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Towards Oka–Cartan theory for algebras of

holomorphic functions on coverings
of Stein manifolds I

Alexander Brudnyi and Damir Kinzebulatov

Abstract. We develop complex function theory within certain algebras of
holomorphic functions on coverings of Stein manifolds. This, in particular,
includes the results on holomorphic extension from complex submanifolds,
corona-type theorems, properties of divisors, holomorphic analogs of the
Peter–Weyl approximation theorem, Hartogs-type theorems, characteriza-
tion of uniqueness sets. The model examples of these algebras are:

(1) Bohr’s algebra of holomorphic almost periodic functions on tube
domains;

(2) algebra of all fibrewise bounded holomorphic functions (e.g., arising
in the corona problem for H∞).

Our approach is based on an extension of the classical Oka–Cartan the-
ory to coherent-type sheaves on the maximal ideal spaces of these algebras
– topological spaces having some features of complex manifolds.

1. Introduction

In the 1930-50s, K. Oka and H. Cartan laid down the foundations of the modern
function theory of several complex variables. In particular, they introduced the
notion of a coherent sheaf and proved the following fundamental facts:

(A) Every germ of a coherent sheaf A on a Stein manifold X is generated by its
global sections (“Cartan theorem A“).

(B) The sheaf cohomology groups Hi(X,A) (i ≥ 1) are trivial (“Cartan theo-
rem B”).

Let us recall that a sheaf of modules over the sheaf of germs of holomorphic
functions on X is called coherent if locally both the sheaf and its sheaf of relations
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are finitely generated. The class of coherent sheaves is closed under natural op-
erations. Most sheaves that arise in complex analysis are coherent, see, e.g., [20]
for details.

A Stein manifold is a complex manifold that admits a proper holomorphic
embedding into some Cn.

Cartan theorems A and B together with their numerous corollaries constitute
the so-called Oka–Cartan theory of Stein manifolds. Applying these theorems
one obtains solutions (in algebra O(X) of holomorphic functions on a Stein man-
ifold X) to all classical problems of function theory of several complex variables
(such as Cousin problems, the Poincaré problem, the Levi problem, the problem of
holomorphic extension from complex analytic subsets, corona problems and many
others, see, e.g., [20]).

Further development of complex function theory was motivated, in part, by the
problems requiring to study properties of holomorphic functions satisfying special
conditions (e.g., certain growth conditions ‘at infinity’). As a result, the ques-
tions whether the problems of the classical complex function theory can be solved
within a proper subclass of O(X), e.g., consisting of holomorphic Lp-functions
on X , 1 ≤ p ≤ ∞, with respect to a suitable measure, started to play an im-
portant role (cf. the pioneering papers of L. Hörmander, J. J. Kohn, C. Morrey).
However, trying to incorporate in the proofs such conditions as Lp-summability,
the classical Oka–Cartan theory encounters considerable difficulties. In particular,
one has to amplify the sheaf-theoretic methods of Oka–Cartan, e.g., by integral rep-
resentation formulas on complex manifolds, estimates for solutions of ∂̄-equations,
etc. (see [25]).

Nevertheless, in some cases the methods of the Oka–Cartan theory can be
extended to work within some special classes of holomorphic functions. The present
paper studies one of these cases.

Definition 1.1. A holomorphic function f defined on a regular covering p : X →
X0 of a connected complex manifold X0 with a deck transformation group G is
called a holomorphic a-function if

(1) f is bounded on subsets p−1(U0), U0 � X0, and

(2) for each x ∈ X the function G � g �→ f(g ·x) belongs to a fixed closed unital
subalgebra a := a(G) of the algebra �∞(G) of bounded complex functions
on G (with pointwise multiplication and sup-norm) that is invariant with
respect to the action of G on a by right translations:

u ∈ a, g ∈ G ⇒ Rgu ∈ a,

where Rg(u)(h) := u(hg), h ∈ G.

We endow the subalgebra Oa(X) ⊂ O(X) of holomorphic a-functions with the
Fréchet topology of uniform convergence on subsets p−1(U0), U0 � X0.

The model examples of algebras a and Oa(X) are given in Examples 1.2 and 1.4
below.

