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The Dirichlet problem with BMO boundary data
and almost-real coefficients

Ariel Barton

Abstract. It is known that a function, harmonic in a Lipschitz domain,
is the Poisson extension of a BMO function if and only if its gradient
satisfies a Carleson-measure condition. We show that the same is true
of functions that satisfy elliptic equations in two-dimensional Lipschitz
domains, provided the coefficients are independent of one coordinate and
have small imaginary part.

1. Introduction

Consider the Dirichlet problem

(1.1)

{
divA∇u = 0 in V,

u = f on ∂V,

where A is a uniformly elliptic matrix, that is, where there exist constants Λ >
λ > 0 such that

(1.2) λ |η|2 ≤ Re η̄ · A(X) η, |ξ · A(X) η| ≤ Λ |ξ| |η|

for all X ∈ R2 and all η, ξ ∈ C2.

In this paper we study the Dirichlet problem (1.1) in the case where the bound-
ary data f lies in the space BMO of functions of bounded mean oscillation, where
the domain V is a two-dimensional Lipschitz domain, and where the coefficients A
are complex but have small imaginary part, and are t-independent in the sense
that

(1.3) A(x, t) = A(x, s) for all x, s, t ∈ R.
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This paper is an extension of the author’s earlier work [8], which instead considered
boundary data f in the Lebesgue space Lp(∂V ). The study of elliptic boundary-
value problems has a long and rich history; we refer the reader to Section 1.1 of [8]
for a more detailed history of the Dirichlet problem with boundary data in Lp(∂V ).

In this paper we will prove the following theorem.

Theorem 1.4. Suppose that A is t-independent and elliptic, and that V ⊂ R2 is
a two-dimensional Lipschitz domain with connected boundary.

Then there exist constants ε > 0 and C > 0, depending only on the con-
stants λ and Λ in the bound (1.2) and the Lipschitz character of V , such that if
‖ImA‖L∞ < ε, then the following holds.

For all f ∈ BMO(∂V ) there exists a function u that satisfies the conditions (1.1)
and such that, for all X0 ∈ ∂V and all r > 0,

(1.5)
1

σ
(
∂V ∩B(X0, r)

) ˆ
V ∩B(X0,r)

|∇u(X)|2 dist(X, ∂V ) dX ≤ C ‖f‖2BMO.

Furthermore, u is unique among solutions to the problem (1.1) for which the left-
hand side of (1.5) is bounded uniformly in X0 and r.

Conversely, if divA∇u = 0 in V and if

(1.6) sup
X0∈∂V

sup
r>0

1

σ
(
∂V ∩B(X0, r)

) ˆ
V ∩B(X0,r)

|∇u(X)|2 dist(X, ∂V ) dX ≤ C̃ 2,

then f = u
∣∣
∂V

exists and lies in BMO(∂V ), with ‖f‖BMO ≤ CC̃.

We will also establish the following maximum principle for such coefficients.

Theorem 1.7. Let A and V be as in Theorem 1.4. Then there is a constant
ε > 0 such that, if ‖ImA‖L∞ < ε, then for each f ∈ L∞(∂V ) there exists a unique
function u that solves the problem (1.1) and such that u ∈ L∞(V ). Furthermore,
there is a constant C such that

‖u‖L∞(V ) ≤ C ‖f‖L∞(∂V ).

In Theorems 1.4 and 1.7 the coefficients A are taken to be independent of
the second coordinate. We would like to emphasize that the domain V in these
theorems may be bounded, and thus the distinguished direction (in which A is
constant) need not be transverse to the boundary ∂V . This is the setting of the
papers [24], [34], [8], but is distinct from the setting of many other papers (such
as [23], [26], [6], [2], [3], [1], [33], [18], [20], [21], and [5]), where the coefficients A
are taken to be constant specifically in a direction transverse to the boundary.

We now review the history of the BMO-Dirichlet problem. In [15], Fefferman
proved that the Poisson extension of a BMO function in the upper half-space
satisfies the bound (1.5). In [13], Fabes, Johnson and Neri proved that a function u
harmonic in the upper half-space that satisfies the condition (1.6) was necessarily
the Poisson extension of a BMO function. Thus, Theorem 1.4 is valid for harmonic
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functions (that is, for A ≡ I) in the upper half-space. Later in [14], Fabes and
Neri extended these results to harmonic functions in arbitrary starlike Lipschitz
domains.

Many of the known results concerning the Dirichlet problem (1.1) for more
general coefficients involve boundary data in Lebesgue spaces Lp(∂V ), rather than
in BMO(∂V ). We say that the Lp-Dirichlet problem is well-posed if, for each
f ∈ Lp(∂V ), there exists a unique function u that solves the problem (1.1) and
such that the nontangential maximal function Nu lies in Lp(∂V ), where

Nu(X) = sup
{
|u(Y )| : |X − Y | < (1 + a) dist(Y, ∂V )

}
for some constant a > 0. The following result suggests a connection between the
Lp-Dirichlet problem and the BMO-Dirichlet problem of Theorem 1.4. Suppose
that V is a bounded Lipschitz domain (of arbitrary dimension), that X0 ∈ V , and
that the Lp-Dirichlet problem is well-posed in V for some real coefficient matrix A.
Then the inequalities

(1.8)
1

C

ˆ
∂V

Nu2 dσ ≤
ˆ
V

|∇u(X)|2 dist(X, ∂V ) dX ≤ C

ˆ
∂V

Nu2 dσ

are valid for any u that satisfies divA∇u = 0 in V and u(X0) = 0, where C depends
on A, V and X0. This was established by Dahlberg in [9] (for harmonic functions)
and by Dahlberg, Jerison and Kenig in [10] (for more general real coefficients).

In [24], Kenig, Koch, Pipher and Toro proved the converse: that if the esti-
mate (1.8) holds in all bounded Lipschitz domains V ⊂ Rn, for a given real elliptic
coefficient matrix A, then for each such V there is some p < ∞ such that the
Lp-Dirichlet problem is well-posed in V . We observe that under these conditions,
the BMO-Dirichlet problem is well-posed in all such domains. In the later part
of [24], the authors showed that the bound (1.8) holds in two-dimensional Lipschitz
domains for real t-independent coefficients. (In [20], the bound (1.8) was shown
to hold for real t-independent coefficients in higher dimensions, at least in the do-
main above a Lipschitz graph.) Thus, Theorem 1.4 follows from [24] under the
additional assumption that A is real-valued. We will use these results to generalize
to A with small imaginary part.

In [12], Dindos, Kenig, and Pipher found another relationship between the
BMO-Dirichlet problem and the Lp-Dirichlet problem for real coefficients. Specif-
ically, they showed that if A is an arbitrary coefficient matrix, elliptic and real-
valued but not necessarily t-independent, and if V is a Lipschitz domain, then
the BMO-Dirichlet problem is well-posed in V if and only if there is some p, with
1 < p <∞, such that the Lp-Dirichlet problem is well-posed in V .

The outline of this paper is as follows. In Section 2 we will define our terminol-
ogy and some important tools, and will review some known results. In Section 3,
we will prove the existence result of Theorem 1.4; that is, we will show that for
each f ∈ BMO(∂V ), there exists a function u that solves the problem (1.1) and
satisfies the bound (1.5). In Section 4, we will study functions u that satisfy the
bound (1.6); this will allow us to prove uniqueness of solutions and the converse
result of Theorem 1.4, and will also allow us to prove the maximum principle
(Theorem 1.7).
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The results in this paper were part of my dissertation work at the University
of Chicago. I would like to thank my advisor, Carlos Kenig, for his guidance and
advice. I would also like to thank Svitlana Mayboroda and the anonymous reviewer
for their comments, which have greatly improved the exposition of this paper.

2. Preliminaries

In this section, we will begin by defining our terminology. We will then remind
the reader of some known results concerning solutions to elliptic equations; we
will conclude this section by discussing layer potentials, an important tool in the
construction of solutions to boundary-value problems.

2.1. Definitions

We say that divA∇u = 0 in a domain V in the weak sense if

(2.1)

ˆ
∇η ·A∇u = 0 for all η ∈ C∞

0 (V ).

Thus, solutions u to the differential equation divA∇u = 0 need not be smooth;
they are only assumed to lie in the local Sobolev spaceW 2

1,loc(V ) of functions with
one weak derivative.

In this paper, we will work only in two-dimensional Lipschitz domains, defined
as follows.

Definition 2.2. We say that the domain Ω ⊂ R2 is a special Lipschitz domain if,
for some Lipschitz function ϕ and unit vector 	e,

Ω = Ω(	e, ϕ) =
{
x	e⊥ + t 	e : t > ϕ(x)

}
, where 	e⊥ =

(
0 1
−1 0

)
	e.

We refer to M = ‖ϕ′‖L∞(R) as the Lipschitz constant of Ω.
We say that the domain V is a Lipschitz domain if either V is a special Lipschitz

domain, or if there is some positive scale r, some constantsM > 0 and c0 ≥ 1, and
some finite set {Xj}Nj=1 of points with Xj ∈ ∂V , such that the following conditions
hold. First,

∂V ⊂
N⋃
j=1

B(Xj , rj) for some rj with
1

c0
r < rj < c0 r.

Second, for each Xj , there is some special Lipschitz domain Ωj = Ω(	ej , ϕj) with
Xj ∈ ∂Ωj and with Lipschitz constant at most M , such that

Zj ∩Ωj = Zj ∩ V, where Zj =
{
Xj + x	e⊥j + t 	ej : |x| < 2rj , |t| < (4 + 4M) rj

}
.

If V is a special Lipschitz domain let N = c0 = 1; otherwise let M , N , c0 be
as above. We refer to the triple (M,N, c0) as the Lipschitz character of V .

We will let V refer to an arbitrary Lipschitz domain and reserve Ω for special
Lipschitz domains. If V is a Lipschitz domain, we let σ denote the surface measure
on ∂V and let ν denote the unit outward normal to V .
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We let
ffl

denote the average integral
ffl
E f dμ = 1

μ(E)

´
E f dμ. If V ⊂ R2 is a

Lipschitz domain and f is defined on ∂V , then the BMO-norm of f is given by

‖f‖BMO(∂V ) = sup
Δ

inf
F∈C

(  
Δ

|f(Y )− F |2 dσ(Y )
)1/2

,(2.3)

where the supremum is taken over all sets Δ ⊆ ∂V that are both bounded and
connected. Observe that if f is constant on each connected component of ∂V , then
‖f‖BMO(∂V ) = 0; we let BMO(∂V ) be the the space of all equivalence classes of

functions f with ‖f‖BMO(∂V ) < ∞. We remind the reader that, if Δ ⊆ Δ̃ ⊆ ∂V ,

and if Δ, Δ̃ are bounded connected sets, then for some absolute constant C,

(2.4)
(  

˜Δ

|f −
ffl
Δ
f dσ|2 dσ

)1/2

≤ ‖f‖BMO(∂V )

(
C + C log(σ(Δ̃)/σ(Δ))

)
.

If X ∈ ∂V , we define the nontangential cone γ(X) by

(2.5) γ(X) = γa(X) =
{
Y ∈ V : |X − Y | < (1 + a) dist(Y, ∂V )

}
,

where a is a fixed positive number. (The exact value of a is usually irrelevant
provided a > 0.) The nontangential maximal function is thus given by

(2.6) Nu(X) = sup
Y ∈γ(X)

|u(Y )| = sup
{
|u(Y )| : |X − Y | < (1 + a) dist(Y, ∂V )

}
.

By u = f on ∂V , or u
∣∣
∂V

= f , we mean that f is the nontangential limit of f
on the boundary. That is, there is some a > 0 such that, for almost every (dσ)
X ∈ ∂V , we have that

(2.7) lim
Y→X, Y ∈γ(X)

u(Y ) = f(X).

Definition 2.8. We define a convenient set of tents Q(X,R) as follows. IfX ∈ ∂V ,
then X ∈ B(Xj , rj) for one of the points Xj of Definition 2.2. Let 	ej , ϕj be as in
Definition 2.2. Then X = x	e⊥j + ϕj(x)	ej for some x ∈ R. If 0 < r < rj , we define

Q(X, r) =
{
y 	e⊥j + s	ej : |x− y| < r, ϕj(y) < s < ϕj(y) + (2 + 4M)r.

}
We let Δ(X, r) = ∂Q(X, r) ∩ ∂V .

Observe that Q(X, r) is a simply connected, bounded Lipschitz domain whose
Lipschitz character depends only on M , and that

V ∩B(X, r) ⊂ Q(X, r) ⊂ V ∩B(X,Cr).

Furthermore, Q(X, r) is starlike with respect to the point X + (1 + 2M) r	ej .
It should be noted that Q(X, r) depends on our choice of Ωj and 	ej , and also

that if V is not a special Lipschitz domain, then Q(X, r) is defined only for r/σ(∂V )
sufficiently small.



718 A. Barton

Finally, we will let C and ε denote positive constants whose value may change
from line to line, but that in general depend only on the ellipticity constants λ,
Λ in formula (1.2) and on the Lipschitz character of any relevant domains V ; any
other dependency will be indicated explicitly. By a ≈ b, we mean that for some
such constant C, the inequalities

1

C
a ≤ b ≤ C a

are valid.

2.2. Bounds on solutions to elliptic equations

In this section we discuss some well-known results concerning elliptic partial differ-
ential equations, as well as some results valid in the special case of two dimensions
or of t-independent coefficients.

