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Flows driven by rough paths

Ismaël Bailleul

Abstract. We devise in this work a simple mechanism for constructing
flows on a Banach space from approximate flows, and show how it can
be used in a simple way to reprove from scratch and extend the main ex-
istence and well-posedness results for rough differential equations, in the
context of dynamics on a Banach space driven by a Hölder weak geometric
rough path; the explosion question under linear growth conditions, Taylor
expansion and Euler estimates are also dealt with. We illustrate our ap-
proach by proving an existence and well-posedness result for some mean
field stochastic rough differential equation.

1. Introduction

Since T. Lyons wrote his groundbreaking article [19] on rough paths, there has been
a constantly growing industry in understanding the scope of the theory. Besides
providing an alternative enlighting view on Itô’s theory of stochastic integration
and some deep associated results, rough paths theory has now invaded the world
of numerical simulations, stochastic and deterministic partial differential equations
and finance, to name but a few areas. Despite Lyons’ Saint Flour lecture notes [20],
his book [21] with Qian and the impressive and exhaustive book [16] of Friz and
Victoir, rough path still seems to be seen as a somewhat difficult and technical
subject where algebra and classical analysis meet in an intricate way.

We show in this work how the main existence and uniqueness results of the
theory can be proved from scratch using a simple mechanism for constructing flows
from approximate flows, in the context of dynamics in a Banach space driven by
Hölder weak geometric rough paths. Contrary to Lyons, Friz–Victoir or Gubinelli’s
approach, we work primarily with maps from the state space E to itself rather than
with E-valued paths. Our dynamics on the space of maps ϕ will have typical form

(1.1) dϕ = V dt+ FX(dt),
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for some driving vector fields V and F = (V1, . . . , V�) and a (Hölder weak geomet-
ric p-) rough path X on some time interval [0, T ]. Roughly speaking, a rough path
consists of an R

�-valued non-smooth path X together with a number of objects
which play the role of the missing iterated integrals of X , in the sense that they
satisfy the same algebraic relations as the iterated integrals of any smooth path, as
well as some natural size requirements. Given such a rough path and some vector
fields V, V1, . . . , V�, a family (μts)0�s�t�T of diffeomorphisms of E is constructed
from an ordinary differential equation. These maps do not form a flow, in the
sense that μts is not equal to μtu ◦ μus for all 0 � s � u � t � T . However, some
conditions on the driving vector fields and the rough path ensure the existence of
a unique flow of maps (ϕts)0�s�t�T close to (μts)0�s�t�T . This is what we call in
that case the solution to the rough differential equation (1.1) on flows.

All other approaches to rough paths consider paths associated with a point
motion as the fundamental basic object. Lyons, and later Gubinelli, interpret (1.1)
as an integral equation, which requires a suitable notion of rough path integral as
a mechanism to attach to a rough path Y and some sufficiently regular one form g
another rough path

∫ ·
0 g(Y) dY. Solving equation (1.1) then amounts to find a

fixed point to an integral equation of the form Y =
∫ ·
0 g(Y) dY, where Y is some

extension of the original rough path X. See for instance [19], [20] or [21], and
Friz and Hairer’s review of Gubinelli’s approach [12]. Davie’s definition takes as a
starting point the fact that a solution of a controlled ordinary differential equation
dxt =

∑�
i=1 Vi(xt)dh

i
t, with h smooth, admits an Euler expansion

(1.2) xt−xs =
�∑

i=1

(ht−hs)iVi(x−s)+
�∑

j,k=1

(∫ t

s

(hr−hs)kdhjr
)
(VjVk)(xs)+o

(|t−s|2),
which describes the path x• accurately enough to characterize it uniquely. A p-
rough path X = (X1, X2), with 2 � p < 3, provides quantities X1

ts ∈ R
� and

X2
ts ∈ M�(R), for 0 � s � t � T , which, when plugged into formula (1.2) in place

of ht − hs and
∫ t

s (· · · ), with a different o(·) term, describe accurately a unique R
d-

valued path. Friz and Victoir extended Davie’s picture to any geometric Hölder p-
rough path by interpreting Davie’s picture as a way of constructing R

d-valued paths
as limits in some appropriate topology of paths generated by controlled ordinary
differential equations in which the control converges in a rough path sense to some
limit rough path. With such a view, no notion of integral is needed to define a
dynamic. Neither is it the case in the approach developed in this work, whose
core is a simple and non-commutative extension of Feyel–de la Pradelle’ sewing
lemma [10], [11], well-adapted to the construction of flows of maps, and totally
independent of any problem about rough paths; it is the subject of section 2.

It comes as a nice feature of our approach that convergence estimates for Eu-
ler/Milstein type schemes and Taylor expansion for solution flows come almost for
free; this is explained in section 3.3. The approach is sufficiently robust to work
with vector fields with at most linear growth and prove non-explosion of the dy-
namics in that case, as explained in section 4. The results of section 3 on flows
driven by rough paths are applied in section 5 to give a simple proof of the main
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existence/uniqueness results for the classical rough differential equations on paths
driven by Hölder weak geometric. They are illustrated differently in section 6
where we prove a well-posedness result for some large class of mean field stochastic
rough differential equation.

Although it is true that the classical approach to rough paths eventually leads
with some work to the construction of solution flows to equation (1.1) in our sense,
this work points out the fact that it is fruitful to take the converse direction and
consider flows as basic objects rather than paths. This change of point of view
has several advantages over the usual approach, the first of which being that we
are able to give a simple toolkit for constructing flows in a Banach space, which
provides an almost technical-free approach to rough differential equations. Our
main results on flows driven by rough paths,

• well-posedness of the rough differential equation (1.1) on flows, giving back
and extending sharp existence and uniqueness results for classical rough dif-
ferential equations,

• non-explosion for dynamics driven by weak geometric rough paths under
linear growth conditions on the vector fields,

• existence and well-posedness results for some mean field rough differential
equations,

hold for any weak geometric Hölder p-rough path. We have chosen to give the
proof of these facts in the setting of a finite dimensional driving signal, to keep the
exposition at an elementary level. The extension of our results to Banach space-
valued rough paths is done in [2], giving back Lyons’ theory in its full force. In
another direction, the machinery of C1-approximate flows introduced in section 2,
is used in the forthcoming work [3] to recover and extend the theory of stochastic
flows developed in the 80’s and 90’s by Le Jan, Watanabe, Kunita and others.

A few notations will be used throughout the text, which we gather here.
•

(
E, | · |) will denote Banach space and L(E) the set of linear continuous maps

from E to itself.
• Fix T > 0 and a non-integer γ > 1, with integer part [γ] and fractional

part {γ}. We say that a function or a vector field W on E is γ-Lipschitz if
it is C[γ] with a {γ}-Hölder continuous differential of order [γ], and W and
all its derivative are bounded. Its γ-Lipschitz norm ‖W‖γ is defined as

(1.3) ‖W‖γ =

[γ]∑
r=0

∣∣W (r)
∣∣+ ∥∥W ([γ])

∥∥
{γ} <∞,

where W (r) is the differential of order r of W , with operator norm |W (r)|,
and ‖W ([γ])‖{γ} stands for the classical {γ}-Hölder norm of W ([γ]).

• Given some sufficiently regular vector fields V1, . . . , V� on E and a tuple
I = (i1, . . . , ir) ∈ �1, ��r, we identify vector fields with derivation operators
and write VI for the differential operator

f ∈ Cr �→ Vi1
(
Vi2 (. . . Virf)

) ∈ C0.
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Writing [V,W ] for the bracket of two vector fields, this defines a first order
differential operator, that is a vector field. Set

V[I] =
[
Vi1 ,

[
Vi2 , . . . , [Vir−1 , Vir ]

]
. . .

]
.

• We identify in the sequel L
(
R

�
)
= R

� ⊗ (
R

�
)∗ and R

� ⊗ R
� with M�(R),

via the matrix representation of linear maps in the canonical basis. In these
terms, given any two vectors x, y of R�, the (jk)-th component (x ⊗ y)jk of
x⊗ y is xjyk.

• We use the convention that aibi stands for the sum
∑

i a
ibi.

• Constants depending only on the appropriate norms of some given vector
fields are said to depend on the data of the problem.

• We use the letter c for constants depending on the data of the problem, and
whose value may change from place to place.

• The notation Oc(A) stands for a quantity whose norm or absolute value is
bounded above by cA.

2. Constructing flows on a Banach space

Let E be a Banach space. Recall that a flow on E is a family (ϕts)0�s�t�T of
maps from E to itself such that ϕts = ϕtu ◦ ϕus, for all 0 � s � u � t � T ,
and ϕss = Id, for all 0 � s � T . We provide in this section a simple tool for
constructing flows on E, which rests on an elementary extension of Feyel–de la
Pradelle sewing lemma [10] to the non-commutative setting of maps from E to
itself. Given a family of maps (μts)0�s�t�T , set

μn
ts = ©n−1

i=0 μsi+1si ,

with si = s+ i
n (t−s). Given a partition πts = {s = s0 < s1 < · · · < sn−1 < sn = t}

of (s, t), set
μπts = μsnsn−1 ◦ · · · ◦ μs1s0 .

Theorem 2.1 (Sewing lemma for flows). Let
(
μts

)
0�s�t�T

be a family of C1

maps from E to itself, depending continuously on (s, t) in the uniform topology,
and enjoying the following two properties.
H1. (Regularity). There exists two positive constants α and ρ, with

0 < 1− ρ < α < 1,

such that the maps μts are (1 + ρ)-Lipschitz, and one has

(2.1) Dxμts = Id +Ats
x +Bts

x ,

for all x ∈ E, for some L(E)-valued ρ-Lipschitz maps Ats on E, with ρ-
Lipschitz norm bounded above by c|t−s|α, and some L(E)-valued C1 bounded
maps Bts on E, with C1-norm bounded above by ot−s(1).
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H2. (C1-approximate flow property). There exists a positive constant c1 and
a > 1, such that one has

(2.2)
∥∥μtu ◦ μus − μts

∥∥
C1 � c1|t− s|a

for all 0 � s � u � t � T .
Under these conditions, there exists a positive constant δ and a unique flow of

maps
(
ϕts

)
0�s�t�T

on E such that

(2.3) ‖ϕts − μts‖∞ � c |t− s|a

holds for some positive constant c and all 0 � s � u � t � T , with t − s � δ;
furthermore, we have

(2.4) ‖ϕts − μπts‖∞ � 2 c1 T |πts|a−1

for any partition πts of any interval (s, t) ⊂ [0, T ], of mesh
∣∣πts∣∣ � δ.

