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Fibered spherical 3-orbifolds

Mattia Mecchia and Andrea Seppi

Abstract. In the early 1930s, Seifert and Threlfall classified up to conju-
gacy the finite subgroups of SO(4), which gives an algebraic classification
of orientable spherical 3-orbifolds. For the most part, spherical 3-orbifolds
are Seifert fibered. The underlying topological space and singular set of
non-fibered spherical 3-orbifolds were described by Dunbar. In this paper
we deal with the fibered case and in particular we give explicit formulae
relating the finite subgroups of SO(4) with the invariants of the corre-
sponding fibered 3-orbifolds. This allows us to deduce directly from the
algebraic classification topological properties of spherical 3-orbifolds.

1. Introduction

Geometric 3-manifolds and 3-orbifolds play an important role in the geometrization
program of Thurston (completed at the beginning of this century by Perelman).

Roughly speaking, a n-orbifold is a Hausdorff topological space locally mod-
elled by quotients of Rn by finite groups of isometries. To each point x of the
orbifold one associates the minimal group Γx such that x has a neighborhood
modelled on R

n/Γx. If Γx is non-trivial the point is called singular. Complete ge-
ometric orbifolds are orbifolds diffeomorphic to the quotient of a geometric space
(e.g., spherical, Euclidean and hyperbolic space) by a discrete groups of isome-
tries. In particular an orientable spherical 3-orbifold is a quotient of S3 by a finite
subgroup of SO(4). For basic definitions about orbifolds see for example [2].

In early 1930s, Seifert and Threlfall ([13], [14]) classified up to conjugacy the
finite subgroups of SO(4). The standard reference in English has been the book of
Du Val [5], where the groups are divided into families and enumerated. The classi-
fication of finite subgroups of SO(4) gives immediately an algebraic classification of
spherical 3-orbifolds, but from a topological point of view this classification is not
completely satisfactory because it does not give any direct information about the
topological structure of the orbifold (underlying topological space and singular set).

W.D. Dunbar wrote two classical papers about geometric 3-orbifolds. In [7]
he classified the Seifert fibered geometric 3-orbifolds with underlying topological
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space S3 in terms of the invariants of the fibration and the singular set of these
orbifolds was explicitly drawn. In [8], he described the topology of a non-fibered
spherical 3-orbifold starting from the corresponding finite subgroup of SO(4). Up to
conjugacy, there are 18 groups giving a non-fibered 3-orbifold, the remaining groups
(that are collected in 24 infinite families) leave invariant a fibration of S3 which
induces a fibration on the 3-orbifold. In particular all these groups preserve, up to
conjugacy, the Hopf fibration of S3.

In [8] Dunbar wrote about fibered orbifolds: “. . . these orbifolds are amenable
to study en masse, although in practice there are so many cases that it is hard
to give a formula that will translate a description of a subgroup of SO(4) into a
description of the corresponding orbifold (or vice versa).”

In this paper we do exactly this, for each family of groups preserving a fibration
we describe an explicit formula giving the invariants of the fibered quotient 3-
orbifold. The fibration is that induced by the Hopf fibration. This permits to
deduce directly from the group presentation in [5] some topological information
about the quotient orbifold. The results are collected in Tables 2, 3 and 4.

In Section 2 we review briefly the main ideas of the algebraic classification of
the finite subgroups of SO(4). It is interesting to point out that Du Val’s list is not
complete and three new families of groups have to be inserted. In their book about
quaternions and octonions [3], J. H. Conway and D.A. Smith have revisited the
classification, giving a complete list of the finite subgroups of SO(4). They do not
use the same notation of Du Val; for details they often refer to Goursat’s paper [10].
Here we choose to use the same notation and enumeration as in Du Val’s book,
inserting the new three families of groups. In particular we describe how the new
families appear in the Du Val procedure of classification.

In Section 3 we recall briefly the basic notions about Seifert fibered 3-orbifolds
and analyze which groups in Du Val’s list leave invariant a fibration of S3.

Section 4 is mainly devoted to the analysis of the abelian groups (Families 1
and 1′). From an algebraic point of view this seems the simplest case but, us-
ing the presentation of the groups used in the classification, the geometry of the
action appears quite obscure. For example it is not easy to understand which
transformations have non-empty fixed point set. In fact to compute the index of
the singular points in the quotients we have to distinguish many cases according
to the parity of the four indices involved. For the abelian groups we compute
explicitly the underlying topological space that is in every case a lens space. The
singular set is contained in the union of the cores of the tori giving the lens space;
the singularity indices of the two components is explicitly given. The generalized
dihedral case (Families 11 and 11′) is a direct consequence of the abelian one. Here
the topology of the quotient orbifold can be completely described by using invari-
ants and Proposition 2.10 in [6]. The formulae for these groups are presented in
Tables 2 and 3.

The remaining cases can be all analyzed by starting from the results obtained
in Section 4 and by using a procedure which is similar in each case. In Section 5
we present explicitly the most interesting families and we describe the general
procedure. The formulae for these families are presented in Table 4.
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In Subsection 5.2 we explain how it is possible, by the methods presented in [6],
to obtain in general the singular set and the underlying topological space of the
quotient orbifold from the invariants of the fibration. Here we treat the example
of Family 2. For these groups we explicitly describe two different fibrations (with
different base orbifolds) of the quotient orbifold. One of them derives from the
Seifert fibration of the underlying manifold but the other does not.

2. Classification of finite subgroups of SO(4)

Let H = {a+ bi+ cj+dk | a, b, c, d ∈ R} = {z1+ z2j | z1, z2 ∈ C} be the quaternion
algebra. In this section we consider the 3-sphere as the set of unit quaternions (the
quaternions of length 1):

S3 = {a+ bi+ cj + dk | a2 + b2 + c2 + d2 = 1} = {z1 + z2j | |z1|2 + |z2|2 = 1}
The product in H induces a group structure on S3.

For each pair (p, q) of elements of S3, the function Φp,q : H → H with Φp,q(h) =
phq−1 leaves invariant the length of quaternions, thus we can define a homomor-
phism of groups Φ : S3×S3 → SO(4) such that Φ(p, q) = Φp,q. The homomorphism
can be proved to be surjective and the kernel of Φ is {(1, 1), (−1,−1)}. The ho-
momorphism Φ gives a 1-1 correspondence between finite subgroups of SO(4) and
finite subgroups of S3 × S3 containing the kernel of Φ. Moreover if two subgroups
are conjugate in SO(4), then the corresponding groups in S3 × S3 are conjugate
and vice versa. So to give a classification up to conjugation of the finite subgroups
of SO(4), we consider the subgroups of S3 × S3.

Let G be a finite subgroup of S3 × S3, we denote by πi : S
3 × S3 → S3

with i = 1, 2 the two projections. We use the following notations: L = π1(G),
LK = π1((S

3 × {1}) ∩ G), R = π2(G), RK = π2(({1} × S3) ∩ G). The projec-
tion π1 induces an isomorphism π̄1 : G/(LK × RK) → L/LK and π2 induces an
isomorphism π̄2 : G/(LK × RK) → R/RK ; we denote by φG the isomorphism be-
tween L/LK and R/RK obtained by composing π̄−1

1 and π̄2. On the other hand,
if we consider two finite subgroups L and R of S3, with two normal subgroups LK
and RK such that there exists an isomorphism φ : L/LK → R/RK , we can de-
fine a subgroup G of S3 × S3 such that L = π1(G), LK = π1((S

3 × {1}) ∩ G),
R = π2(G), RK = π2(({1} × S3) ∩G) and φ = φG. The groups of S3 × S3 can be
uniquely identified by 5-tuples (L,LK , R,RK , φ). The order of the group identified
by (L,LK , R,RK , φ) is (|L|·|R|)/|L/LK |, i.e., the product of the orders of L and R
divided by the order of L/LK ∼= R/RK .

We are interested in the classification up to conjugacy and we use the following
proposition (it is implicitly used in [5] and the proof is straightforward):

Proposition 2.1. Let G and G′ two groups of S3 × S3 described respectively by
(L,LK , R,RK , φ) and (L′, L′

K , R
′, R′

K , φ
′). The groups G and G′ are conjugate in

S3 × S3 if and only if there exist two inner automorphisms, α and β, of S3 such
that α(L) = L′, β(R) = R′, α(LK) = L′

K, β(RK) = R′
K and φ = β̄−1φ′ᾱ, where

ᾱ and β̄ are the maps induced by α and β on the factors L/LK and R/RK.
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Up to conjugacy the finite subgroups of S3 are the following:

Cn = {cos(2απn ) + i sin(2απn ) |α = 0, . . . , n− 1} (n ≥ 1)

D∗
4n = C2n ∪C2nj (n ≥ 2)

T ∗ =
⋃2
r=0(

1
2 + 1

2 i+
1
2 j +

1
2k)

rD∗
8

O∗ = T ∗ ∪
(√

1
2 +

√
1
2j
)
T ∗

I∗ =
⋃4
r=0

(
1
2 τ

−1 + 1
2τj +

1
2k

)r
T ∗ (

τ =
√
5+1
2

)
The group Cn is cyclic of order n. The group D∗

4n is a generalized quaternion
group of order 4n. The group D∗

4n is called also binary dihedral and it is a central
extension of the dihedral group by a group of order 2. The groups T ∗, O∗, and I∗

are central extensions of the tetrahedral, octahedral and icosahedral group, respec-
tively, by a group of order two; they are called binary tetrahedral, octahedral and
icosahedral, respectively.

Analyzing the subgroups of the groups in this list and using Proposition 2.1, a
classification up to conjugation of the subgroups of S3 × S3 containing (−1,−1)
can be given. We report these groups in Table 1. We remark that here we use the
same enumeration of Du Val’s list and almost the same notation. We decide for
example to index a binary dihedral group with its order, while in [5] the group Dn

has order 4n. Another difference concerns the indices for the families 1′ and 11′:
what here is r would be 2r in [5].