To prove Corollary 2.34 below, we will need to consider weak solutions to the
inhomogeneous equation divA∇u = div 	f , where u ∈W 2

1,loc(V ) is a weak solution
in V if ˆ

∇η ·A∇u =

ˆ
∇η · 	f for all η ∈ C∞

0 (V ).

The following lemmas are thus stated in that generality. However, we will most
commonly use these lemmas in the case where 	f ≡ 0, that is, where divA∇u = 0.

Lemma 2.9 (The Caccioppoli inequality). Let A be an elliptic matrix, and suppose

that divA∇u = div 	f in B(X, r) for some 	f ∈ L2(B(X, r)). Then there exists a
constant C depending only on the constants λ and Λ in formula (1.2) such thatˆ

B(X,r/2)

|∇u|2 ≤ C

r2

ˆ
B(X,r)\B(X,r/2)

|u|2 + C

ˆ
B(X,r)

|	f |2.

Remark 2.10. More generally, if V is a Lipschitz domain, then for any u with
∇u ∈ L2(B(X, r)∩V ), divA∇u = div 	f in V ∩B(X, r) and u = 0 on ∂V ∩B(0, r),
we have thatˆ

B(X,r/2)∩V
|∇u|2 ≤ C

r2

ˆ
V ∩B(X,r)\B(X,r/2)

|u|2 + C

ˆ
V ∩B(X,r)

|	f |2

where C depends only on λ and Λ.

Lemma 2.11 (Theorem 2 in [29]). Let A be elliptic, and suppose that divA∇u =

div 	f in B(X, r). Then there exists a p0 > 2, depending only on the constants λ

and Λ in formula (1.2), such that if 	f ∈ Lp(B(X, r)) for some 2 < p < p0, then
∇u ∈ Lploc(B(X, r)), and(  

B(X,r/2)

|∇u|p
)1/p

≤ C
( 

B(X,r)

|∇u|2
)1/2

+ C
(  

B(X,r)

|	f |p
)1/p

.

In two dimensions, Lemmas 2.9 and 2.11 together with Morrey’s inequality
have an immediate corollary.
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Lemma 2.12. Let A be elliptic, and suppose that divA∇u = div 	f in B(X0, r)
for some f ∈ Lp(B(X0, r)), p > 2. Assume that the ambient dimension is 2.

For some C, α > 0, depending only on λ, Λ and p,

(2.13) |u(X)− u(Y )| ≤ C
|X − Y |α

rα

{( 
B(X0,r)

|u|2
)1/2

+ r
(  

B(X0,r)

|	f |p
)1/p}

for all X, Y ∈ B(X0, r/2).
Furthermore,

(2.14) sup
B(X0,r/2)

|u(X)| ≤ C
( 

B(X0,r)

|u|2
)1/2

+ Cr
(  

B(X0,r)

|	f |p
)1/p

.

Lemma 2.12 is valid in higher dimensions for real coefficients; this was first
proven in [11], [32] and [31] for A symmetric, and extended to nonsymmetric real
equations in [30]. It is, however, not valid in higher dimensions for general complex
coefficients; see [28] and [17] for specific counterexamples.

Now, suppose that A(x, t) = A(x) is a 2 × 2 t-independent matrix. Let the
matrix B0(X) be given by

(2.15) B0(X) = BA0 (X) =

(
a11(X) a12(X)

0 1

)
for A(X) =

(
a11(X) a12(X)
a21(X) a22(X)

)
.

We have the following lemma from [6].

Lemma 2.16 (Lemme II.3 in [6]). If divA∇u = 0 in B(X, r) ⊂ R2, and A(x, t) =
A(x) is t-independent, then divA∇ut = 0 in B(X, r). Furthermore, if B0 is as in
formula (2.15), then

BA0 (X)∇u(X) =

(
ũt
ut

)
for some ũt that satisfies div Ã∇ũt = 0, for Ã = (1/ detA)AT .

Here AT denotes the matrix transpose of A. Thus, we may apply Lem-
mas 2.9, 2.11 and 2.12 to the components of BA0 ∇u. In particular, by (2.14),
Lemma 2.9 and the Poincaré inequality, if divA∇u = 0 in B(X, r) then

(2.17) |∇u(X)| ≤ C
( 

B(X,r)\B(X,r/2)

|∇u|2
)1/2

.

2.3. Layer potentials

We will construct solutions to Theorem 1.4 using layer potentials, defined as fol-
lows.

If A is an elliptic 2×2 matrix defined on R2, then for each X ∈ R2, there exists
a function ΓX = ΓAX such that

(2.18)

ˆ
R2

A(Y )∇ΓX(Y ) · ∇η(Y ) dy = −η(X) for all η ∈ C∞
0 (R2).
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This function ΓX is called the fundamental solution for divA∇ with pole at X .
It was constructed by Kenig and Ni in the appendix to [25] in the case of real
coefficients, and by Auscher, McIntosh and Tchamitchian in Theorem 3.16 of [4]
in the case of complex coefficients. (In dimensions higher than two, a construction
of the fundamental solution may be found in [22].)

We will need some properties of the fundamental solution in two dimensions; see
Theorem 2.6, Lemma 2.7 and Lemma 4.1 in [27] for the case where A is real, and
Chapter 4 of [8] for the case where A is complex. If A is elliptic and t-independent,
then there is a fundamental solution ΓAX that satisfies

(2.19) |∇ΓAX(Y )| ≤ C

|X − Y | .

If A is merely elliptic then

(2.20) sup
r>0

ˆ
r≤|X−Y |≤2r

|∇ΓAX(Y )|2 dY ≤ C.

If we require ΓX to satisfy the bound (2.19) or (2.20), then ΓX is unique up to an
additive constant. We may choose additive constants such that, if X , Y ∈ R2 and
X = Y , then

(2.21) ΓA
T

X (Y ) = ΓAY (X).

Let V be a Lipschitz domain. If f : ∂V �→ C is a function, and X ∈ R2 \ ∂V ,
the classical double layer potential Df is given by

Df(X) = DA
V f(X) =

ˆ
∂V

ν(Y ) ·AT (Y )∇ΓA
T

X (Y )f(Y ) dσ(Y ).(2.22)

If A is discontinuous, then the conormal derivative is defined weakly, that is, by
the formula

(2.23)

ˆ
∂V

ν(Y ) ·AT (Y )∇ΓA
T

X (Y )f(Y ) dσ(Y ) =

ˆ
V

AT (Y )∇ΓA
T

X (Y ) ·∇F (Y ) dY

for any F ∈ W 2
1 (V ) with F = f on ∂V and with F ≡ 0 near X . This defines

Df(X) for all smooth, compactly supported functions f .
We let

Kf(X) = KAV f(X) = lim
Z→X, Z∈γ(X)

DA
V f(Z)(2.24)

so Kf = Df
∣∣
∂V

in the sense of formula (2.7). We will show (Corollary 2.34) that if
f ∈ BMO(∂V ) or f ∈ Lp(∂V ) for some 1 < p <∞, then Kf(X) exists for almost
every X ∈ ∂V .

We will occasionally need a somewhat more general potential. If 	f : ∂V �→ C2

is a vector-valued function, define

T 	f(X) = T A
V
	f(X) =

ˆ
∂V

BA
T

0 (Y )∇ΓA
T

X (Y ) · 	f(Y ) dσ(Y )(2.25)



The Dirichlet problem with BMO boundary data 721

where B0 is as in formula (2.15). If |Y − Y ′| < 1
2 |X − Y |, then by Lemma 2.16

and the bounds (2.13) and (2.19),

(2.26)
∣∣BAT

0 (Y )∇ΓA
T

X (Y )−BA
T

0 (Y ′)∇ΓA
T

X (Y ′)
∣∣ ≤ C

|Y − Y ′|α
|X − Y |1+α

and so the kernel BA
T

0 (Y )∇ΓA
T

X (Y ) of T is locally Hölder continuous in Y . By
formula (2.21) and the bound (2.13), it is locally Hölder continuous in X as well.
Observe that

(2.27) Df = T
((
(BA

T

0 )T
)−1

Aν f
)
.

We state without proof some simple results concerning layer potentials; these
results are well known in the case of harmonic functions and are straightforward to
establish for the more general case. First, suppose X /∈ ∂V and that 1 ≤ p < ∞.
Then T 	f(X) converges for all 	f ∈ Lp(∂V ), and the mapping f �→ Df(X) is
well-defined and extends to a unique bounded functional on Lp(∂V ). Also, by

formula (2.21), divA∇(T 	f ) = 0 and divA∇(Df) = 0 in V and in V̄ C .
If V is bounded, then by formulas (2.18) and (2.23), D1 ≡ 1 in V and D1 ≡ 0

in V̄ C . More generally, if V is a Lipschitz domain with compact boundary, and
if f is constant on each connected component of ∂V , then Df is constant in each
connected component of R2 \ ∂V . If V = Ω is a special Lipschitz domain, then D1
is still constant in Ω and in Ω̄C in the sense that, if X , X ′ ∈ Ω or if X , X ′ ∈ Ω̄C ,
then for all X0 ∈ ∂Ω,

lim
r→∞D 1∂Ω∩B(X0,r)(X)−D 1∂Ω∩B(X0,r)(X

′) = 0.

Thus, by the bounds (2.19) and (2.4), if f ∈ BMO(∂V ) then Df is well-defined up
to an additive constant.

This paper builds on the results of [8]. Specifically, we will need the following
lemmas.

Lemma 2.28 (Theorem 6.1 in [8]). Let V ⊂ R2 be a Lipschitz domain and let A
be t-independent and elliptic. Suppose in addition that A is smooth. Then there is
some ε0 > 0, depending only on the constants λ, Λ in formula (1.2), such that if
‖ImA‖L∞(R) < ε0, then for any 1 < p <∞ we have that

(2.29) ‖N(T A
V
	f )‖Lp(∂V ) ≤ C(p)‖	f ‖Lp(∂V )

where N is as in formula (2.6) and where C(p) depends only on p, λ, Λ and the
Lipschitz character of V .

Lemma 2.30 (Section 2.4 in [8]). Let A and V be as in Lemma 2.28, and sup-
pose in addition that ∂V is connected. Then there is some ε1 > 0 and some
p0 < ∞, depending only on λ, Λ and the Lipschitz character of V , such that if
‖ImA‖L∞(R) < ε1, then the operator K is invertible on Lp(∂V ) for any p0 < p <∞.
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If K is invertible on Lp(∂V ), then by formula (2.27) and the bound (2.29), for
every f ∈ Lp(∂V ) the function u = D(K−1f) exists and satisfies

(2.31)

⎧⎪⎨⎪⎩
divA∇u = 0 in V,

u = f on ∂V,

‖Nu‖Lp(∂V ) ≤ C ‖f‖Lp(∂V ).

This is the classic method of layer potentials for constructing solutions to the
Dirichlet problem. [8] used the following uniqueness result to complete the proof
that the Lp-Dirichlet problem is well-posed.

Lemma 2.32 (Theorem 8.3 in [8]). Let V ⊂ R2 be a Lipschitz domain with con-
nected boundary and let A be t-independent and elliptic. Then there is some ε1 > 0
and some p0 <∞, depending only on λ, Λ and the Lipschitz character of V , such
that if ‖ImA‖L∞(R) < ε1, and if there is some p with p0 < p <∞ such that⎧⎪⎨⎪⎩

divA∇u = 0 in V,

u = 0 on ∂V,

Nu ∈ Lp(∂V ),

then u ≡ 0 in V .

We will also need one result concerning the behavior of K on BMO(∂V ).

Lemma 2.33 (Corollary 9.3 in [8]). Let A and V be as in Lemma 2.30. Then there
is some ε1 > 0 such that if ‖ImA‖L∞(R) < ε1, then the operator K∗ is invertible
on H1(∂V ).

Here H1(∂V ) denotes the Hardy space whose dual is BMO(∂V ), and K∗ repre-
sents the operator adjoint; thus, K is invertible on BMO(∂V ) provided ‖ImA‖L∞

< ε1 and ∂V is connected.
These lemmas imply that the Lp-Dirichlet problem is well-posed for smooth

coefficientsA. In [8], standard approximation techniques were used to pass to rough
coefficients. In Corollary 2.34, we will use such approximation techniques to show
that layer potentials are bounded, even for rough coefficients; this is somewhat
more involved than the argument treating only the Lp-Dirichlet problem.

Corollary 2.34. Lemmas 2.28, 2.30 and 2.33 are valid even if A is not smooth.
Furthermore, if A and V are as in Lemma 2.28, except that A need not be

smooth, then T 	f |∂V exists almost everywhere in ∂V provided 	f ∈ Lp(∂V ) for
some 1 < p < ∞, and Kf(X) exists for a.e. X ∈ ∂V provided f ∈ Lp(∂V ) or
f ∈ BMO(∂V ).

Proof. We wish to exploit the fact that the above lemmas are valid for smooth
coefficients. Let Aj(x, t) = Aj(x) = A ∗ ϕj(x), where ϕj(x) = jϕ(jx) for some
smooth, nonnegative, compactly supported function ϕ with

´
R
ϕ = 1. Observe

that Aj is smooth, t-independent, ‖ImAj‖L∞ ≤ ‖ImA‖L∞ , and that Aj satisfies
the ellipticity condition (1.2) with the same constants λ, Λ as A. Furthermore,
if U is a bounded set and 1 ≤ q <∞, then Aj → A in Lq(U) as j → ∞.
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Observe that Lemma 2.28 is valid for Aj ; to show that it is valid for A as well,
we must control T A−T Aj . We begin by controlling the kernels of these operators.