A family of maps enjoying the properties listed in the above theorem is called
a C1-approximate flow. A slightly weaker notion will also be useful. A family(
μts

)
0�s�t�T

of Lipschitz continuous maps from E to itself, with Lipschitz constant
uniformly bounded above by

(
1 + om(1)

)
, for any 0 � s � t � T , with t − s � m

and any m > 0, and such that

(2.5) ‖μtu ◦ μus − μts‖∞ � c′1 |t− s|a

holds for for all 0 � s � u � t � T , for some positive constant c′1, is called
a C0-approximate flow.

To prepare the proof of Theorem 2.1, note that it is elementary to show that
C0-approximate flows satisfy an a priori stronger form of identity than (2.5), as
expressed in the next lemma, for which we introduce the following definition.

Definition 2.2. Let ε ∈ (0, 1) be given. A partition π = {s = s0 < s1 < · · · <
sn−1 < sn = t} of (s, t) is said to be ε-special if it is either trivial or

• one can find an si ∈ π such that ε � si−s
t−s � 1− ε,

• and for any choice u of such an si, the partitions of [s, u] and [u, t] induced
by π are both ε-special.

A partition of any interval into subintervals of equal length is 1
2 -special. Given

an ε-special partition π = {s = s0 < s1 < · · · < sn−1 < sn = t} of (s, t) and
u ∈ {s1, . . . , sn−1} with ε � u−s

t−s � 1 − ε, the induced partitions of the intervals
[s, u] and [u, t] are also ε-special. Set

mε = sup
ε�β�1−ε

{
βa + (1 − β)a

}
< 1,

and pick a constant

L >
2c1

1−mε
,

where c1 is the constant that appears in the definition of a C1-approximate flow,
in equation (2.2).
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Lemma 2.3. Let
(
μts

)
0�s�t�T

be a C0-approximate flow on E. Given ε > 0,
there exists a positive constant δ such that for any 0 � s � t � T with t− s � δ,
and any special partition πts of type ε of an interval (s, t) ⊂ [0, T ], we have

(2.6) ‖μπts − μts‖∞ � L |t− s|a.
Proof. We proceed by induction on the number n of subintervals of the partition.
The case n = 2 is identity (2.2). Suppose the statement has been proved for n � 2.
Fix 0 � s < t � T with t − s � δ, and let πts = {s0 = s < s1 < · · · < sn <
sn+1 = t} be a partition of (s, t) of special type ε, splitting the interval (s, t) into
(n + 1) subintervals. Set m = [(n + 1)/2] and u = sm, so the two partitions πtu
and πus are both of special type ε, with respective cardinals no greater than n,
and ε � t−u

t−s � 1− ε. Then

‖μπts − μts‖∞ � ‖μπtu ◦ μπus − μtu ◦ μπus‖∞ + ‖μtu ◦ μπus − μts‖∞
� ‖μπtu − μtu‖∞ + ‖μtu ◦ μπus − μtu ◦ μus‖∞

+ ‖μtu ◦ μus − μts‖∞
� L |t− u|a + (1 + oδ(1))L |u− s|a + c1 |t− s|a,

(2.7)

by the induction hypothesis and the conditions defining a C0-approximate flow.
Set u− s = β(t− s), with ε � β � 1− ε. The above inequality rewrites

‖μπts − μts‖∞ �
{
(1 + oδ(1)) ((1 − β)a + βa)L+ c1

} |t− s|a.

One closes the induction by choosing δ small enough to have
(
1+oδ(1)

)
mε � 1+mε

2 ,
for which choice the above term {· · · } is no greater than L. �

Working with C1-approximate flows, one can strengthen this result to get a C1

estimate in equation (2.6) instead of a C0 estimate.

Lemma 2.4. Let now
(
μts

)
0�s�t�T

be a C1-approximate flow on E. Given ε > 0,
there exists a positive constant δ such that

‖μπts − μts‖C1 � L |t− s|a

for any partition πts of (s, t) of special type ε, whenever t− s � δ.

Proof. Given the preceding result, we need to prove that we have

|Dx(μπts)−Dxμts| � L |t− s|a

for all x ∈ E, for an appropriate choice of δ. We proceed by induction on the
number n of subintervals of the partition as in the proof of Lemma 2.3.

The case n = 2 is identity (2.2). Suppose the statement has been proved for
n � 2. Fix 0 � s < t � T with t− s � δ, and let πts = {s0 = s < s1 < · · · < sn <
sn+1 = t} be a partition of (s, t) of special type ε, splitting the interval (s, t) into
(n + 1) subintervals. Set m = [(n + 1)/2] and u := sm, so the two partitions πtu
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and πus are both of special type ε, with respective cardinals no greater than n.
Then we have

Dx

(
μπts

)−Dxμts = Dx

(
μπtu ◦ μπus

)−Dxμts

=
(
Dμπus (x)

μπtu −Dμπus(x)
μtu

)(
Dxμπus

)
+
(
Dμπus (x)

μtu −Dμus(x)μtu

)(
Dxμπus

)
+
(
Dμus(x)μtu

)(
Dxμπus −Dxμus

)
+
((
Dμus(x)μtu

)(
Dxμus

)−Dxμts

)
=: (1) + (2) + (3) + (4),

for any x ∈ E. We treat each term separately using repeatedly the induction
hypothesis and Lemma 2.3 when needed. We first have

|(1)| � L |t− u|a (1 + oδ(1) + δaK
)
�

(
1 + oδ(1)

)
L |t− u|a.

Also, using the fact that |t− u| � 1−ε
ε |u− s|, we see by (2.1) that we have

|Dμπus (x)
μtu −Dμus(x)μtu| � c |t− u|αLρ |u− s|aρ + o|t−u|(1)L |u− s|a

� oδ(1) |u− s|a,(2.8)

provided a < α+ρa, which we can suppose without loss of generality since 1−ρ <
α < 1. As the term Dxμπus has size no greater than

(
1 + oδ(1)

)
, as in the above

estimate for (1), we have

|(2)| � (
1 + oδ(1)

)
oδ(1) |u− s|a = oδ(1) |u− s|a.

Last, we have the upper bound

|(3)| � (
1 + oδ(1)

)
L |u− s|a,

while |(4)| � c1 |t− s|a, by (2.2). All together, and writing t− u = β(t − s), with
ε � β � 1− ε, this gives

|Dx(μπts)−Dxμts| �
(
(1 + oδ(1)) (β

a + (1− β)a)L+ c1 + oδ(1)
) |t− s|a.

The induction is closed by choosing δ small enough, as a consequence of our choice
of constant L. �

Note in particular that this lemma implies that the maps μπts are uniformly
Lipschitz continuous; there is no loss of generality in choosing δ small enough for
all the μπts to have Lipschitz size smaller than 2 say. Equipped with this lemma,
we are in a position to provide a simple proof of Theorem 2.1.

Proof of Theorem 2.1. The existence and uniqueness proofs of the statement of
Theorem 2.1 both rely on the elementary identity

(2.9) fN ◦ · · · ◦ f1 − gN ◦ · · · ◦ g1

=

N∑
i=1

(
gN ◦ · · · ◦ gN−i+1 ◦ fN−i−gN ◦ · · · ◦ gN−i+1 ◦ gN−i

) ◦ fN−i−1 ◦ · · · ◦ f1,
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where the gi and fi are maps from E to itself, and where we use the obvious
convention concerning the summand for the first and last term of the sum. In
particular, if all the maps gN ◦ · · · ◦ gk are Lipschitz continuous, with a common
upper bound c′ for their Lipschitz constants, then

(2.10) ‖fN ◦ · · · ◦ f1 − gN ◦ · · · ◦ g1‖∞ � c′
N∑
i=1

‖fi − gi‖∞.

a) Existence. Set Dδ :=
{
0 � s � t � T ; t − s � δ

}
and write Dδ for

the intersection of Dδ with the set of dyadic real numbers. Given s = a2−n0 and
t = b2−n0 in Dδ, define for n � n0

(2.11) μ
(n)
ts := μ2n

ts = μsN(n)sN(n)−1
◦ · · · ◦ μs1s0 ,

where si = s+ i2−n and sN(n) = t. Given n � n0, write

μ
(n+1)
ts =

N(n)−1

©
i=0

(
μsi+1si+2−n−1 ◦ μsi+2−n−1si

)
and use (2.9) with fi = μsi+1si+2−n−1 ◦ μsi+2−n−1si and gi = μsi+1si and the fact
that all the maps μsN(n)sN(n)−1

◦ · · ·◦μsN(n)−i+1sN(n)−i
= μi

sN(n)sN(n)−i
are Lipschitz

continuous, with Lipschitz norm no greater than 2, to get by (2.10) and (2.2)

∥∥μ(n+1)
ts − μ

(n)
ts

∥∥
∞ � 2

N(n)−1∑
i=0

‖μsi+1si+2−n−1 ◦ μsi+2−n−1si − μsi+1si‖∞

� 2 c1 T 2−(a−1)n;

so μ(n) converges uniformly on Dδ to some continuous function ϕ. We see that ϕ
satisfies inequality (2.3) on Dδ as a consequence of (2.6). As ϕ is a uniformly
continuous function of (s, t) ∈ Dδ, by (2.3), it has a unique continuous extension
to Dδ, still denoted by ϕ. To see that it defines a flow on Dδ, notice that for dyadic
times s � u � t, we have μ(n)

ts = μ
(n)
tu ◦μ(n)

us , for n big enough; so ϕts = ϕtu ◦ϕus for
such triples of times in Dδ, hence for all times since ϕ is continuous. The map ϕ
is easily extended as a flow to the whole of

{
(s, t) ∈ [0, T ]2, 0 � s � t � T

}
.

b) Uniqueness. Let ψ be any flow satisfying condition (2.3). With formu-
las (2.9) and (2.10) in mind, rewrite (2.3) under the form ψts = μts +Oc(|t− s|a),
with obvious notations. Then

ψts = ψs2ns2n−1
◦ · · · ◦ ψs1s0

= (μs2ns2n−1
+Oc(2

−an)) ◦ · · · ◦ (μs1s0 +Oc(2
−an))

= μs2ns2n−1
◦ · · · ◦ μs1s0 +Δn = μ

(n)
ts +Δn,

where Δn is of the form of the right hand side of (2.9), and so it is bounded above
by a constant multiple of 2−(a−1)n, since all the maps μs2n s2n−1

◦ · · ·◦μs2n−�+1s2n−�

are Lipschitz continuous with a common upper bound for their Lipschitz constants.
Sending n to infinity shows that ψts = ϕts.
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c) Speed of convergence. Given any partition πts = {s0 = s < · · · <
sn = t} of (s, t), using as above the uniform Lipschitz character of the maps
μsnsn−1 ◦ · · · ◦ μsi+ssi , and writing ϕts = ©n−1

i=0 ϕsi+1si , we see as a consequence
of (2.10) that, for

∣∣πts∣∣ � δ,

‖ϕts − μπts‖∞ � 2

n−1∑
i=0

‖ϕsi+1si − μsi+1si‖∞

� 2 c1

n−1∑
i=0

|si+1 − si|a � 2 c1 T
∣∣πts∣∣a−1

.
�

As a straightforward application of Theorem 2.1, it is elementary to see that
one defines a C1 approximate flow by setting

(2.12) μts(x) = x+
(
ht − hs

)i
Vi(x),

where h : [0, T ] → R
� is a C1 control and the vector fields V1, . . . , V� on E are C2

b .
Identity (2.2) holds in that case with a = 2. The associated flow coincides with
the flow associated with the controlled ordinary differential equation

(2.13) ẋt = Vi(xt)ḣ
i
t,

as the latter obviously satisfies estimate (2.3).

