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Thin sequences and their role in Hp theory,

model spaces, and uniform algebras

Pamela Gorkin, Sandra Pott and Brett D. Wick

Abstract. In this paper we revisit some facts about thin interpolating
sequences in the unit disc from three perspectives: uniform algebras, model
spaces, and Hp spaces. We extend the notion of asymptotic interpolation
to Hp spaces, for 1 ≤ p ≤ ∞, providing several new ways to think about
these sequences.

1. Introduction and motivation

Let {zj} be a sequence of points in D. We say that Z := {zj} is an interpolating
sequence for H∞, the space of bounded analytic functions, if for every w ∈ �∞

there is a function f ∈ H∞ that solves the interpolation problem

f(zj) = wj , where j ∈ N.

Carleson’s interpolation theorem says that {zj} is an interpolating sequence forH∞

if and only if

(1.1) δ = inf
j
δj := inf

j

∣∣Bj(zj)
∣∣ = inf

j

∏
k �=j

∣∣∣ zj − zk
1− zjzk

∣∣∣ > 0.

Here we are letting

Bj(z) =
∏
k �=j

−zk
|zk|

z − zk
1− zkz

denote the infinite Blaschke factor that vanishes on the set of points Z \ {zj} =
{zk : k �= j}. It is known, see page 285 in [9], that given an interpolating sequence,
if we let

(1.2) M = sup
‖a‖�∞≤1

inf
{‖f‖∞ : f ∈ H∞, f(zj) = aj , j ∈ N

}
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denote the constant of interpolation, then there are functions fj ∈ H∞ such that

(1.3) fj(zj) = 1, fj(zk) = 0 for k �= j and sup
z∈D

∑
j

|fj(z)| ≤ M.

The fj are often referred to as P. Beurling functions (see [14]), and they are not
explicitly defined. However, Peter Jones [13] found a simple formula for functions
in H∞ with properties close to those of P. Beurling functions, in the sense that
the inequality (1.3) is satisfied with a constant M ′ ≥ M .

As a result, Jones obtained a simpler proof of Carleson’s interpolation theorem.
Interpolating sequences were studied by Shapiro and Shields [19], who showed that
for 1 ≤ p ≤ ∞, Carleson’s condition is also a necessary and sufficient condition for
interpolation in Hp in the following sense: for each {aj} ∈ �p there exists f ∈ Hp

with f(zj)(1− |zj |2)1/p = aj for all j.
In this paper, we will be interested in sequences Z that satisfy a stronger

condition than (1.1). Recall that a sequence Z = {zj} ⊂ D is thin if

lim
j→∞

δj := lim
j→∞

∏
k �=j

∣∣∣ zj − zk
1− zkzj

∣∣∣ = 1.

Thin sequences have played an important role in function theory on the unit
disc, and as motivation for many of our main results we highlight some of the inter-
esting connections thin sequences have to function theory and functional analysis.

First, we recall that thin sequences are connected to certain functional analytic
basis properties of normalized reproducing kernels. Let H be a complex Hilbert
space. Recall that a sequence {xn} in H is said to be complete if span{xn : n ≥ 1}
= H, minimal if for every n ≥ 1, it is the case that xn /∈ span{xm : m �= n}
and Riesz if there are constants C1 and C2, positive, such that for all complex
sequences {an} we have

C1

∑
n≥1

|an|2 ≤
∥∥∥∑

n≥1

an xn

∥∥∥2
H

≤ C2

∑
n≥1

|an|2.

Recall that every Riesz sequence is minimal, but the converse is not necessar-
ily true. Finally, the Gram matrix corresponding to {xj} is the matrix G =(〈xn, xm〉)

n,m≥1
.

In [4], asymptotically orthonormal sequences (AOS) and asymptotically or-
thonormal basic sequences (AOB) were studied; that is, a sequence {xn} is an AOS
in H if there exists N0 ∈ N such that for all N ≥ N0 there exist positive constants
cN and CN with

(1.4) cN
∑
n≥N

|an|2 ≤
∥∥∥ ∑

n≥N

an xn

∥∥∥2
H

≤ CN

∑
n≥N

|an|2,

and cN → 1, CN → 1 as N → ∞. If we can take N0 = 1, the sequence is said to be
an AOB; this is equivalent to being AOS and a Riesz sequence. In Proposition 3.2
of [4], Chalendar, Fricain and Timotin note that work of Volberg, Theorem 3
in [22], implies the following.
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Proposition 1.1. Let {xn} be a sequence in H. The following are equivalent:

(1) {xn} is an AOB;

(2) there exist a separable Hilbert space K, an orthonormal basis {en} for K and
U,K : K → H, U unitary, K compact, U +K left invertible, such that

(U +K)(en) = xn;

(3) the Gram matrix G associated to {xn} defines a bounded operator of the form
I +K with K compact.

We now make the connection to thin sequences explicit. Given an inner func-
tion Θ, we define the corresponding model space to be KΘ = H2 � ΘH2 and
the orthogonal projection will be denoted by PΘ. The reproducing kernel in KΘ

for z0 ∈ D is

kΘz0(z) =
1−Θ(z0)Θ(z)

1− z0 z

and the normalized reproducing kernel is

hΘ
λ (z) =

√
1− |z0|2

1− |Θ(z0)|2 kΘz0(z).

Finally, note that
kz0 = kΘz0 +ΘΘ(z0) kz0 .

It is well known that if {zn} is a Blaschke sequence with simple zeros with cor-
responding Blaschke product B, then hzn = (1 − |zn|2)1/2/(1− znz) is a complete
minimal system in KB and we also know that {zn} is interpolating if and only
if {hzn} is a Riesz basis.

The following beautiful theorem provides the connection back to thin sequences.

Theorem 1.2 (Volberg, Theorem 2 in [22]). The following are equivalent:

(1) {zn} is a thin interpolating sequence;

(2) the sequence {hzn} is a complete AOB in KB;

(3) there exist a separable Hilbert space K, an orthonormal basis {en} for K and
U,K : K → KB, U unitary, K compact, U +K invertible, such that

(U +K)(en) = hzn for all n ∈ N.

We also have the following very useful equivalent conditions.

Proposition 1.3 (Chalendar, Fricain, Timotin, Proposition 4.1 in [4]). If {zn} is
a Blaschke sequence of distinct points in D, then the following are equivalent:

(1) {hzn} is a complete AOB in KB;

(2) (G− I)en → 0.
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Finally, as further motivation, we recall the connection between thin sequences
and a special interpolation problem. Recall that a sequence Z = {zj} ⊂ D is
asymptotically interpolating of type 1 if for any sequence w ∈ ball(�∞) there
exists a function f ∈ H∞ with ‖f‖∞ ≤ 1 such that

|f(zn)− wn| → 0.

The following theorem shows that thin sequences are precisely the sequences
for which interpolation can be done in QA = H∞ ∩VMO and they are, therefore,
eventually interpolating sequences for H∞. Here VMO is the space of functions
on the unit circle with vanishing mean oscillation.