Specifically, we will begin by bounding the L2 norm of ∇ΓAX −∇Γ
Aj

X .

Fix some positive number r. Let 	f be a smooth vector field supported in
B(0, 3r). Define

u(X) = −
ˆ
B(0,3r)

	f(Y ) · ∇ΓA
T

X (Y ) dY =

ˆ
B(0,3r)

div 	f(Y ) ΓA
T

X (Y ) dY,

uj(X) = −
ˆ
B(0,3r)

	f(Y ) · ∇Γ
AT

j

X (Y ) dY.

We begin with some preliminary bounds on u and ∇u. By the bound (2.19), we
have that if p1 > 2, then |u(X)| is uniformly bounded and

|u(X)| ≤ C(p1)min
(
r1−2/p1 , r2−2/p1 dist(X, supp 	f )−1

)
‖	f ‖Lp1(B(0,r)).

Similarly, we may bound ∇u in terms of div 	f ; thus ∇u is locally in L2 and we
may apply the lemmas in Section 2.2.

By the definition (2.18) of ΓAY and by formula (2.21), we have that

ˆ
R2

∇η(X) · A(X)∇u(X) dX =

ˆ
R2

div 	f(Y )

ˆ
R2

∇η(X) · A(X)∇ΓAY (X) dX dY

= −
ˆ
R2

div 	f(Y ) η(Y ) dY =

ˆ
R2

	f(Y ) · ∇η(Y ) dY

and so divA∇u = div 	f in R2.
Thus by Lemmas 2.9 and 2.11, we have that if R > 0 and if 2 < p1 < p0, where

p0 is as in Lemma 2.11, then(ˆ
B(0,R)

|∇u|p1
)1/p1

≤ C(p1)

R1−2/p1

( 
B(0,2R)

|u|2
)1/2

+ C(p1)
( ˆ

B(0,R)

|	f |p1
)1/p1

.

We may take the limit as R → ∞; this yields that

‖∇u‖Lp1(R2) ≤ C ‖	f ‖Lp1(B(0,3r)).

Now we wish to consider u− uj. Observe that

divAj∇(u − uj) = divAj∇u− div 	f = div(Aj −A)∇u.

By the bound (2.14), we then have that if |X | < R/2 and 2 < p2 < p1, then

|u(X)− uj(X)| ≤ C
( 

B(0,R)

|u− uj|2
)1/2

+ CR1−2/p2
( ˆ

B(0,R)

|(A−Aj)∇u|p2
)1/p2

.
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Fix some δ > 0. By our bounds on |u| above, if R is large enough, depending

only on r and δ, then the first term is at most δ‖	f ‖Lp1(B(0,3r))/2. We may assume
R > 4r, and so the bound

|u(X)− uj(X)| ≤ δ

2
‖	f ‖Lp1(B(0,3r)) + CR1−2/p2

(ˆ
B(0,R)

|(A−Aj)∇u|p2
)1/p2

is valid for all |X | < 2r and all 	f smooth and supported in B(0, 3r).
By Hölder’s inequality, we have that(ˆ

B(0,R)

|(A−Aj)∇u|p2
)1/p2

≤
(ˆ

B(0,R)

|A−Aj |q
)1/q(ˆ

B(0,R)

|∇u|p1
)1/p1

for some q < ∞. Recall that Aj → A in Lq(B(0, R)); thus, there is some j
depending on R and δ such that

|u(X)− uj(X)| ≤ δ‖	f ‖Lp1(B(0,r))

for all |X | < 2r and all 	f smooth and supported in B(0, 3r).
But recall that

u(X)− uj(X) =

ˆ
B(0,3r)

	f ·
(
∇Γ

AT
j

X −∇ΓA
T

X

)
.

Thus, our pointwise bound on u− uj implies that, if j is large enough (depending
only on r and δ), then

‖∇ΓAX −∇Γ
Aj

X ‖
Lp′

1(B(0,3r))
≤ δ

for all |X | < 2r.
Fix some η > 0. By Hölder’s inequality,

ˆ
B(0,3r)\B(X,η)

∣∣∇ΓA
T

X −∇Γ
AT

j

X

∣∣2 ≤
(ˆ

B(0,3r)\B(X,η)

∣∣∇ΓA
T

X −∇Γ
AT

j

X

∣∣p1)1/p1

×
(ˆ

B(0,3r)\B(X,η)

∣∣∇ΓA
T

X −∇Γ
AT

j

X

∣∣p′1)1/p′1
.

By the bound (2.19) the first term is at most C(r, η), and by the above arguments,
if j is large enough then the second term is at most δ. Thus,

‖∇ΓA
T

X −∇Γ
AT

j

X ‖L2(B(0,3r)\B(X,η)) ≤ δ C(r, η).

Recall that

T A 	f(X) =

ˆ
∂V

BA
T

0 (Y )∇ΓA
T

X (Y ) · 	f(Y ) dσ(Y ).
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We wish to bound the difference BA
T

0 ∇ΓA
T

X − B
AT

j

0 ∇Γ
AT

j

X in the kernels of T A

and T Aj . Observe that

BA
T

0 (Y )∇ΓA
T

X (Y )−B
AT

j

0 (Y )∇Γ
AT

j

X (Y ) =
(
BA

T

0 (Y )−B
AT

j

0 (Y )
)
∇ΓA

T

X (Y )

+B
AT

j

0 (Y )
(
∇ΓA

T

X (Y )−∇Γ
AT

j

X (Y )
)

and that B
AT

j

0 → BA
T

0 in Lq(U) for any q < ∞ and any bounded set U . Thus,

again using Hölder’s inequality and the bound (2.19) on |∇ΓA
T

X |, we have that for
any ε > 0 and any r > η > 0,∥∥BAT

0 ∇ΓA
T

X −B
AT

j

0 ∇Γ
AT

j

X

∥∥
L2(B(0,3r)\B(X,η))

≤ ε

for all j sufficiently large.
We now improve to a pointwise bound.
Choose some r > η > 0 and some X and Y with |X | < 2r, |Y | < 2r and

|X − Y | > η. Define(
v
w

)
= BA

T

0 ∇ΓA
T

X ,

(
vj
wj

)
= B

AT
j

0 ∇Γ
AT

j

X .

By Lemma 2.16, div ÃT∇v = 0 and div ÃTj ∇vj = 0 away from X . As before,

div ÃTj ∇(v − vj) = div ÃTj ∇v = div(ÃTj − ÃT )∇v.

Applying the bound (2.14) to the function v− vj , we see that if |X − Y | > 2η and
if p2 > 2, then

|v(Y )− vj(Y )| ≤ C
( 

B(Y,η/2)

|v− vj |2
)1/2

+Cη
( 

B(Y,η)

|ÃT − ÃTj |p2 |∇v|p2
)1/p2

.

The first term is at most C ‖BAT

0 ∇ΓA
T

X − B
AT

j

0 ∇Γ
AT

j

X ‖L2(B(0,3r)\B(X,η)). By the
bound (2.17), Lemma 2.9 and the bound (2.19), we have that |∇v| ≤ C/η2 in
B(Y, η). Thus, since Aj → A in Lp2(B(0, 3r)), we have that vj → v uniformly
in X and Y . A similar argument is valid for w.

Thus, for any ζ > 0 and any r > η > 0, we have that there is some j such that∣∣BAT

0 (Y )∇ΓA
T

X (Y )−B
AT

j

0 (Y )∇Γ
AT

j

X (Y )
∣∣ ≤ ζ

for all X , Y ∈ B(0, 2r) with |X − Y | > 2η.
Define

Nη,rF (Z) = sup
{
|F (X)| : X ∈ γ(Z) \B(Z, 2η), |X | < r

}
.

We use the above remarks to bound Nη,r(T A(1B(0,2r)
	f )). Specifically, if j is

large enough, then we have that∣∣Nη,r(T A(1B(0,2r)
	f ))(X)

∣∣ ≤ ∣∣Nη,r(T Aj (1B(0,2r)
	f ))(X)

∣∣+ ζ

ˆ
∂V ∩B(0,2r)

|	f | dσ
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and so the bound∥∥Nη,r(T A(1B(0,2r)
	f ))

∥∥
Lp(∂V )

≤ C(p)‖	f ‖Lp(∂V )

follows from the uniform bound on ‖N(T Aj 	f )‖Lp(∂V ).

Bounding Nη,r(T A(1∂V \B(0,2r)
	f )) is much more straightforward. If ∂V is

compact then we consider only r large enough that ∂V ⊂ B(0, 2r). Otherwise, V
is a special Lipschitz domain. By the bound (2.19) and by the definition (2.25)
of T , ∣∣T A(1∂V \B(0,2r)

	f )(X)
∣∣ ≤ Cr−1/p‖	f ‖Lp(∂V ) for all |X | < r

and so ‖Nη,r(T A(1∂V \B(0,2r)
	f ))‖Lp(∂V ) ≤ C ‖	f ‖Lp(∂V ).

Combining these results gives the estimate

‖Nη,r(T A 	f )‖Lp(∂V ) ≤ C(p)‖	f ‖B(0,2r)∩∂V .

This estimate is uniform in η and r; letting η → 0 and r → ∞, we recover the
same estimate on N(T A 	f ).

We thus have that the bound (2.29) is valid, and so Lemma 2.28 is valid even
if A is not smooth.

Recall that Lemmas 2.30 and 2.33 were proven in [8] in the case where A is
smooth; we observe that [8] used the smoothness assumption only to establish
boundedness of layer potentials, and so by the arguments therein, Lemma 2.28
implies Lemmas 2.30 and 2.33 even if A is not smooth.

Finally, we establish that T 	f , Df have nontangential limits for 	f ∈ Lp(∂V ),
1 < p <∞, and for f ∈ BMO(∂V ).

There is a bounded invertible matrix B1 such that, if 	g is smooth and com-
pactly supported, then T (B1	g ) has a nontangential limit at all points in ∂V ; see
Lemma 5.7 in [8]. By standard techniques, if the bound (2.29) is valid, then we

may extend the condition that T 	f has a nontangential limit at almost every point
in ∂V to all 	f ∈ Lp(∂V ), not only 	f of the form 	f = B1	g for 	g ∈ C∞

0 . By for-
mula (2.27), if f ∈ Lp(∂V ) then Df has a nontangential limit at X and so Kf(X)
exists for almost every X ∈ ∂V .

If f ∈ BMO(∂V ) and ∂V is compact, then Kf exists because f ∈ L2(∂V ).
If V = Ω is a special Lipschitz domain and f ∈ BMO(∂Ω), then let Δ be any

connected bounded subset of ∂Ω. We may take
´
Δ
f dσ = 0. Let Δ̃ � Δ with

dist(Δ, ∂Ω \ Δ̃) > 0. Write f = f1 + f2, where f1 = f in Δ̃ and f2 = f in

∂Ω \ Δ̃. Then Kf1(X) exists for almost every X ∈ ∂Ω because f1 ∈ L2(∂Ω). By
the bound (2.19), formula (2.21) and the bound (2.13), if X , Z are far from supp f2
then ∣∣Df2(X)−Df2(Z)

∣∣ ≤ ˆ
∂Ω

|X − Z|α
|X − Y |1+α |f2(Y )| dσ(Y )

and so by the bound (2.4), Kf2(X) exists for all X ∈ Δ. This completes the
proof. �
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3. Existence of solutions

In this section, we establish the existence result in Theorem 1.4 by proving the
following theorem. We will complete the proof of Theorem 1.4 in Section 4.

Theorem 3.1. Suppose that A is t-independent and elliptic, and that V ⊂ R2 is
a Lipschitz domain. Assume that the boundary layer potential K is bounded and
invertible on BMO(∂V ).

Then for every g ∈ BMO(∂V ), there exists a function u with divA∇u = 0
in V , u

∣∣
∂V

= g, and such that

1

σ(∂V ∩B(X0, r))

ˆ
V ∩B(X0,r)

|∇u(X)|2 dist(X, ∂V ) dX ≤ C ‖g‖2BMO,

where C depends only on λ, Λ, the Lipschitz character of V , and the BMO bound
of K and K−1.

By Lemma 2.33 and Corollary 2.34, if A is elliptic and t-independent and if
‖ImA‖L∞ is small enough, and if V is a Lipschitz domain with connected bound-
ary, then the conditions of Theorem 3.1 hold.

The solution u is constructed by the classic method of layer potentials, that
is, by letting u = D(K−1g). If we let f = K−1g, then because K is invertible
on BMO(∂V ), there is some C such that ‖f‖BMO(∂V ) ≤ C ‖g‖BMO(∂V ). Thus, to
prove Theorem 3.1, we need only show that the inequality

(3.2)
1

σ(∂V ∩B(X0, r))

ˆ
V ∩B(X0,r)

|∇Df(X)|2 dist(X, ∂V ) dX ≤ C ‖f‖2BMO(∂V )

is true for all f ∈ BMO(∂V ). We remark that the bound (3.2) is valid without
any assumptions on K or ‖ImA‖L∞ ; we will prove that the bound (3.2) holds for
all two-dimensional Lipschitz domains V and all elliptic t-independent coefficient
matrices A.

3.1. A L2 estimate in special Lipschitz domains

A major step in the proof of the estimate (3.2) is the following lemma.

Lemma 3.3. Suppose that V ⊂ R2 is a Lipschitz domain and that f ∈ L2(∂V ).
If A is elliptic and t-independent, then

(3.4)

ˆ
V

∣∣∇Df(X)
∣∣2 dist(X, ∂V ) dX ≤ C ‖f‖2L2(∂V ).