3. Flows driven by Hölder weak geometric p-rough paths

Hölder p-rough paths, which control the rough differential equation (1.1) and play
the role of h in (2.13), are defined in section 3.1. As R�-valued paths, they are not
regular enough for formula (2.12) to define an approximate flow. The missing bit
of information needed to stabilize the situation is a substitute of the non-existing
iterated integrals

∫ t

s X
j
rdX

k
r , and higher order iterated integrals, which provide a

partial description of what happened to X during any time interval (s, t). The
higher order parts of a p-rough path provide precisely that information. It is an
important fact that p-rough paths take values in a very special kind of algebraic
structure, of which we recall the basic features in section 3.1. We shall then see
in section 3.2 how to associate to a rough path and some smooth enough vector
fields a C1-approximate flow.

3.1. An algebraic prelude: tensor algebra over R
� and free nilpotent Lie

group

For N ∈ N∪{∞}, write T (N)
� for the direct sum

⊕N
r=0(R

�)⊗r, with the convention
that (R�)⊗0 stands for R. Denote by a = ⊕N

r=0ar and b = ⊕N
r=0br two generic

elements of T (N)
� .
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The vector space T (N)
� is an algebra for the operations

a+ b =
N⊕
r=0

(ar + br),

ab =
N⊕
r=0

cr, with cr =
r∑

k=0

ak ⊗ br−k

(3.1)

It is called the (truncated) tensor algebra of R
� (if N is finite).

The exponential map exp : T
(∞)
� → T

(∞)
� and the logarithm map log : T

(∞)
� →

T
(∞)
� are defined by the usual series

(3.2) exp(a) =
∑
n�0

an

n!
, log(b) =

∑
n�1

(−1)n

n
(1− b)n,

with the convention a0 = 1 ∈ R ⊂ T
(∞)
� . Denote by πN : T

(∞)
� → T

(N)
� the natural

projection. We also denote by exp and log the restrictions to T
(N)
� of the maps

πN ◦ exp and πN ◦ log respectively. Denote by T (N),1
� , resp. T (N),0

� , the elements
a0 ⊕ · · · ⊕ cN of T (N)

� such that a0 = 0, resp. a0 = 1. All the elements of T (N),1
�

are invertible, and exp : T
(N),0
� → T

(N),1
� and log : T

(N),1
� → T

(N),0
� are reciprocal

bijections.
The formula [a,b] = ab−ba, defines a Lie bracket on T (N)

� . Define inductively
F = F 1 = R

�, considered as a subset of T (∞)
� , and Fn+1 = [F, Fn] ⊂ T

(∞)
� .

Definition 3.1. (a) The Lie algebra gN� generated by the F 1, . . . , FN is called the
N-step free nilpotent Lie algebra.

(b) As a consequence of the Baker–Campbell–Hausdorff–Dynkin formula, the
subset exp

(
gN�

)
of T (N)

� is a group for the multiplication operation. It is called
the N-step nilpotent Lie group on R

� and denoted by G(N)
� .

Note that the restriction to G
(q)
� of the projection map πpq : T

(q)
� → T

(p)
� ,

sending a0 ⊕ · · · ⊕ aq to a0 ⊕ · · · ⊕ ap, provides a natural projection πpq from G
(q)
�

to G(p)
� for any p < q.

The relevance of the algebraic framework provided by the N -step nilpotent
Lie group for the study of smooth paths was first noted by Chen in his seminal
work [8]. Indeed, for any R

�-valued smooth path (xs)s�0, the family of iterated
integrals

XN
ts :=

(
1, xt − xs,

∫ t

s

∫ s1

s

dxs2 ⊗ dxs1 , . . . ,

∫
s�s1�···�sN�t

dxs1 ⊗ · · · ⊗ dxsN

)

defines for all 0 � s � t an element of G(N)
� . It suffices to notice that, as a function

of t, the function XN
ts satisfies the differential equation

dXN
ts = XN

ts ⊗ dxt,
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in T
(N)
� . Rough paths and weak geometric rough paths are somehow an abstract

version of these objects.

Definition 3.2. Let 2 � p. A Hölder p-rough path on [0, T ] is a T ([p]),1
� -valued

path X : t ∈ [0, T ] �→ 1⊕X1
t ⊕X2

t ⊕ · · · ⊕X
[p]
t such that

(3.3) sup
0�s<t�T

|X i
ts|

|t− s|i/p <∞,

for all i = 1 . . . [p], where we set Xts = X−1
s Xt. We define the norm of X to be

(3.4) ‖X‖ = max
i=1...[p]

sup
0�s<t�T

|X i
ts|

|t− s|i/p ,

and a distance d(X,Y) = ‖X−Y‖ on the set of Hölder p-rough path. A Hölder
weak geometric p-rough path on [0, T ] is a G([p])

� -valued p-rough path.

For 2 � p < 3, the relation XusXtu = Xts, for 0 � s � u � t � T , is
equivalent to

(i) X1
ts = X1

tu +X1
us,

(ii) X2
ts = X2

tu +X1
us ⊗X1

tu +X2
us.

Condition (i) means that X1
ts = X1

t0 − X1
s0 represents the increment of the

R
d-valued path

(
X1

r0

)
0�r�T

. Condition (ii) is nothing but the analogue of the

elementary property
∫ t

s

∫ r

s =
∫ u

s

∫ r

s +
∫ t

u

∫ u

s +
∫ t

u

∫ r

u , satisfied by any reasonable
notion of integral on R such that

∫ t

s =
∫ u

s +
∫ t

u. This remark justifies thinking of
the

(
R

� ⊗ R
�
)
-part of a rough path as a kind of iterated integral of X1 against

itself. In that setting, a p-rough path X is a weak geometric p-rough path iff the
symmetric part of X2

ts is 1
2X

1
ts ⊗X1

ts, for all 0 � s � t � T .

Remark 3.3. Hölder p-rough paths appear naturally in a probabilistic context.
Let B be a Brownian motion; the random process

B =
(
Bt −Bs,

∫ t

s

Br ⊗ ◦dBr

)
0�s�t�T

is almost-surely a weak geometric Hölder p-rough path, for any 2 < p < 3. It is
called the Brownian rough path. Note that using an Itô integral, the formula
BI =

(
Bt −Bs,

∫ t

s Br ⊗ dBr

)
0�s�t�T

, defines a Hölder p-rough path which is not
weak geometric.

Denote by (e1, . . . , e�) the canonical basis of R� ⊂ T
(∞)
� and write for a tuple

I = (i1, . . . , ir)

e[I] =
[
ei1 ,

[
ei2 , . . . [eir−1 , eir ]

]
. . .

]
, and eI = ei1ei2 · · · eir ,

where the above products are in T (∞)
� . Write Y r,I , with |I| = r, or simply Y I , for

the coordinates of an element Y of T [p]
� in its canonical basis.
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Given a Hölder weak geometric p-rough path X, denote by Λ = 0⊕Λ1⊕· · ·⊕Λ[p]

its logarithm, in Magnus–Chen–Strichartz form [22],

(3.5) exp
(
ΛI
tse[I]

)
= XI

tseI = Xts,

for all 0 � s � t � T ; it takes values in the finite dimensional Lie algebra g
[p]
� .

Notice that since Λ is polynomial in X, by formula (3.2), it is a continuous function
of X.

3.2. Flows driven by Hölder weak geometric p-rough paths

We have seen in section 2 that a C1-approximate flow on a Banach space E defines
a unique flow

(
ϕts

)
0�s�t�T

on E such that the inequality

(3.6) ‖ϕts − μts‖∞ � c |t− s|a

holds for some positive constants c and a > 1, for all 0 � s � t � T sufficiently
close. The construction of ϕ is actually quite explicit, for if we denote by μπts

the composition of the maps μti+1ti along the times ti of a partition πts of an
interval [s, t], the map μts satisfies the estimate

(3.7) ‖ϕts − μπts‖∞ � 2 c1 T |πts|a−1,

where c1 is the constant that appears in the definition of a C1-approximate flow

(3.8) ‖μtu ◦ μus − μts‖C1 � c1 |t− s|a.
It follows in particular from equation (3.6) that if μ depends continuously on
some metric space-valued parameter λ, with respect to the C0-topology, and if
identity (3.8) holds uniformly for λ moving in a bounded set say, then ϕ depends
continuously on λ, as a uniform limit of continuous functions.

The point about the machinery of C1-approximate flows is that they actually
pop up naturally in a number of situations, under the form of a local in time
description of the dynamics under study; nothing else than a kind of Taylor ex-
pansion. This was quite clear in the example of the ordinary controlled differential
equation

(3.9) dxt = Vi(xt) dh
i
t,

with C1 real-valued controls h1, . . . , h� and C2
b vector fields V1, . . . , V� in R

d. The
1-step Euler scheme

μts(x) = x+
(
hit − his

)
Vi(x)

defines in that case a C1-approximate flow which has the awaited Taylor-type
expansion, in the sense that one has

(3.10) f(μts(x)) = f(x) + (hit − his)(Vif)(x) +O(|t − s|>1)

for any function f of class C2
b ; but μ fails to be a flow. Its associated flow (by our

machinery) is not only a flow, it also satisfies equation (3.10) as a consequence of
identity (3.6).
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We shall proceed in a very similar way to give some meaning and solve the
rough differential equation on flows

(3.11) dϕ = V dt+ FX(dt),

where V is a Lipschitz continuous vector field on E and F =
(
V1, . . . , V�

)
is a

collection of sufficiently regular vector fields on E, and X is a Hölder p-rough path
over R

�. A solution flow to equation (3.11) will be defined as a flow on E with
a uniform Taylor-Euler expansion of the form

(3.12) f(ϕts(x)) = f(x) +
∑

|I|�[p]

XI
ts(VIf)(x) +O(|t − s|>1),

where I = (i1, . . . , ik) ∈ �1, ��k is a multi-index with size k � [p], and XI
ts stands

for the coordinates of Xts in the canonical basis of T ([p]),1
� . The vector field Vi is

seen here as a 1st-order differential operator, and VI = Vi1 · · ·Vik as the kth-order
differential operator obtained by applying successively the operators Vin .