Theorem 1.4 (Wolff, Theorem III.10 in [24]). The following conditions on a
sequence {zn} of distinct points in D are equivalent:

(1) if a ∈ �∞, then there is f ∈ QA with f(zn) = an for all n;

(2) if a ∈ �∞ and ε > 0, then there is f ∈ H∞ with ‖f‖∞ < lim sup |an|+ ε and
f(zn) = an for all but finitely many n;

(3) {zn} is a thin interpolating sequence.

The second equivalent condition indicates that we can interpolate a sequence
{aj} of norm 1 with a function of norm at most 1 + ε if we ignore finitely many
terms. The number of terms appears to depend on the sequence {aj}. One of our
key observations is that, in fact, the number of terms we can ignore depends only
on ε and not the sequence {aj}, see Theorem 4.6 below.

Asymptotic interpolating sequences (AIS), introduced in [12], were originally a
tool to study essential norms of composition operators. However, further study of
asymptotic interpolating sequences [10] showed that they were closely related to
thin sequences. In fact, a sequence {zn} is thin if and only if it is an asymptotic
interpolating sequence of type 1; thus, asymptotic interpolating sequences of type 1
are those for which the norm is the best one can hope for. In this paper, we study
thin sequences from various angles: We consider them from a uniform algebra
perspective reminiscent of work of Wolff [23], an Hp perspective in the spirit of
Shapiro and Shields, and from the point of view of model spaces as in Volberg [22]
and later in Chalendar, Fricain, and Timotin [4]. We discuss these in more detail
below.

1.1. Main results and structure of the paper

In Section 2 we use the commutant lifting theorem and P. Beurling functions to
provide new proofs of a characterization of thin sequences due to Dyakonov and
Nicolau to obtain other characterizations of thin sequences. In [7] Dyakonov and
Nicolau studied interpolation by nonvanishing functions and used their result to
provide a proof that every thin sequence is an asymptotic interpolating sequence of
type 1 that does not rely on deep maximal ideal space techniques. In Section 3, we
will present another proof of the converse, namely that an asymptotic interpolating
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sequence of type 1 is thin, that does not depend on knowledge of support sets for
points in the maximal ideal space. It does, however, depend on a result of Carleson
and Garnett (see, for example, Theorem 4.1 in [9]) or, in its place, the fact that
an asymptotically interpolating sequence is eventually an interpolating sequence
for H∞, which can be found in Theorem 1.6 in [10] .

Our next result involves the algebra H∞ + C: Let C denote the space of
continuous functions on the unit circle and, thinking of H∞ as an algebra on the
circle, we let H∞ + C = {f + g : f ∈ H∞, g ∈ C}. Sarason [20] showed that
H∞ + C is a closed subalgebra of L∞. We let

QA = H∞ + C ∩H∞,

where the bar denotes complex conjugation. We are interested in a result, due to
Axler and the first author [1] and proved independently by Guillory, Izuchi and
Sarason [11]. The result says that given an H∞ function f that tends to zero on
an interpolating sequence {zn}, if B is the corresponding interpolating Blaschke
product, then fB ∈ H∞ + C. In this section, we also provide another proof of
this multiplication using the Jones construction, [13]. Finally, as a consequence,
we show how a result of Wolff [23] for multiplication by functions in QA tending
asymptotically to zero follows from this.

In Section 4, we extend the notion of asymptotic interpolation to Hp spaces,
1 ≤ p ≤ ∞, and provide several new equivalent definitions of asymptotic interpo-
lation for Hp for a sequence Z = {zn} and we show that all are equivalent to Z
being thin. This result, which is the main result of this section, is our Theorem 4.6.

1.2. Notation

The following notation will be standard throughout the paper. As usual, for
1 ≤ p < ∞, Hp denotes the Hardy space on the open unit disc D and H∞ de-
notes the algebra of bounded analytic functions on D. The norm of a function
f ∈ Hp will be denoted by ‖f‖p. For f ∈ H∞ we let f� denote the radial limit
function of f . Identifying f with f� allows us to think of H∞ as a subalgebra
of the algebra of essentially bounded measurable functions on the unit circle, T.
Letting C denote the algebra of continuous functions on the unit circle, we let
H∞ + C denote the subalgebra of L∞ (see [20]) consisting of functions g of the
form g = h + c, where h ∈ H∞ and c ∈ C. Two more algebras will play an
important role in this paper: the algebra QC := (H∞ + C) ∩ (H∞ + C), where
the bar denotes complex conjugation, and the algebra QA = QC ∩H∞.

We will let �∞ denote the collection of sequences {ak} such that

‖a‖�∞ := sup
n

|an| < ∞,

and �p the collection of sequences {ak} such that

‖a‖�p :=
( ∞∑

n=1

|an|p
)1/p

< ∞.

For an integer N , we let ‖a‖N,�p := ‖{aj}j≥N‖�p .
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Finally, we will require some basic information about the maximal ideal space
of H∞. We recall everything we need here. The space of nonzero multiplicative
linear functionals on H∞ is called the maximal ideal space of H∞ and we denote
it by M(H∞). We note that by identifying a point of D with point evaluation,
we may think of D as a subset of M(H∞). For H∞ + C it is well known that
M(H∞ +C) = M(H∞) \D. Carleson’s corona theorem tells us that D is dense in
M(H∞). Moreover, M(L∞) is naturally embedded into M(H∞).

We will find it useful to consider a particular decomposition of M(H∞ + C),
namely we will identify points in M(H∞ + C) that agree on all QC functions to
obtain the QC-level sets. If x ∈ M(L∞) we let

Ex = {y ∈ M(L∞) : y(q) = x(q) for all q ∈ QC}
denote the QC-level set corresponding to x. The Bishop decomposition, see page 60
of [8], says that a function f ∈ L∞ is in the algebra QC if and only if f |Ex is
constant for all QC-level sets Ex.

2. P. Beurling functions

In this section, our goal is to provide simpler proofs of certain results on inter-
polation with thin sequences. We will use two constructions, both of which pro-
duce a sequence of functions {fk} corresponding to our sequence {zk} such that
fk(zk) = 1, fk(zj) = 0 if k �= j and

∑∞
k=1 |fk(z)| < M for all z ∈ D. We call these

functions, fk, P. Beurling functions. Peter Jones [13] has shown how to construct
such functions corresponding to interpolating sequences in H∞. Since we will use
a slight modification of the Jones construction, we state the results we will use
below without proof. The details can be found in [13]. We also provide a simpler
proof that asymptotic interpolating sequences of type 1 are thin sequences.

Lemma 2.1. Let {zj} be an interpolating sequence. Let

gj(z) :=
Bj(z)

Bj(zj)

(1− |zj|2
1− zjz

)2

exp
(
−

∑
|zm|≥|zj |

(1 + zmz

1− zmz
− 1 + zmzj

1− zmzj

)
(1− |zm|2)

)
.

Then there exists a constant C(δ) depending only on the separation constant δ :=
min{δj : j ≥ 1} such that

|gj(z)| ≤ C(δ)
( 1− |zj|2
|1− zjz|

)2

exp
(
−

∑
|zm|≥|zj |

(1− |zm|2
|1− zmz|

)2)
.