In this section, we will prove that Lemma 3.3 is valid provided V = Ω is a special
Lipschitz domain; we will move to general Lipschitz domains in Section 3.2. Our
proof will be by means of T (b) theorems. We remark that in the case where Ω
is the domain above a Lipschitz graph (that is, where 	eT = (0, 1)), Lemma 3.3
follows from the results of Rosén in [33], and was also established by means of T (b)
theorems by Grau de la Herran and Hofmann in [18].
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We will use a square-function T (b) theorem of Semmes; this result is a special
case of the extension (iii) on page 724 of [35].

Theorem 3.5. Suppose that Ψt : R × R �→ C2×2 is a matrix-valued function for
each t > 0, and that for some constants α > 0 and C0 <∞, Ψt satisfies∣∣Ψt(x, y)∣∣ ≤ C0

tα(
t+ |x− y|

)1+α , ∣∣Ψt(x, y)−Ψt(x, y
′)
∣∣ ≤ C0

|y − y′|α(
t+ |x− y|

)1+α
whenever |y − y′| < |x− y|/2 or |y − y′| < t/2.

If 	f : R �→ C2 is a vector-valued function, or more generally if 	f : R �→ C2×m,
let

Θt 	f(x) =

ˆ
R

Ψt(x, y)	f(y) dy.

Suppose that there is a constant C1 <∞, and a matrix-valued function b : R �→
C2×2, such that for all y ∈ R and all intervals Q ⊂ R,

|b(y)| ≤ C1,

ˆ |Q|

0

ˆ
Q

∣∣Θtb(x)∣∣2 dx dt
t

≤ C1|Q|,
∣∣∣( 

Q

b(y) dy
)−1∣∣∣ ≤ C1.

Then there is a constant C depending only on C0, C1 and α such that, if 	f ∈
L2(R �→ C2), then ˆ

R2
+

∣∣Θt 	f(x)∣∣2 dx dt
t

≤ C ‖	f ‖2L2(R).

Although this theorem is sufficient for our purposes, we observe that more
general results are known; see, for example, Hofmann’s paper [19] for a nice survey
of T (b) theorems.

We reformulate this theorem in terms of special Lipschitz domains. If Ω =
{x	e⊥ + t	e : t > ϕ(x)}, we may prove the following theorem by letting

Ψt(x, y) = tΨ
(
x	e⊥ + (ϕ(x) + t)	e, y 	e⊥ + ϕ(y)	e

)
and applying Theorem 3.5.

Theorem 3.6. Let Ω be a special Lipschitz domain. Suppose that Ψ : Ω × ∂Ω �→
C2×2, and that for some constants α > 0 and C0 <∞, Ψ satisfies∣∣Ψ(X,Y )

∣∣ ≤ C0
1

|X − Y |2 ,(3.7)

∣∣Ψ(X,Y )−Ψ(X,Y ′)
∣∣ ≤ C0

|Y − Y ′|α
|X − Y |2+α(3.8)

whenever |Y − Y ′| < 1
2 |X − Y |.

Define Θ	f(X) =
´
∂ΩΨ(X,Y ) 	f(Y ) dσ(Y ).
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Suppose that there is a constant C1 <∞, and a matrix-valued function b : ∂Ω �→
C2×2, such that for all X0, Y ∈ ∂Ω, all r > 0 and all bounded connected sets
Δ ⊂ ∂Ω,

|b(Y )| ≤ C1,(3.9) ˆ
B(X0,r)∩Ω

|Θb(X)|2 dist(X, ∂Ω) dX ≤ C1r,(3.10) ∣∣∣( 
Δ

b(Y ) dσ(Y )
)−1∣∣∣ ≤ C1.(3.11)

Then there is a constant C, depending only on C0, C1, α and the Lipschitz constant
of Ω, such that if 	f ∈ L2(∂Ω �→ C2), then

(3.12)

ˆ
Ω

|Θ	f(x)|2 dist(X, ∂Ω) dX ≤ C ‖	f ‖L2(R).

Let Ω be a special Lipschitz domain; we now prove that Lemma 3.3 is valid
with V = Ω. By formula (2.27), we need only prove that

(3.13)

ˆ
Ω

|∇T 	f(X)|2 dist(X, ∂Ω) dX ≤ C ‖	f ‖2L2(∂V )

for all 	f ∈ L2(∂Ω �→ C2).

Recall that T 	f(X) =
´
∂ΩB

AT

0 ∇ΓA
T

X · 	f dσ. Let

Ψ(X,Y ) = ∇X

(
∇ΓA

T

X (Y )
)T
BA

T

0 (Y )T = ∇X

(
BA

T

0 (Y )∇ΓA
T

X (Y )
)T

so that ∇T 	f(X) =
´
∂Ω

Ψ(X,Y )	f(Y ) dσ(Y ). Defining Θ as in Theorem 3.6, we

have that Θ	f = ∇T 	f and so the bound (3.13) follows from the bound (3.12).
We claim that Ψ satisfies the estimates (3.7) and (3.8). Let

	u(X) = BA
T

0 (Y )∇ΓA
T

X (Y ).

By the bound (2.19) and formula (2.15), |	u(X)| ≤ C/|X − Y |. By formula (2.21)
and the definition (2.1) of weak solution, 	u satisfies divA∇	u = 0 away from Y .
We use the bound (2.17) to bound |∇	u(X)|; this yields that

(3.14)
∣∣∇X

(
BA

T

0 (Y )∇ΓA
T

X (Y )
)∣∣ ≤ C

|X − Y |2

and so the estimate (3.7) holds. Similarly, the estimate (3.8) follows from the
estimate (2.26).

Let

(3.15) b(Y ) = (BA
T

0 (Y )T )−1
(
A(Y )ν(Y ) τ(Y )

)
where (A(Y )ν(Y ) τ(Y )) is the 2×2 matrix whose columns areA(Y )ν(Y ) and τ(Y ),
ν is the unit outward normal vector to ∂Ω, and τ is the unit tangent vector given by

(3.16) ν =

(
0 1
−1 0

)
τ.
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We need only show that b satisfies the bounds (3.9), (3.10) and (3.11) to show that
the bound (3.13) is valid.

The bound (3.9) follows from the ellipticity condition (1.2) and the defini-

tion (2.15) of BA
T

0 . To establish the bound (3.10), observe that

Θb(X) =

ˆ
∂Ω

Ψ(X,Y ) b(Y ) dσ(Y ) = ∇X

ˆ
∂Ω

(
D1(X) τ(Y ) · ∇ΓA

T

X (Y )
)
dσ(Y ).

Recall that D1(X) is constant in Ω and in Ω̄C . Let r be a large positive number.
Then because B(0, r) is bounded and ΓX is continuous away from X , we have that

ˆ
∂(Ω∩B(0,r))

τ(Y ) · ∇ΓA
T

X (Y ) dσ(Y ) = 0.

IfX , X ′ ∈ Ω, then for r � |X |+|X ′|, we have that by the bounds (2.13) and (2.19),
ˆ
Ω∩∂B(0,r)

∣∣∇ΓA
T

X (Y )−∇ΓA
T

X′(Y )
∣∣ dσ(Y ) ≤ Cr

|X −X ′|α
r1+α

,

which approaches 0 as r → ∞; thus
´
∂Ω τ(Y ) · ∇ΓA

T

X (Y ) dσ(Y ) is constant in Ω.
Thus, Θb(X) = 0, uniformly in Ω, and so the bound (3.10) holds.

3.1.1. The bound (3.11). To complete the proof of Lemma 3.3 for special Lip-
schitz domains, we need only show that the bound (3.11) is valid. This derivation is
somewhat tedious but involves no deep theorems. Recall that the condition (3.11)
states that

ffl
Δ b(Y ) dσ(Y ) must be invertible for every Δ ⊂ ∂Ω connected.

Choose some such Δ. Let the endpoints of the segment Δ be given by (xa, ta)
and (xb, tb); we order these two endpoints so that if ν is the unit outward normal
to Ω and τ is the unit tangent vector given by formula (3.16), then τ points from

(xa, ta) to (xb, tb). Let Δx = xb−xa, Δt = tb−ta. Thus
√
Δ2
x +Δ2

t is the distance
between the two endpoints. Observe that because Ω is a special Lipschitz domain,
we have that σ(Δ) ≈

√
Δ2
x +Δ2

t .

Example 3.17. As a motivating example, consider the special case where A = I is
the 2×2 identity matrix. Notice that BI0 = I as well, and so b(Y ) =

(
ν(Y ) τ(Y )

)
.

We have that ˆ
Δ

τ(Y ) dσ(Y ) =

(
Δx

Δt

)
,

a vector whose length is comparable to σ(Δ). Furthermore,
ˆ
Δ

ν(Y ) dσ(Y ) =

(
0 1
−1 0

) ˆ
Δ

τ(Y ) dσ(Y ) =

(
Δt

−Δx

)
.

Thus,
 
Δ

b(Y ) dσ(Y ) =

 
Δ

(
ν(Y ) τ(Y )

)
dσ(Y ) =

1

σ(Δ)

(
Δt Δx

−Δx Δt

)
.

The right-hand side is clearly invertible, and so the bound (3.11) is valid.
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We must now show that the condition (3.11) is valid even if A (and thus BA
T

0 )
is not the identity matrix. Since b is bounded, it suffices to show that∣∣∣ detˆ

Δ

b(Y ) dσ(Y )
∣∣∣ ≥ σ(Δ)2/C

for some constant C > 0. The proof will take several steps.
Our first step is to write

´
Δ
b(Y ) dσ(Y ) in terms of the endpoints (xa, ta) and

(xb, tb) of Δ and in terms of the matrix A and its components ajk. We will see that
this integral is independent of the particular path taken from (xa, ta) to (xb, tb).

Lemma 3.18. We have thatˆ
Δ

b(Y ) dσ(Y ) =

(
α− β γ
−δ ᾱ+ β̄

)
where, in the notation given above,

α = Δt −
ˆ xb

xa

( a12(x)

2a11(x)
+

ā21(x)

2ā11(x)

)
dx, γ =

ˆ xb

xa

1

a11(x)
dx,

β =

ˆ xb

xa

( a12(x)

2a11(x)
− ā21(x)

2ā11(x)

)
dx, δ =

ˆ xb

xa

detA(x)

a11(x)
dx.

and where A(x, t) = A(x) =

(
a11(x) a12(x)
a21(x) a22(x)

)
.

Notice that if A = I then α = Δt, γ = δ = Δx, and β = 0, and so this formula
is in agreement with Example 3.17.

Proof of Lemma 3.18. By assumption, Ω is a special Lipschitz domain. Recall that
this means that there is some vector 	e and some Lipschitz function ϕ such that

Ω =
{
x	e⊥ + t 	e : t > ϕ(x)

}
, 	e⊥ =

(
0 1
−1 0

)
	e.

Let 	ψ(x) = x	e⊥ + ϕ(x)	e; then 	ψ = (ψ1, ψ2) is a parametrization of ∂Ω. We have

that (xa, ta) = 	ψ(a) and (xb, tb) = 	ψ(b) for some a, b ∈ R.
Recall that

b(Y ) = (BA
T

0 (Y )T )−1
(
A(Y )ν(Y ) τ(Y )

)
.

We will compute explicit formulas for BA
T

0 , ν and τ .

First, notice that the unit tangent vector τ satisfies τ(	ψ(y)) = ±	ψ′(y)/|	ψ′(y)|,
and that the choice of signs is determined by the requirement that ν be the outward
and not the inward normal vector to ∂Ω. If we choose τ(	ψ(y)) = +	ψ′(y)/|	ψ′(y)|,
then 〈	e⊥, τ〉 > 0. By formula (3.16) and the relation above between 		e⊥ and 	e, this
implies that 〈	e, ν〉 < 0, as desired. Writing explicit formulas for τ and ν in terms

of the components ψ1 and ψ2 of 	ψ, we see that

τ(	ψ(y)) =
1

|	ψ′(y)|

(
ψ′
1(y)
ψ′
2(y)

)
, ν(	ψ(y)) =

1

|	ψ′(y)|

(
ψ′
2(y)

−ψ′
1(y)

)
.
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Next, recall from formula (2.15) that

BA
T

0 (Y ) =

(
a11(Y ) a21(Y )

0 1

)
.

This means that

(BA
T

0 (Y )T )−1 =
1

a11(Y )

(
1 0

−a21(Y ) a11(Y )

)
and

(BA
T

0 (Y )T )−1A(Y ) =
1

a11(Y )

(
1 0

−a21(Y ) a11(Y )

)(
a11(Y ) a12(Y )
a21(Y ) a22(Y )

)
=

1

a11(Y )

(
a11(Y ) a12(Y )

0 detA(Y )

)
.

We want to evaluate b(	ψ(y)). We adopt the shorthand that ajk = ajk(	ψ(y)),

detA = detA(	ψ(y)), and ψ′
j = ψ′

j(y). Then(
BA

T

0 (	ψ(y))T
)−1

τ(	ψ(y)) =
1

a11|	ψ′(y)|

(
1 0

−a21 a11

)(
ψ′
1

ψ′
2

)
=

1

a11|	ψ′(y)|

(
ψ′
1

−a21 ψ′
1 + a11 ψ

′
2

)
and (

BA
T

0 (	ψ(y))T
)−1

A(	ψ(y)) ν(	ψ(y)) =
1

a11|	ψ′(y)|

(
a11 a12
0 detA

)(
ψ′
2

−ψ′
1

)
=

1

a11|	ψ′(y)|

(
a11 ψ

′
2 − a12 ψ

′
1

− detAψ′
1

)
.