For V = 0 and X the weak geometric Hölder p-rough path canonically associ-
ated with an R

�-valued C1 control h, with 2 � p < 3, equation (3.12) becomes

f(ϕts(x)) = f(x) + (hit − his) (Vif)(x)

+
(∫ t

s

∫ r

s

dhju dh
k
r

)
(VjVkf)(x) +O(|t− s|>2),(3.13)

which is nothing else than Taylor formula at order 2 for the solution to the ordinary
differential equation (3.9) started at x at time s. Condition (3.12) is a natural
analogue of (3.13) and its higher order analogues.

There is actually a simple way of constructing a map μts which satisfies the
Euler expansion (3.12). It can be defined as the time 1 map associated with
an ordinary differential equation constructed form the Vi and their brackets, and
where Xts appears as a parameter under the form of its logarithm. That these
maps μts form a C1-approximate flow will eventually appear as a consequence
of the fact that the time 1 map of a differential equation formally behaves as an
exponential map, in some algebraic sense. In the sequel, p and γ will always denote
real numbers such that

1 � p < γ � [p] + 1.

Given a bounded Lipschitz continuous vector field V , and some [γ]-Lipschitz
vector fields V1, . . . , V� on E, let μts be the well-defined time 1 map associated with
the ordinary differential equation

(3.14) ẏu = (t− s)V (yu) +

[p]∑
r=1

∑
I∈�1,��r

Λr,I
ts V[I](yu), 0 � u � 1.

This equation is to be understood as the classical ordinary differential equation
version of equation (1.1); the definition of a solution flow to equation (1.1) given



914 I. Bailleul

below will make that point clear. The property of μts proved in Proposition 3.5
below is the main reason for its introduction; it roughly says that μts has the
awaited Euler expansion, in accordance with what happens for ordinary differential
equations, as emphasized in equation (3.13). For 2 � p < 3, and X = (X,X),
equation (3.14) reads

ẏu = (t− s)V (yu) +X i
ts Vi(yu) +

1

2

{
Xts +

1
2Xts ⊗Xts

}jk
[Vj , Vk](yu).

As the matrix Xts ⊗ Xts is symmetric, we have Xj
tsX

k
ts [Vj , Vk] = 0, so (3.14)

simplifies into

ẏu = (t− s)V (yu) +X i
ts Vi(yu) +

1

2
X

jk
ts [Vj , Vk](yu).

If the vector field V is C1 and the V1, . . . , V� are γ-Lipschitz, the classical results on
the dependence of solutions to ordinary differential equation with respect to some
parameters ensure that for any reals numbers a, bI , the time 1 map exp

(
aV +bIV[I]

)
associated with the differential equation

d

du
yu = aV (yu) + bIV[I](yu), 0 � u � 1,

is a continuously differentiable function of (a, b). The following basic fact comes
as a consequence of the analytic properties of any Hölder p-rough path and the
definition of the topology on the set of Hölder p-rough paths. We write μX

ts instead
of μts in the proposition below to emphasize its dependence on X.

Proposition 3.4. Let V be Lipschitz continuous and the Vi be [γ]-Lipschitz.

(1) Then all the maps μX
ts are uniformly Lipschitz continuous, with Lipschitz

constant no greater than 1 + c |t − s|1/p, for a constant c = c′ (1 + ‖X‖γ),
with c′ depending on the data of the problem.

(2) The Lipschitz homeomorphisms μX
ts depend continuously on

(
(s, t),X

)
, in the

sense that

max
{
‖μX

ts − μY
vu‖∞,

∥∥(μX
ts

)−1 − (
μY
vu

)−1∥∥
∞
}
� f

(
(s, t), (u, v) ; X,Y

)
for a continuous function f with f

(
(s, t), (s, t) ; X,X

)
= 0, for all 0 � s �

t � T , and any Hölder p-rough path X.

The following proposition is our basic step for studying flows driven by rough
paths.

Proposition 3.5. Let 0 < ρ < 1 and 2 � p < γ < [p] + 1 be given. Let V be a
Lipschitz-continuous vector field on E, and V1, . . . , V� be [γ]-Lipschitz vector fields
on E. Let X = 1 ⊕ X1 ⊕ · · · ⊕ X [p] be a Hölder weak geometric p-rough path.
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Then there exists a positive constant c, depending only on the data of the problem,
such that

∥∥∥f ◦ μts −
{
f + (t− s)V f +

[p]∑
r=1

∑
I∈�1,��r

Xr,I
ts VIf

}∥∥∥
∞

� c
(
1 + ‖X‖γ) ‖f‖γ |t− s|γ/p(3.15)

holds for any f ∈ Cγ.

The proof of this proposition and the following one are based on the following
elementary identity, obtained by applying repeatedly the identity

f(yr) = f(x) + (t− s)

∫ 1

0

(V f)(yu) du+
∑
I

ΛI
ts

∫ 1

0

(
V[I]f

)
(yu) du,

and by separating the terms according to their size in |t− s|. Set

Δn :=
{
(s1, . . . , sn) ∈ [0, T ]n ; s1 � · · · � sn

}
,

for 2 � n � [p] and write ds for Lebesgue volume element on Δn. For a γ-Lipschitz
function f , we have

f
(
μts(x)

)
= f(x) + (t− s)

(
V f

)
(x)

(3.16)

+

n∑
k=1

1

k!

∑
|I1|+···+|Ik|�[p]

( k∏
m=1

ΛIm
ts

)(
V[Ik] · · ·V[I1]f

)
(x)

+
∑

|I1|+···+|In|�[p]

( n∏
m=1

ΛIm
ts

)∫
Δn

{(
V[In] · · ·V[I1]f

)
(ysn)−

(
V[In] · · ·V[I1]f

)
(x)

}
1Δn ds

+ (t− s)

∫ 1

0

{(
V f

)
(yr)−

(
V f

)
(x)

}
dr

+

n−1∑
k=1

1

k!

∑
|I1|+···+|Ik|�[p]+1

( k∏
m=1

ΛIm
ts

)(
V[Ik] · · ·V[I1]f

)
(x)

+ (t− s)
n−1∑
k=1

∑
I1,...,Ik

( k∏
m=1

ΛIm
ts

)∫
Δk

(
V V[Ik] · · ·V[I1]f

)
(ysk)1Δk

dsk . . . ds1

+
∑
In,p

( k∏
m=1

ΛIm
ts

)∫
Δn

{(
V[In] · · ·V[I1]f

)
(ysn)−

(
V[In] · · ·V[I1]f

)
(x)

}
1Δn ds,

where the last sum is over the set In,p of tuples I1, . . . , In such that

|I1|+ · · ·+ |In| � [p] + 1.
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We denote by εf ;n
ts (x) the sum of the last four lines, made up of terms of size at

least |t − s|γ/p. Note that this formula makes sense for all 2 � n � [p], and for
(γ−1)-Lipschitz vector fields Vi. In the case where n = [p], the terms in the second
line involve only indices Ij with |Ij | = 1, so the elementary estimate

(3.17) |yr − x| � c (1 + ‖X‖γ) |t− s|1/p, 0 � r � 1,

can be used to control the increment in the integral, showing that this second line
is of order |t− s|γ/p, as the maps V[I[p]] . . . V[I1]f are (γ− [p])-Lipschitz; we include

it in the remainder εf ; [p]
ts (x).

Proof of theorem 3.5. Applying the above formula for n = [p], together with the
fact that exp(Λ) = X, we get the identity

f
(
μts(x)

)
= f(x) + (t− s)

(
V f

)
(x) +

∑
I

XI
ts

(
VIf

)
(x) + ε

f ; [p]
ts (x).

It is clear on the formula for εf ; [p]
ts (x) that its absolute value is bounded above by

a constant multiple of (1 + ‖X‖γ) |t− s|γ/p, for a constant depending only on the
data of the problem and f as in (3.15). �

A further look at formula (3.16) also makes it clear that if V is (1+ρ)-Lipschitz
and the Vi are γ-Lipschitz, with f sufficiently regular, then the remainders εf ;n

ts , 2 �
n � [p], have the norm of their first derivative bounded above by a constant
multiple of (1 + ‖X‖γ) |t − s|a, for a constant depending only on the data of the
problem, and a = min{1 + ρ/p, γ/p}. This is the key remark for proving the next
proposition.

Proposition 3.6. (1) Suppose V is Lipschitz-continuous and the Vi are [γ]-
Lipschitz. Then

(
μts

)
0�s�t�T

is a C0-approximate flow.

(2) Suppose V is (1+ρ)-Lipschitz, for some ρ > p−[p]
p , and the Vi are γ-Lipschitz,

then
(
μts

)
0�s�t�T

is a C1-approximate flow.

Proof. We first use formula (3.16) to write

μtu

(
μus(x)

)
= μus(x) + (t− u)V

(
μus(x)

)
+
∑
I

XI
tuVI

(
μus(x)

)
+ ε

Id ; [p]
tu

(
μus(x)

)
.

We deal with the term (t− u)V
(
μus(x)

)
using (3.17) and the Lipschitz character

of V . The remainder εId ; [p]
tu

(
μus(x)

)
has, under the assumptions of statement (1),

an infinite norm bounded above by c (1 + ‖X‖γ) |t − u|a, and its derivative has
infinite norm bounded above by c (1 + ‖X‖γ)2 |t − u|a, under the assumptions
of (2), by the above remark and part (2) of Proposition 3.4 about the uniform
Lipschitz size of the maps μba.

To deal with the terms XI
tuVI

(
μus(x)

)
, with |I| = k, we use formula (3.16) with

n =
(
[p] − k

)
, to develop VI

(
μus(x)

)
. Write ds for ds[p]−k . . . ds1 in the formula
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below. We have

VI
(
μus(x)

)
= VI(x) + (u− s)

(
V VI

)
(x)

+

[p]−k∑
j=1

1

j!

∑
|I1|+···+|Ij |�[p]

( j∏
m=1

ΛIm
us

)(
V[Ij ] · · ·V[I1]VI

)
(x) + εVI ; p−k

us (x)

+
∑

|I1|+···+|I[p]−k|�[p]

( [p]−k∏
m=1

ΛIm
us

)∫ 1

0

{(
V[I[p]−k] · · ·V[I1]VI

)(
ys[p]−k

)

− (
V[I[p]−k] · · ·V[I1]VI

)
(x)

}
1Δ[p]−k

ds.

We see, using (3.17), that XI
tu times the second line above has an infinite norm

bounded above by c (1+‖X‖γ) |t−s|a, and that its derivative has an infinite norm
bounded above by c (1 + ‖X‖γ)2 |t− s|a, under the regularity assumptions of (2).