As in [13], this can be used to obtain a concrete description of a function
that does the interpolation, as indicated below. However this function is not of
minimal norm. To get the functions of minimal norm, we must do something
different. For that, we turn to the commutant lifting theorem and P. Beurling
functions. First, let us state the interpolation result for H∞ by means of Jones’
functions from Lemma 2.1.
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Theorem 2.2. Suppose that the sequence Z is a thin sequence, i.e., limj→∞ δj = 1,
where δj :=

∣∣Bj(zj)
∣∣. Define

gj(z) :=
Bj(z)

Bj(zj)

(1− |zj|2
1− zjz

)2

exp
(
−

∑
|zm|≥|zj |

(1 + zmz

1− zmz
− 1 + zmzj

1− zmzj

)
(1− |zm|2)

)
,

if δj �= 0 and take gj = 0 otherwise.
Then there exists N such that, for any a ∈ �∞,

g(z) =

∞∑
j=1

ajgj(z) ∈ H∞, with g(zj) = aj for j ≥ N,

and
sup
z∈D

|g(z)| ≤ C(δ) ‖a‖�∞ ,

where C(δ) is a constant depending on δ := min
{
δj : j ≥ N

}
.

These functions are extremely useful in interpolation theory, but because of the
constant appearing above, they are not sharp in the sense of the following beautiful
theorem of Per Beurling (see, e.g., page 285 in Garnett’s [9]):

Theorem 2.3. Let {zj} be an interpolating sequence in the upper half plane. Let

M = sup
|aj |≤1

inf
{‖f‖∞ : f ∈ H∞, f(zj) = aj , j ∈ N

}
.

Then there are functions fj ∈ H∞ such that fj(zj) = 1, fj(zk) = 0 for k �= j and
for each z,

∞∑
j=1

|fj(z)| ≤ M.

For versions of Theorem 2.2 with optimal constant, see [16] or [18].
Before stating the main result of this section, we recall the commutant lifting

theorem. Given a Hilbert space H we let

HH(D) =
{
f : D → H : f(z) =

∞∑
n=0

anz
n, ‖f‖22 :=

∞∑
n=0

‖an‖2H
}
.

Let SH denote multiplication by z on H2
H. We write X ↔ Y to indicate that two

operators commute.

Theorem 2.4 (Commutant lifting theorem for H2
H). Let M ⊆ H2

H be an invariant
subspace for SH and suppose X ∈ B(M) and X� ↔ S�

H|M . Then there exists
Y ∈ B(H2

H) such that

(1) Y �|M = X� (X� lifts to Y �);

(2) Y is in the commutant of SH;

(3) ‖Y ‖ = ‖X‖.
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We use Theorem 2.3 and Theorem 2.4 to obtain

Theorem 2.5. Let {zn} be a thin sequence. Then for every ε > 0 there exists N
such that for n ≥ N there exist fn ∈ H∞ such that for j, k ≥ N we have

fn(zn) = 1, fn(zk) = 0, j �= k,

and for all z ∈ D we have ∑
n≥N

|fn(z)| < (1 + ε).

In particular, for every sequence a ∈ �∞ with ‖a‖�∞ ≤ 1 the function ga defined by
ga(z) :=

∑
n≥N anfn(z) belongs to H∞, ‖ga‖∞ ≤ (1 + ε)‖a‖N,�∞ and ga(zj) = aj

for j ≥ N .

Proof. The sequence {zn} is eventually interpolating, so by Theorem 1.2, there
exist a separable Hilbert space K, an orthonormal basis {en : n ≥ k} for K, and
U,K : K → KB, U unitary, K compact, U+K invertible, such that (U+K)(en) =
hzn for n ≥ k. Let ε > 0. Hence there exists N ≥ k such that K has norm less
than ε on KN = span{en : n ≥ N}. Let KN

B = span{hzn : n ≥ N} ⊂ KB. Then

U +K : KN → KN
B

is invertible with an inverse of norm less than 1/(1− ε). Now for a ∈ l∞, define
the operator

T ∗
a : KN

B → KN
B , hzn �→ ānhzn (n ≥ N).

Writing
T ∗
a = (U +K)D∗

a(U +K)−1

with
D∗

a : KN → KN , en �→ ānen (n ≥ N),

we see that

‖T ∗
a‖KN

B →KN
B

<
1 + ε

1− ε
‖a‖�∞.

The normalized reproducing kernels hzn are eigenvectors of the adjoint of the
shift operator on H2, denoted S∗. Therefore, KN

B is invariant under S∗, and the
restriction of S∗ to KN

B commutes with T ∗
a . By the commutant lifting theorem,

Theorem 2.4, there exists an operator T ∗ : H2 → H2 extending T ∗
a that commutes

with S∗ and satisfies ‖T ∗‖2→2 = ‖T ∗
a‖KN

B →KN
B
. Since T ∗ commutes with S∗, it is

the adjoint of a Toeplitz operator Tφ with symbol φ ∈ H∞ and

‖φ‖∞ = ‖Tφ‖H2→H2 = ‖T ∗‖H2→H2 = ‖T ∗
a‖KN

B →KN
B

<
1 + ε

1− ε
‖a‖�∞.

Since T ∗ extends T ∗
a , and the hzn are eigenvectors of T ∗

φ with eigenvalue φ̄(zn), we
obtain

φ̄(zn)hzn = T ∗
φ hzn = T ∗

a hzn = ān hzn for all n ≥ N
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and consequently

φ(zn) = an for all n ≥ N, ‖φ‖∞ <
1 + ε

1− ε
‖a‖�∞ .

Since this applies to any sequence in l∞, we can apply Per Beurling’s Theorem 2.3
for the sequence {zn : n ≥ N} with constantM = (1+ε)/(1−ε) to obtain functions
fn ∈ H∞ for n ≥ N such that for j, k ≥ N we have fn(zn) = 1, fn(zk) = 0, j �= k,
and ∑

n≥N

|fj(z)| ≤ 1 + ε

1− ε
.

In particular, for any {an} ∈ l∞,∑
n≥N

|anfn(z)| < (1 + 3ε)‖a‖N,�∞. �

The following definition in Hp will play a significant role in Section 4. For now
we consider just the case p = ∞.

Definition 2.6. We say that a sequence {zn} is an eventually 1-interpolating
sequence for H∞, (EIS∞), if the following holds: for every ε > 0 there exists N
such that for each a ∈ �∞ there exists fN ∈ H∞ with

fN (zn) = an for n ≥ N and ‖fN‖∞ ≤ (1 + ε) ‖a‖N,�∞.

Putting all of this together, we obtain the following corollary.

Corollary 2.7. A sequence {zn} is thin if and only if it is an EIS∞ sequence.

Proof. If {zn} is thin, then it is eventually interpolating, and an EIS∞ sequence
by Theorem 2.5. Conversely, if {zn} is an EIS∞ sequence, for each ε there exists
an N ∈ N such that for each j ≥ N , there exists fj ∈ H∞ with

fj(zn) = 0 for all n ≥ N,n �= j, fj(zj) = 1 and ‖fj‖∞ < 1 + ε.

