2x · z
λ2+

)
.
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Reasoning as in Proposition 3.9, we write

1

|X ± Y | =
1

λ±
+

1

λ±

( 1√
1± 2x · z/λ2±

− 1
)

and
1

|X ′ ± Y | =
1

λ∓
+

1

λ∓

( 1√
1± 2x · z/λ2∓

− 1
)
,

and we substitute in∇xρ which yields some convenient cancellations in the z terms.
Then, using the fact that |x| is under control and λ± are large enough, there exists
a positive constant c′ such that

|2x · z|
λ2±

≤ c′

λ±
< 1

and thus ∣∣∣ 1

λ−

( 1√
1± 2x · z/λ2−

− 1
)∣∣∣ ≤ ∣∣∣ 1

λ−

( 1√
1− c′/λ−

− 1
)∣∣∣ � 1

λ2−
,

and similarly for λ+. This yields

|∇xρ| � 1

λ−
+

1

λ+
,

and thus the boundary term generated when x ∈ ∂Ω is controlled by (3.9) of
Proposition 3.9, and similarly when z ∈ ∂Ω.

Now, when y ∈ ∂Ω or w ∈ ∂Ω, we do a similar procedure but with

λ̃2± = |y|2 + |w|2 + |x± z|2,

and we get the same control on the boundary terms by Proposition 3.9. So, fi-
nally, (3.11) yields∫ ∫

(Ω×Ω)×(Ω×Ω)

|v(X)|2|v(Y )|2
|X − Y |3 dX dY dt �M7/2E1/2 ,

which actually holds on R
4 ×R

4 provided we extend v by zero inside the obstacle.
Then, by Plancherel’s theorem we get

‖D−1/2(|v|2)‖2L2
t,X

�M7/2E1/2,

which ends the proof of Proposition 3.5.
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