Writing

μus(x) = x+ (u− s)V (x) +
∑
I

XI
usVI(x) + εId ; [p]

us (x),

it is then straightforward to use the identities exp
(
Λus

)
= Xus and Xts = XusXtu,

to see that
μtu

(
μus(x)

)
= μts(x) + εts(x),

with a remainder ‖εts‖∞ � c (1 + ‖X‖γ) |t − s|a, under the regularity assump-
tions of point (1), with first derivative with infinite norm bounded above by
c (1 + ‖X‖γ)2|t− s|a, under the assumptions of statement (2).

It remains to check that the decomposition (2.1) holds in that case, which is
done by writing

μts(x) = x+

∫ 1

0

{
(t− s)V (yxr ) +

∑
|I|=[p]

ΛI
tsV[I](y

x
r )
}
dr

+

∫ 1

0

∑
|I|�[p]−1

ΛI
tsV[I](y

x
r ) dr

(3.18)

(where we have emphasized the dependence of yr on its initial condition x by an
upper index x), and defining Ats

x , as the differential of the function of x defined by
the first integral, and Bts

x , by the differential of the function of x defined by the
second integral; with the notation of Theorem 2.1, we have α = [p]/p here. �

The following is to be thought of as an analogue in the setting of flows of
Davie’s definition of a solution to a rough differential equation [9], as recalled in
the introduction.

Definition 3.7. Let 2 � p < γ < [p] + 1 be given. Let V1, . . . , V� be C[p]
b -Lipschitz

vector fields on E, and X be a Hölder weak geometric p-rough path. Write F
for (V1, . . . , V�). Let V be a bounded Lipschitz continuous vector field on E. With
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the above notations, a flow (ϕts ; 0 � s � t � T ) is said to solve the rough
differential equation

(3.19) dϕ = V dt+ F X(dt)

if there exists a constant a > 1 independent of X and two possibly X-dependent
positive constants δ and c such that

(3.20) ‖ϕts − μts‖∞ � c |t− s|a

holds for all 0 � s � t � T with t− s � δ.

The following well-posedness result follows directly from Theorem 2.1 and
Proposition 3.6.

Theorem 3.8. Suppose V is (1 + ρ)-Lipschitz, for some ρ > p−[p]
p , and the Vi

are γ-Lipschitz. Then the rough differential equation dϕ = V dt + FX(dt) has a
unique solution flow; it takes values in the space of uniformly Lipschitz continuous
homeomorphisms of E with uniformly Lipschitz continuous inverses, and depends
continuously on X.

Proof. Note that any solution flow depends continuously on (s, t) in the topology
of uniform convergence on E by Proposition 3.4 and the defining condition (3.20).
Use the notation c1 of section 2 for the constant appearing in the sewing lemma
for flows, and write a for min{1 + ρ/p, γ/p}; it follows from the above estimates
that we can choose

c1 = c (1 + ‖X‖γ)2,
so we have

(3.21) ‖ϕts − μπts‖∞ � c (1 + ‖X‖γ)2 T |πts|a−1,

for any partition πts of (s, t) ⊂ [0, T ] of mesh
∣∣πts∣∣ � δ, as a consequence of

inequality (2.4). As these bounds are uniform in (s, t), and for X in a bounded set
of the space of Hölder p-rough paths, and each μπts is a continuous function of X,
by Proposition 3.4, the flow ϕ depends continuously on

(
(s, t),X

)
.

To prove that ϕ is a homeomorphism, note that, with the notations of section 2,(
μ
(n)
ts

)−1
= μ−1

s1s0 ◦ · · · ◦ μ−1
s2n s2n−1

can actually be written (μ
(n)
ts )−1 = μ̃s2n s2n−1

◦ · · · ◦ μ̃s1s0 , for the time 1 map μ̃
associated with the rough path Xt−•. As μ̃ enjoys the same properties as μ, the
maps

(
μ
(n)
ts

)−1 converge uniformly to some continuous map ϕ−1
ts which satisfies by

construction ϕts ◦ ϕ−1
ts = Id.

As Lemma 2.4 provides a uniform control of the Lipschitz norm of the maps μ(n)
ts ,

the limit maps ϕts also have Lipschitz norms controlled by the same quantity; the
same holds for their inverses. We propagate this property from the set

{
(s, t) ∈

[0, T ]2 ; s � t, t − s � δ
}

to the whole of
{
(s, t) ∈ [0, T ]2 ; s � t

}
using the flow

property of ϕ. �
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Remarks 3.9. (1) Friz–Victoir approach to rough paths. The continuity
of the solution flow with respect to the driving rough path X has the following
consequence, which justifies the point of view adopted by Friz and Victoir in their
works. Suppose the Hölder weak geometric p-rough path X is the limit in the rough
path metric of the canonical Hölder weak geometric p-rough paths Xn associated
with a smooth (or Lipschitz continuous) E-valued path (xnt )0�t�T through the
data of its well-defined iterated integrals. The illustration to the “C1-approximate
flow to flow ” Theorem 2.1 given at the end of section 2 shows that the solution
flow ϕn to the rough differential equation (3.19) with driving rough path Xn is the
flow associated with the ordinary differential equation

ẏu = V (yu) du+ Vi(yu) d(x
n
u)

i.

As ‖ϕn − ϕ‖∞ = on(1), from the continuity of the solution flow with respect to
the driving rough path, the flow ϕ appears in that case as a uniform limit of
the elementary flows ϕn. A Hölder weak geometric p-rough path with the above
property is called a Hölder geometric p-rough path; not all Hölder weak geometric
p-rough path are Hölder geometric p-rough path [14].

Friz and Victoir obtain in [15] convergence rates similar to (3.21), with a slightly
better exponent, by a clever use of sub-Riemannian geometry in the free nilpotent
Lie group G[p]

� , for rough differential equations without a drift. The above estimate
for rough differential equations with a drift appears to be new.

(2) Time-inhomogeneous dynamics. The above result have a straightfor-
ward generalization for a time dependent bounded drift V (s; ·) which is Lipschitz
continuous with respect to the time and (1+ρ)-Lipschitz with respect to the space
variable, and time dependent bounded vector fields Vi(s; ·) which are γ-Lipschitz
with respect to the space variable and Lipschitz continuous with respect to time.
We define in that case a C1-approximate flow by defining μts as the time 1 map
associated with the ordinary differential equation

ẏu = (t− s)V (s; yu) +

[p]∑
r=1

∑
I∈�1,��r

Λr,I
ts V[I](s; yu), 0 � u � 1.

In particular, inequality (3.15) holds in that case, with V (s;x) and VI(s;x) in place
of V (x) and VI(x). This framework will be useful in section 6 for the study of some
simple mean field stochastic rough differential equation.

3.3. High order Taylor expansion of solution flows to rough differential
equations

It is a nice feature of our approach that Taylor expansion of solution flows to
rough differential equations come almost for free, providing an alternative and
simple proof of similar results due to Friz and Victoir [15]. As in the classical case,
the smoother the vector fields Vi are, the better we can describe the solution flow
to the driftless equation dϕ = FX(dt). This takes the form of a refined version of
the inequality ‖ϕts − μts‖∞ � c |t− s|γ/p.
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Let 2 � p and an integer N � [p] + 1 be given. Lyons devised in his original
theory of rough paths [19] a fundamental mechanism which enables in particular to
extend uniquely any Hölder weak geometric p-rough path to a very special G(N)

� -
valued map and provides the missing higher order iterated integrals needed to write
a Taylor expansion of the solution flow to the equation dϕ = FX(dt). We state
it here under the form we need – see [11] for a simple proof of a refined version of
Lyons’ extension theorem.

Theorem 3.10 (Lyons’ extension theorem). Let 2 � p be given and X be a Hölder
weak geometric p-rough path. Let N � [p] + 1 be an integer. Then there exists a
unique (G(N)

� -valued) Hölder weak geometric N -rough path path Y extending X in
the sense that π[p]NYts = Xts, for all 0 � s � t � T . The map Y is called the lift
of X to G(N)

� ; it is a continuous function of X.

Given 0 < α < 1, set γ = N+α, and suppose the vector fields Vi are γ-Lipschitz.
Given a Hölder weak geometric p-rough path X, let Y its lift to G(N)

� , and Λ =
0⊕ Λ1 ⊕ Λ2 ⊕ · · · ⊕ ΛN be the logarithm of its lift, so we have expΛts = Yts, for
all 0 � s � t � T .

Denote by ν
[N ]
ts the diffeomorphism of E which associates to any x ∈ E the

value at time 1 of the well-defined and unique solution of the ordinary differential
equation

d

dr
yu =

N∑
r=1

∑
I∈�1,��r

Λr,I
ts V[I](yu), 0 � u � 1,

with y0 = x. The proof of Proposition 3.5 shows that the following awaited esti-
mate holds.

Proposition 3.11. Let 2 � p and [p] + 1 � N < N + α < N + 1 be given,
with N integer. Let V1, . . . , V� be (N + α)-Lipschitz vector fields on E. Let X =

1⊕X1 ⊕ · · · ⊕X [p] be a Hölder weak geometric p-rough path with lift Y to G(N)
� .

Then there exists a positive constant c, depending only on M,λ, T and ‖X‖ and
f ∈ Cγ such that

(3.22)
∥∥∥∥f ◦ ν[N ]

ts −
{
f +

N∑
r=1

∑
I∈�1,��r

Y r,I
ts VIf

}∥∥∥∥
∞

� c |t− s|(N+α)/p

holds for all f ∈ Cγ. The maps ν[N ]
ts depend continuously on

(
(s, t),X

)
in uniform

topology.

As in section 3.2, this fundamental estimate implies together with Theorem 2.1
a well-posedness result.

Theorem 3.12. Let 2 � p and [p] + 1 � N < N + α < N + 1 be given, with N
integer, and V1, . . . , V� be (N + α)-Lipschitz vector fields on E. There exists a
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unique flow
(
ϕ
[N ]
ts

)
0�s�t�T

on E for which there are two positive constants δ and c
such that

(3.23) ‖ϕ[N ]
ts − ν

[N ]
ts ‖∞ � c |t− s|(N+α)/p

holds for all 0 � s � t � T , with t− s � δ.

Let now γ ∈ (p, [p] + 1). Since ‖ν[N ]
ts − μts‖∞ � c |t− s|γ/p, the identity

‖ϕ[N ]
ts − μts‖∞ � c |t− s|γ/p

holds for all 0 � s � t � T , sufficiently close, so ϕ[N ] is the solution flow to the
rough differential equation dϕ = FX(dt).

Corollary 3.13 (High order Euler estimates/Taylor expansion). Let 2 � p, an
integer [p]+1 � N and 0 < α < 1 be given. Suppose the vector fields V1, . . . , V� are
(N + α)-Lipschitz. Let X be a Hölder weak geometric p-rough path. Denote by ϕ
the unique solution flow to the driftless rough differential equation dϕ = FX(dt).
Let Y be the lift of X to G

(N)
� . Then there exists two positive constants δ and c

such that
‖ϕts − ν

[N ]
ts ‖∞ � c |t− s|(N+α)/p

holds for all 0 � s � t � T with t− s � δ. We have in particular,

(3.24)
∥∥∥ϕts −

{
Id +

N∑
r=1

∑
I∈�1,��r

Y r,I
ts VI

}∥∥∥
∞

� c |t− s|(N+α)/p

for all 0 � s � t � T , with t− s � δ.