In the present paper we obtain analogs of Cartan theorems A and B for
coherent-type sheaves on the fibrewise compactification caX of the covering X of



Oka–Cartan theory for algebras of holomorphic functions I 991

a Stein manifold X0, a topological space having certain features of a complex man-
ifold (see Definition 2.1 below). In our proofs we use some results and methods
of the theory of coherent-type sheaves taking values in Banach or Fréchet spaces,
pioneered by E. Bishop and L. Bungart [14], [15] and developed further by J. Leit-
erer [30] (on Stein spaces), L. Lempert [31] (on pseudoconvex subsets of Banach
spaces with unconditional bases) and others. The constructions in [31] play par-
ticularly important role in our proofs.

In the second part of the work [13] we use our Cartan-type theorems A and B
to derive within subalgebra Oa(X) the basic results of complex function theory,
including holomorphic extension from complex submanifolds, Cousin problems,
properties of divisors, corona-type theorems, holomorphic Peter–Weyl-type ap-
proximation theorems, Hartogs-type theorems, describe uniqueness sets of holo-
morphic a-functions, etc.

Example 1.2 (Holomorphic almost periodic functions). The theory of almost pe-
riodic functions was created in the 1920s by H. Bohr, who intended to apply it in
the study of the distribution of zeros of the zeta-function in the critical strip. Nowa-
days almost periodic functions are used in many areas of mathematics, including
partial differential equations (e.g., KdV equation), harmonic analysis and number
theory. A turning point in understanding of the nature of continuous almost peri-
odic functions on R came with the discovery of the so-called Bohr compactification
of R: according to S. Bochner, it quickly led to “a sobering realization” that the
basic results of Bohr’s theory on R can be deduced from Weyl’s general theory of
continuous functions on compact groups. In the same way, our work demonstrates
that the basic results of the theory of holomorphic almost periodic functions in
tube domains follow from our Oka–Cartan-type theory. The latter allows us to
apply the modern methods of multidimensional complex function theory to holo-
morphic almost periodic functions, and to obtain new results even in this classical
setting.

Let us recall that a function f ∈ O(T ) on a tube domain T =Rn + iΩ ⊂ Cn,
Ω ⊂ Rn is open and convex, is called holomorphic almost periodic if the family of
its translates {z �→ f(z + s), z ∈ T }s∈Rn is relatively compact in the topology of
uniform convergence on tube subdomains T ′ = Rn+ iΩ′, Ω′ � Ω. The cornerstone
of Bohr’s theory (see [1]) is his approximation theorem stating that every holo-
morphic almost periodic function is uniform limit (on tube subdomains T ′ of T )
of exponential polynomials

(1.1) z �→
m∑
k=1

ck e
i〈z,λk〉, z ∈ T, ck ∈ C, λk ∈ Rn,

where 〈·, ·〉 is the Hermitian inner product on Cn.

The classical approach to the study of holomorphic almost periodic functions
exploits the fact that T is the trivial bundle with base Ω and fibre Rn (e.g., as in
the characterization of almost periodic functions in terms of their Jessen functions
defined on Ω, see, e.g., [39], [32], [27], [38], [18], [40]). By considering T as a regular
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covering p : T → T0 (:= p(T ) ⊂ Cn) with the deck transformation group Zn,

p(z) :=
(
eiz1 , . . . , eizn

)
, z = (z1, . . . , zn) ∈ T

(a complex strip covering an annulus if n = 1), we obtain

Theorem 1.3 ([13]). A function f ∈ O(T ) is almost periodic if and only if f ∈
OAP (T ).

Here AP = AP (Zn) is the algebra of von Neumann’s almost periodic functions
on group Zn, i.e., those bounded complex functions whose families of translates
are relatively compact in the topology of uniform convergence on Zn.

This result enables us to regard holomorphic almost periodic functions on T as:

(a) holomorphic sections of a certain holomorphic Banach vector bundle on T0;

(b) holomorphic-like functions on the fibrewise Bohr compactification of the cov-
ering p : T → T0, a topological space having some properties of a complex
manifold.

It is interesting to note that already in his monograph [1] H. Bohr uses equally
often the aforementioned “trivial fibre bundle” and “regular covering” points of
view on a complex strip. We note also that the Bohr compactification of a tube
domain Rn + iΩ in the form bRn + iΩ, where bRn is the Bohr compactification of
group Rn, was used earlier in [16], [17], [21].

Example 1.4. (1) Let a := �∞(G) be the algebra of all bounded complex functions
on the deck transformation group G ∼= p−1(x), x ∈ X0, of covering p : X → X0.

By definition, every subalgebra Oa(X) ⊂ O�∞(X), �∞ := �∞(G).