To be able to read the table, some remarks are in order:

1. For most cases the group is completely determined up to conjugacy by
the first four data in the 5-tuple (L,LK , R,RK , φ), since any possible isomor-
phism φ gives the same group up to conjugacy. So we use Du Val’s notation
where the group (L,LK , R,RK , φ) is denoted by (L/LK , R/RK), using a sub-
script only when the isomorphism has to be specified, as is the case for Fami-
lies 1, 1′, 11, 11′, 26′, 26′′, 31, 31′, 32, 32′, 33 and 33′. We recall that φ is an iso-
morphism from L/LK to R/RK . In the group (C2mr/C2m, C2nr/C2n)s the isomor-
phism is φs sending the element (cos(π/mr) + i sin(π/mr))C2m to (cos(π/nr) +
i sin(π/nr))sC2n. In the group (Cmr/Cm, Cnr/Cn)s the situation is similar and
the isomorphism is φs sending (cos(2π/mr) + i sin(2π/mr))Cm to (cos(2π/nr) +
i sin(2π/nr))sCn.

For Family 11 (resp., 11′) we extend the isomorphism φs by sending the coset
jC2m to jC2n (resp., jCm to jCn). If L = D∗

4mr, R = D∗
4nr, LK = C2m and

RK = C2n, then these isomorphisms cover all the possible cases except when r = 2.
In this case we have to consider another isomorphism f : D∗

4mr/C2m → D∗
4nr/C2n

such that:

f((cos(π/2m) + i sin(π/2m))C2m) = j C2n,

f(j C2m) = (cos(π/2n) + i sin(π/2n))C2n.

This is due to the fact that, if r > 2, the quotients L/LK and R/RK are
isomorphic to a dihedral groups of order greater than four where the index-two
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family of groups order of Φ(G)

1. (C2mr/C2m, C2nr/C2n)s 2mnr gcd(s, r) = 1

1′. (Cmr/Cm, Cnr/Cn)s (mnr)/2 gcd(s, r) = 1 gcd(2, n) = 1

gcd(2, m) = 1 gcd(2, r) = 2

2. (C2m/C2m, D∗
4n/D

∗
4n) 4mn

3. (C4m/C2m, D∗
4n/C2n) 4mn

4. (C4m/C2m, D∗
8n/D

∗
4n) 8mn

5. (C2m/C2m, T ∗/T ∗) 24m

6. (C6m/C2m, T ∗/D∗
8) 24m

7. (C2m/C2m, O∗/O∗) 48m

8. (C4m/C2m, O∗/T ∗) 48m

9. (C2m/C2m, I∗/I∗) 120m

10. (D∗
4m/D∗

4m, D∗
4n/D

∗
4n) 8mn

11. (D∗
4mr/C2m, D∗

4nr/C2n)s 4mnr gcd(s, r) = 1

11′. (D∗
2mr/Cm, D∗

2nr/Cn)s mnr gcd(s, r) = 1 gcd(2, n) = 1

gcd(2, m) = 1 gcd(2, r) = 2

12. (D∗
8m/D∗

4m, D∗
8n/D

∗
4n) 16mn

13. (D∗
8m/D∗

4m, D∗
4n/C2n) 8mn

14. (D∗
4m/D∗

4m, T ∗/T ∗) 48m

15. (D∗
4m/D∗

4m, O∗/O∗) 96m

16. (D∗
4m/C2m, O∗/T ∗) 48m

17. (D∗
8m/D∗

4m, O∗/T ∗) 96m

18. (D∗
12m/C2m, O∗/D∗

8) 48m

19. (D∗
4m/D∗

4m, I∗/I∗) 240m

20. (T ∗/T ∗, T ∗/T ∗) 288

21. (T ∗/C2, T
∗/C2) 24

21′. (T ∗/C1, T
∗/C1) 12

22. (T ∗/D∗
8 , T

∗/D∗
8) 96

23. (T ∗/T ∗, O∗/O∗) 576

24. (T ∗/T ∗, I∗/I∗) 1440

25. (O∗/O∗, O∗/O∗) 1152

26. (O∗/C2, O
∗/C2) 48

26′. (O∗/C1, O
∗/C1)Id 24

26′′. (O∗/C1, O
∗/C1)f 24

27. (O∗/D∗
8 , O

∗/D∗
8) 192

28. (O∗/T ∗, O∗/T ∗) 576

29. (O∗/O∗, I∗/I∗) 2880

30. (I∗/I∗, I∗/I∗) 7200

31. (I∗/C2, I
∗/C2)Id 120

31′. (I∗/C1, I
∗/C1)Id 60

32. (I∗/C2, I
∗/C2)f 120

32′. (I∗/C1, I
∗/C1)f 60

33. (D∗
8m/C2m, D∗

8n/C2n)f 8mn m �= 1 n �= 1.

33′. (D∗
8m/Cm, D∗

8n/Cn)f 4mn gcd(2, n) = 1 gcd(2, m) = 1

m �= 1 and n �= 1.

34. (C4m/Cm, D∗
4n/Cn) 2mn gcd(2, n) = 1 gcd(2, m) = 1

Table 1. Finite subgroups of SO(4).
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cyclic subgroup is characteristic, while if r = 2 the quotients are dihedral groups
of order four and extra isomorphisms appear. The isomorphism f gives another
family of groups (number 33 in our list), which was missing in Du Val’s list.

In Family 11′, the behavior is similar: if r > 2, the isomorphisms φs give all
the possible groups up to conjugacy; if r = 2 the quotients are quaternion groups
of order 8 and a further family has to be considered. This is the second missing
case in [5] and Family 33′ in our list, where f is the following isomorphism:

f((cos(π/m) + i sin(π/m))Cm) = j Cn,

f(j Cm) = (cos(π/n) + i sin(π/n))Cn.

Families 33 and 33′ are listed in Table 4.2 of [3] as ± 1
4 [D4m×D4n] and

1
4 [D4m×

D4n], respectively; their absence from Du Val’s list was also pointed out in [9].
The groups in Families 26′, 26′′, 31, 31′, 32, 32′ do not leave invariant any fi-

bration of S3, so we do not need an explicit description of the isomorphism in the
5-tuple. More details can be found in [5] and in [8].

2. The third family of groups not in Du Val’s list is Family 34 in Table 1. Note
that D∗

4n/Cn is cyclic of order 4 if and only if n is odd. If m is even while n is
odd, then (C4m/Cm, D

∗
4n/Cn) does not contain the kernel of Φ, but if m is odd, a

new family is generated. This family (after conjugation by a reflection, and with
the roles of m and n swapped) appears in Table 4.1 of [3] as + 1

2 [D2m × C2n].

3. By Proposition 2.1 the groups (L,LK , R,RK , φ) and (R,RK , L, LK , φ
−1)

are not conjugate unless L and R are conjugate in S3, so the corresponding groups
in SO(4) are in general not conjugate in SO(4). If we consider conjugation in O(4)
the situation changes, because the orientation-reversing isometry of S3, sending
each quaternion z1 + z2j to its inverse z1 − z2j, conjugates the two subgroups of
SO(4) corresponding to (L,LK , R,RK , φ) and (R,RK , L, LK , φ

−1). For this rea-
son, in Table 1 only one family between (L,LK , R,RK , φ) and (R,RK , L, LK , φ

−1)
is listed.

3. Seifert orbifolds

We will describe the extension to 3-orbifolds of the concept of circle bundles over
a surface, starting with brief general descriptions of 2-orbifolds and orientable 3-
orbifolds. All 3-orbifolds considered in this paper will be orientable. For more
details, see Chapter 2 of [2].

The underlying topological space of a 2-orbifold is a 2-manifold with boundary.
If x is a singular point, a neighborhood of x is modelled by D2/Γ where Γ is a non-
trivial finite group of isometries acting on D2 fixing the preimage of x in D2. Γ is
also called the local group of x. The local group can be a cyclic group of rotations
(x is called a cone point), a group of order 2 generated by a reflection (x is a mirror
reflector) or a dihedral group generated by an index 2 subgroup of rotations and a
reflection (in this case x is called a corner reflector). The local models are presented
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in Figure 1, a cone point or a corner reflector is labelled by its singularity index, i.e.,
an integer corresponding to the order of the subgroup of rotations in Γ. We remark
that the boundary of the underlying topological space consists of mirror reflectors
and corner reflectors, and the singular set might contain in addition some isolated
points corresponding to cone points. If X is a 2-manifold without boundary we
denote by X(n1, . . . , nk) the 2-orbifold with underlying topological space X and
with k cone points of singularity index n1, . . . , nk. If X is a 2-manifold with non-
empty connected boundary we denote by X(n1, . . . , nk;m1, . . . ,mh) the 2-orbifold
with k cone points of singularity index n1, . . . , nk and with h corner reflectors of
singularity index m1, . . . ,mh. All of our 2-orbifolds are covered by S2, implying
h ≤ 3; therefore all orderings of the corner reflectors are equivalent.
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Figure 1. Local models of 2-orbifolds.

The underlying topological space of an orientable 3-orbifold is a 3-manifold and
the singular set is a trivalent graph. The local models are represented in Figure 2.
Excluding the vertices of the graph, the local group of a singular point is cyclic;
an edge of the graph is labelled by its singularity index, that is the order of the
related cyclic local groups.

n

n

2
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2

33
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3 4
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3 5

Figure 2. Local models of 3-orbifolds.

A Seifert fibration of a 3-orbifold O consists of a projection p : O → B, where B
is a 2-dimensional orbifold, such that for every point x ∈ B there is an orbifold chart
x ∈ U ∼= Ũ/Γ, an action of Γ on S1 (inducing a diagonal action of Γ on Ũ×S1) and
a diffeomorphism ψ : (Ũ × S1)/Γ → p−1(U) which makes the following diagram
commute:

p−1(U)

p
����
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U ∼= Ũ/Γ Ũ��
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If we restrict our attention to orientable 3-orbifolds O, then the action of Γ
on Ũ × S1 needs to be orientation-preserving. In this case, we will consider a
fixed orientation both on Ũ and on S1. Every element of Γ may preserve both
orientations, or reverse both.

The fibers p−1(x) are simple closed curves or intervals. If a fiber projects to a
non-singular point of B, it is called generic. Otherwise we will call it exceptional.

Let us define the local models for an oriented Seifert fibered orbifold. Locally
the fibration is given by the curves induced on the quotient (Ũ × S1)/Γ by the
standard fibration of Ũ × S1 given by the curves {y} × S1.