Remarks 3.14. (1) In a probabilistic setting where X is the random realization
of the Brownian rough path, the Y k,I

ts coincide almost-surely with the iterated
Stratonovich integrals

∫ t

0
◦dBi1

s1 ⊗ · · · ⊗ ◦dBik
sk

, for I = (i1, . . . , ik), and (3.24) is
a pathwise version of Azencott’s celebrated stochastic Taylor formula – see for
instance [1], [4] and [7].

(2) Friz and Victoir [15] proved similar estimates by a clever use of geodesic
approximation in the free nilpotent Lie group G(N)

� .
(3) The above theorem provides a straightforward justification of Friz and Ober-

hauser’s theorem about drift induced by perturbed driving signals; see Theorem 2
in [13].

4. Non-explosion under linear growth conditions on the vec-
tor fields

Let 1 < γ be a non-integer real number. Let us say that a vector field W is
γ-Lipschitz with linear growth if it is C[γ], with bounded derivatives

W (1), . . . ,W ([γ])

and its [γ]’s derivative is a bounded
(
γ − [γ]

)
-Hölder map. We do not require that

W itself be bounded. We describe in that section how the arguments of sections 2
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and 3 need to be amended to prove a well-posedness result for the rough differential
equation on flows (1.1), under the relaxed assumption that the driving vector fields
V, V1, . . . , V� are sufficiently regular and have linear growth. We need for that
purpose a suitable version of the sewing lemma for flows which applies in that
setting. The main difficulty here is that the solution to the ordinary differential
equation

ẏu = (t− s)V (yu) +

[p]∑
r=1

∑
I∈�1,��r

Λr,I
ts V[I](yu)

may explode in finite time since the vector fields V[I] have polynomial growth now.
This tendency is compensated by the small size of the coefficients Λr,I

ts , which
ensures that the time 1 map μts will be well-defined on some ball of fixed radius
provided t−s is small enough. So we need to set up a framework where approximate
flows are replaced by some kind of local approximate flows, not defined in the whole
of E. This is what section 4.1 is about.

We use in that section the notation BR for the ball
{
x ∈ E ; |x| � R

}
.

4.1. Local approximate flows

We provide in this section a version of the “approximate flow to flow” machinery
that can be used to deal with rough differential equations involving inbounded
vector fields with linear growth. It basically takes the same form as Theorem 2.1,
with the uniform conditions replaced by well-chosen local controls.

Theorem 4.1. Let c0 be a positive constant and μ be a continuous map from⋃
x∈E

{x} × {
(s, t) ∈ [0, T ]2 ; 0 � t− s < ce−c0|x|}

to E, with μts of class C1 on its domain, for any fixed 0 � s � t � T . Assume this
family of maps enjoys the following properties.
H1’. (Regularity)

(i) For all R > 0 and x ∈ BR, and for all 0 � s � t � T with t−s � ce−coR,

(i1) μts(x) = x+Oc

(|t− s|1/(2p)),
(i2)

∣∣Dxμts

∣∣ � 1 +Oc

(|t− s|1/(2p)).
for some positive constant c independent of R.

(ii) There exists three positive constants a, ρ, α, with 0 < a(1 − ρ) < α < 1,
such that one can write

Dxμts = Id +Ats
x +Bts

x

for some L(E)-valued ρ-Lipschitz maps Ats whose restrictions to every ball
B(R) has ρ-Lipschitz norm bounded above by mR|t − s|α, for some con-
stant mR depending only on R, and some maps L(E)-valued maps Bts, of
class C1, whose restrictions to any ball B(R) have C1-norm bounded above by
omR|t−s|1/p(1).
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H2’. (Local C1-approximate flow property). There exists a positive constants c1
such that the inequalities

|μtu(μus(x))− μts(x)| � c ec1|x| |t− s|a(4.1)

|Dx(μtu ◦ μus)−Dxμts| � c ec1|x| |t− s|a(4.2)

hold for all x ∈ BR, and all 0 � s � u � t � T with ε � u−s
t−s � 1 − ε, and

t− s � δ1(R), for some function δ1(R) no greater than ce−c0R.

Under these conditions, there exists a unique flow
(
ϕts

)
0�s�t�T

on E to which one
can associate two functions c, ε : (0,∞) → R

∗
+, such that

(4.3) |ϕts(x)− μts(x)| � cR |t− s|a

holds for all x ∈ BR, and all 0 � s � u � t � T , with t− s � ε(R), for all R > 0.

A family of maps enjoying the properties listed in the above theorem is called
a local C1-approximate flow with exponential growth. Note that given
0 < ε � 1/2, it follows from H1’ (i1) that μtu

(
μus(x)

)
makes sense for x ∈ BR and

any 0 � s � u � t � T , with t − s � ce−coR and ε � u−s
t−s � 1 − ε, provided R is

bigger than some radius Rε depending only on ε and the data of the problem. The
proof of Theorem 4.1 requires the following version of Lemma 2.3, where we set

mε = max
ε�β�1−ε

{
βa + (1− β)a

}
< 1,

and pick a constant L strictly greater than

2c1
1−mε

∨
(
a− 1

2p

)
c0.

Set δ1(R) = c exp
(−1

a

(
L + c0

2p

)
R
)
� ce−c0R. This function satisfies, for any 0 �

s � u � t � T with t− s � δ1(R), and ε � u−s
t−s � 1− ε, the inequality

(4.4) δ1

(
R+ ce−

c0
2pR

)
� (1− ε) δ1(R) � t− u.

Lemma 4.2. Let μ be a local C1-approximate flow with exponential growth. Given
ε > 0, there exists a constant Rε depending on the data of the problem such that
for any R � Rε, any 0 � s � t � T , with t−s � δ1(R), and any ε-special partition
πts of (s, t), the map μπts(·) is well-defined on BR, and we have for any x ∈ BR

(4.5) |μπts(x) − μts(x)| � L eL|x| |t− s|a.

Proof. Take 0 � s � t � T , with t − s � δ1(R). We proceed by induction on the
number of subintervals of the partition πts, as in the proof of Lemma 2.3. With the
notations adopted there, the induction hypothesis and assumption H1’ (i1) tell us
that μπus(x) is well-defined and has norm bounded above by

|μπus(x)| � R+ c |u− s|1/(2p) + L eLR |u− s|a � R+ c e−
c0
2pR,
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so (4.4) ensures that μtu(μus(x)) is well-defined for R big enough. For such radii,
we have, from the decomposition given in (2.7),

|μπts(x)− μts(x)| � L eL|μπus(x)| |t− u|a + (
1 + ce−

c0R
2p

)
L eL|x| |u− s|a

+ c1 e
c1|x| |t− s|a,

by using the induction hypothesis and assumptions H1’ (i) to get the first two
terms on the right hand side, and (4.1) to get the third term. So, denoting oR(1) =
ce−

c0
2pR and setting u− s = β(t− s), with ε � β � 1− ε, we have the inequality

|μπts(x) − μts(x)| �
{(
eoR(1) (1− β)a +

(
(1 + oR(1))β

a
)
L+ c1

}
eL|x| |t− s|a

�
(
eoR(1)mεL+ c1

)
eL|x| |t− s|a.

One has eoR(1)mεL + c1 � L, provided R is bigger than some explicit radius Rε

depending only on ε. �

As in section 2, one can get a C1 version of estimate (4.5), which takes here the
following form.

Lemma 4.3. For every constant c2 > c1, there exists some positive constant R′
ε,

and a function δ :
[
R′

ε,∞
) → R+, such that

|Dxμ
n
ts −Dxμts| � c ec2R |t− s|a

holds for all n � 2 and all x ∈ BR, whenever t− s � δ(R), and R � R′
ε.

Using this result, it is elementary to prove Theorem 4.1 using the same reason-
ing as in the proof of Theorem 2.1. We simply indicate the points that need to be
amended, leaving the details to the reader.

Proof of theorem 4.1. a) Existence. Recall the definition of μ(n)
ts given in (2.11),

for dyadic times 0 � s � t � T , ans write here Nn for what we denoted by N(n)
in the proof of Theorem 2.1. Given 0 � i � N(n)− 1 and 1 � j � N(n), set

fi = μsi+1si+2−n−1 ◦ μsi+2−n−1si , and f[i] = fi ◦ · · · ◦ f0,
gj = μsj+1sj and g[j] = gNn−1 ◦ · · · ◦ gNn−j .

Set ε(R) = δ(R)∧δ1(R), for all R > 0, and take s and t such that 0 � t−s � ε(R).
Then all the maps f[i] satisfy for all x ∈ BR the inequality

(4.6)
∣∣f[i](x)∣∣ � R+ 1.

Also, as the maps g[j] are of the form μm
vu, for some m � 1 and s � u � v � t,

there exists for any positive R′ a constant κ(R′) such that the restrictions to BR′

of all the maps g[j] have Lipschitz constants uniformly bounded above by κ(R′),
by Lemma 4.3. On the other hand, given R > 0, it is a consequence of Lemma 4.2
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and assumption H1’ that all the maps fNn−1−i ◦f[Nn−2−i] and gNn−1−i ◦f[Nn−2−i]

send the ball BR into a fixed ball BR′ . So, for x ∈ BR, we have

∣∣μ(n+1)
ts (x) − μ

(n)
ts (x)

∣∣ � κ(R′)
Nn−1∑
i=0

∣∣(fNn−1−i − gNn−1−i

)(
f[Nn−2−i](x)

)∣∣
� c1 κ(R

′)
Nn−1∑
i=0

ec1|f[Nn−2−i](x)| |sNn−i − sNn−i−1|a

� c1 κ(R
′) e(R+1)c1

N(n)−1∑
i=0

|si+1 − si|a;

(4.7)

the second inequality comes from assumption H2’ and the third from (4.6). The
existence of the flow ϕ follows from that identity as in the proof of Theorem 2.1.

b) Uniqueness. One proceeds as in the proof of Theorem 2.1 by replacing
the uniform estimate ψts = μts + Oc(|t − s|a), by the local estimate ψvu(x) =
μvu(x) + Oc(|v − u|a), which holds for all s � u � v � t sufficiently close, all
|x| � R and an R-dependent constant c. �

4.2. Flows driven by weak geometric rough paths and vector fields with
linear growth

Let us go back to the setting and notations of section 3.2 and consider the ordinary
differential equation

(4.8) ẏu = (t− s)V (yu) +

[p]∑
r=1

∑
I∈�1,��r

Λr,I
ts V[I](yu).