Thus,

b(	ψ(y)) =
((
BA

T

0 (	ψ(y))T
)−1

A(	ψ(y)) ν(	ψ(y))
(
BA

T

0 (	ψ(y))T
)−1

τ(	ψ(y))
)

=
1

a11|	ψ′(y)|

(
a11 ψ

′
2 − a12 ψ

′
1 ψ′

1

− detAψ′
1 a11ψ

′
2 − a21ψ

′
1

)
.

Integrating, we see that

ˆ
Δ

b(Y ) dσ(Y ) =

ˆ b

a

b
(
	ψ(y)

)
|	ψ′(y)| dy

=

ˆ b

a

1

a11

(
a11ψ

′
2 − a12ψ

′
1 ψ′

1

− detAψ′
1 a11ψ

′
2 − a21ψ

′
1

)
dy

=

ˆ b

a

(
ψ′
2(y) 0
0 ψ′

2(y)

)
dy +

ˆ b

a

1

a11

(
−a12 1

− detA −a21

)
ψ′
1(y) dy.
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The first integral is equal to ΔtI. According to our shorthand, A and ajk are

to be evaluated at 	ψ(y). But because A is t-independent, A(	ψ(y)) = A(ψ1(y)).
Therefore, the second integral is equal to

ˆ b

a

1

a11(ψ1(y))

(
−a12(ψ1(y)) 1

− detA(ψ1(y)) −a21(ψ1(y))

)
ψ′
1(y) dy.

We make the change of variables x = ψ1(y); thus,

ˆ
Δ

b(Y ) dσ(Y ) =

(
Δt 0
0 Δt

)
+

ˆ ψ1(b)

ψ1(a)

1

a11(x)

(
−a12(x) 1

− detA(x) −a21(x)

)
dx.

Recall that ψ1(a) = xa and that ψ1(b) = xb. It is then elementary to compute
that, if

ˆ
Δ

b(Y ) dσ(Y ) =

(
α− β γ
−δ ᾱ+ β̄

)
then

α = Δt −
ˆ xb

xa

(
a12(x)

2a11(x)
+

ā21(x)

2ā11(x)

)
dx, γ =

ˆ xb

xa

1

a11(x)
dx,

β =

ˆ xb

xa

(
a12(x)

2a11(x)
− ā21(x)

2ā11(x)

)
dx, δ =

ˆ xb

xa

detA(x)

a11(x)
dx.

This completes the proof. �

Our goal is to control det
´
Δ
b(Y ) dσ(Y ). We will only be able to do so in the

case where A is elliptic. We will need to rewrite the ellipticity condition (1.2) as
a series of inequalities concerning the components ajk of A; these inequalities are
the subject of the next lemma.

Lemma 3.19. Let A = ( a11 a12a21 a22 ). The ellipticity condition

λ|η|2 ≤ Re η̄ · Aη for all η ∈ C2

is true if and only if the three inequalities

Re a11 ≥ λ, Rea22 ≥ λ, and |a12 + ā21| ≤ 2
√
(Re a11 − λ)(Re a22 − λ)

are valid.

Proof. We begin by making the following computation. Choose some η ∈ C2. If
we let ηT = (η1, η2), then

λ |η|2 = λ |η1|2 + λ |η2|2

and

Re ηT ·Aη = Re
(
a11 η̄1 η1 + a22 η̄2 η2 + a12 η̄1 η2 + a21 η̄2 η1

)
= |η1|2 Re a11 + |η2|2 Re a22 +Re

(
(a12 + ā21) η̄1 η2

)
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and so

Re ηT ·Aη − λ|η|2 = |η1|2 (Re a11 − λ) + |η2|2 (Re a22 − λ) + Re
(
(a12 + ā21) η̄1 η2

)
.

Suppose that the three inequalities

Re a11 ≥ λ, Re a22 ≥ λ, and |a12 + ā21| ≤ 2
√
(Re a11 − λ)(Re a22 − λ)

are valid. We then have that

Re ηT · Aη − λ|η|2 ≥ |η1|2 (Re a11 − λ) + |η2|2 (Re a22 − λ)− |a12 + ā21| |η1| |η2|
≥ |η1|2 (Re a11 − λ) + |η2|2 (Re a22 − λ)

− 2
√
(Re a11 − λ) |η1|

√
(Re a22 − λ) |η2|

=
(√

(Re a11 − λ) |η1| −
√
(Re a22 − λ) |η2|

)2
.

The right-hand side is nonnegative for all η, and so A must be elliptic.

Conversely, suppose that A is elliptic, and so Re ηT · Aη − λ|η|2 ≥ 0 for all η.
This means that

(3.20) |η1|2 (Re a11 − λ) + |η2|2 (Re a22 − λ) + Re
(
(a12 + ā21) η̄1 η2

)
≥ 0

for any choice of η1 and η2.

If we choose η1 = 1 and η2 = 0, this implies that Re a11 ≥ λ. Similarly, if we
choose η1 = 0 and η2 = 1 then we have that Re a22 ≥ λ.

Finally, we consider the third inequality. Choose |η1|2 = Re a22 − λ + ε and
|η2|2 = Re a11 − λ + ε for some ε > 0, and choose the moduli of η1 and η2 such
that

(a12 + ā21) η̄1 η2

is a negative real number. Then

0 ≤ |η1|2 (Re a11 − λ) + |η2|2 (Re a22 − λ) + Re
(
(a12 + ā21) η̄1 η2

)
≤ |η1|2 (Re a11 − λ+ ε) + |η2|2 (Re a22 − λ+ ε) + Re

(
(a12 + ā21) η̄1 η2

)
= 2(Rea11 − λ+ ε) (Re a22 − λ+ ε)

− |a12 + ā21|
√
(Re a11 − λ+ ε) (Re a22 − λ+ ε).

Solving, and using the fact that
√
(Re a11 − λ+ ε) (Re a22 − λ+ ε) > 0, we see

that

2
√
(Re a11 − λ+ ε) (Re a22 − λ+ ε) ≥ |a12 + ā21|

for any ε > 0; taking the limit as ε→ 0+ completes the proof. �

We now use our bounds on the components ajk of A to establish some upper
and lower bounds on the quantities α, β, γ and δ.
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Lemma 3.21. Let α, β, γ and δ be as in Lemma 3.18, and suppose that A satisfies
the ellipticity condition (1.2). We have the lower bounds

|Δt| − |Δx|
Λ

λ
≤ |Reα|, |Δx|

λ

Λ2
≤ |Re γ|, and λ |Δx| ≤ |Re δ|,

and the upper bounds

|α| ≤ |Δt|+ |Δx|
Λ

λ
, |γ| ≤ 1

λ
|Δx|,

|β|2 ≤ (Re δ − λΔx) (Re γ), |δ| ≤ Λ2

λ
|Δx|.

Also, the real numbers Δx, Re γ, Re δ and Re δ − λΔx are either all nonpositive
or all nonnegative.

Proof. By Lemma 3.19, we have that Re a11 > λ and Re a22 > λ; by the ellipticity
bound (1.2), we have that |ajk| ≤ Λ and that |detA| ≤ Λ2. This gives us in
particular that

Re
1

a11
= Re

ā11
|a11|2

≥ λ

Λ2
,

1

|a11|
≤ 1

λ
.

Applying these inequalities gives us the two bounds on α, the two bounds on γ
and the upper bound on δ.

Notice that if Δx = 0, then xa = xb, and so β = γ = δ = 0; thus we are done.
For the remainder of the proof we will assume that Δx = 0.

The integrand in the definition of γ is positive; therefore, Re γ and Δx are
either both positive or both negative.

We are left with the lower bound on δ and the upper bound on β. Consider
the integrand in the integral defining β. We compute∣∣∣∣a12a11

− ā21
ā11

∣∣∣∣2 =
a21ā21
|a11|2

+
a12ā12
|a11|2

− a12 a21
(a11)2

− ā12ā21
(ā11)2

=
a21ā21 + a12ā12

|a11|2
− 2Re

a12 a21
(a11)2

.

In order to apply Lemma 3.19, we rewrite the first fraction in terms of the quantity
|a12 + ā21|2. Observe that

|a12+ ā21|2 = a12 ā12+a21 ā21+a12 a21+ ā12 ā21 = a12 ā12+a21 ā21+2Re(a12 a21)

and so ∣∣∣a12
a11

− ā21
ā11

∣∣∣2 =
|a12 + ā21|2

|a11|2
− 2Re

a12 a21
|a11|2

− 2Re
a12 a21
(a11)2

.

Combining the last two terms, we see that∣∣∣a12
a11

− ā21
ā11

∣∣∣2 =
|a12 + ā21|2

|a11|2
− 2Re

(( 1

ā11
+

1

a11

)(a12 a21
a11

))
=

|a12 + ā21|2
|a11|2

− 4Re
1

a11
Re

a12 a21
a11

.
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We now apply Lemma 3.19 to see that∣∣∣a21
a11

− ā12
ā11

∣∣∣2 ≤ 4(Rea11 − λ) (Re a22 − λ)

|a11|2
− 4Re

1

a11
Re

a12 a21
a11

=
4Re a11 Rea22

|a11|2
− 4λRe a11

|a11|2
− 4λ (Re a22 − λ)

|a11|2
− 4Re

1

a11
Re

a12 a21
a11

.

We have that

Re a11 Re a22
|a11|2

=
Re a11
|a11|2

Re
a11 a22
a11

and that
Re a11
|a11|2

= Re
a11

|a11|2
= Re

a11
a11 ā11

= Re
1

ā11
= Re

1

a11
.

Thus, ∣∣∣a21
a11

− ā12
ā11

∣∣∣2 ≤ 4Re
1

a11
Re

a11 a22
a11

− 4λRe
1

a11
− 4λ (Re a22 − λ)

|a11|2

− 4Re
1

a11
Re

a12 a21
a11

= 4Re
1

a11
Re

detA

a11
− 4λRe

1

a11
− 4λ (Re a22 − λ)

|a11|2
.

Because Re a22 − λ ≥ 0 we can disregard the final term. The left-hand side is
nonnegative. Furthermore, Re(1/a11) > 0. Thus,

0 ≤ 4Re
1

a11

(
Re

detA

a11
− λ

)
and so Re

detA

a11
≥ λ.

Since

δ =

ˆ xb

xa

detA

a11

this implies that Δx and Re δ are either both positive or both negative, and more-
over that |Re δ| ≥ λ|Δx|, as desired.

Finally, we have that

|β|2 =
∣∣∣ˆ xb

xa

1

2

(a21
a11

− ā12
ā11

)∣∣∣2.
Recall that ∣∣∣a21

a11
− ā12
ā11

∣∣∣2 ≤ 4Re
1

a11

(
Re

detA

a11
− λ

)
and so by Hölder’s inequality,

|β|2 ≤
(ˆ xb

xa

1

4

∣∣∣a21
a11

− ā12
ā11

∣∣∣2 1

Re(1/a11)

)( ˆ xb

xa

Re
1

a11

)
≤

(ˆ xb

xa

Re
detA

a11
− λ

)(ˆ xb

xa

Re
1

a11

)
=

(
Re δ − λΔx

)
(Re γ).

This completes the proof. �



The Dirichlet problem with BMO boundary data 737

We can now establish the bound (3.11).

Lemma 3.22. The bound

det

ˆ
Δ

b(Y ) dσ(Y ) ≥ (Δ2
x +Δ2

t )/C

is valid, and thus the bound (3.11) holds.

Proof. Recall from Lemma 3.18 that

ˆ
Δ

b dσ =

(
α− β γ
−δ ᾱ+ β̄

)
and so

det

ˆ
Δ

b dσ = αᾱ− ββ̄ + 2 i Im(αβ̄) + γδ.

We use Lemma 3.21. Applying our upper bound on β, we see that

Re det

ˆ
Δ

b dσ ≥ α ᾱ−
(
Re γ Re δ − λΔx Re γ

)
+
(
Re γRe δ − Im γ Im δ

)
≥ α ᾱ+ λΔx Re γ − Im γ Im δ.

Applying our lower bound on Re γ, we see that

Redet

ˆ
Δ

b dσ ≥ α ᾱ+
λ2

Λ2
Δ2
x − Im γ Im δ.(3.23)

We may also compute that

Imdet

ˆ
Δ

b dσ = 2 Im(αβ̄) + Re γ Im δ +Re δ Im γ.(3.24)

We wish to show that at least one of these two quantities is bounded from
below. We will consider the following four cases:

• |Δx| ≤ |Δt|(λ/4Λ),

• |Δx| > |Δt|(λ/4Λ), |α|2 + (λ2/2Λ2)|Δx|2 ≥ Im γ Im δ,

• |Δx| > |Δt|(λ/4Λ), |α|2 + (λ2/2Λ2)|Δx|2 < Im γ Im δ, and |α| < |Δx|λ/4Λ,

• |Δx| > |Δt|(λ/4Λ), |α|2 + (λ2/2Λ2)|Δx|2 < Im γ Im δ, and |α| ≥ |Δx|λ/4Λ.
Observe that these cases include all possible values of our parameters.

Suppose that |Δx| ≤ |Δt|(λ/4Λ). Applying our lower bound on α and our
upper bounds on |γ| and |δ|, we see that the bound (3.23) implies that

Redet

ˆ
Δ

b dσ ≥ Δt
2 − 2 |Δt| |Δx|

Λ

λ
+
λ2

Λ2
Δ2
x,
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and since |Δx| ≤ |Δt|(λ/4Λ), we have that

Re det

ˆ
Δ

b dσ ≥ |Δt|2/2 ≥ (Δ2
x +Δ2

t )/C,

as desired.
In the remaining three cases it suffices to show that

∣∣det ´
Δ
b dσ

∣∣ ≥ Δ2
x/C.