If the fiber is generic, it has a tubular neighborhood with a trivial fibration.
When x ∈ B is a cone point labelled by b, the local group Γ is a cyclic group of
order b acting orientation-preservingly on Ũ and thus it can act on S1 by rotations.
Suppose a generator of Γ acts on Ũ by rotation of an angle 2π/b and on S1 by
rotation of −2πa/b. Then we define the local invariant associated to x to be a/b.
This notation seems to suggest that a/b represents a rational number but this not
exact: different fractions giving the same rational number may represent different
situations. In fact in the orbifold context a and b are not necessarily coprime.
The fiber p−1(x) may be singular (in the sense of orbifold singularities) and the
index of singularity is gcd(a, b). If gcd(a, b) = 1 the fiber is not singular. A fibered
neighborhood of the fiber p−1(x) is a fibered solid torus (see Figure 3). Forgetting
the singularity of the fiber (if any), the local model coincides with the local model
of a Seifert fibration for manifold (with invariant (a/ gcd(a, b))/(b/ gcd(a, b))).

Note that, if a ≡ a′(mod b), the invariants a/b and a′/b describe the same
situation. In this section the local invariants a/b will be normalized so that 0 ≤
a < b. In the formulae we compute in Sections 4 and 5 we give the local invariants
in a non-normalized form.

We remark that in the literature different sign conventions are used. We use
the same as in [1], while in [6] the invariant is defined to be −a/b.

Identify top and bottom by translation

Exceptional fiberGeneric fiber

Figure 3. A fibered neighborhood of an exceptional fiber of invariant 2/3 corresponding
to a cone point.

If x is a corner reflector, namely Γ is a dihedral group, then the non-central
involutions in Γ need to act on Ũ and on S1 by simultaneous reflections. Here the
local model is the so-called solid pillow, which is a topological 3-ball with some
singular set inside. Γ has an index-two cyclic subgroup, acting as we previously
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described. The local invariant associated to x is defined as the local invariant a/b
of the cyclic index-two subgroup. Again, the fiber p−1(x) has singularity index
gcd(a, b). In Figure 4 the fiber p−1(x) is represented by the vertical segment. The
fibers of Ũ × S1 intersecting the axes of reflections of Γ in Ũ project to segments
that are exceptional fibers of the 3-orbifold; the other fibers of Ũ × S1 project to
simple closed curves. In Figure 4 the horizontal segments are not fibers but consist
of the endpoints of the fibers that are segments; they are singular (in the sense of
orbifold singularities) of index two.

Figure 4. Two copies of a fibered neighborhood of an exceptional fiber of invariant 1/2
corresponding to a corner reflector.

Finally, over mirror reflectors (local group Z2), we have a special case of the
dihedral case. The local model is topologically a 3-ball with two disjoint singular
arcs of index 2. More details can be found in [1] or [6].

We will now state the classification theorem. An oriented Seifert fibered orbifold
will be determined, up to diffeomorphisms which preserve the orientation and the
fibration, by the following data: the base orbifold, the local invariants associated
to cone points and corner reflectors, an additional invariant ξ ∈ Z2 associated
to each boundary component of the base orbifold, and the Euler number. If we
change the orientation of the orbifold, then the signs of local invariants and of the
Euler number are also changed. The normalized local invariants pass in this case
from a/b to (b−a)/b. For the formal definitions of Euler number and of invariants
associated to boundary components, as well as the proofs of the stated results, we
refer again to [1] or [6].

Theorem 3.1. Let O and O′ be Seifert fibered orbifolds, where O → B and
O′ → B′ are the fibration projections. If there is a diffeomorphism φ : B → B′,
the Euler numbers e(O) and e(O′) are equal and the local invariants associated
to cone points, corner reflectors and boundary components of B coincide with the
local invariants of their images in B′ through φ, then O and O′ are diffeomorphic.

Since we will only need to consider base orbifolds arising as quotients of S2,
and these have at most one boundary component, the formula in Proposition 3.4
implies that the local invariant of that component is forced by the other data. We
will make frequent use of the following corollary of Theorem 3.1.
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Corollary 3.2. Let O and O′ be Seifert fibered orbifolds, where O → B and
O′ → B′ are the fibration projections. Suppose B and B′ have at most one bound-
ary component. If there is a diffeomorphism φ : B → B′, the Euler numbers e(O)
and e(O′) are equal and the local invariants associated to cone points and corner
reflectors of B coincide with the local invariants of their images in B′ through φ,
then O and O′ are diffeomorphic.

The following statements will be useful.

Theorem 3.3. Let π : O → O′ be a finite orbifold covering, where O → B and
O′ → B′ are the fibration projections. Suppose π preserves the fibrations and thus
induces an orbifold covering π̄ : B → B′ of degree l. Moreover, suppose m is the
degree with which a generic fiber of O covers its image in O′ (note that lm is the
degree of the covering π). Then the Euler numbers of O and O′ are in the following
relation:

e(O) =
m

l
e(O′) .

Proposition 3.4. Let O be a Seifert fibered orbifold with Euler number e(O) and
local invariants associated to cone points, corner reflectors and boundary compo-
nents of the base orbifold respectively at/bt, ask/bsk and ξk. Then,

e(O) +
∑
t

at
bt

+
1

2

∑
k

(∑
s

ask
bsk

+ ξk

)
≡ 0 mod 1 .

Seifert fibrations of S3 are well known: it is proved in [12] that, up to diffeo-
morphism, they are given by the maps of the form π : S3 → S2 ∼= C ∪ {∞}

π(z1 + z2j) =
zu1
zv2

or π(z1 + z2j) =
zu1
zv2

for u and v coprimes. The base orbifold is S2 with two possible cone points. When
u = v = 1, π(z1 + z2j) = z1/z2 is called the Hopf fibration. In this case the
base orbifold is S2 and all the fibers are generic; if we consider the orientation
of S3 induced by the standard orientation of C×C, the Euler number of the Hopf
fibration is −1.

It is known (see Theorem 5.1 in [4]) that an orientable Seifert fibered 3-orbifold
S3/G is isometric to an orbifold S3/G′ where G′ is a subgroup of SO(4) respecting
the Hopf fibration; the isometry may be orientation-reversing.

It can be easily checked that the isometry corresponding to (0, w1 + w2j) ∈
S3 × S3 does preserve the Hopf fibration, with induced action on S2 given by

λ �→ w1λ+ w2

−w2λ+ w1
.

Analogously, it can be checked that an isometry given by (w1 + w2j, 0) preserves
the Hopf fibration if w1 = 0 or w2 = 0, but not in the general case. On the other
hand, the general fibration π(z1+z2j) = zu1 /z

v
2 is preserved by (w1 + w2j, u1 + u2j)

provided w2 = u2 = 0 or w1 = u1 = 0. It is not necessary to repeat the computa-
tions for the remaining fibrations; it suffices to note that the orientation-reversing
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isometry z = z1 + z2j �→ z−1 = z1 − z2j maps the fibration π(z1 + z2j) = zu1/z
v
2

to π(z1 + z2j) = zu1 /z
v
2 . The isometry Φ(w,w′) preserves a fibration π(z1 + z2j) =

zu1/z
v
2 if and only if Φ(w′−1, w−1) preserves π(z1 + z2j) = zu1 /z

v
2 .

If L is Cn or D∗
2n the group G = (L,LK , R,RK , φ) leaves invariant the Hopf

fibration. We note that if G is a group of Families 1, 1′, 11, and 11′, then G
preserves all the fibrations of the sphere and the quotient orbifold S3/G admits
infinite fibrations. When R is Cn orD∗

2n the fibration given by z1/z2 is left invariant
and the group can be conjugated by the orientation-reversing map z → z−1 to the
group (R,RK , L, LK , φ

−1) which preserves the Hopf fibration (as one should expect
by Theorem 5.1 in [4]). If both L and R are isomorphic to T ∗, O∗ or I∗ no fibration
of S3 is preserved (these are the groups considered in [8]).

4. The quotient of S3 by an abelian or generalized dihedral
group

We consider first the quotients of S3 by the groups that are images under Φ of
groups belonging to Families 1, 1′, 11 and 11′. The groups in this family are abelian
or generalized dihedral. We compute the fibration induced on the quotient by the
Hopf fibration of S3.

The 3-sphere S3 = {z1+z2j | |z1|2+|z2|2 = 1} can be decomposed into two solid
tori T1 = {z1 + z2j | |z1| ≤

√
2/2} and T2 = {z1 + z2j | |z2| ≤

√
2/2}. We consider

first the isometries of S3 sending z1 + z2j to w1z1 + w2z2j where w1 and w2 are
fixed complex numbers of norm 1. The isometries of this kind leave invariant the
two solid tori. We denote by μ and λ two oriented curves in the common boundary
of the two solid tori such that μ is the meridian of T1 and λ is the meridian of T2
(and a longitude of T1).

Lemma 4.1. Let ρ be the isometry of S3 sending z1 + z2j to e2π
g
f iz1 + e2π

d
f iz2j

where d, f, g are integers such that gcd(d, f, g) = 1 and f 
= 0. The quotient of
T1/〈ρ〉 is again a solid torus. Moreover we can choose a pair of oriented curves
(μ′, λ′) in the boundary of T1/〈ρ〉 such that μ′ is a meridian and λ′ a longitude
and such that π∗

1 , the map induced by the quotient map π1 : T1 → T1/〈ρ〉 on the
first homology group of the boundary, acts in the following way:

π∗
1([μ]) = gcd(d, f)[μ′]

π∗
1([λ]) = −(gd′)[μ′] + f ′[λ′]

where d′ = d/ gcd(d, f), f ′ = f/ gcd(d, f) and d′ is the positive integer strictly
smaller then f ′ such that d′d′ ≡ 1mod f ′.