Assume the vector field V is (1 + ρ)-Lipschitz with linear growth, with ρ > p−[p]
p ,

and the Vi are γ-Lipschitz with linear growth. Given x ∈ E, the maximal solution
to equation (4.8) may well explode in finite time, due to the polynomial growth of
the vector fields V[I]. The function

∣∣yu∣∣ satisfies however an integral equation of
the form ∣∣yu∣∣ � |x|+ ats + bts

∫ u

0

∣∣yr∣∣[p]dr,
with positive coefficients and bts � c|t − s|1/p, which guarantees that yu cannot
explode before time c/(|x|[p]−1|t− s|1/p). So the time 1 map μts is well-defined on
the set ⋃

x∈E

{x} × {
(s, t) ∈ [0, T ]2 ; 0 � t− s < c e−c0|x|},

for a good choice of constants c, c0. For x ∈ BR and 0 � t− s < c e−c0R, one gets
from the integral version of equation (4.8) the elementary estimate

(4.9) |yu − x| � c (1 + ‖X‖[p]) (1 + |x|) exp (c (1 + ‖X‖[p]) |t− s|1/p) |t− s|1/p.
As R|t− s|1/(2p) � cRe−c0R/(2p) � c, condition H1’ (i1) holds as a consequence of
the above estimate.
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Condition H1’ (i2) holds for the same reason, and it follows from (4.9) and
formula (3.16) that one has∣∣εf ; [p]

ts (x)
∣∣ � c (1 + ‖X‖γ) ‖f‖γ ec‖X‖[p]|x| |t− s|γ/p.

Similar estimates hold for the remainders εf ;n
ts , for 1 � n � [p]− 1, and their first

derivatives, with some exponent a > 1 in place of γ/p, as in the proof of propo-
sition 3.6. So it is straightforward to follow the proof of Proposition 3.6 and see
that μ is a local C1-approximate flow for which one can choose for cec1|x| and c ec3|x|

in (4.1) and (4.2), respectively, an expression of the form c (1 + ‖X‖γ)2 ec‖X‖[p]|x|.
The decomposition of μts given in (3.18) provides the definition of Ats and Bts

used in checking that assumption H1’ (ii) holds.
The flow

(
ϕts

)
0�s�t�T

uniquely determined by μ, by Theorem 4.1, is called
the solution flow to the rough differential equation

dϕ = V dt+ FX(dt),

on flows. It follows in particular from this well-posedness result that there is no
explosion, which generalizes to our infinite dimensional setting the corresponding
results of [18] and [17], which only treat the case 2 � p < 3 without a drift, and the
finite dimensional analogue result of Friz–Victoir [16], who work with geometric
rough paths.

5. Paths driven by rough paths

The results of section 3 provide an easy proof of sharp existence and well-posedness
results for point dynamics driven by a Hölder weak geometric rough path. We adopt
the notations of the preceeding sections.

Definition 5.1. Let 2 < p < γ � [p] + 1 be given. Let V1, . . . , V� be vector
fields on E of class C[p], and X be a Hölder weak geometric p-rough path on
the time interval [0, T ]. Let V be a Lipschitz continuous vector field. A path
(zs ; 0 � s � T ) is said to solve the rough differential equation

(5.1) dz = V dt+ F X(dt)

if there exists a constant a > 1 independent of X, and two possibly X-dependent
positive constants δ and c, such that

(5.2) |zt − μts(zs)| � c |t− s|a

holds for all 0 � s � t � T , with t− s � δ.

One can reformulate condition (5.2) under the form

∣∣∣zt − {
zs + (t− s)V (zs) +

[p]∑
r=1

∑
I∈�1,��r

Xr,I
ts VI(zs)

}∣∣∣ � c |t− s|a

using Proposition 3.5.
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This form of the definition of a solution to a rough differential equation is due to
Davie [9] for 2 � p < 3; it was extended to the general setting of Hölder geometric p-
rough paths by Friz–Victoir [15] under a different form. We introduce the following
compactness assumption in order to deal with some borderline existence case; it
holds automatically in a finite dimensional setting.

(C) The vector fields V1, . . . , V� and V[I], with I ∈ �1, ��r and r � [γ], map any
ball

{
y ∈ E ; |y − y0| � R

}
into a compact set.

Theorem 5.2 (Existence/well-posedness).
a) Let V be a bounded Lipschitz continuous vector field that maps balls into

compact sets, and suppose that the [γ]-Lipschitz vector fields Vi satisfy the
compactness assumption (C). Then the rough differential equation (5.1) has
a solution path.

b) This solution path is unique if the Vi are γ-Lipschitz and V is (1 + ρ)-
Lipschitz, for some ρ > p−[p]

p ; it is in that case a continuous function of X.

Note that we do not make any compactness assumption on V or the Vi in part b)
of the above statement. This part of Theorem 5.2 is usually called Lyons’ universal
limit theorem [19].

Proof. a) Existence. Given ε and t ∈ [0, T ], with kε � t < (k + 1)ε, set

zεt =
(
μt kε ◦ μkε (k−1)ε ◦ · · · ◦ με 0

)
(z0).

We prove that the paths (zεt )0�t�T have a uniformly converging subsequence by
showing that they form an equicontinuous family and that the set{

με
t

}
0<ε�T

is precompact for any fixed t ∈ [0, T ].
First, for kε � s < t � (k + 1)ε, it is elementary to see that zεt − zεs =

Oc{|t − s|1/p}, for some constant c independent of ε. Now, given 0 � s < t � T ,
with kε � s < (k + 1)ε, and �ε � t < (�+ 1)ε, with k + 1 � �, one has

zεt = μt �ε ◦
( �−1

©
n=k+1

μ(n+1)ε nε

)
◦ μ(k+1)ε s

(
zεs
)
.

As every partition of any interval into subintervals of equal length is of special
type 1/2, one has by Lemma 2.3 and Proposition 3.4,

�−1

©
n=k+1

μ(n+1)ε nε = μ�ε (k+1)ε +OL

(|(k − �)ε|γ/p)
provided t − s � δ. Since the maps μab are uniformly Lipschitz continuous, the
approximate flow property of μ gives

(5.3) zεt = μts(z
ε
s) +OL+c

(|t− s| γp ).
The equicontinuity of the family of paths (zε•)0<ε�1 follows from the above inequal-
ity and the fact that ‖μts − Id‖∞ � c|t− s|1/p.
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Fix t ∈ [0, T ]. To see that the set {με
t}0<ε�T is pre-compact, note first that for

any open ball B of E, the set
{
μba(z) − z ; z ∈ B, 0 � a � b � T

}
is compact.

Indeed, as

μba(z)− z = (b− a)

∫ 1

0

V (yu) du+ ΛI
ba

∫ 1

0

V[I](yu) du,

and (yu)0�u�1 remains in a fixed ball for y0 ranging in B, the above integrals
belong to a fixed compact convex set independent of a and b, by the compactness
assumption on V and assumption (C) on the Vi, and a well-known theorem of
Mazur on convex hulls of compact subsets of Banach spaces. It follows from this
fact and (5.3) that we have for any N � 1 and si = it/N ,

zεt − z0 =

N−1∑
i=0

{{μsi+1si(z
ε
si)− zεsi}+OL+c

(
t/N

)γ/p}

= oN (1) +

N−1∑
i=0

{μsi+1si

(
zεsi

)− zεsi}.

So there exists a compact set K(N) depending only on N such that

{με
t}0<ε�T ⊂ {K(N) + oN (1)},

which implies the pre-compactness of the set {με
t}0<ε�T .

Ascoli’s theorem ensures as a consequence the pre-compactness of the set of
paths {με

•}0<ε�T in the uniform topology. We see that any limit path satisfies (5.2)
for all 0 � s � t � T with t− s � δ, by sending ε to 0.

b) Uniqueness. Set a = min(1 + ρ/p, γ/p). To prove uniqueness of the
solution when the Vi are γ-Lipschitz and V is (1 + ρ)-Lipschitz, note first that
z• := ϕ•0(z0) is a solution. Let y• be any other solution. From the fact that the
maps ϕts are uniformly Lipschitz continuous, with a Lipschitz constant bounded
above by L say, one can write for any ε > 0 and any integer k � T/ε,

ykε = ϕkε,(k−1)ε(y(k−1)ε) +Oc(ε
a)

= ϕkε,(k−1)ε

(
ϕ(k−1)ε,(k−2)ε(y(k−2)ε) +Oc(ε

a)
)
+Oc(ε

a)

= ϕkε,(k−2)ε (y(k−2)ε) +OcL(ε
a) +Oc(ε

a),

and see by induction that

ykε = ϕkε,(k−n)ε(y(k−n)ε) +OcL((n− 1)εa) +Oc(ε
a)

= ϕkε,0(x) +OcL(kε
a) + oε(1) = zkε +OcL(kε

a) + oε(1).

Taking ε and k so that kε converges to some t ∈ [0, T ], we see that yt = zt,
since a > 1.

The continuous dependence of the solution path z• with respect to X is trans-
ferred from ϕ to z•. �
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Remark 5.3. The existence statement a) was first proved in a finite dimensional
setting by Davie [9]. Caruana [5] obtained an existence result in a Banach space
setting, working with a full rough differential equation under a similar compactness
assumption as (C), but for a rough differential equation with no drift term. He is
able, on the other side, to deal with the weaker and optimal regularity assumption
that the Vi be (γ−1)-Lipschitz. However, as full rough differential equations enter
the framework of rough differential equations driven by vector fields with linear
growth, one recovers and extends in a simpler and (much) shorter way the main
content of Caruana’s result using Lemma 4.2 instead of Lemma 2.3 in the above
existence proof.

6. An illustration: mean field stochastic rough differential
equations

We show in this section how the results of sections 3 can be used to study some
simple mean field stochastic rough differential equations. This kind of dynamics
pops in naturally in the study of the large population limit of some classes of
interacting random evolutions. The interaction holds through the dependence of
the local characteristics of the random motion of each particle on the empirical
measure of the whole family of particles. In a diffusion setting, each particle i
would satisfy a stochastic differential equation of the form

dx
(i)
t = b(x

(i)
t , μN

t ) dt+ σ(x
(i)
t , μN

t ) dB
(i)
t ,

where μN
t = 1

N

∑N
k=1 δx(k)

t
. A large industry has been devoted to showing that the

limit distribution in paths space of a typical particle of the system when N tends
to infinity has a dynamics of the form

(6.1) dxt = b(xt,L(xt)) dt+ σ(xt,L(xt)) dBt,

where L(xt) stands for the law of xt. Theorem 6.2 provides a well-posedness
result for such a limit equation, in the context of rough differential equations.
As emphasized in [6], almost all the works in this area are set in the framework
of a filtered probability space and rely crucially on some martingale arguments.
On the other hand, the increasing importance of non-semi-martingale processes,
like fractional Brownian motion, makes it desirable to have some more flexible
tools to investigate equation (6.1) in such contexts. The theory of rough paths
developed above provides a nice framework for that.