Letting Bj,N denote the Blaschke product for the sequence {zn : n ≥ N,n �= j},
we obtain that f = Bj,Ngj, where gj ∈ H∞ with ‖gj‖∞ < 1 + ε. It follows that∏

n≥N,n�=j

∣∣∣ zn − zj
1− z̄jzn

∣∣∣ = |Bj,N (zj)| ≥ 1

1 + ε
for all j ≥ N,

and consequently {zn} is thin. �

Hence, as we will show in a moment, Theorem 2.9 below will provide a new
proof of Theorem 2.8.

Theorem 2.8 (Dyakonov, Nicolau [7]). Let {zj} be an interpolating sequence.
Then the following are equivalent:

(1) {zj} is thin;

(2) There is a sequence mj ∈ (0, 1) with limj→∞ mj = 1 such that every inter-
polation problem F (zj) = aj with |aj | ≤ mj for all j has a solution in H∞

with ‖F‖∞ ≤ 1.
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Theorem 2.9. Let {zn} be an interpolating sequence. Then {zn} is an EIS∞
sequence if and only if there exists a sequence mj ∈ (0, 1) with mj → 1 such that
any sequence {aj} satisfying |aj | ≤ mj for all j can be interpolated by an H∞

function of norm 1.

Proof. First suppose the sequence has associated constants mj . Let ε > 0. There
exists N such that mj > 1/(1 + ε) for j ≥ N . Let a ∈ �∞ be such that ‖a‖�∞ ≤ 1.
For j ≥ N we have

aj

(1+ε)‖a‖N,�∞
≤ mj and therefore there exists an H∞ function F

of norm 1 with
F (zj) =

aj
(1 + ε) ‖a‖N,�∞

.

The function F1 = (1+ε)‖a‖N,�∞ F does the interpolation F1(zj) = aj and ‖F1‖ ≤
(1 + ε)‖a‖N,�∞, as desired.

For the converse we first introduce our notation, which will allow us to choose
the mj .

Choose εj → 0. Let bn− denote the Blaschke product with zeros {zj : j < n}.
Then bn−(zk) = 0 if k < n and |bn−(zk)| ≥ δk if k ≥ n. If we let δ′n = infk≥n δk,
then δ′n → 1 as n → ∞.

Let ak = 0 if k < n and ak = 1/bn−(zk) otherwise. By assumption, given
ε > 0 there exists N and f ∈ H∞ such that f(zk) = ak for k ≥ N and ‖f‖∞ ≤
(1+ε)‖a‖N,∞. Therefore, multiplying yields bn−f satisfying ‖bn−f‖∞ ≤ (1+ε)/δ′n,
bn−f(zj) = 1 if j ≥ max{n,N} and bn−f(zj) = 0 if j < n. So, if we choose n ≥ N ,
we have a function bn−f that vanishes on zk for k < n, is equal to 1 for k ≥ n,
and has norm at most (1 + ε)/δ′n. Now let

tn =
δ′n

1 + εn
and kn =

δ′nbn−f
1 + εn

= tnbn−f.

Note that ‖kn‖∞ ≤ 1.
Let ρ denote the pseudohyperbolic metric on D, ρ(z, w) = | z−w

1−w̄z | for z, w ∈ D.
Choose δt,n ∈ (0, 1) so that

ρ(−1 + δt,n, 1− δt,n) = tn = ρ(0, tn),

and note that δt,n → 0. Now there is a Möbius transformation ϕ with ϕ(0) =
−1 + δt,n and ϕ(tn) = 1− δt,n, so

ϕ(kn(zj)) = −1 + δt,n for j < n,

and
ϕ(kn(zj)) = 1− δt,n for j ≥ n.

Let

hn =
ϕ ◦ kn
1− δt,n

, Fn =
(1 + hn

2

)2

and Gn =
(1− hn

2

)2

.

Then

Fn(zj) = 1 for j ≥ n and Fn(zj) = 0 for j < n,

Gn(zj) = 0 for j ≥ n and Gn(zj) = 1 for j < n,
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and

|Fn|+ |Gn| < 1

2
+

1

2(1− δt,n)2
:= γn.

Now for each εj we obtain Nj and bNj− giving us δNj which, in turn, gives us
δt,Nj . We may choose εj tending to 0 quickly and Nj as large as we like to ensure
that δt,Nj is close to 1. So, we will choose a subsequence of εj, which we denote
by εj again and corresponding Nj so that the γj as defined above satisfy

∏∞
j=1 γj

converges to a positive number. Now we will construct our sequence {mj}.
Stage 1. For n < N1 we use the Jones construction to interpolate all se-

quences of norm smaller than 1/C(δ) with a function of norm at most 1. Call this
function f1.

Stage 2. Now we know there is a function of norm at most 1 + ε1 that does
interpolation on sequences of norm at most 1 from N1 on. Divide this function by
1 + ε1, call it f2. Choose F1 := FN1 and G1 := GN1 as above and note that, with
the corresponding γ1 defined as above, we have

|F1|+ |G1| < γ1.

So we see that

1. (f1G1 + f2F1)(zj) = f2(zj) for j ≥ N1;

2. (f1G1 + f2F1)(zj) = f1(zj) for j < N1;

3. |f1G1 + f2F1| ≤ |G1|+ |F1| < γ1.

We take

g2 =
f1G1 + f2F1

γ1
.

Then ‖g2‖∞ ≤ 1 and g2 can interpolate

a) |aj | ≤ 1
γ1C(δ) if j < N1,

b) |aj | ≤ 1
γ1(1+ε1)

if j ≥ N1,

if we choose appropriate f1 and f2.

Stage 3. Now we choose f3 of norm 1 doing interpolation on sequences of norm
smaller than 1/(1 + ε2) from N2 on. Then we choose G2 := GN2 and F2 := FN2

as above with

|G2|+ |F2| < γ2.

Consider

g3 :=
g2G2 + f3F2

γ2
=

f1
γ1γ2

G1G2 +
f2

γ1γ2
F1G2 +

f3
γ2

F2.

Then

‖g3‖∞ ≤ |G2|+ |F2|
γ2

≤ 1,
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and

g3(zj) =
f1(zj)

γ1γ2
for j < N1,

g3(zj) =
f2(zj)

γ1γ2
for N1 ≤ j < N2,

g3(zj) =
f3(zj)

γ2
for j ≥ N2.

So g3 can interpolate sequences satisfying

a′) |aj | ≤ 1
γ1γ2C(δ) for j < N1;

b′) |aj | ≤ 1
γ1γ2(1+ε1)

for N1 ≤ j < N2;

c′) |aj | ≤ 1
γ2(1+ε2)

for j ≥ N2.

We repeat this process arriving at Stage n.

Stage n. Consider εj , Nj , the corresponding fj/(1 + εj−1) obtained from
the EIS∞ assumption that interpolate zj to aj for Nk−1 ≤ j < Nk if |aj | ≤
1/(1 + εj−1). Construct, for each j, the functions Fj := FNj and Gj := GNj so
that

|Fj |+ |Gj | < γj .