Proof. We can think at T1 as a cylinder of height 2π with the top and the bottom
identified by a translation. To obtain a fundamental domain, we can first cut
the cylinder along a plane parallel to the bases obtaining a smaller cylinder of
height 2π/f ′, then we take a wedge of the smaller cylinder with angle equal to
2π/ gcd(d, f). The quotient T1/〈ρ〉 can be visualized by identifying the lateral
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sides of this fundamental domain with a rotation (which gives again a cylinder),
and then identifying the bottom disk to the top disk of this new cylinder with

a twist of −(gd′2π)/f ′ radians. The angle of the twist is computed using ρd
′
, a

power of ρ acting as a 2π/f ′ translation along the height of the starting cylinder.
This representation of the quotient ensures that T1/〈ρ〉 is a torus and makes

evident that a meridian of T1 is sent by π1 to gcd(d, f) times a meridian of T1/〈ρ〉.
With the choice of the appropriate longitude λ′ in the quotient (see for example [12],
pp. 362–363) we obtain also π∗

1([λ]) = −(gd′)[μ′] + f ′[λ′]. �

We will use this lemma to compute the invariant of the fibration induced on the
quotient torus by the fibration of T1. We remark that the core of T1 is pointwise
fixed by a subgroup of 〈ρ〉 of order gcd(d, f). If the torus T1 is fibered by pμ+ qλ
curves, the quotient torus is fibered by (gcd(d, f)p−gd′q)μ′+f ′qλ′ curves, the slope
of the fiber is (gcd(d, f)p−gd′q)/qf ′ (in this case the fraction might be reducible).
We consider the corresponding reduced fraction a/b and an integer a such that
aa ≡ 1mod b, and find that the local invariant equals (a gcd(d, f))/(b gcd(d, f))
(see [12], p. 364, or [1], p. 37).

We note that, on the one hand, the choice of λ′ and the choice of integer d′
do not affect the value of the invariant, while on the other hand, the invariant
depends on the homology class of the fiber in T1 and not only on the invariant of
the fibration of T1 (that can be normalized mod 1).

If we consider the quotient of T2 by 〈ρ〉, we can obtain an analogous lemma
where the roles of d and g are exchanged.

Lemma 4.2. Let O be a fibered orbifold with base orbifold B and let G be a finite
group of orientation-preserving diffeomorphisms of O preserving the fibration. The
group G acts on B (but not necessarily effectively). The quotient orbifold O/G is
fibered by the images of fibers of O and the base orbifold of O/G is B/G.

Proof. We recall that if an element of G maps a fiber to another fiber, the two
fibers have the same local model.

We work locally using fibered neighborhoods of the fibers.
If a fiber α is not invariant under the action of any non-trivial element of G, the

groupG acts freely on the |G| fibers in the orbit of α, and the quotient map π : O →
O/G can be restricted to a fibered neighborhood of α obtaining a diffeomorphism
preserving fibers. The situation of the base orbifold reflects exactly this behavior.

We now consider the case in which α has a non-trivial stabilizer in G.
Suppose first thatB has only cone points, so that α is a simple closed curve with

a fibered tubular neighborhood (we will only need to use this case of Lemma 4.2
in what follows). Afterwards, we will explain how to complete the proof in the
general case when B has mirror reflectors, and possibly has corner reflectors.

The quotient map can be restricted locally to an orbifold covering map π : D2×
S1 → (D2 × S1)/G0 where G0 is the stabilizer of α. We consider in the boundary
of D2 × S1 a longitude λ and a meridian μ; let p and q be the coprime integers
such that a generic fiber of D2 × S1 is homologous to pμ + qλ. The invariant of
the fiber α is pn/qn, where n is the index of singularity of α and pp ≡ 1mod q.
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We suppose first that G0 fixes α pointwise. An argument similar to that of
Lemma 4.1 proves that (D2 × S1)/G0 is a solid torus fibered by the images of the
fibers ofD2×S1; the image of a generic fiber ofD2×S1 is homologous to phμ′+qλ′,
where μ′ and λ′ are meridian and longitude of the quotient torus and h is the order
of G0. The slope of the image of a generic fiber is (ph)/q (where ph and q need
not be coprime). In particular the base orbifold of (D2 × S1)/G0 is a disk and
the cone point, that is the image of α, has singularity index (nhq)/ gcd(h, q). To
compute the action of G0 on the base orbifold, we consider that the general fiber
intersects q times a transverse disk bounded by a meridian and a circular sector of
the transverse disk of angle 2π/q intersects all the fibers. So G0 induces a group
of rotations of order h/ gcd(h, q) fixing the point corresponding to α. Since the
cone point in B corresponding to α has index nq, in the quotient B/G the singular
point has index (nqh)/ gcd(h, q), matching the situation of the base orbifold of
(D2 × S1)/G0.

We can suppose now that the group G0 acts effectively on the fiber α; if not
we can consider the quotient of G0 by the normal cyclic subgroup of elements
fixing pointwise α. Since G0 acts effectively on a 1-sphere, it is cyclic or dihedral.
We consider first the normal cyclic subgroup G1 of elements which act preserving
the orientation on α. This group is generated by the map ρ sending z1 + z2j to

e2π
g
f iz1 + e2π

d
f iz2j; since the action on α is effective, we have that gcd(d, f) = 1.

The proof of Lemma 4.1 implies that (D2 × S1)/G1 is a solid torus fibered by
the images of the fibers of D2 × S1; the image of the generic fiber of D2 × S1 is
homologous to (p− qgd)μ′+ qfλ′. The index of the cone point in the base orbifold
of (D2 × S1)/G1 is (nqf)/ gcd(p− qgd, f).

To compute the action of ρ induced on the base orbifold, we consider a meridian
disk D = D2 × {∗} in D2 × S1. The map ρ rotates the D2-coordinate of this disk
by 2πg/f radians; if the fibers are homologous to the longitude this is exactly
the rotation induced on B. In general we have to consider that the generic fibers
connect the points of D and ρ(D) with a rotation of −(2πpd)/(qf) (see Figure 5).
Moreover a generic fiber intersects the meridian disk q times, so the angle of the
rotation induced on the base orbifold has to be multiplied by q. Therefore, ρ
induces a rotation on the base orbifold of angle 2π(qg−pd)/f fixing the cone point
corresponding to α. Since f and d are coprime we can replace the angle with
2π(qgd− p)/f . Considering that the cone point of B has index nq, the cone point
of B/G has the same singularity index as the cone point of the base orbifold of
(D2 × S1)/G1.

If G0 is different from G1 we have to consider a further quotient passing from
(D2 × S1)/G1 to ((D2 × S1)/G1)/(G0/G1) ∼= (D2 × S1)/G0. In this case the
quotient is a fibered solid pillow and the induced action on the base orbifold of
(D2×S1)/G1 is by reflection. It is clear that the quotient of the base orbifold and
the base orbifold of the quotient coincide.

The proof can be completed for the general case by considering actions of
involutions on solid pillows. In fact, if α is a fiber corresponding to a mirror
reflector or to a corner reflector in B, then the stabilizer of α in G preserves a
regular neighborhood of α which is a solid pillow (recall Figure 4).
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D

Points contained in the same fiber 

are identified in the base orbifold

(D)ρ

Figure 5. Action of ρ.

All elements of the stabilizer leave invariant both α and the four singular points
on the boundary of the pillow (these points are connected, in pairs, to the endpoints
of α). Hence, keeping in mind that G preserves orientation, whenever an element
does not act trivially, its square must act trivially. We have two possibilities: the
involution either fixes α pointwise or exchanges its endpoints. If the involution
exchanges the two endpoints of α we have two possible actions on the singular
points of the boundary of the solid pillow. Distinguishing these three cases we can
consider the action of the stabilizer of α on the solid pillow and the action induced
on the base orbifold. For each of the three cases the situation is different according
to the parity of p and q where p/q is the slope of the generic fiber in the solid pillow
(here p and q are considered coprime). Finally we have to analyze nine cases, but
in each we find that the quotient of the base orbifold and the base orbifold of the
quotient coincide. �

We consider in S3 the curves α1 = {eitj | t ∈ [0, 2π]} and α2 = {eit | t ∈ [0, 2π]},
they are the cores of T1 and T2 respectively and fibers of every fibration of S3

described in Section 3.
We consider first some particular cases, then we proceed to analyze Family 1′

and Family 1 in general; for Family 1 we have to distinguish some subcases de-
pending on the parity of certain indices. The results about the quotients of S3 by
groups in Family 1′ are summarized in Table 2 while the results for Family 1 can
be found in Table 3. Finally we will consider Families 11 and 11′.

Case 1. G = Φ((C2h/C1, C2h/C1)1)

This group is generated by the map sending (z1 + z2j) to z1 + e2iπ/hz2j that
fixes α2 pointwise and is the rotation around α2 of angle (2π)/h. The underlying
topological space of the quotient orbifold S3/G is again a 3-sphere, and the singular
set of the orbifold is the image of α2 (a trivial knot), with singularity index equal
to h. G preserves the Hopf fibration of S3 (as defined in Section 3) and the images
of the fiber give a fibration of S3/G. Applying Lemma 4.1 to the tori T1 and T2 we
can see that the fibration of S3/G has an exceptional (and not singular) fiber with
invariant 1/h (the image of α1) and a singular fiber of singular index h with 0/h as
invariant (the image of α2). The base orbifold is a 2-sphere with two cone points
of index h. By Theorem 3.3 the Euler number is −1/h.
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Case 2. G = Φ((C2h/C1, C2h/C1)−1)

Inverting the roles of α1 and α2, the situation is analogous to the previous case.

Case 3. G = Φ((C2h/Ch, C2h/Ch)1)

The groupG is isomorphic to Zh×Zh and it is generated by ρ1, the map sending
(z1+z2j) to e

2iπ/hz1+z2j, and ρ2 the map sending (z1+z2j) to z1+e
2iπ/hz2j. The

fiber α1 (resp. α2) is fixed pointwise by ρ1 (resp. ρ2). We can analyze S3/G by
considering successive quotients, the first one by the group generated by ρ1 and the
second one by the group generated by the projection of ρ2 to the quotient S3/〈ρ1〉.
Since we quotient by cyclic groups generated by an element with non-empty fixed
point set, the underlying topological space of S3/G is again a 3-sphere and the
singular set is a link with two components, both of index h. We consider in S3

the Hopf fibration (the fiber is of type (1,1)), G preserves this fibration and the
images of the fibers in S3/G give a fibration. Using Lemma 4.1, we obtain that the
induced fibration is again the Hopf fibration (with two singular fibers), the base
orbifold is a 2-sphere with two cone points of index h and the Euler number is −1.