A few notations are needed to set the problem. Given 2 � p < γ � [p] + 1, we
equip the set M1

(
R

d
)

of probability measures on R
d with the metric induced by

its embedding in the dual of Cγ
(
R

d
)
:

d(μ, ν) = sup
{
(g, μ)− (g, ν) ; g ∈ Cγ

(
R

d
)
, ‖g‖γ � 1

}
.

This metric topology is stronger than the weak convergence topology. Given
any positive constant m, note that the set Lip(m) of Lipschitz continuous paths
from [0, T ] to

(M1

(
R

d
)
, d
)
, with Lipschitz constant no greater than m, is closed

under the norm of uniform convergence, so it is a Banach space.
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Fix T > 0 and suppose X is a random variable defined on some probability
space (Ω,F ,P), with values in the set of Hölder weak geometric p-rough paths
over R�, on the time interval [0, T ]; write X = 1⊕X1 ⊕ · · · ⊕X [p], and (Ft)0�t�T

for the filtration generated by X, with Ft = σ
(
Xvu ; 0 � u � v � t

)
.

Let V, V1, . . . , V� : R
d × M1

(
R

d
) → R

d be measure-dependent vector fields
on R

d, and F stands for a collection (V1, . . . , V�). Given a Lipschitz continuous
path P = (Pt)0�t�T in

(M1

(
R

d
)
, d
)

and ω ∈ Ω, denote by x•(ω) the unique
solution (under appropriate conditions) to the rough differential equation on paths

(6.2) dxt = V (xt, Pt) dt+ F(xt, Pt)X(dt),

where x0 may be an integrable random variable independent of X. Denote by Φ(P)t
the law of xt.

Definition 6.1. A solution x• to (6.2) for which

Φ(P)t = Pt

for all 0 � t � T , is said to be a solution of the nonlinear rough differential
equation (or mean field stochastic rough differential equation)

dxt = V
(
xt,L(xt)

)
dt+ F

(
xt,L(xt)

)
X(dt).

Theorem 6.2 below provides conditions on the vector fields V , F and the rough
path X under which existence and uniqueness for solutions of this equation can be
proved.

Theorem 6.2. Given any P ∈ M1

(
R

d
)
, we assume that V (·, P ) is of class C2+[p],

with associated norm no greater than λ, and that the vector fields Vi(·, P ) are of
class C2[p]+1, with associated norms uniformly bounded with respect to P , and that
they satisfy the inequalities

(6.3) max
i=1,...,�

‖Vi(·, P )− Vi(·, Q)‖∞ ∨ ‖V (·, P )− V (·, Q)‖∞ � λd(P,Q),

for all P,Q ∈ M1

(
R

d
)
.

(1) Assume the vector fields Vi(·, P ) = Vi(·) do not depend on their M1(R
d)-

component, and the polynomial moment condition

(6.4) E
[‖X‖([p]+1)2

]
<∞.

Then the map Φ has a unique fixed point in Lip(m), for any positive constant
m; it depends continuously on the law of X.

(2) In the general case where the vector fields Vi(·, P ) are allowed to depend on
their M1(R

d)-component, assume that the random variables(
Xr,I

ba

)
r=1,...,[p], I∈�1,��r
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are integrable and that there exists for each 0 � a � T , a positive random
variable Ca, such that each of them satisfies the inequality

(6.5)
∣∣E[Xr,I

ba

∣∣Fa

]∣∣ � Ca(b − a),

for all 0 � a � b � T , with sup0�a�T E[Ca] < ∞. Then one can choose m
big enough so that the map Φ has a fixed point in Lip(m).

Assumption (6.5) holds for instance for the Brownian rough path, the rough
path above an Orsntein–Uhlenbeck process, or fractional Brownian motion with
Hurst index no smaller than 1/2. The above regularity assumptions on V and
the Vi ensure that the solution flow to the rough differential equation (6.2) is of
class C[p], with polynomial bounds on the size of its derivatives, in terms of ‖X‖.
The moment condition (6.4) ensures the integrability of all these bounds.

Proof. Fix P0 ∈ M1

(
R

d
)

and define Lip0(m) as the subset of Lip(m) paths with
starting point P0.

(1) Uniqueness. We suppose in this paragraph that the vector fields Vi do not
depend on their M1(R

d)-component. First, we prove that Φ is a strict contraction
of Lip0(m), provided T is small enough. We use for that purpose a decomposition
which is reminiscent of a well-known trick in the setting of Markov processes used
to compare two different semigroups. Indeed, given two semigroups (Tt)t�0 and
(T′

t)t�0, with generators A and A′ respectively, the identity

Tt − T ′
t =

∫ t

0

{
A(Tr − T ′

r) + (A−A′)Tr
}
dr

provides a direct comparison of Tt and T ′
t .

Fix ω ∈ Ω and omit it in the notations of this paragraph. Denote by μQ
ts

the approximate flow associated to the time non-homogeneous rough differential
equation (6.2), with Qt instead of Pt, for all 0 � t � T . Given g ∈ Cγ

(
R

d
)
, and

setting si = s+ i2−n(t− s), we have

E
[
g(ϕP

t0(x0))−g(ϕQ
t0(x0))

]
=

2n−1∑
k=0

E
[{
g(ϕQ

s2ns2n−k
◦ϕP

s2n−ks2n−k−1
)

−g(ϕQ
s2ns2n−k

◦ϕQ
s2n−ks2n−k−1

)
}◦ϕP

s2n−k−1s0
(x0)

]
,

with the obvious convention concerning the summand for the first and last term of
the sum. It follows from the time-inhomogeneous version of Proposition 3.5 giving
the Taylor expansion of ϕP/Q

s2n−k+1s2n−k , and the above mentioned bounds on the
size of the derivatives of the maps ϕQ

ba, for 0 � a � b � T , that∣∣E[g(ϕP
t0(x0))− g(ϕQ

t0(x0))]
∣∣

is no greater than the large n limit of

E

[
c
(
1 + ‖X‖γ) ‖g‖C1

2n−1∑
k=0

∥∥V (·, Ps2n−k−1
)− V (·, Qs2n−k−1

)
∥∥
∞ 2−nt

]

+ c ‖g‖γ E
[
1 + ‖X‖([p]+1)2

]
2

γ−p
p n.
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This upper bound is no greater than

c ‖g‖Cγ λ 2−n t

2n−1∑
k=0

d(Psn−k−1
, Qsn−k−1

) + on(1),

that is
c t ‖g‖Cγ sup

s∈[0,t]

d(Ps, Qs) + on(1),

since E
[‖X‖([p]+1)2

]
is finite. As a result, we have for all t ∈ [0, T ],

d
(
Φ(P)t,Φ(Q)t

)
= sup

‖g‖Cγ�1

∣∣E[g (ϕP
t0(x0))]− E

[
g (ϕQ

t0(x0))]
∣∣ � c T max

t∈[0,T ]
d
(
Pt, Qt

)
,

so Φ is a strict contraction provided c T < 1.
As usual in the study of ordinary differential equations, the fact that Φ has a

unique fixed point for any T follows from the fact that the above condition on T
does not involve P0 = Q0.

As the solution to the rough differential equation (6.2) depends continuously
on X, the map Φ, considered as a function of P and of the parameter “law of X”,
is a continuous function of its two arguments. It is an elementary result that the
unique fixed point of Φ is then a continuous function of the parameter.

(2) Existence. We first prove that one can choose m big enough so that the
map Φ sends Lip(m) into itself. Given an m-Lipschitz continuous path P , the
time-dependent bounded vector field V (x, Pt) is Lipschitz in its two arguments, so
we can denote by ϕP the well-defined solution flow to the time non-homogeneous
rough differential equation (6.2) on R

d. We need to see that, for any function
g ∈ Cγ

(
R

d
)
, with ‖g‖γ � 1, and any 0 � s � t � T , we have

(g,Φ(P)t)− (g,Φ(P)s) � c (t− s),

for some positive constant c � m, that is

(6.6) E
[
g
(
ϕP
t0(x0)

)− g
(
ϕP
s0(x0)

)]
� c (t− s).

Write ϕts for ϕP
ts, as P is fixed in this paragraph; write also z for ϕs0(x0). Then,

the telescopic decomposition

(�) := E
[
g
(
ϕt0(x0)

)− g
(
ϕs0(x0)

)]
= E

[
g
(
ϕts(z)

)− g(z)
]

=

2n−1∑
k=0

E
[
g
(
ϕsk+1sk

(
ϕsks0(z)

))− g
(
ϕsks0(z)

)]
,

together with the uniform Euler–Taylor expansion for ϕsk+1sk given in (3.15)
and (3.20), and the Lebesgue dominated convergence theorem, show that (�) is
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no greater than the large n limit of

2n−1∑
k=0

E

[
2−n(t− s)

(
V (·, Psk)g

)(
ϕsks0(z)

)

+

[p]∑
r=1

∑
I∈�1,��r

Xr,I
sk+1sk

(
VI(·, Psk)g

)(
ϕsks0(z)

)
+ ‖g‖γ

(
2 + ‖X‖γ) o((2− γ

p n
)]
,

where the term o(·) above does not depend on the rough path X. So, using the
conditions (6.4) and (6.5) of the theorem, and the uniform boundedness assumption
in C[p]+1 of the vector fields Vi(·, P ), the quantity (�) appears as no greater than
the large n limit of

c(t− s) +

2n−1∑
k=0

[p]∑
r=1

∑
I∈�1,��r

E

[
E
[
Xr,I

sk+1sk

∣∣Fsk

] (
VI(·, Psk)g

)(
ϕsks0(z)

)]
+ on(1)

� c(t− s) + c

2n−1∑
k=0

E
[
Csk

] (
sk+1 − sk

)
+ on(1) � c(t− s) + on(1).

Inequality (6.6) follows by choosingm big enough. As Lip0(m) is a convex compact
subset of the set of continuous paths from[0, T ] to (M1(R

d), d), equipped with the
norm of uniform convergence, Schauder’s fixed point theorem applies and gives the
existence of a fixed point of the map Φ. �

Remark 6.3. So far there has been only one other work dealing with mean field
stochastic rough differential equations, namely Cass and Lyons [6]. They prove
a well-posedness result under more restrictive assumptions on the vector fields
and the driving rough path, asking for a linear mean field interaction in the drift
and no mean field interaction in the Vi’s, and requiring exponential moments for
the accumulated local variation of X. They have no existence result. As they
work with Wassersein distance on M1

(
R

d
)
, our results and theirs are not directly

comparable, but the assumptions of Theorem 6.2 are significantly weaker when
both settings apply. This covers in particular the case of Gaussian p-rough paths,
with 2 � p < 4.
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