Finally, define

gn =
( f1∏n−1

j=1 γj

)
G1 · · ·Gn−1 +

( f2∏n−1
j=1 γj

)
F1G2 · · ·Gn−1

+
( f3∏n−1

j=2 γj

)
F2G3 · · ·Gn−1 + · · ·+

( fn−1

γn−2γn−1

)
Fn−2Gn−1 +

( fn
γn−1

)
Fn−1

so that (taking N0 = 0)

1. gn(zj) = f1(zj)/
∏n−1

j=1 γj for j < N1;

2. gn(zj) = fk(zj)/
∏n−1

j=k−1 γj for Nk−1 ≤ j < Nk, where 1 < k ≤ n− 1;

3. gn(zj) = fn(zj) for j ≥ Nn−1;

4. ‖gn‖∞ ≤ 1.

Since for each k > 1, the function fk/
∏n−1

j=k−1 γj interpolates the set{
{aj} : |aj | ≤ 1(∏∞

l=k−1 γl
)
(1 + εk−1)

, Nk−1 ≤ j < Nk

}
,

the function f1/
∏n−1

j=1 γk interpolates sequences |aj | ≤ 1/(C(δ)
∏n−1

j=1 γj) for j < N1,
and

1(∏∞
l=k−1 γl

)
(1 + εk−1)

→ 1

as k → ∞, so we see that a normal families argument now implies the result. �
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Remark 2.10. It is also possible to use Theorem 2.8 to obtain a proof of the
existence of the P. Beurling functions that we use above.

3. New proofs of old results on asymptotic interpolation

We now return to the asymptotic interpolation sequences that we discussed in
the introduction to this paper. Asymptotic interpolation sequences were studied
in [12] and, later, in [10]. The Jones construction provides a constructive proof
that thin sequences are asymptotically interpolating, but it does not show that
the sequence is an AIS of type 1. A simpler proof was provided by Dyakonov
and Nicolau, [7]. We now turn to a simpler proof of the converse; i.e., that an
asymptotic interpolating sequence of type 1 is a thin sequence. The argument
in [10] (in both directions) relied heavily on deep maximal ideal space techniques
and T. Wolff’s work appearing in [23] and [24]. For our new proof, we use the fact
that a thin sequence is eventually interpolating, a fact that follows easily from [3]
(see also Theorem 4.1 in [9]), stated below, and the fact that the sequence must
be eventually discrete, found in Lemma 4.1 in [10]. For general uniform algebras,
this is proved in Theorem 1.6 in [10].

Theorem 3.1 ([3]). Let Z = {zj} be a sequence in the upper half plane. Then Z
is an interpolating sequence if disjoint subsets of {zj} have disjoint closures in
M(H∞).

Since we will assume that {zj} is asymptotically interpolating, the sequence
must be eventually distinct, [10]. So supposing that no points of the sequence are
repeated, choose disjoint subsets X and Y of Z. Then there exists f ∈ H∞ with
f(aj) → 0 for aj ∈ X and f(bj) → 1 for bj ∈ Y . It follows that X and Y must
have disjoint closures.

As in Sundberg and Wolff [21], we view the theorem below as turning approx-
imate interpolation into exact interpolation. However, in our proof that every
asymptotic interpolating sequence is thin, we will use the fact that if f ∈ H∞ has
the property that f(zn) → 0 where {zn} is interpolating, then Bf ∈ H∞ + C,
where B is the corresponding interpolating Blaschke product. This last result can
be proved using the fact that the zero sequence of B is an interpolating sequence
and therefore the map T : H∞ → �∞ defined by T (f) = {f(zn)} is surjective (see
the work of the first author in [1] or [11]), but it’s interesting to note that the func-
tions in Jones’s proof show how to change the approximate condition f(zn) → 0
to an exact condition f(zn) = 0, and consequently can be also used to obtain this
result:

Theorem 3.2 ([1], [11]). Let {zn} be an interpolating sequence for H∞, f ∈H∞

and {an} a sequence with |f(zn)−an|→0. If B denotes the interpolating Blaschke
product corresponding to {zn}, then there exists a function h ∈ H∞ with Bh ∈
H∞+C such that (f−h)(zn)=an. Consequently, if f(zn)→0, then Bf ∈H∞+C.
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Proof. We write

gj(z) =
(1− |zj |2
1− zjz

)2

exp
(
−

∑
|zm|≥|zj |

(1 + zmz

1− zmz
− 1 + zmzj

1− zmzj

)
(1− |zm|2)

)
.

Precisely the same argument as that used to establish the estimates in Theorem 2.2
show that

∑∞
j=1 |gj(z)| ≤ C(δ) for all z ∈ D. Let

hj(z) =

Nj+1∑
n=Nj+1

(f(zn)− an)
Bn(z)

Bn(zn)
gn(z)

where |f(zk)− ak| < 1/2j for Nj < k ≤ Nj+1. Note that hj(zk) = 0 if k ≤ Nj or
k > Nj+1 and hj(zk) = f(zk)− ak for k satisfying Nj < k ≤ Nj+1.

Now

|hj(z)| ≤ 1

2jδ

Nj+1∑
n=Nj+1

|gn(z)|.

By Lemma 2.1, we see that ‖hj‖∞ < 1
2jδC(δ), where δ := δ(B) is the interpolating

constant of B and C(δ) is a constant depending only on δ. Let h =
∑∞

j=1 hj . Then
h ∈ H∞ and (f − h)(zj) = aj for all j.

To show that Bh ∈ H∞ + C, note that on the unit circle we have

hj(z) =

Nj+1∑
n=Nj+1

(f(zn)− an)
Bn(z)

Bn(zn)
gn(z)

=

Nj+1∑
n=Nj+1

(f(zn)− an)
B(z)

Bn(zn)

(( z − zn
1− znz

)
gn(z)

)
.

Since ( z − zn
1− znz

)
gn(z) ∈ H∞ + C,

we have hj = Bkj for some kj ∈ H∞ + C. Further ‖kj‖∞ = ‖hj‖∞ < 1
2jδC(δ)

implies that Bh =
∑∞

j=1 kj ∈ H∞ + C.
Finally, applying this to the case f(zn) → 0 and an = 0 for all n, we obtain

that f − h = Bg for some g ∈ H∞ and consequently Bf = g+Bh ∈ H∞ +C. �

This allows us to show how the Jones construction can be used to prove a result
in [23]. Our proof will also use the Chang–Marshall theorem ([5], [15]), and the fact
that an H∞ function is in QA if and only if it is constant on every QC-level set.
However, our analysis will give some indication of where the zero sequence {zj}
in the hypothesis lies. At the time Wolff wrote his thesis, there was a simpler
uniform algebra proof available, but Wolff’s lemma (Lemma 1.2 of [23]), Jones’s
construction and Theorem 3.2 have simplified it further still.



Thin sequences, Hp
theory, model spaces, and uniform algebras 855

Corollary 3.3 (Wolff, [23]).