Case 4. G = Φ((Cmr/Cm, Cnr/Cn)s) (Family 1′)

In this family all the groups are abelian.
We recall that in this case m and n are odd integers, r is even and s is coprime

with r.

Claim 4.3. The base orbifold of the fibration of S3/G induced by the Hopf fibration
of S3 is S2 with two cone points of index nr/2. The Euler number of the fibration
of S3/G is −2m/nr.

Proof. By Lemma 4.2 the base orbifold of S3/G is the quotient of the base orbifold
of the Hopf fibration (a 2-sphere) by the action induced by G. Using the formulae
given in Section 3 we can compute that the action induced by G on the 2-sphere
corresponds to the action of a cyclic group of rotations of order nr/2, fixing the
two points that are the images of the two fibers α1 and α2. This proves the first
part of our statement. The action of G on the base orbifold shows that the generic
fiber of S3/G is covered by nr/2 distinct fibers of S3; since the order of G is mnr/2
each fiber of S3 is an m-fold cover of its image in S3/G. By Theorem 3.3, the Euler
number is −2m/nr. �

To complete the description of the fibration of S3/G, we have to compute the
invariants of the exceptional fibers.

Remark 4.4. In the computation of the invariants we suppose that m and n
are coprime. In fact if gcd(m,n) = h > 1, the group G contains the subgroup
G0 = Φ((C2h/Ch, C2h/Ch)1). The quotient S3/G0 is again the 3-sphere with the
Hopf fibration, but the images of α1 and α2 are singular of index h (see Case 3).
This implies that the local invariants of S3/G can be obtained from the invariants of
S3/(G/G0) with the fibration induced by the Hopf fibration. They coincide except
for those of α1 and α2. For these two fibers the numerator and the denominator of
the invariant have to be multiplied by h. The action of G/G0 on S3 coincides with
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the action of G = Φ((Cm′r/Cm′ , Cn′r/Cn′)s) where m
′ = m/h and n′ = n/h. To

simplify the notation we suppose that m and n are coprime and at the end of the
process it will be enough to replace m and n with m′ and n′ and to multiply both
numerator and denominator of the local invariants of the exceptional fibers by a
factor of h.

We now introduce some notation:
Let φ be the map sending z1 + z2j to e(2iπ

n−sm
mnr )z1 + e(2iπ

n+sm
mnr )z2j and γ the

map sending z1+z2j to e
(−2iπ 1

n )z1+e
(2iπ 1

n )z2j. By construction of G, the maps φ

and γ together with the map sending z1+z2j to e(
2iπ 1

m )z1+e(
2iπ 1

m )z2j generate G;
this last map equals φrγ−s, so φ and γ are enough to generate G. We denote
a = gcd(n+ sm, n− sm,mnr), b1 = gcd(n−sma , mnra ) and b2 = gcd(n+sma , mnra ).

Remark 4.5. It is easy to see that a and m are coprime, from which it follows
that a = gcd(n+ sm, n− sm, nr) and a/2 = gcd(n, s). We remark that b1 and b2
are coprime.

From a = gcd(n + sm, n − sm, nr) we deduce that (n − sm)/a and 2n/a are
coprime, so we obtain that b1 = gcd((n−sm)/a,mr/2). Since a/2 = gcd(n, s), the
integer a/2 is coprime with mr, so we get 2b1 = gcd(n−sm,mr) = gcd(n−sm, r).
Analogously the equality 2b2 = gcd(n+ sm, r) can be obtained.

Claim 4.6. The subgroup of G generated by the elements with non-empty fixed
point set is generated by φmnr/(ab1) and φmnr/(ab2).

Proof. We note that ab1 = gcd(n− sm,mnr) and ab2 = gcd(n+ sm,mnr). Using
these equalities it is easy to see that φmnr/(ab1) fixes α2 pointwise and, since (n+
sm)/a and b1 are coprime, acts as a rotation of order b1 on α1. The rotation
φmnr/(ab2) fixes α1 pointwise and, since (n − sm)/a and b2 are coprime, acts as a
rotation of order b2 on α2.

Thinking of the elements of G as matrices in SO(4), it is easy to see that α1 or
α2 are the only fibers that can be fixed pointwise by an element of G. Consider an
element φtγu fixing pointwise α1, in this case the order of the action of the element
on α1 has to be one. Since the order of the action of φ on α1 is (mnr)/(b2a),
the order of φt on α1 is (mnr)/(ab2k) where k = gcd((mnr)/(b2a), t); also, the
order of γ on α1 is n. If the action of φtγu is trivial on α1, then the integer
(mnr)/(ab2k) is a divisor of n. This implies that mr divides ab2k = (a/2)(2b2k);
using gcd(a/2,m) = 1, gcd(a/2, r) = 1 and b2 = gcd((n + sm)/2, r/2), we obtain
that (mr)/(2b2) divides k and consequently divides t. Moreover the action of φtγu

on α1 is given by the multiplication of z2 by the element e(t
n+sm
mnr + u

n )2πi, so tn+smmnr +
u
n is an integer. The action on α2 is given by the multiplication of z1 by the element:

e(t
n−sm
mnr − u

n )2πi = e(t
n−sm
mnr +tn+sm

mnr −tn+sm
mnr − u

n )2πi = e(t
n−sm
mnr +tn+sm

mnr )2πi = e(
2tn
mnr )2πi

Since (mr)/(2b2) divides t we obtain that 2tn/(mnr) = t′/b2, where t′ is an
integer. This implies that φtγu is a power of φmnr/(ab2).

Analogously we can prove that any element fixing pointwise α2 is a power
of φmnr/(ab1). �
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Claim 4.7. The quotient orbifold S3/〈φmnr/(ab1), φmnr/(ab2)〉 has a 3-sphere as
underlying topological space. Only the projections of the fibers α1 and α2 might be
singular, respectively, of singularity index b2 and b1.

The base orbifold of the fibration induced on the quotient by the Hopf fibration
is a 2-sphere with two possible singular points of index b1b2. The homology class
of the fiber in the tubular neighborhood of α1 is b2μ + b1λ where μ is a meridian
and λ a longitude; for α2 the roles of b1 and b2 are inverted.

Proof. Generalize the argument used in Case 3; φmnr/(ab1) plays the role of ρ2
and φmnr/(ab2) plays the role of ρ1. Note that the two generators now have orders
which are coprime (whereas the orders were equal in Case 3). �

Now consider the group G1 = G/〈φmnr/(ab1), φmnr/(ab2)〉, which acts on
S3/〈φmnr/(ab1), φmnr/(ab2)〉 respecting the fibration.

The quotient (S3/〈φmnr/(ab1), φmnr/(ab2)〉)/G1 with the fibration induced by
the quotient is equivalent to S3/G with the fibration induced by the Hopf fibration
of S3. The group G1 is generated by φ and γ, the projections of φ and γ; their ac-
tion on the 3-sphere (the underlying topological space of S3/〈φmnr/(ab1), γmnr/(ab2)〉)
is the following:

φ(z1 + z2j) = e(2iπb2
n−sm
mnr )z1 + e(2iπb1

n+sm
mnr )z2j

γ(z1 + z2j) = e(−2iπb2
1
n)z1 + e(2iπb1

1
n )z2j

We consider the following factorization of n:

n =
∏
pk|a

puk

k ·
∏
ql�a

qvll

where the pk’s and ql’s are distinct (odd) prime factors of n. We define ν =
2
(∏

pk|a p
uk

k

)
/a. It follows that (2n)/(aν) =

∏
ql�a

qvll and a/2 are coprime.

Claim 4.8. The group G1 is generated by the element φ
ν
γ 2n/(νa).

Proof. The order of G1 is (mnr)/(2b1b2). The order of φ
ν
is (mnr)/(aνb1b2) and

the order of γ2n/(νa) is (aν)/2. Since gcd(a,m) = 1 and gcd(a/2, r) = 1, the orders
of φ

ν
and γ2n/(νa) are coprime and their product has the same order as G1. �

We define now:

g =
ν2a(n− sm)− 2mnr

2aνb1
, d =

ν2a(n+ sm) + 2mnr

2aνb2
, f =

mnr

2b1b2
.

The map φ
ν
γ 2n/(νa) sends z1 + z2j to e

2π g
f iz1 + e2π

d
f iz2j. Since this map acts

freely and has order f , the integers g and f are coprime, so are d and f . We denote
by d and g two integers such that dd ≡ 1mod f and gg ≡ 1mod f.
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G = Φ((Cmr/Cm, Cnr/Cn)s) (Family 1′)
and

G = Φ((D∗
2mr/Cm, D

∗
2nr/Cn)s) (Family 11′)

We define: h = gcd(m,n), m′ = m
h , n′ = n

h ,

a = gcd(n′ − sm′,m′ + sn′,m′n′r),

b1 = gcd(n
′−sm′
a , m

′n′r
a ) ,

b2 = gcd(n
′+sm′
a , m

′n′r
a ),

ν minimal positive integer s.t. gcd(2n
′

aν ,
a
2 ) = 1,

d = ν2a(n′+sm′)+2n′m′r
2aνb2

,

g = ν2a(n′−sm′)−2n′m′r
2aνb1

,

f = m′n′r
2b1b2

,

g such that gg ≡ 1mod f ,

c such that
(
νs+ r 2n

′
aν

)
c ≡ 1 modn′r.

The orbifold S3/Φ((Cmr/Cm, Cnr/Cn)s) fibers over S
2(nr/2, nr/2) with local

invariants (dcb2h)/(nr/2) and −(gcb1h)/(nr/2) and Euler number −2m/(nr).

The underlying topological space of S3/Φ((Cmr/Cm, Cnr/Cn)s) is the lens
space L(f, dg).

The singular set of S3/Φ((Cmr/Cm, Cnr/Cn)s) is a link with at most two com-
ponents of singular index b2h and b1h (if the singular index is 1 the correspond-
ing component consists of non-singular points).

The orbifold S3/Φ((D∗
2mr/Cm, D

∗
2nr/Cn)s) fibers over D2 (;nr/2, nr/2) with

local invariants (dcb2h)/(nr/2) and −(gcb1h)/(nr/2) and Euler number
−m/(nr).