Suppose that

α ᾱ+
λ2

2Λ2
|Δx|2 − Im γ Im δ ≥ 0.

Then by formula (3.23), we have that

Redet

ˆ
Δ

b dσ ≥ |Δx|2
λ2

2Λ2
≥ Δ2

x/C.

Finally, suppose that |Δx| > |Δt|(λ/4Λ) and α ᾱ+ (λ2/2Λ2)|Δx|2 < Im γ Im δ.
In the remaining two cases we will bound

∣∣Imdet
´
Δ
b dσ

∣∣ and not Re det
´
Δ
b dσ

from below. Observe that in particular, Im δ and Im γ are both positive or both
negative. We already know that the same is true of Re γ and Re δ. So by for-
mula (3.24), ∣∣∣ Imdet

ˆ
Δ

b dσ
∣∣∣ ≥ |Re γ| |Im δ|+ |Re δ| |Im γ| − 2|α| |β|

≥ 2
√
Re γ Re δ Im γ Im δ − 2|α| |β|.

Using Lemma 3.21 to bound β, and using the bound |α|2 + |Δx|2(λ2/2Λ2) <
Im γ Im δ, we have that∣∣∣ Imdet

ˆ
Δ

b dσ
∣∣∣ > 2

√
|α|2 + |Δ2

x|(λ2/2Λ2)
√
Re γRe δ

− 2|α|
√
Re γ(Re δ − λΔx).

If |α| < |Δx|λ/4Λ, then∣∣∣ Imdet

ˆ
Δ

b dσ
∣∣∣ > 2

√
|Δ2

x|(λ2/2Λ2)
√

Re γ Re δ − 2
|Δx|λ
4Λ

√
Re γRe δ

≥
(√

2− 1/2
)
|Δx|

λ

Λ

√
Re γRe δ

and by the lower bounds on Re γ and Re δ in Lemma 3.21, the right-hand side is
at least Δ2

x/C.
If |α| ≥ |Δx|λ/4Λ, then∣∣∣ Imdet

ˆ
Δ

b dσ
∣∣∣ > 2|α|

√
Re γ Re δ − 2 |α|

√
Re γ(Re δ − λΔx)

≥ 2 |α|
√
Re γRe δ

(
1−

√
Re δ − λΔx

Re δ

)
.
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But by Lemma 3.21,√
Re δ − λΔx

Re δ
=

√
1− λΔx

Re δ
≤

√
1− λ2

Λ2
< 1

and so by assumption on |α| and, again, the lower bounds on Re γ and Re δ in
Lemma 3.21,∣∣∣ Imdet

ˆ
Δ

b dσ
∣∣∣ > 2 |α|

√
Re γRe δ

(
1−

√
Re δ − λΔx

Re δ

)
≥ Δ2

x/C.

In all four cases, we have that
∣∣det ´

Δ
b dσ

∣∣ ≥ (Δ2
x+Δ2

t )/C ≥ σ(Δ)2/C. Thus,
the bound (3.11) is valid. �

This completes the proof of Lemma 3.3 in the case of special Lipschitz domains.

3.2. A L2 estimate in general Lipschitz domains

We now wish to move to Lipschitz domains with compact boundary. Again by
formula (2.27), to complete the proof of Lemma 3.3, we need only show that, if V
is a Lipschitz domain, then

(3.25)

ˆ
V

|∇TV 	f(X)|2 dist(X, ∂V ) dX ≤ C ‖	f ‖2L2(∂V ).

Choose some Lipschitz domain V with compact boundary. By Definition 2.2,
there are N special Lipschitz domains Ωj , each with Lipschitz constant at most
M , such that

∂V ⊂
N⋃
j=1

∂Ωj ∩B(Xj , rj)

where rj > σ(∂V )/C and Xj ∈ ∂V , with Ωj ∩B(Xj , 2rj) = V ∩B(Xj , 2rj).

So we may write 	f =
∑N
j=1

	fj , where 	fj = 0 outside of B(Xj , rj). Pick some j

and note that TV 	fj ≡ Tj 	fj , where Tj = TΩj . By Section 3.1,

ˆ
Ωj

|∇Tj 	fj(X)|2 dist(X, ∂Ωj) dX ≤ C ‖	fj‖2L2(∂Ωj)
.

If X ∈ B(Xj ,
3
2rj), then either dist(X, ∂Ωj) = dist(X, ∂Ωj ∩ B(Xj , 2rj) ≥

dist(X, ∂V ), or

dist(X, ∂Ωj) = dist
(
X, ∂Ωj \B(Xj , 2rj)

)
>

1

2
rj >

1

3
|X −Xj| ≥

1

3
dist(X, ∂V ).

In either case dist(X, ∂V ) ≤ 3 dist(X, ∂Ωj) and so

ˆ
V ∩B(Xj ,3rj/2)

|∇TV 	fj(X)|2 dist(X, ∂V ) dX ≤ C ‖	fj‖2L2(∂Ωj)
.
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Conversely, suppose X /∈ B(Xj ,
3
2rj). By the bound (3.14),

|∇TV 	fj(X)| ≤ C

|X −Xj |2
ˆ
∂V

|	fj(Y )| dσ(Y )

and because σ(supp 	fj) ≤ Crj , we have that

|∇TV 	fj(X)| ≤ C

|X −Xj |2
√
rj ‖	fj‖L2(∂V ).

We have that dist(X, ∂V ) ≤ |X −Xj |. Thus, we may readily compute that

ˆ
V \B(Xj ,3rj/2)

|∇TV 	fj(X)|2 dist(X, ∂V ) dX

≤
ˆ
R2\B(Xj ,3rj/2)

C

|X −Xj |3
rj ‖	fj‖2L2(∂V ) dX ≤ C ‖	fj‖2L2(∂V ).

Combining these estimates and summing over j completes the proof of the esti-
mate (3.25).

3.3. BMO estimates in Lipschitz domains

We have established that if V is a Lipschitz domain and if f ∈ L2(∂V ), then

(3.26)

ˆ
V

|∇Df(X)|2 dist(X, ∂V ) dX ≤ C ‖f‖2L2(∂V ).

In this section, we show that the estimate (3.2) holds, that is, that

(3.27)
1

σ(∂V ∩B(X0, r))

ˆ
V ∩B(X0,r)

|∇Df(X)|2 dist(X, ∂V ) dX ≤ C ‖f‖2BMO(∂V )

for all f ∈ BMO(∂V ), all X0 ∈ ∂V and all r > 0. This will complete the proof of
Theorem 3.1. The argument comes essentially from the proof of Theorem 3 in [16],
where it was applied to the Poisson extension in the upper half-space.

Choose some r > 0 and some X0 ∈ ∂V . Suppose that ∂V is compact and
r > σ(∂V )/C. Then σ(∂V ∩ B(X0, r)) ≈ σ(∂V ). Recall that if F is constant
on each connected component of ∂V , then DF is constant in V ; thus we may
assume that

ffl
ω
f dσ = 0 for each connected component ω of ∂V . Then, by the

definition (2.3) of BMO(∂V ),

‖f‖L2(∂V ) ≤ C
√
σ(∂V ) ‖f‖BMO(∂V )

and so the bound (3.27) follows immediately from the estimate (3.26).
Otherwise, we may assume that r is small enough that Q(X0, 2r) exists, where

the tents Q are as in Definition 2.8. (If V = Ω is a special Lipschitz domain
then this is true for all r.) Then r ≈ σ(∂V ∩ B(X0, r)) ≈ σ(Δ(X0, 2r)). We
may assume that

ffl
Δ(X0,2r)

f dσ = 0. Let ω0 be the connected component of ∂V

containing X0; we may assume that
ffl
ω f dσ = 0 for any connected component ω

of ∂V with ω = ω0.
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We write f = f1 + f2 + f3 + f4; we define the fis as follows.
If V = Ω is a special Lipschitz domain, then

f1 = f on Δ(X0, 2r),

f2 = f on ∂Ω \Δ(X0, 2r),

f3 = f4 = 0.

Otherwise, ∂V is compact. Let k be the largest integer such that Q(X0, 2
kr) exists;

observe that σ(∂V )/C ≤ 2kr ≤ σ(∂V ). Then let

f1 = f on Δ(X0, 2r),

f2 = f on Δ(X0, 2
kr) \Δ(X0, 2r),

f3 = f on ω0 \Δ(X0, 2
kr),

f4 = f on ∂V \ ω0.

By our definition (2.3) of BMO, we have that both f1 and f4 are in L2(∂V ), with
‖f1‖L2(∂V ) ≤ C r1/2‖f‖BMO(∂V ) and ‖f4‖L2(∂V ) ≤ Cσ(∂V )1/2‖f‖BMO(∂V ).

The bound (3.26) immediately yields that

1

r

ˆ
V ∩B(X0,r)

|∇Df1(X)|2 dist(X, ∂V ) dX ≤ C

r
‖f1‖2L2(∂V ) ≤ C ‖f‖2BMO(∂V ).

Recall that

∇Df(X) =

ˆ
∂V

ν(Y ) ·AT (Y )∇
(
∇XΓA

T

X (Y )
)
f(Y ) dσ(Y ).

We will in fact be able to bound ∇D(f − f1)(X) pointwise. By the bound (3.14)

on ∇(∇XΓA
T

X (Y )), if X ∈ B(X0, r), then

|∇Df4(X)| ≤ C

σ(∂V )2

ˆ
∂V

|f4| dσ ≤ C

σ(∂V )3/2
‖f4‖L2(∂V ) ≤

C

σ(∂V )
‖f‖BMO(∂V ).

By the bound (2.4), we have that

‖f3‖L2(∂V ) ≤
√
σ(∂V )

(
C + C log

σ(ω0)

σ(Δ)

)
‖f‖BMO(∂V ) ≤ Ck

√
σ(∂V ) ‖f‖BMO(∂V ).

Thus, recalling that 2kr ≈ σ(∂V ),

|∇Df3(X)| ≤ C

(2kr)3/2
‖f3‖L2(∂V ) ≤

Ck

(2kr)
‖f‖BMO(∂V ) ≤

C

r
‖f‖BMO(∂V ).

Finally,

|∇Df2(X)| ≤
k∑
j=2

ˆ
Δ(X0,2jr)\Δ(X0,2j−1r)

∣∣ ν · AT∇(∇XΓA
T

X )
∣∣ |f | dσ

≤
k∑
j=2

C

(2jr)3/2
‖f‖L2(Δ(X0,2jr))
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and again using the bound (2.4), we have that

|∇Df2(X)| ≤
k∑
j=2

Cj

(2jr)
‖f‖BMO(∂V ) ≤

C

r
‖f‖BMO(∂V ).

Thus,
∣∣∇D(f1 + f2+ f3)(X)

∣∣ ≤ (C/r)‖f‖BMO(∂V ) for all X ∈ B(X0, r), and so

1

r

ˆ
V ∩B(X0,r)

∣∣∇D(f1 + f2 + f3)(X)
∣∣2 dist(X, ∂V ) dX ≤ C ‖f‖2BMO(∂V )

as desired.
Thus the bound (3.27) is valid and Theorem 3.1 is proven.

4. Converses and uniqueness

In this section, we will complete the proof of Theorem 1.4 by proving the following
two theorems.

Theorem 4.1. Suppose that A is t-independent and elliptic, and that V ⊂ R2 is
a Lipschitz domain.

Then there is some ε > 0 and some C > 0, depending only on the Lipschitz
character of V and the constants λ, Λ in the ellipticity condition (1.2), such that
if ‖ImA‖L∞ < ε, then the following holds.

Suppose that u satisfies divA∇u = 0 in V and

(4.2) sup
X0∈∂V

sup
r>0

1

r

ˆ
V ∩B(X0,r)

|∇u(X)|2 dist(X, ∂V ) dX ≤ C̃ 2.

Then f = u
∣∣
∂V

exists and lies in BMO(∂V ), with ‖f‖BMO ≤ CC̃.

Theorem 4.3. Suppose u, A, and V are as in Theorem 4.1. There is some ε > 0
such that, if ‖ImA‖L∞ < ε, if u satisfies

(4.4) sup
X0∈∂V

sup
r>0

1

σ
(
∂V ∩B(X0, r)

) ˆ
V ∩B(X0,r)

|∇u(X)|2 dist(X, ∂V ) dX ≤ C̃ 2,

and if u|∂V is a constant, then u is constant.

We will also prove the maximum principle (Theorem 1.7).

Remark 4.5. We comment on the two conditions (4.2) and (4.4). First, observe
that if V is a Lipschitz domain then σ(∂V ∩B(X0, r)) ≤ Cr, and so the condi-

tion (4.4) implies that the bound (4.2) is valid at a cost of increasing C̃. Conversely,
if V is a bounded or special Lipschitz domain, then the condition (4.2) implies that
the bound (4.4) is valid at the same cost. We thus only need the more complicated
formulation (4.4) if V C is bounded. By considering the function u(X) = log|X |,
which is harmonic in V = R2 \B(0, 1) and satisfies the bound (4.2) but not (4.4),
we see that for such domains the condition (4.4) is necessary to ensure uniqueness.
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We begin by showing that the bound (4.2) is valid in all subdomains of V .