(a) Let {zj} be an interpolating sequence with corresponding Blaschke product b.

If q ∈ QA satisfies q(zj) → 0, then qb ∈ QA. In fact, qb
n ∈ QC and

qbn ∈ QA for every n ∈ N.

(b) Let f ∈ L∞. Then there exists a non-zero q ∈ QA such that qf ∈ QC.

We show that (b) is true in stages. First, we prove it for the conjugate of a
Blaschke product, then for functions in H∞ + C, and finally for functions in L∞.
We will need two auxiliary results. First, as a consequence of the Chang–Marshall
construction ([5], [15]), we know that given any Blaschke product B, there is an
interpolating Blaschke product b such that the (closures of) the algebras generated
by H∞ and the conjugates of the Blaschke products coincide; i.e.,

H∞[B ] = H∞[ b ].

Note that for a QC-level set Ex we know that H∞ + C|Ex = H∞|Ex is closed,
and by Shilov’s theorem, found on page 60 in [8], we know that if f ∈ L∞ and
f |Ex ∈ H∞|Ex for every QC-level set Ex, then f ∈ H∞+C. We turn to the proof
of Corollary 3.3.

Proof. We begin with the proof of (a). From the above, we know that qb ∈ H∞+C.
Since H∞ + C is an algebra, qb ∈ H∞ + C. So qb ∈ QC. Since q is constant on
each QC-level set, if b is not constant we must have q = 0. If b is constant, then
qb is constant as well. Therefore, qb is constant on every level set and qb ∈ QA.
Since bn is constant whenever b is, we also see that qb

n ∈ QC and qbn ∈ QA for
every n.

For (b), consider a Blaschke product B. Now, by the Chang–Marshall theo-
rem, H∞[B] = H∞[b] for some interpolating Blaschke product b. Let {zn} denote
the zero sequence of b and use Wolff’s Lemma 1.2 ([23]) and part (a): if {zn}
is a Blaschke sequence, there is an outer function q ∈ QA such that q(zn) → 0.
From part (a), since q ∈ QA tends to zero on the zero sequence of b, we know
qbn ∈ QA and q|Ex = 0 on any QC-level set on which b is not constant. Suppose

b|Ex is constant. There exist hj ∈ H∞ such that B|Ex =
∑

j hjb
j |Ex ∈ H∞|Ex

for each x, since H∞|Ex is closed and we assume b is constant on Ex. There-
fore qB|Ex ∈ H∞|Ex if b|Ex is constant. On the other hand, if b|Ex is not con-
stant, q|Ex = 0 and we also have qB|Ex ∈ H∞|Ex. Thus, qB ∈ H∞ + C and, of
course, qB ∈ H∞ implies qB ∈ QA.

To obtain the result for f ∈ L∞, we apply a result of Axler [2] that says
that given f ∈ L∞, there exists a Blaschke product B such that Bf ∈ H∞ + C.
Suppose that g ∈ H∞ + C. By Axler’s result, we can find a Blaschke product B
with Bg ∈ H∞ +C, and from our work above we can find q ∈ QA with qB ∈ QA.
Therefore qBg = q(Bg) ∈ H∞ +C and qBg = qBg ∈ H∞ +C. So qBg ∈ QC and
we can multiply the conjugate of any H∞ + C function into QC.

If we have f ∈ L∞, we can multiply by a Blaschke product B0 and we have
B0f ∈ H∞ + C. We can now multiply the conjugate of this function into QC, so
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we have q0B0f and q0(B0f) in QC. If B0f is not constant on a level set q0 must be
zero, and if B0f is a non-zero constant q0 must be as well. Therefore q0B0f ∈ QC.
If q0B0 /∈ QA, we may multiply it into QA with another QA function q1. Therefore
q1q0B0 multiplies f into QC. �

Note that our q is obtained by taking B, finding an interpolating Blaschke
product corresponding to it and requiring that q tends to zero on the zeros of the
interpolating Blaschke product.

Recall that a sequence is an asymptotic interpolation sequence of type 1 forH∞,
if whenever a ∈ �∞, there exists g ∈ H∞ such that |g(zj) − aj | → 0 and ‖g‖∞ ≤
‖a‖�∞ .

Theorem 3.4 ([10]). A sequence {zn} of distinct points is an asymptotic inter-
polating sequence of type 1 for H∞ if and only if {zn} is a thin interpolating
sequence.

Proof. We have already mentioned that a simpler proof that thin implies asymp-
totic of type 1 follows from Theorem 2.8 and can be found in [7]. We now turn to
the converse.

By Theorem 3.1 and the comments following it, we may assume that our se-
quence is eventually interpolating. Since the sequence is assumed to be distinct,
it must be interpolating. Suppose that it is not a thin sequence. Then there is a
sequence {znk

} and ε > 0 such that

|Bnk
(znk

)| ≤ 1− ε;

that is, ∏
j �=nk

ρ(znk
, zj) ≤ 1− ε.

Choose a thin subsequence of the {znk
} and denote this sequence by {znkm

}. Let
wn = 0 if n /∈ {nkl

} and wn = 1 otherwise. Then choose f ∈ H∞ with ‖f‖∞ = 1
and

|f(zm)− wm| → 0.

So there exists M such that

f(znkm
) ≈ 1, f(zj) ≈ 0 if j /∈ {nkm}

for j, nkm ≥ M . In fact, f(zj) → 0 as j → ∞ for j /∈ {nkm} and f(znkm
) → 1

as m → ∞.
Let B1 denote the Blaschke product with zeros {zj : j /∈ {nkm}}. By The-

orem 3.2, there exists g ∈ H∞ + C such that f = B1g and ‖g‖∞ = 1. Thus
B1, g ∈ H∞ + C, and by [6],

lim
|z|→1

|(B1g)(z)−B1(z)g(z)| = 0,

where we interpret the evaluation of functions in H∞ + C on D via the Poisson
extension formula.
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Since f(znkm
) → 1, we see that

lim
m

|1−B1(znkm
)g(znkm

)| = lim
m

|f(znkm
)−B1(znkm

)g(znkm
)| = 0.

Therefore, |B1(znkm
)| → 1 as m → ∞. Returning to the original Blaschke prod-

uct B and splitting the product into the terms belonging and not belonging to the
subsequence {nkm}, we obtain for all l ∈ N:

|Bnkl
(znkl

)| =
∏
m �=l

ρ(znkm
, znkl

)
∏

j /∈{nkm}
ρ(znkl

, zj) =
∏
m �=l

ρ(znkm
, znkl

) · |B1(znkl
)|.

Now the first factor tends to 1 as l → ∞, because we have chosen {znkm
} to be

a thin sequence, and we have just seen that the second factor tends to 1 as well.
This contradicts our choice of {znkm

}, so the sequence must be thin. �

4. Thin sequences in Hp

In this section, we study Hp equivalences for a sequence to be thin. Recall that
for z0 ∈ D, kz0(z) = 1/(1− z0z) is the reproducing kernel for H2 and hz0(z) =√
1− |z0|2/(1− z0z) is the normalized reproducing kernel.