The underlying topological space of S3/Φ((D∗
2mr/Cm, D

∗
2nr/Cn)s) is the 3-

sphere.

Table 2. Families 1′ and 11′.
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Remark 4.9. We note that gcd(f, db2 − gb1) = m. To get this equality one
considers that db2 − gb1 = m

(
νs+ r 2naν

)
and proves that nr and νs + r 2naν are

coprime, using the following outline: any prime factor of nr = (r)(2n/aν)(a/2)(ν)
must be a factor of one of the parenthesized integers, and by definition, any prime
factor of ν is an odd prime factor of a, hence, a factor of a/2, so it suffices to show
that νs+ r 2naν has no prime factors in common with r, 2n/aν, or a/2.

Therefore, using gcd(d, f) = 1, gcd(g, f) = 1 and gcd(b1, b2) = 1, it follows
that m = gcd(f, b2 − gdb1) = gcd(fb1, b2 − gdb1) and m = gcd(f, dgb2 − b1) =
gcd(fb2, dgb2 − b1).

Claim 4.10. The fibered orbifold S3/G has as underlying topological space a lens
space L(f, dg). The local invariants of the two exceptional fibers are

dcb2
nr/2

and
−gcb1
nr/2

,

where c is the inverse of νs+ r 2naν modnr.

Proof. The action of G1 on S3/〈φmnr/(ab1), φmnr/(ab2)〉, whose underlying topolog-
ical space is a 3-sphere, is explicit and the underlying topological space of S3/G
can be understood.

To compute the invariants we consider the two tori T1 and T2 decomposing
S3/〈φmnr/(ab1), φmnr/(ab2)〉 and apply Lemma 4.1. For T1 the fiber is homologous
in the boundary to b2μ+b1λ, the quotient of T1 by G1 is a solid torus and the fiber
induced by the quotient has a slope (b2 − gdb1)/(fb1). By Remark 4.9, the slope

can be written as
(
b2−gdb1

m

)
/
(
fb1
m

)
, where denominator and numerator are coprime.

We denote by c an inverse of (db2 − gb1)/m modnr (by Remark 4.9 (db2 − gb1)/m
and nr are coprime). The integer dc is an inverse mod (fb1)/m of the numerator
of the slope and gives the invariant. Using the definition of f , g and d we obtain
the thesis; for T2, the roles of d and g are reversed. �

Case 5. G = Φ((C2mr/C2m, C2nr/C2n)s) (Family 1)

Also in this case by the same proof of the previous one we can easily obtain
the base orbifold and the Euler number.

Claim 4.3 ′. The base orbifold of the fibration of S3/G induced by the Hopf fibra-
tion of S3 is S2 with two singular points of index nr. The Euler number of the
fibration of S3/G is −2m/nr.

To compute the local invariants we have to distinguish some subcases depending
on the parity of certain indices. A summary of the situation is given in Table 3.
In all subcases the strategy is similar to that of Case 4, but Claim 4.6 has to be
substantially modified under certain conditions. In the following we describe which
subcases we have to consider and how Claim 4.6 has to be modified for the critical
subcases; where the computation follows exactly the same strategy as Case 4, we
skip details and report directly the final results in Table 3.
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By the same argument of Remark 4.4, we can suppose in our computation that
m and n are coprime. We can also suppose that s is odd, in fact if s is even, r
has to be odd and s can be substituted with r− s obtaining a conjugate group by
Proposition 2.1 (using conjugation by Φ(1, j) ∈ SO(4)).

We introduce now some notation:

Let φ be the map sending z1 + z2j to e(2iπ
n−sm
2mnr )z1 + e(2iπ

n+sm
2mnr )z2j and γ the

map sending z1 + z2j to e(−2iπ 1
2n )z1 + e(2iπ

1
2n )z2j. These maps generate G.

We denote a = gcd(n + sm, n − sm, 2mnr), b1 = gcd(n−sma , 2mnra ) and b2 =
gcd(n+sma , 2mnra ).

The first difference between different subcases is pointed out by the following
proposition.

Proposition 4.11. Ifm and n are both odd then we have a = 2 gcd(n, s), otherwise
a = gcd(n, s).

Proof. It is evident that gcd(n, s) divides a. The integer a divides 2n = (n+sm)+
(n − sm). Since we suppose m and n coprime, we have that gcd(a,m) = 1. This
implies (using 2sm = (n+ sm)− (n− sm)) that a also divides 2s. Hence a divides
2 gcd(n, s), regardless of the parities of m and n.

If m or n is even, then (since s is assumed to be odd) n+ sm is odd, and hence
a is odd. It then follows that a divides gcd(n, s), so we get a = gcd(n, s).

If both m and n are odd, a has to be even and 2 gcd(n, s) divides a, so we
conclude that a = 2 gcd(n, s). �

If m or n is even, then a = gcd(n, s) and the computation of the invariants
follows exactly the same strategy as the previous case; the results are reported
in Table 3.

If m and n are both odd the situation is more complicated since the statement
of the analogue of Claim 4.6 depends on the parity of the indices r/bi.

Claim 4.6 ′. Suppose that m and n are odd, we define fi = gcd(2, r/bi); the
subgroup of G generated by the elements with non-empty fixed point set is generated

by the maps (z1 + z2j) → (e
2iπ
f2b2 z1 + z2j) and (z1 + z2j) → (z1 + e

2iπ
f1b1 z2j)

Proof. In any case the element φ2mnr/(ab2) acts trivially on α1 and acts as a rotation
of order b2 on α2. Suppose that φtγu acts trivially on α1, if we denote by k the
gcd of t and (2mnr)/(ab2), we obtain that (2mnr)/(ab2k) divides 2n.

If r/b2 is odd we obtain that (rm)/b2 divides k and analogously to Claim 4.6
of Case 4 we obtain that φ2mnr/(ab2) generates the cyclic group of elements fixing
pointwise α1.

If r/b2 is even we have that (rm)/2b2 divides k and we obtain an element fixing
pointwise α1 of order 2b2. In this case to generate the cyclic group of elements fixing
pointwise α1 we use φmr/(2b2) γ(−n−sm)/(2b2) (this is well-defined since 2 divides
r/b2, so r/2b2 is an integer).

For the elements fixing pointwise α2 the situation is symmetric. �
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Now we can consider various cases: r is odd (and both r/b1 and r/b2 are odd);
r is even and exactly one between r/b1 and r/b2 is odd; r is even and both r/b1
and r/b2 are even. In each of these cases we can repeat the strategy used for
Family 1′ and we obtain the results given in Table 3. We remark that, since b1
and b2 are coprime, if r is even at least one between r/b1 and r/b2 is even.

Case 6. G = Φ((D∗
4mr/C2m, D

∗
4nr/C2n)s) (Family 11) and

G = Φ((D∗
2mr/Cm, D

∗
2nr/Cn)s) (Family 11′)

These groups are the semidirect product of the abelian groups in Families 1
and 1′ and the group generated by the involution Φ(j, j), corresponding to the
map z1 + z2j → z1 + z2j. We denote by A the abelian subgroup of index 2
corresponding to Φ((C2mr/C2m, C2nr/C2n)s) or to Φ((Cmr/Cm, Cnr/Cn)s). The
element Φ(j, j) acts by conjugation on A inverting each element, so these groups
are generalized dihedral.

We consider the Hopf fibration on S3: the action of Φ(j, j) leaves invariant the
fibers corresponding to real numbers with respect to the map (z1 + z2j) → z1/z2,
and the involution Φ(j, j) acts on each of these fibers as a reflection (fixing exactly
two points). The involution induced by Φ(j, j) on the base orbifold of the Hopf
fibration is a reflection along a great circle containing the images of α1 and α2.
To better understand the situation we can consider the quotient of S3/G as the
quotient of S3/A by the involution induced on S3/A by Φ(j, j). The base orbifold of
S3/G is the quotient of the base orbifold of S3/A by a reflection along a great circle
containing the two cone points. We obtain that the base orbifold of S3/G is a disc
with two corner reflectors on the boundary and the indices of the corner reflectors
are the same of the singular points of the base orbifold of S3/A (see Tables 2
and 3). By Theorem 3.3, the Euler number is half the Euler number of S3/A.

The action of G leaves invariant both T1 and T2, the two solid tori defined at
the beginning of this section. The involution Φ(j, j) acts on α1 and α2 (the cores
of the two tori) as a reflection.

This implies that T1/G and T2/G are two solid pillows and, since S3/G can
be obtained by gluing the two solid pillows along their boundaries, the underlying
topological space of S3/G is S3.

By definition, the local invariants of the corner points are the same as the two
exceptional fibers of S3/A.

All these results are collected in Tables 2 and 3.

5. The quotient of S3 by the remaining groups

We will now consider the remaining groups of Table 1 that leave invariant the Hopf
fibration. We will treat several examples which explain the general method to com-
pute the classification data for the quotient fibered orbifold (the fibration is that
induced by the Hopf fibration). These results are collected in Table 4. We also con-
sidered separately the families G = Φ(L/LK , R/RK) and G = Φ(R/RK , L/LK),
when they do not coincide. In the table, the group G appears with the same
number as G, adding the suffix “bis”. Due to the previous discussion, there is an
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G = Φ((C2mr/C2m, C2nr/C2n)s) (Family 1)

and

G = Φ((D∗
4mr/C2m, D

∗
4nr/C2n)s) (Family 11)

We define: h = gcd(m,n), m′ = m
h , n

′ = n
h ,

a = gcd(n′ − sm′,m′ + sn′, 2m′n′r),

b1 = gcd(n
′−sm′
a , 2m

′n′r
a ), b2 = gcd(n

′+sm′
a , 2m

′n′r
a ).

Remark: without loss of generality, we assume s odd.

If n′m′ is even, we define: In both cases we define:

ν minimal positive integer s.t. gcd( n
′

aν , a) = 1, d = ν2a(n′+sm′)+2n′m′r
f2aνb2

,

f1 = f2 = 1. g = ν2a(n′−sm′)−2n′m′r
f1aνb1

,

f = 2m′n′r
f1f2b1b2

,

If n′m′ is odd, we define: g s.t. gg ≡ 1mod f ,

ν minimal positive integer s.t. gcd(2n
′

aν ,
a
2 ) = 1, c s.t.

fi =

{
2 if r/bi is even,
1 if r/bi is odd.