Lemma 4.6. Let u be defined in some domain V . If

sup
X0∈∂V

sup
r>0

1

r

ˆ
V ∩B(X0,r)

|∇u(X)|2 dist(X, ∂V ) dX ≤ C̃ 2,

and if U ⊂ V , then

sup
X0∈∂U

sup
r>0

1

r

ˆ
U∩B(X0,r)

|∇u(X)|2 dist(X, ∂U) dX ≤ 3C̃ 2.

Proof. Notice that if X0 ∈ ∂V ∩∂U , then the lemma follows immediately from the
fact that U ⊂ V and that dist(X, ∂U) ≤ dist(X, ∂V ). Thus the only complication
is the case where X0 ∈ ∂U \ ∂V .

Choose some X0 ∈ ∂U , and let r > 0. Let X∗
0 ∈ ∂V satisfy |X0 − X∗

0 | =
dist(X0, ∂V ). Let R = |X0 −X∗

0 |+ r, so B(X0, r) ⊆ B(X∗
0 , R).

If R ≤ 3r, then because dist(X, ∂U) ≤ dist(X, ∂V ) for all X ∈ U , we have that

1

r
dist(X, ∂U) ≤ 3

R
dist(X, ∂V ).

Conversely, if R > 3r then |X0−X∗
0 | > 2r, and so for every X ∈ B(X0, r) we have

that

1

r
dist(X, ∂U) ≤ |X −X0|

r
< 1.

But by the triangle inequality, dist(X0, ∂V ) ≤ |X −X0|+ dist(X, ∂V ), and so

1

r
dist(X, ∂U) < 1 ≤ dist(X, ∂V )

dist(X0, ∂V )− |X −X0|
≤ dist(X, ∂V )

R− 2r
≤ 3

R
dist(X, ∂V ).

In either case,

1

r

ˆ
U∩B(X0,r)

|∇u(X)|2 dist(X, ∂U) dX ≤ 3

R

ˆ
V ∩B(X∗

0 ,R)

|∇u(X)|2 dist(X, ∂V ) dX.

This completes the proof. �

In order to prove Theorem 4.1, we will need to show, first, that f = u
∣∣
∂V

exists
in the sense of nontangential limits, and, second, that f ∈ BMO(∂V ). We begin
with the following Fatou-type theorem.

Lemma 4.7. Let V ⊂ R2 be a bounded, starlike Lipschitz domain. Suppose that A
is t-independent and elliptic. There is some ε > 0 and some p with 1 < p < ∞,
depending only on the constants λ, Λ in formula (1.2) and the Lipschitz character
of V , such that the following holds. If ‖ImA‖L∞ < ε, if divA∇u = 0 in V , and
if Nu ∈ Lp(∂V ), then u has a nontangential limit almost everywhere in ∂V , and
f = u

∣∣
∂V

lies in Lp(∂V ).
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Here the Lipschitz domain V is starlike with respect to the point Z if we may
write V = {Z + rθ : |θ| = 1, 0 ≤ r < ϕ(θ)} for some function ϕ that is Lipschitz
on the unit circle. We work in starlike domains for notational convenience and
because we will apply these results only in such domains; it is possible to show
that both Lemma 4.7 and Lemma 4.8 below are valid in more general domains.

Proof of Lemma 4.7. We will construct a function 	h : ∂V �→ C2 such that u = TV 	h.
By Corollary 2.34, TV 	h has a nontangential limit almost everywhere in ∂V , so the
same must be true of u. This is analogous to the proof of Fatou’s theorem in the
unit disk, with the layer potential TV replacing the Poisson kernel.

We construct 	h as follows. For notational convenience, suppose that V is
starlike with respect to the origin. Let Vδ = (1 − δ)V . Then Vδ is also a bounded
Lipschitz domain whose Lipschitz character is equal to that of V .

Let Kδ = KVδ
, Dδ = DVδ

, Tδ = TVδ
, and let Nδ be as in formula (2.6) with V

replaced by Vδ. By Lemmas 2.30 and 2.32 and by Corollary 2.34, there is some
ε > 0 and some p0 < ∞ such that if ‖ImA‖L∞ < ε and if p0 < p < ∞, then Kδ
is invertible on Lp(∂Vδ), and such that solutions u to the Dirichlet problem (1.1)
that satisfy Nδu ∈ Lp(∂Vδ) are unique.

For each Y ∈ V define Yδ = (1 − δ)Y . Then |Y − Yδ| ≤ δ diamV . Because V
is starlike, we have that Yδ ∈ V for any δ > 0 and any Y ∈ V . If the aperture a
in the definition (2.5) of nontangential cone is large enough, then Yδ ∈ γ(Y ) for
all Y ∈ ∂V and all δ > 0 small enough. It is well known that we may assume the
aperture to be as large as we like: if

Nau(X) = sup
{
|u(Y )| : |X − Y | < (1 + a) dist(Y, ∂V )

}
and if 0 < a < b and 0 < p ≤ ∞, then

‖Nbu‖Lp(∂V ) ≤ C(a, b) ‖Nau‖Lp(∂V ).

This was proven by Fefferman and Stein for the case V = Rn+ (see Lemma 1 in
Section 7 of [16]), and generalizes easily to arbitrary Lipschitz domains (see, for
example, Lemma 3.2 in [8]).

Let fδ(Yδ) = u(Yδ), so fδ is defined on ∂Vδ. Then |fδ(Yδ)| ≤ Nu(Y ), so
fδ ∈ Lp(∂Vδ). If ‖ImA‖L∞ < ε and if p0 < p <∞, then there is some gδ ∈ Lp(∂Vδ)
such that Kδgδ = fδ. By Lemma 2.32, u = Dδgδ in Vδ.

Recall that by formula (2.27), Dg = T (((BA
T

0 )T )−1Aν g). Define

	gδ(Yδ) = ((BA
T

0 (Yδ))
T )−1A(Yδ)ν(Y )gδ(Yδ)

so that u = Tδ	gδ in Vδ.

Define 	hδ(Y ) = (1 − δ)	gδ(Yδ). Observe that ‖	hδ‖Lp(∂V ) ≤ C‖Nu‖Lp(∂V ).
Choose some X ∈ V . If δ is small enough, then

TV 	hδ(X)− u(X) = TV 	hδ(X)− Tδ	gδ(X)

=

ˆ
∂V

(
BA

T

0 (Y )∇ΓA
T

X (Y )−BA
T

0 (Yδ)∇ΓA
T

X (Yδ)
)
· 	hδ(Y ) dσ(Y ).
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By the bound (2.26), if δ diamV < 1
2 dist(X, ∂V ), then the right-hand side has

norm at most

δα
C diam(V )α

dist(X, ∂V )1+α

ˆ
∂V

|	hδ(Y )| dσ(Y ),

and so u(X) = limδ→0 TV 	hδ(X). The sequence {	h1/n}∞n=1 is bounded in Lp(∂V ),

and so there is some subsequence that converges weakly to some function 	h ∈
Lp(∂V ). But then

u(X) = lim
k→∞

TV 	h1/nk
(X) = lim

k→∞

ˆ
∂V

BA
T

0 (Y )∇ΓA
T

X (Y ) · 	h1/nk
(Y ) dσ(Y )

=

ˆ
∂V

BA
T

0 (Y )∇ΓA
T

X (Y ) · 	h(Y ) dσ(Y ) = TV 	h(X)

and so u = TV 	h for some 	h ∈ Lp(∂V ). This completes the proof. �

We now prove a lemma that relates the Carleson estimate (4.2) to nontangential
maximal estimates; compare to the bound (1.8) for real coefficients.

Lemma 4.8. Suppose that V is a bounded, starlike Lipschitz domain, that A is
t-independent and elliptic, that divA∇u = 0 in V and that u satisfies the condi-
tion (4.2).

There is some ε > 0 such that, if ‖ImA‖L∞ < ε, then for every X0 ∈ V and
every 1 ≤ p <∞, we have that

(4.9)
( 

∂V

N(u− u(X0))
p dσ

)1/p

≤ C(p) C̃
σ(∂V )

dist(X0, ∂V )
.

Proof. By Hölder’s inequality we need only prove the estimate (4.9) for p large.
We begin by establishing the bound (4.9) in the case that u = Df for some f ∈
BMO(∂V ). Once we have done this, we will work as in the proof of Lemma 4.7 to
generalize to arbitrary u that satisfy the bound (4.2).

Since ∂V is compact, by the John–Nirenberg inequality (see, for example,
page 144 of [36]), if 1 ≤ p <∞, then

‖f −
ffl
∂V f‖Lp(∂V ) ≤ C(p) ‖f‖BMO(∂V )σ(∂V )1/p.

By formula (2.27), Lemma 2.28 and Corollary 2.34, if ‖ImA‖L∞ is small enough
then ‖N(Df)‖Lp(∂V ) ≤ C(p)‖f‖Lp(∂V ) for all 1 < p <∞. Furthermore, since V is
bounded, D1 ≡ 1 in V . Therefore,

‖N(Df −
ffl
∂V

f)‖Lp(∂V ) = ‖N(D(f −
ffl
∂V

f))‖Lp(∂V ) ≤ C(p) ‖f −
ffl
∂V

f‖Lp(∂V )

≤ C(p) ‖f‖BMO(∂V )σ(∂V )1/p.

We can bound Df −
ffl
∂V

f another way: if X0 ∈ V , then by the bound (2.19),∣∣Df(X0)−
ffl
∂V f

∣∣ = ∣∣D(f −
ffl
∂V f)(X0)

∣∣ = ∣∣∣ˆ
∂V

ν · AT∇ΓA
T

X0
(f −

ffl
∂V f) dσ

∣∣∣
≤ Cσ(∂V )

dist(X0, ∂V )

 
∂V

|f −
ffl
∂V f | dσ ≤ Cσ(∂V )

dist(X0, ∂V )
‖f‖BMO(∂V ).
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Thus,

‖N(Df −Df(X0))‖Lp(∂V ) ≤ C σ(∂V )1/p
σ(∂V )

dist(X0, ∂V )
‖f‖BMO(∂V ).

To complete the proof of the bound (4.9) in the special case where u = Df , we
need only show that ‖f‖BMO(∂V ) ≤ CC̃. (We remark that the reverse inequality
is valid and is simply the bound (3.2) of Section 3.)

As shown in Section 3 of [24], if A = A0 for some real matrix A0, then
Lemma 4.8 is valid. We wish to exploit this fact.

Let A0 = ReA, and let D0 = DA0

V , K0 = KA0

V be the layer potential and
boundary layer potential associated to A0. By Lemma 2.33 and Corollary 2.34,
‖f‖BMO(∂V ) ≤ ‖K0f‖BMO(∂V ).

We can bound ‖K0f‖BMO as follows. Pick some Δ ⊆ ∂V connected. We
want to bound

ffl
Δ
|K0f − cΔ|2 dσ for some constant cΔ. It suffices to bound this

integral only for subsets Δ that satisfy σ(Δ) < σ(∂V )/C; thus, we may assume
that Δ = Δ(X0, r) for some r small enough that Q = Q(X0, r) exists. Let

(4.10) XQ = X + (1 + 2M)r	ej

where 	ej is as in Definition 2.2. We have that

r ≈ dist(XQ,Δ) ≈ dist(XQ, ∂V ) ≈ dist(XQ, ∂Q) ≈ σ(Δ) ≈ σ(∂Q).

As shown in Section 3 of [24], since A0 is real, if divA0∇v = 0 in Q then
ˆ
∂Q

|NQ(v − v(XQ))|2 dσ(X) ≤ C

ˆ
Q

|∇v(X)|2 dist(X, ∂Q) dX.

Here NQ denotes the nontangential maximal function of formula (2.6) with Q in
place of V . Letting v = D0f , we have that
 
Δ

∣∣K0f −D0f(XQ)
∣∣2 dσ ≤ C

σ(Δ)

ˆ
∂Q(X0,r)

NQ
(
D0f −D0f(XQ)

)2
dσ

≤ C

σ(Δ)

ˆ
Q(X0,r)

|∇D0f(X)|2 dist(X, ∂Q) dX

≤ C

σ(Δ)

ˆ
B(X0,Cσ(Δ))∩V

|∇D0f(X)|2 dist(X, ∂V ) dX.

By definition of BMO(∂V ), this implies that

(4.11) ‖K0f‖2BMO(∂V ) ≤ sup
X0∈∂V

sup
r>0

C

r

ˆ
B(X0,r)∩V

|∇D0f(X)|2 dist(X, ∂V ) dX.

By the bound (3.2), if A is elliptic and t-independent and V is a two-dimensional
Lipschitz domain, then

sup
X0∈∂V

sup
r>0

1

r

ˆ
B(X0,r)∩V

|∇Df(X)|2 dist(X, ∂V ) dX ≤ C ‖f‖BMO(∂V ).
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The map A �→ ΓAX is analytic in the sense that, if z �→ Az is analytic from C to
L∞(R2 �→ C2×2), then so is the map z �→ ΓAz

X (Y ) for any fixed X , Y ∈ R2. This
follows from analyticity of the heat kernel (see page 57 of [7]) and the construction
of the fundamental solution in [4]. From this it follows that z �→ ∇DAzf(X) is
analytic for any given f ∈ BMO and X ∈ V , and so

1

r

ˆ
B(X0,r)∩V

|∇D0f(X)−∇Df(X)|2 dist(X, ∂V ) dX ≤ C ‖A−A0‖L∞‖f‖2BMO.