Definition 4.1. Let 1 ≤ p ≤ ∞. A sequence {zn} is an eventually 1-interpolating
sequence for Hp, (EISp), if the following holds: for every ε > 0 there exists N
such that for each {an} ∈ �p there exists fN,a ∈ Hp with

fN,a(zn)(1 − |zn|2)1/p = an for n ≥ N and ‖fN,a‖p ≤ (1 + ε) ‖an‖N,�p .

Definition 4.2. Let 1 ≤ p ≤ ∞. A sequence {zj} is a strong AISp-sequence if
for all ε > 0 there exists N such that for all sequences {aj} ∈ �p there exists a
function GN,a ∈ Hp such that ‖GN,a‖p ≤ ‖a‖N,�p and

‖GN,a(zj)(1 − |zj|2)1/p − aj‖N,�p < ε ‖aj‖N,�p.

Theorem 4.3. Let {zn} be a sequence of points in D. Let 1 ≤ p ≤ ∞. Then {zn}
is an EISp sequence if and only if {zn} is a strong-AISp.

Proof. If a sequence is an EISp, then it is trivially AISp, for given ε > 0 we may
take GN,a = fN,a/(1 + ε).

For the other direction, suppose {zn} is an AISp sequence. Let ε > 0. Re-
placing ε by ε/(1 + ε) we may assume that 0 < ε < 1. Let N := N(ε), and let

{aj} := {a(0)j } be any sequence. First choose f0 so that

‖(1− |zj |2)1/pf0(zj)− a
(0)
j ‖N,�p < ε ‖a‖N,�p

and
‖f0‖p ≤ ‖a‖N,�p.
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Now let a
(1)
j = a

(0)
j − (1 − |zj |2)1/pf0(zj). Note that ‖a(1)‖N,�p < ε ‖a‖N,�p. Since

we have an AISp sequence, we may choose f1 such that

‖(1− |zj|2)1/pf1(zj)− a
(1)
j ‖N,�p < ε ‖a(1)‖N,�p < ε2 ‖a‖N,�p,

and
‖f1‖p ≤ ‖a(1)‖N,�p < ε ‖a‖N,�p.

In general, we let

a
(k)
j = −(1− |zj |2)1/pfk−1(zj) + a

(k−1)
j

so that

‖a(k)‖N,�p ≤ ε ‖a(k−1)‖N,�p ≤ ε2 ‖a(k−2)‖N,�p ≤ · · · ≤ εk ‖a‖N,�p

and
‖fk‖p ≤ ‖a(k)‖N,�p < εk ‖a‖N,�p.

Then consider f(z) =
∑∞

k=0 fk(z). Since fk(zj) =
(
a
(k)
j − a

(k+1)
j

)
(1 − |zj |2)−1/p

and a
(k)
j → 0 as k → ∞, we have

f(zj) = a
(0)
j (1− |zj|2)−1/p = aj(1− |zj |2)−1/p.

Further ‖f‖p ≤ ∑∞
k=0 ε

k‖a‖N,�p = 1
1−ε ‖a‖N,�p. �

We will now turn to characterization of thin sequences by means of Carleson
measures. For z ∈ D, we let Iz denote the interval in T with center z/|z| and
length 1− |z|. For an interval I in T, we let

SI =
{
z ∈ D : z/|z| ∈ I and |z| ≥ 1− |I|}.

For A > 0, the interval AI denotes an interval with the same center as I and
length A|I|. Given a positive measure μ on D, let us denote the (possibly infinite)
constant

C(μ) = sup
f∈H2,f �=0

‖f‖2L2(D,μ)

‖f‖22
as the Carleson embedding constant of μ on H2 and

R(μ) = sup
z

‖kz‖L2(D,μ)

‖kz‖2
as the embedding constant of μ on the reproducing kernel of H2.

The Carleson embedding theorem asserts that the constants are equivalent. In
particular, there exists a constant c such that

R(μ) ≤ C(μ) ≤ cR(μ),

with best known constant c = 2e, [18].
We recall the following result from [21], for a generalized version, see [4].
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Theorem 4.4 (See either Sundberg, Wolff, Lemma 7.1 in [21], or Chalendar,
Fricain, Timotin, Proposition 4.2 in [4]). Suppose Z = {zn} is a sequence of distinct
points. Then the following are equivalent:

(1) Z is a thin interpolating sequence;

(2) for any A ≥ 1,

lim
n→∞

1

|Izn |
∑

k �=n,zk∈S(AIn)

(1− |zk|) = 0.

Here we note the following result.

Theorem 4.5. Suppose Z = {zn} is a sequence. For N > 0, let

μN =
∑
k≥N

(1 − |zk|2) δzk .

Then the following are equivalent:

(1) Z is a thin sequence;

(2) C(μN) → 1 as N → ∞;

(3) R(μN ) → 1 as N → ∞.

Proof. Noting that, for each f ∈ H2,

‖f‖2L2(D,μN ) =

∞∑
k=N

(1− |zk|2) |f(zk)|2 =

∞∑
k=N

|〈f, hzk〉|2,

the implication (1) ⇒ (2) follows immediately from Theorem 1.2, and the impli-
cation (2) ⇒ (3) is of course trivial. For (3) ⇒ (1), note first that (3) implies that
there exists M such that for N ≥ M the sequence {zn}n≥N is an interpolating
sequence, which we see from the following: for any k �= n, n, k ≥ N ,

1− ρ(zn, zk)
2 = 1−

∣∣∣ zk − zn
1− z̄kzn

∣∣∣2 =
(1 − |zn|2)(1− |zk|2)

|1− z̄kzn|2
= (1− |zk|2)|hzn(zk)|2 < ‖hzn‖2L2(D,μN ) − 1

N→∞−→ 0,

so {zk}k≥N is separated for sufficiently large N , and together with R(μN ) < ∞,
this implies that the sequence is interpolating from N onwards (see [17], page 158)
and, in particular, Blaschke. By the Weierstrass inequality, we obtain for n ≥ N
that ∏

k≥N,k �=n

∣∣∣ zk − zn
1− z̄kzn

∣∣∣2 =
∏

k≥N,k �=n

(
1− (1− |zk|2)(1− |zn|2)

|1− z̄kzn|2
)

≥ 1−
∑

k≥N,k �=n

(1− |zn|2)(1 − |zk|2)
|1− z̄kzn|2 = 1− (‖hzn‖2L2(D,μN ) − 1

) N→∞−→ 1,

which implies that |Bn(zn)| → 1. Hence {zn} is thin. �
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Putting the results above together, we arrive at our main result in this section.

Theorem 4.6. Let {zn} be a Blaschke sequence of distinct points in D. The
following are equivalent:

(1) {zn} is an EISp sequence for some p with 1 ≤ p ≤ ∞;

(2) {zn} is thin;

(3) {hzn} is a complete AOB in KB;

(4) {zn} is a strong-AISp sequence for some p with 1 ≤ p ≤ ∞;

(5) The measure

μN =
∑
k≥N

(1− |zk|2) δzk

is a Carleson measure with Carleson embedding constant C(μN ) satisfying
C(μN) → 1 as N → ∞;

(6) The measure

νN =
∑
k≥N

(1− |zk|2)
δk

δzk

is a Carleson measure with embedding constant RνN on reproducing kernels
satisfying RνN → 1.