(
νs+ r 2n

′
aν

)
c ≡ 1modn′r.

The orbifold S3/Φ((C2mr/C2m, C2nr/C2n)s) fibers over S
2(nr, nr) with

local invariants dcf2b2h/(nr) and −gcf1b1h/(nr) and Euler number −2m/(nr).

The underlying topological space of S3/Φ((C2mr/C2m, C2nr/C2n)s)
is the lens space L(f, dg).

The singular set of S3/Φ((C2mr/C2m, C2nr/C2n)s) is a link with
at most two components of singular index f2b2h and f1b1h
(if the singular index is 1 the corresponding component
consists of non-singular points).

The orbifold S3/Φ((D∗
4mr/C2m, D

∗
4nr/C2n)s) fibers over D

2(;nr, nr) with
local invariants dcf2b2h/(nr) and −gcf1b1h/(nr) and Euler number −m/(nr).
The underlying topological space of S3/Φ((D∗

4mr/C2m, D
∗
4nr/C2n)s)

is the 3-sphere.

Table 3. Families 1 and 11.
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orientation-reversing diffeomorphism form S3/G and S3/G. If the action of G
preserves the Hopf fibration, then the action of G preserves the mirror image
of the Hopf fibration, and the invariants for the corresponding Seifert fibration
of S3/G are closely related to those which we describe in cases 7-10 below. We give
an example in Subsection 5.2. We note that S3/G (and S3/G) may have the
structures of a Seifert fibered orbifold in other ways, but that these additional
structures would lift to S3 as (classical) Seifert fibrations, having torus knots as
generic fibers, and hence projecting to a 2-orbifold of the form S2(p, q), where p
and q are coprime (and |pq| > 1). This implies that the base 2-orbifold for S3/G
is “bad” in the sense that its universal cover has non-empty singular set. We will
not consider Seifert fibration over bad 2-orbifolds.

Case 7. L is cyclic and R is generalized quaternion.

This is the case of Families 2, 3, 4 and 34 in the list. We will consider explicitly
the examples of Families 2 and 3, namely G = Φ((C2m/C2m, D

∗
4n/D

∗
4n)) and G =

Φ((C4m/C2m, D
∗
4n/C2n)).

Similarly to Case 4 in the previous Section, the first step is to compute the
induced action on the base 2-sphere. Since the elements of L are of the form
cos(π/2m) + i sin(π/2m) and their induced action on the base 2-sphere is the
identity (see the final part of Section 3), it suffices to look at the action of elements
of {1} ×R. We already know that the subgroup C2n ⊂ D∗

4n induces a rotation of
order n around an axis (say, the vertical axis) of S2. One can see that the induced
actions of the remaining elements (those of the form ωj for ω = cos(π/2n) +
i sin(π/2n)) are maps λ �→ −(1/λ)ω−2, which correspond to π-rotations around
n distinct axes intersecting the equator of S2. This shows that the base orbifold
of the quotient S3/G is S2(2, 2, n). This information enables also to compute the
Euler number, by using the naturality property (see Theorem 3.3).

Therefore, it remains to compute the local invariants associated to exceptional
fibers, that is, to those fibers with image a singular point of the base orbifold. To
do so, we will choose a preimage α in S3 of one such exceptional fiber of S3/G.
The local invariant will only depend on the subgroup of G fixing α. Of course, the
result will not depend on the chosen preimage, as the stabilizers of fibers of S3

which are mapped to the same fiber of S3/G are conjugate.
In the two particular cases we are considering, there are three exceptional fibers.

One projects to the cone point of index n; its preimages are the cores α1 and α2

of the solid tori T1 and T2 of S3 in the usual decomposition. It is clear that the
subgroup fixing them is Φ((C2m/C2m, C2n/C2n)1) (the subindex s = 1 will be
omitted from now on). By using the results of the previous section, we can find
the local invariant associated to the index n cone point, which turns out to be m/n.
The singularity index of this fiber is gcd(m,n).

The other two exceptional fibers project to index 2 singular points. Take one
fiber β in the preimage of an exceptional fiber. Conjugate G by an isometry of the
form η = Φ(1, w1 + w2j) which maps β to α1, so that the invariants of β equal
the invariants of α1 under the action of ηGη−1. With this procedure, the stabilizer
of β can be conjugated to obtain the canonical form (C··/C·, C··/C·), for which we
know how to find the associated invariants thanks to the previous section.
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For the groups in Family 2, that is G = Φ((C2m/C2m, D
∗
4n/D

∗
4n)), one can

recognize that the subgroup leaving invariant any exceptional fiber over an index 2
singular point is conjugate to Φ((C2m/C2m, C4/C4)). For example, the elements
of R = D∗

4n fixing the fiber z1/z2 = i are {1, j,−1,−j} and they are easily con-
jugated to C4 = {1, i,−1,−i}. According to the results obtained for Family 1,
the local invariant is 0/2 when m is even (this means that the fiber has singu-
larity index 2 but has a trivially fibered neighborhood) and 1/2 when m is odd.
On the other hand, for G = Φ((C4m/C2m, D

∗
4n/C2n)) the stabilizers are conjugate

to Φ((C4m/C2m, C4/C2)) and thus the local invariants are inverted: 1/2 for m
even and 0/2 for m odd.

Note that every stabilizer acts on S3 fixing two different fibers (they corre-
spond to the two antipodal points fixed by the rotation on the base orbifold). For
Families 2 and 3, the local invariants associated to the two fibers are equal. This
will not always be the case. Families 4 and 34 are dealt with the same techniques,
by paying attention to the remarks above.

Case 8. L and R are generalized quaternion

These are families of groups containing the groups of Case 7 as index 2 sub-
groups, listed as 10, 12, 13, 33, 33′ in the table.

Compared to Case 7, the additional elements are of the form (ωj, ω′j), where ω
and ω′ are roots of unity. Again, we start by considering the induced action on S2.
One sees that the induced action for left multiplication by an element (ωj, 1) is
the antipodal map. Therefore, when a quaternion of the form ωj in L is paired
to a π-rotation arising from some ω′j in R, the induced action is reflection in the
plane orthogonal to the axis of rotation. The reflection planes for the action of the
group may or may not contain the axis of some other π-rotation. This will depend
on the isomorphism between L/LK and R/RK .

For instance, we consider the groups Φ((D∗
4m/D

∗
4m, D

∗
4n/D

∗
4n)) in Family 10.

If n is odd, reflection planes do not contain any axis of π-rotations and therefore
the quotient orbifold is D2(2;n); if n is even, the quotient is D2(; 2, 2, n).

In order to compute local invariants, the procedure is the same as the previous
case. Note that when an exceptional fiber projects to a corner reflector of the
base orbifold, its local model is a solid pillow, and the stabilizer of one of its
preimages in S3 is a dihedral group. However, it suffices to detect the index 2
cyclic subgroup of this dihedral group to obtain the local invariant. Therefore, one
can forget about the elements which act on the 2-sphere by reflections: these are
exactly those arising from the pairing of some ωj in L (it induces an antipodal
map) to some ω′j in R (induces a π-rotation). This shows that the local invariants
will match those we obtained for the respective groups of Case 7.

Case 9. L is generalized quaternion and R is cyclic

This case covers Families 2bis, 3bis, 4bis, 34bis. The technique is very similar
to Case 8, though simpler. Let us look at the induced action on S2. Elements of R
act by rotations, while elements of L act either trivially or by the antipodal map.
Depending on the pairing, the base orbifold can be some D2(n; ) or RP 2(n). For
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example, consider the family 2bis, that is Φ((D∗
4m/D

∗
4m, C2n/C2n)). If the order n

of the induced rotation of elements of R is even, there is a π-rotation paired to
an antipodal map, giving rise to a reflection in the horizontal plane; otherwise,
there is no reflection in the induced action, so the only orientation-reversing maps
act freely and the base orbifold is a projective plane with a cone point of order n.
The local invariant of the only exceptional fiber is again m/n, as the stabilizer
is Φ((C2m/C2m, C2n/C2n)).

In cases 7-9, the orbifold S3/G has two different fibrations, one induced from
the Hopf fibration and the other from the mirror image of the Hopf fibration. The
latter can be recovered by looking at the quotient of S3 (with the Hopf fibration)
for the action of G, and just changing the sign of Euler number and local invariants
due to orientation.

Case 10. L is cyclic or generalized quaternion and R = T ∗, O∗, I∗

This is the case of the remaining groups preserving the Hopf fibration. Note
that these groups do not preserve the mirror image of the Hopf fibration.

The groups of symmetries T ∗, O∗ and I∗ act on S2 as one should expect. In
particular, T ∗ has a normal subgroup D∗

8 whose action is a special case of D∗
4m

considered above. Moreover, T ∗ has threefold axes of rotation, and can be regarded
as the normal subgroup of O∗ which leaves invariant a tetrahedron embedded in a
cube as in Figure 6. O∗ contains also fourfold axes. I∗ has twofold, threefold and
fivefold axes.

Figure 6. A tetrahedron inside a cube.

When L is cyclic, it has trivial induced action on the base S2. Therefore,
the base orbifold of the quotient is S2(2, 3, 3), S2(2, 3, 4) and S2(2, 3, 5) respec-
tively. It is now easy to find the local stabilizers: take, for example, the groups
Φ((C2m/C2m, O

∗/O∗)) in Family 7. An exceptional fiber corresponding to the in-
dex 2 singular point is fixed by a subgroup conjugate to Φ((C2m/C2m, C4/C4));
a fiber corresponding to index 3 cone point is fixed by a group of the form
Φ((C2m/C2m, C6/C6)) and analogously for the index 4 cone point we get a group
Φ((C2m/C2m, C8/C8)). On the other hand, for the groups Φ((C4m/C2m, O

∗/T ∗))
in Family 8, stabilizers are respectively Φ((C4m/C2m, C4/C2)) (the twofold axes of
symmetry through edge midpoints of the cube are not a symmetry of the embed-
ded tetrahedron), Φ((C2m/C2m, C6/C6)) (as the threefold axis is common for the
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groups O∗ and T ∗) and Φ((C4m/C2m, C8/C4)) (of the order 4 cyclic subgroup of
symmetries of a cube, only the order 2 rotation preserves the tetrahedron). This
enables us to find the local invariants, which we report in Table 4. When L = D∗

4m,
we have some antipodal maps paired to the order 2 rotations in O∗, thus obtaining
D2(; 2, 3, 4) as base 2-orbifold; anyway, the local invariants are obtained in the
same way. The case R = I∗ is completely analogous.