A more detailed argument may be found in Section 4.6 of [8].
Thus by the bound (4.11),

‖f‖2BMO ≤ ‖K0f‖2BMO ≤ sup
X0∈∂V

sup
r>0

C

r

ˆ
B(X0,r)∩V

|∇Df(X)|2 dist(X, ∂V ) dX

+ C ‖A−A0‖L∞‖f‖2BMO.

But since u = Df and u satisfies the bound (4.2),

‖f‖2BMO(∂V ) ≤ C C̃ 2 + C ‖A−A0‖L∞‖f‖2BMO(∂V ).

Recall that we assumed f ∈ BMO(∂V ) (with no assumptions on ‖f‖BMO(∂V )

beyond ‖f‖BMO(∂V ) < ∞). Thus the right-hand side is finite. If ‖A − A0‖L∞

is small enough, we may hide the last term. Thus, ‖f‖BMO(∂V ) ≤ CC̃. This
completes the proof for u of the form u = Df .

We now consider more general u. In this case we will work as in the proof of
Lemma 4.7. Again, we assume that V is starlike with respect to the origin, and let
Vδ = (1− δ)V . By Lemma 4.6, u satisfies the bound (4.2) in Vδ, uniformly in δ.

But Vδ ⊂ V , so by the continuity estimate (2.13), u is continuous on Vδ; thus
gδ = u|∂Vδ

∈ L∞(∂Vδ) ⊂ BMO(∂Vδ). Let Kδ = KVδ
, Dδ = DVδ

, and let Nδ be as
in formula (2.6) with V replaced by Vδ.

By Lemma 2.33 and by Corollary 2.34, there is some ε > 0 independent of δ
such that if ‖ImA‖L∞ < ε, then Kδ is invertible on BMO(∂Vδ); we assume that ε
is also small enough that Lemmas 2.28 and 2.32 are valid.

Let fδ ∈ BMO(∂Vδ) be such that Kδfδ = gδ. Since BMO ⊂ Lp for any
1 < p <∞, we have that by Lemma 2.28 and Corollary 2.34, Nδ(Dδfδ) ∈ Lp(∂Vδ)
for any 1 < p < ∞. Choose p large enough that Lemma 2.32 is valid. Since
u ∈ L∞(Vδ), we have that Nδu ∈ L∞(∂Vδ) ⊂ Lp(∂Vδ), and so Dδfδ = u in Vδ.

So if X0 ∈ V , then by the remarks above,( 
∂Vδ

Nδ
(
u− u(X0)

)p
dσ

)1/p

=
(  

∂Vδ

Nδ
(
Dδfδ −Dδfδ(X0)

)p
dσ

)1/p

≤ C(p) C̃
σ(∂Vδ)

dist(X0, ∂Vδ)

for any 1 ≤ p <∞. Letting δ → 0 completes the proof. �
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We may now prove Theorem 4.1.

Proof of Theorem 4.1. We wish to show that if u satisfies divA∇u = 0 in V , for
‖ImA‖L∞ small enough, and if u satisfies the bound (4.2), then u

∣∣
∂V

exists and
lies in BMO(∂V ).

Let Δ ⊂ ∂V be connected and small enough that Δ = Δ(X, r/2) for some X
and r such that Q = Q(X, r) exists. By Lemma 4.6, the bound (4.2) is valid
in Q. Observe that Q is starlike, and so we may apply Lemmas 4.7 and 4.8. By
Lemma 4.8, we have that NQ(u−u(XQ)) ∈ Lp(∂Q) for any 1 < p <∞, where XQ

is as in formula (4.10). Choosing p large enough, we see that by Lemma 4.7,
u−u(XQ) has a nontangential limit f almost everywhere on ∂Q, and hence almost
everywhere in Δ.

Furthermore, by Lemma 4.8, 
Δ

|f−u(XQ)|2 dσ ≤
 
Δ

NQ
(
u−u(XQ)

)2
dσ ≤ C

 
∂Q

NQ
(
u−u(XQ)

)2
dσ ≤ C C̃ 2

and so by definition of BMO(∂V ), f ∈ BMO(∂V ) with norm at most CC̃. �

We are left with Theorem 1.7 (the maximum principle) and Theorem 4.3
(uniqueness). We begin by proving a connection between solutions u that sat-
isfy the Carleson-measure condition (4.4) and bounded solutions.

Lemma 4.12. Let V ⊂ R2 be a Lipschitz domain. Suppose that A is t-independent
and elliptic. Then there is some ε > 0 such that if ‖ImA‖L∞ < ε, then the
following holds.

If divA∇u = 0 in V , if u satisfies the bound (4.4), and if f = u
∣∣
∂V

exists and
lies in L∞(∂V ), then u ∈ L∞(∂V ), with

‖u‖L∞(V ) ≤ ‖f‖L∞(∂V ) + CC̃

where C̃ is as in formula (4.4).

Proof. Let X ∈ V . There is some C large enough that, if r = dist(X, ∂V ) <
σ(∂V )/C, then X ∈ Q(X0, 2r) for some X0 ∈ ∂V , and furthermore Q = Q(X0, 4r)
exists. By Lemma 4.6, the bound (4.2) is valid in Q. Therefore, by Lemma 4.8, if
‖ImA‖L∞ is small enough then

|u(X)| ≤
∣∣∣ u(X)−

 
Δ(X0,4r)

f dσ
∣∣∣+ ‖f‖L∞(∂V )

≤ C

 
∂Q

NQ
(
u− u(X)

)
dσ + ‖f‖L∞(∂V ) ≤ C C̃ + ‖f‖L∞(∂V ).

If V = Ω is a special Lipschitz domain this completes the proof. To deal with
the case where ∂V is compact and X is far from ∂V , we next establish a pointwise
bound on ∇u. For any Y ∈ V , we have that by the bound (2.17),

|∇u(Y )|2 ≤ C

 
B(Y,dist(Y,∂V )/2)

|∇u|2.
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Let Y ∗ ∈ ∂V with r = dist(Y, ∂V ) = |Y − Y ∗|. By the bound (4.4),

|∇u(Y )|2 ≤ C

 
B(Y,r/2)

|∇u(Z)|2 dist(Z, ∂V )

r
dZ

≤ C

r3

ˆ
V ∩B(Y ∗,2r)

|∇u(Z)|2 dist(Z, ∂V ) dZ ≤ C

r3
σ(∂V )C̃ 2.

Now, letX ∈ V with dist(X, ∂V ) > σ(∂V )/C. LetX1 ∈ V satisfy dist(X1, ∂V ) =
σ(∂V )/C, and let ω be a path from X1 to X . Then

|u(X)| ≤ |u(X)− u(X1)|+ |u(X1)| ≤
ˆ
ω

|∇u(Y )| dσ(Y ) + C C̃ + ‖f‖L∞(∂V )

≤ C C̃
√
σ(∂V )

ˆ
ω

1

dist(Y, ∂V )3/2
dσ(Y ) + C C̃ + ‖f‖L∞(∂V ).

An appropriate choice of X1 and ω yields that the integral is at most C/
√
σ(∂V ),

and the lemma is proven. �

By Lemma 4.12 and Theorem 3.1, if f ∈ L∞(∂V ) ⊂ BMO(∂V ) for a Lipschitz
domain V with connected boundary, then (for appropriate A) there is a solution u
to the Dirichlet problem (1.1) that satisfies ‖u‖L∞(V ) ≤ C ‖f‖L∞(∂V ). This proves
the existence half of Theorem 1.7.

We will conclude this paper by proving uniqueness of bounded solutions. This
will immediately complete the proof of Theorem 1.7. If u

∣∣
∂V

is a constant and u
satisfies the bound (4.4), then by Lemma 4.12 u ∈ L∞(V ), and so Lemma 4.13
will imply that u is a constant; this proves Theorem 4.3, completing the proof of
Theorem 1.4.

Lemma 4.13. Let V ⊂ R2 be a Lipschitz domain and let A be elliptic and t-
independent. Then there is some ε > 0 such that, if ‖ImA‖L∞ < ε, if divA∇u = 0
in V with u

∣∣
∂V

= 0, and if u ∈ L∞(V ), then u ≡ 0 in V .

Proof. We first show that ∇u ∈ L2(V ); we will then use the Caccioppoli inequality
to show that u is constant in V .

For the sake of simplicity assume that ‖u‖L∞(V ) ≤ 1. Consider Q = Q(X0, r)
for some X0 ∈ ∂V and some r > 0 small enough that Q(X0, r) exists. Let f = u
on ∂Q. Choose some δ > 0, and let gδ = f = 0 on ∂V ∩ ∂Q, and gδ = f = u
on ωδ = {X ∈ ∂Q : dist(X, ∂V ) > δ}. By Lemma 2.9 and the bound (2.17),
|∇u| ≤ C/δ on ωδ; we may choose gδ such that |∂τgδ| < C/δ on all of ∂Q, where
∂τgδ is the tangential derivative of gδ along ∂Q.

Let vδ solve the Dirichlet problem (2.31) in Q with boundary data gδ. By Lem-
ma 2.32 and preceding remarks, if ‖ImA‖L∞ is small enough then there is some p,
with 1 < p <∞, such that v exists, and such that

‖NQ(u− vδ)‖Lp(∂Q) ≤ C ‖f − gδ‖Lp(∂Q) ≤ C δ1/p.

We will show that ∇vδ ∈ L2(Q), and then use this fact to prove estimates on u.
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Observe that if 1 ≤ q ≤ ∞, then ∂τvδ ∈ Lq(∂Q) (with, however, a norm de-
pending on δ). This means that vδ is a solution to the so-called Dirichlet regularity
problem; this problem was investigated in [8] along with the Lp-Dirichlet problem.
We will need the fact that ∇vδ ∈ L2(Q) (possibly with a norm depending on δ);
this fact follows from Theorems 8.5, 1.6 and Lemma 3.3 in [8]. To eliminate the
dependence on δ, we apply Remark 2.10 to see thatˆ

Q(X0,r/2)

|∇vδ|2 ≤ C

r2

ˆ
Q(X0,r)

|vδ|2.

But ‖NQvδ‖Lp(∂Q) ≤ Cr1/p; an elementary argument (see Lemma 3.3 in [8]) yields
that ‖vδ‖L2(Q) ≤ C ‖NQvδ‖L1(∂Q), and so ‖∇vδ‖L2(Q(X0,r/2)) is bounded, uni-
formly in δ.

Let Qε =
{
X ∈ Q(X0, r/2) : dist(X, ∂Q) > ε

}
. By Lemma 2.9, we have that

‖∇u−∇vδ‖L2(Qε) ≤ δ1/p
Cr

ε
.

By choosing δ small enough, we see that ∇u ∈ L2(Qε), uniformly in ε; thus
∇u ∈ L2(Q(X0, r/2)). If V is bounded, then by covering a neighborhood of ∂V
with such tents and by applying the definition of weak solution (specifically, the
assumption that ∇u ∈ L2

loc(V )), we see that ∇u ∈ L2(V ). Then Remark 2.10
immediately implies that ∇u ≡ 0 in V .

Otherwise, ∇u ∈ L2(V ∩B(0, r)) for any r > 0. Applying Remark 2.10, we see
that ˆ

V ∩B(0,r)

|∇u|2 ≤ C

r2

ˆ
V ∩B(0,2r)

|u|2 ≤ C,

and so, letting r → ∞, we see that ∇u ∈ L2(V ).
Now, fix some r > 0, and let ϕ be smooth, supported in B(0, 2r) and identi-

cally equal to 1 in B(0, r), with |∇ϕ| ≤ C/r. As in the proof of the Caccioppoli
inequality,

λ

ˆ
B(0,r)∩V

|∇u|2 ≤ Re

ˆ
V

ϕ2∇ū · A∇u = −Re

ˆ
V

2ūϕ∇ϕ · A∇u,

and so, by Hölder’s inequality,ˆ
B(0,r)∩V

|∇u|2 ≤ C

r

ˆ
V ∩B(0,2r)\B(0,r)

|u| |∇u| ≤ C ‖u‖L∞
( ˆ

V ∩B(0,2r)\B(0,r)

|∇u|2
)1/2

.

But since ∇u ∈ L2(V ), the right-hand side must go to zero as r → ∞; thus ∇u ≡ 0
in V and so u is identically equal to zero. �

References

[1] Alfonseca, M., Auscher, P., Axelsson, A., Hofmann, S. and Kim, S.: Analy-
ticity of layer potentials and L2 solvability of boundary value problems for divergence
form elliptic equations with complex L∞ coefficients. Adv. Math. 226 (2011), no. 5,
4533–4606.



The Dirichlet problem with BMO boundary data 751

[2] Auscher, P., Axelsson, A. and Hofmann, S.: Functional calculus of Dirac ope-
rators and complex perturbations of Neumann and Dirichlet problems. J. Funct.
Anal. 255 (2008), no. 2, 374–448.

[3] Auscher, P., Axelsson, A. and McIntosh, A.: Solvability of elliptic systems
with square integrable boundary data. Ark. Mat. 48 (2010), no. 2, 253–287.

[4] Auscher, P., McIntosh, A. and Tchamitchian, P.: Heat kernels of second order
complex elliptic operators and applications. J. Funct. Anal. 152 (1998), no. 1, 22–73.

[5] Auscher, P. and Mourgoglou, M.: Boundary layers, Rellich estimates and ex-
trapolation of solvability for elliptic systems.. Proc. Lond. Math. Soc. (3) 109 (2014),
no. 2, 446–482.

[6] Auscher, P. and Tchamitchian, P.: Calcul fontionnel précisé pour des opéra-
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