Moreover, if {zn} is an EISp (strong-AISp) sequence for some p with 1 ≤ p ≤ ∞,
then it is an EISp (strong AISp) sequence for all p.

In what follows, we let δ̃N = min{δn : n ≥ N}. Since δn > δ > 0 for all n and
δn → 1, we see that δ̃N → 1 as N → ∞.

Proof. (1) implies (2): Suppose that for some p we know that {zn} is an EISp

sequence. Let B denote the corresponding Blaschke product. Suppose {zn} is not
thin. Then there exists ε > 0 and a subsequence {znk

} such that

sup
k

|Bnk
(znk

)| ≤ 1− ε.

First suppose that p < ∞. Choose a subsequence of {znk
} recursively, denoted

{znkm
}, such that {znkm

} is thin and satisfies

(4.1) (1− |znkm
|2)−1/p

( ∑
j>m

(1− |znkj
|2)

)1/p

→ 0.

Now by our assumption (1) and the fact that ak = (1− |zk|2)1/p ∈ �p, we know
that there exists N = N(ε) such that for km ≥ N there exists fm ∈ Hp such that
for j ≥ N ,

fm(znkl
) (1− |znkl

|2)1/p = (1− |znkl
|2)1/p for l ≥ m

and fm(zj) = 0 for j /∈ {nks}ks≥N or j = nkl
, N ≤ kl < km,
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and

‖fm‖p ≤ (1 + ε)
( ∑

n≥N

|an|p
)1/p

= (1 + ε)
(∑

l≥m

(1− |znkl
|2)

)1/p

.

Let b1 denote the (thin) Blaschke product with zeros {znkl
} for nkl

> N , and b2
denote the Blaschke product with zeros {zj}j /∈{nkl

},j≥N . Now for each such m, we
know that fm vanishes on the zeros of b2 so write fm = b2gm for some gm ∈ Hp.
Since gm ∈ Hp, we know that |gm(z)| ≤ (1− |z|2)−1/p‖gm‖p, so we obtain

1 = |fm(znkm
)| = |b2(znkm

)| |gm(znkm
)| ≤ |b2(znkm

)|(1− |znkm
|2)−1/p‖gm‖p

= |b2(znkm
)|(1 − |znkm

|2)−1/p‖fm‖p
≤ |b2(znkm

)| 1

(1 − |znkm
|2)1/p

(
(1 + ε)

(
(1− |znkm

|2) +
∑
j>m

(1− |znkj
|2))1/p).

Thus,

1 ≤ (1 + ε) lim inf
m→∞ |b2(znkm

)|
(
1 +

( 1

1− |znkm
|2

∑
j>m

(1− |znkj
|2)))1/p

.

Therefore, there exists ηm → 0 such that

lim inf
m→∞ |b2(znkm

)| ≥ lim
m→∞

1

(1 + ε)(1 + ηm)

and since we assume that supl |Bnkl
(znkl

)| ≤ 1− ε we have

1− ε ≥ lim inf
m→∞

∏
j≤N

ρ(znkm
, zj)

∏
j∈{znkl

,l �=m},j>N

ρ(znkm
, zj)

∏
j /∈{znkm

},j>N

ρ(znkm
, zj)

= lim inf
m→∞

∏
j≤N

ρ(znkm
, zj)|b1znkm

(znkm
)||b2(znkm

)| ≥ 1

1 + ε
,

a contradiction. The case p = ∞ follows from Corollary 2.7.

(2) implies (1). We show (2) implies (1) for all p: We have shown, in Theo-
rem 2.5, that a thin interpolating sequence is an EIS∞ sequence. We check that
thin implies that it is an EISp sequence for all p with 1 ≤ p ≤ ∞. To see this, let
ε > 0 be given. Since we assume {zj}j≥N is a thin interpolating sequence, we may
choose the P. Beurling functions fn with constant (1 + ε) given by Theorem 2.5.
Then consider

GN (z) =
∑
n≥N

an fn(z)(hzn(z))
2/p.

We see that GN (zj) = aj(1− |zj |2)−1/p when j ≥ N and

(4.2) |GN (z)| ≤
∑
n≥N

(1 + ε) |an| |hzn(z)|2/p
|fn(z)|
1 + ε

.
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Applying Hölder’s inequality and raising both sides to the p-th power, we get

|GN (z)|p ≤
( ∑

n≥N

(1 + ε)p |an|p |hzn(z)|2
)( ∑

n≥N

|fn(z)|q
(1 + ε)q

)p/q

.

But q ≥ 1 and |fn(z)| < 1 + ε for all n and z, so

|GN (z)|p ≤ (1 + ε)p
( ∑

n≥N

|an|p |hzn(z)|2
)( ∑

n≥N

|fn(z)|
1 + ε

)p/q

≤ (1 + ε)p
∑
n≥N

|an|p |hzn(z)|2.

Integrating, we get

‖GN‖pp ≤ (1 + ε)p ‖a‖pN,�p.

The case of p = 1 follows from (4.2) and the fact that
∑

n≥N |fn(z)| < 1 + ε for
all n and z and then integration. Therefore, we see that (2) implies (1) for all p.

(2) is equivalent to (3): This follows from Theorem 1.2.

(4) and (1) are equivalent: This follows from Theorem 4.3.

At this point, we will note that if {zn} is an EISp0 sequence for some p0,
then it is an EISp sequence for all p, and the same is true for AISp sequences:
suppose {zn} is an EISp sequence. Then, from our work above, it is a thin
interpolating sequence. Therefore it is EISp for all p. If AISp holds for some p,
we know EISp holds for that p and therefore for all p. Consequently, AISp holds
for all p, too. Therefore (1)–(4) are equivalent and if (1) or (4) is true for some p,
they are both true for all p.

The remainder of the theorem follows from Theorem 4.5 once one observes
that δk is bounded below. �

A thin sequence allows repetition of finitely many points. It is clear that we
may remove finitely many points from such a sequence to obtain an interpolating
sequence. Recall that a sequence is an AIS sequence of type 1 for H∞ if whenever
a ∈ �∞, there exists g ∈ H∞ such that |g(zj) − aj | → 0 and ‖g‖∞ ≤ ‖a‖�∞ .
Although this notion does not appear to be equivalent to that of a strong AIS
sequence for Hp, it is a consequence of Theorem 3.4 that an AIS of type 1 for
H∞ is equivalent to being a thin interpolating sequence when the points {zn} are
distinct, for in this case an AIS sequence of type 1 for H∞ is equivalent to being
a thin sequence and that, by Theorem 3.4, is equivalent to being a strong AISp

sequence. We summarize these remarks below.

Corollary 4.7. A sequence {zn} of distinct points is an AIS sequence of type 1
for H∞ if and only if it is a strong AIS∞ sequence.
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