When R = T ∗ there are some more cases to be considered, the base orbifold
of the quotient is either D2(; 2, 3, 3) or D2(3; 2) depending on the pairing of the
elements of R = T ∗ and of L = D∗

4m (the 2-orbifolds D2(; 2, 3, 3) or D2(3; 2) are
the two possible quotients of S2(2, 3, 3) by a reflection). In any case the method
to compute the invariants is similar to the previous family.

5.1. Summary: how to treat any group

In summary, these are the steps to check the classification data for the quotient
by the action of any group G:

• Compute the induced action on the base 2-sphere and obtain its quotient
spherical 2-orbifold, which is the base orbifold of the quotient S3/G.

• Consider the total number of elements of G and the order of the induced
action on S2, which gives the generic number of fibers of S3 which are iden-
tified in S3/G. By applying the naturality property, find the Euler number
of S3/G.

• Choose a preimage α in S3 of every exceptional fiber of the quotient. By
conjugating the group (or more simply by considering the structure of the
stabilizer of the corresponding point in the base S2) detect the canonical
form of the stabilizing subgroup of α. Use Tables 2 or 3 to find the local
invariants.

Actually, the last step in some cases can be performed by computing whether the
preimage α is fixed pointwise by G or not. Indeed, if for example the projection
of α corresponds to an index 2 cone point, its local invariant can only be 0/2 (this
happens if α is fixed pointwise) or 1/2 (if not). However, this procedure does not
work in general for the families in Case 10.

5.2. Some interpretation of the results

From these results, following [6], it is possible to understand the underlying mani-
fold and the singular set for the fibered orbifolds obtained as a quotient of a fixed
group.

We know that if in the base 2-orbifold there are no boundary components, then
the underlying manifold is a Seifert fibered manifold; its invariants can be easily
deduced. Indeed the classical invariant defined by Seifert in [12] corresponds to
the opposite of the sum of the normalized local invariants and the Euler number.
It turns out that the underlying manifolds are spherical and they are well known
(see [11]). For example, if the underlying manifold has at most two exceptional
fibers, it is a lens space obtained as a gluing of two solid tori which are preimages
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group e base orbifold invariants case

2. (C2m/C2m, D
∗
4n/D

∗
4n) −m

n S2(2, 2, n) m
n ,

m
2 ,

m
2

3. (C4m/C2m, D
∗
4n/C2n) −m

n S2(2, 2, n) m
n ,

m+1
2 , m+1

2

4. (C4m/C2m, D
∗
8n/D

∗
4n) −m

2n S2(2, 2, 2n) m+n
2n , m2 ,

m+1
2

34. (C4m/Cm, D
∗
4n/Cn) −m

2n S2(2, 2, n) [(m+n)/2]
n , m2 ,

m+1
2 m,n odd

10. (D∗
4m/D

∗
4m, D

∗
4n/D

∗
4n) −m

2n D2(; 2, 2, n) m
n ,

m
2 ,

m
2 n even

D2(2;n) m
n ,

m
2 n odd

13.bis (D∗
4m/C2m, D

∗
8n/D

∗
4n) −m

2n D2(; 2, 2, n) m
n ,

m
2 ,

m
2 n odd

D2(2;n) m
n ,

m
2 n even

13. (D∗
8m/D

∗
4m, D

∗
4n/C2n) −m

2n D2(; 2, 2, n) m
n ,

m+1
2 , m+1

2 n even

D2(2;n) m
n ,

m+1
2 n odd

33. (D∗
8m/C2m, D

∗
8n/C2n)f −m

2n D2(; 2, 2, n) m
n ,

m+1
2 , m+1

2 n odd

D2(2;n) m
n ,

m+1
2 n even

12. (D∗
8m/D

∗
4m, D

∗
8n/D

∗
4n) −m

4n D2(; 2, 2, 2n) m+n
2n , m2 ,

m+1
2

33′. (D∗
8m/Cm, D

∗
8n/Cn)f −m

4n D2(; 2, 2, n) [(m+n)/2]
n , m2 ,

m+1
2 m,n odd

2.bis (D∗
4m/D

∗
4m, C2n/C2n) −m

n D2(n; ) m
n n even

RP 2(n) m
n n odd

3.bis (D∗
4m/C2m, C4n/C2n) −m

n D2(n; ) m
n n odd

RP 2(n) m
n n even

4.bis (D∗
8m/D

∗
4m, C4n/C2n) −m

2n D2(2n; ) m+n
2n

34.bis (D∗
4m/Cm, C4n/Cn) −m

2n D2(n; ) [(m+n)/2]
n m,n odd

5. (C2m/C2m, T
∗/T ∗) −m

6 S2(2, 3, 3) m
2 ,

m
3 ,

m
3

6. (C6m/C2m, T
∗/D∗

8) −m
6 S2(2, 3, 3) m

2 ,
m+1
3 , m+2

3

16. (D∗
4m/C2m, O

∗/T ∗) −m
12 D2(; 2, 3, 3) m

2 ,
m
3 ,

m
3

18. (D∗
12m/C2m, O

∗/D∗
8) −m

12 D2(; 2, 3, 3) m
2 ,

m+1
3 , m+2

3

14. (D∗
4m/D

∗
4m, T

∗/T ∗) −m
12 D2(3; 2) m

2 ,
m
3

7. (C2m/C2m, O
∗/O∗) −m

12 S2(2, 3, 4) m
2 ,

m
3 ,

m
4

8. (C4m/C2m, O
∗/T ∗) −m

12 S2(2, 3, 4) m+1
2 , m3 ,

m+2
4

15. (D∗
4m/D

∗
4m, O

∗/O∗) −m
24 D2(; 2, 3, 4) m

2 ,
m
3 ,

m
4

17. (D∗
8m/D

∗
4m, O

∗/T ∗) −m
24 D2(; 2, 3, 4) m+1

2 , m3 ,
m+2
4

9. (C2m/C2m, I
∗/I∗) −m

30 S2(2, 3, 5) m
2 ,

m
3 ,

m
5

19. (D∗
4m/D

∗
4m, I

∗/I∗) −m
60 D2(; 2, 3, 5) m

2 ,
m
3 ,

m
5

Table 4. The remaining groups.
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of two discs in the base orbifold. The singular set of the orbifold will consist of a
finite union of fibers (possibly empty).

When the base orbifold has one boundary component (possibly with some cor-
ner reflectors), the underlying space is a lens space and the singular set can be
described in terms of rational tangles (see Proposition 2.11 in [6]). However, in
this case the fibration does not correspond to a Seifert fibration for manifolds.
Indeed, there are one or two singular curves of index 2 which are not fibers. In
particular if there are no cone points the underlying manifold is S3.

Let us show two typical examples of how to compute these spaces.

Example 5.1. Φ((C2m/C2m, D
∗
4n/D

∗
4n))

Consider those groups Φ((C2m/C2m, D
∗
4n/D

∗
4n)) (in Family 2) for whichm even.

We have obtained that the base orbifold is S2(2, 2, n) with local invariants m/2 ≡
0/2 for both fibers over index 2 cone points and m/n for the third exceptional
fiber, which we will call α. While looking at the underlying manifold, we can forget
about the fibers with 0/2 invariant, as they have a trivially fibered neighborhood.
On the other hand, let m/n = m′/n′ with m′ and n′ coprime. The fiber α has
a fibered solid torus neighborhood which projects to a disc on the base orbifold
containing the index n cone point. The complement of this disc is another disc,
whose preimage is a trivially fibered solid torus. The two tori are glued together
in such a way that fibers coincide and the underlying topological manifold is a lens
space. By Proposition 2.12 in [6] the underlying space is the lens space L(m′,−a)
where a is the inverse of n′ modm′. Note that the two index 2 singular fibers
form a 2-component link with linking number 0, but each index 2 singular fiber
has nonzero linking number with the exceptional fiber, whose singularity index is
gcd(m,n).

Example 5.2. Φ((D∗
4n/D

∗
4n, C2m/C2m))

This is Family 2bis with m and n swapped. The quotient orbifolds of this
example are orientation-reversing diffeomorphic to those in Example 5.1 and the
fibration induced by the Hopf fibration here corresponds to the fibration induced by
the mirror image of the Hopf fibration in the previous example. In the quotient, if
m is even, we have base orbifoldD2(m; ), Euler number −n/m and non-normalized
local invariant n/m. Let β be the fiber projecting to the unique cone point. Let
μ and λ a meridian and a longitude of the fibered neighborhood of β. A generic
fiber in a neighborhood of β represents a curve aμ +m′λ, where a is defined as
in the previous example. This fibered neighborhood projects to a disc, whose
complement is a neighborhood of the boundary component. The preimage of
the complement is a solid torus where generic fibers on the boundary represent
meridians. Since the sum of the local invariants coincides exactly with the opposite
of the Euler number (see Proposition 3.4), the invariant associated to the boundary
component is ξ = 0 and thus there are two index 2 singular curves bounding an
annulus fibered by intervals. Both curves have nonzero linking number with the
exceptional fiber β. As the underlying space is composed of two solid tori where
in the gluing a meridian of the second torus is glued to a aμ +m′λ curve, it can
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be described as a lens space L(m′, a) (matching, up to orientation, the underlying
space in the previous example).

To obtain the fibration induced by the mirror image of the Hopf fibration in
the spherical orbifolds of Family 2, it is enough to invert the sign of Euler number
and local invariant of the fibrations obtained in Example 5.2. The two examples
show two different fibrations for the orbifolds of Family 2, only one of which comes
from a Seifert fibration of the underlying manifold. The same phenomenon occurs
for all groups in Families 2, 3, 4, 13 and 34.

Acknowledgments. We thank the referee for carefully reading our manuscript
and for many helpful comments that improved the presentation of our work.
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