Algebra O�∞(X) arises, e.g., in the study of holomorphic L2-functions on cov-
erings of pseudoconvex manifolds [22], [3], [6], [29], Caratheodory hyperbolicity
(Liouville property) of X [34], [33], corona-type problems for bounded holomor-
phic functions on X [2]. Earlier, some methods similar to those developed in the
article were elaborated for algebra O�∞(X) in [2]-[5] in connection with corona-
type problems for some subalgebras of bounded holomorphic functions on coverings
of bordered Riemann surfaces, Hartogs-type theorems, integral representation of
holomorphic functions of slow growth on coverings of Stein manifolds, etc; that
work was motivated by the fact that if X0 is compact, then O�∞(X) = H∞(X),
the algebra of all bounded holomorphic functions on X (the most important cases
are when X is the unit ball or polydisk in Cn).

A confirmation of potential productivity of the sheaf-theoretic approach to the
corona problem for H∞ comes from the recent papers [9], [10] on Banach-valued
holomorphic functions on the unit disk D ⊂ C having relatively compact images.

(2) Let a := c(G) (with card G = ∞) be the subalgebra of bounded complex
functions on G that admit continuous extensions to the one-point compactification
of G (here we consider G equipped with discrete topology). Then Oc(X) consists
of holomorphic functions having fibrewise limits at ‘infinity’.

Acknowledgement. We thank Professors T. Bloom, L. Lempert, T. Ohsawa, R.
Shafikov and Y.-T. Siu for their interest to this work.
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2. Main results

In some cases the maximal ideal space of algebra Oa(X) may be presented as a
‘fibrewise compactification’ caX of the covering p : X → X0. Now we briefly
present this construction referring to Section 4 for further details.

Let Ma denote the maximal ideal space of algebra a, i.e., the space of all
characters of a endowed with weak* topology (of a∗). The space Ma is compact

and Hausdorff, and every element f of a determines a function f̂ ∈ C(Ma) by the
formula

f̂(η) := η(f), η ∈Ma.

Since algebra a is uniform (i.e., ‖f2‖ = ‖f‖2) and hence is semi-simple, the homo-
morphismˆ: a → C(Ma) (called the Gelfand transform) is an isometric embedding
(see, e.g., [19]). We have a continuous map j = ja : G → Ma defined by associat-
ing to each point in G its point evaluation homomorphism in Ma. This map is an
injection if and only if algebra a separates points of G.

Let Ĝa denote the closure of j(G) in Ma. If algebra a is self-adjoint (i.e., closed
with respect to complex conjugation), thenˆ: a → C(Ma) is an isomorphism and
hence Ĝa = Ma. The (right) action of group G on itself by right multiplication
induces the right action of G on Ma by the formula

R̂g(η)(f) := η(Rg(f)), η ∈Ma, f ∈ a, g ∈ G.

Then

(2.1) R̂g(j(h)) = j(hg), h, g ∈ G.

The regular covering p : X → X0 can be viewed as a principal fibre bundle
on X0 with structure group G, that is there exists an open cover (U0,γ)γ∈Γ of X0

and a locally constant cocycle c = {cδγ : U0,γ ∩ U0,δ → G}δ,γ∈Γ so that the
covering p : X → X0 can be obtained from the disjoint union

⊔
γ U0,γ ×G by the

identification

(2.2) U0,δ ×G � (x, g) ∼ (x, g · cδγ(x)) ∈ U0,γ ×G for all x ∈ U0,γ ∩ U0,δ,

where projection p is induced by the projections U0,γ ×G→ U0,γ (see, e.g., [26]).

Definition 2.1. The fibrewise (a-) compactification p̄ : caX → X0 is the fibre
bundle on X0 with fibre Ĝa associated to the principal bundle p : X → X0, i.e.,
caX is obtained from the disjoint union

⊔
γ U0,γ × Ĝa by the identification

U0,γ × Ĝa � (x, ω) ∼ (x, R̂cδγ (x)(ω)) ∈ U0,δ × Ĝa, for all x ∈ U0,γ ∩ U0,δ,

where p̄ is induced by projections U0,γ × Ĝa → U0,γ .

In [13], Theorem 5.18, we show that if subalgebra a is self-adjoint and X0 is
a Stein manifold, then the maximal ideal space of algebra Oa(X) (i.e., the set
of non-zero continuous complex homomorphisms of Oa(X) endowed with weak*
topology of Oa(X)∗) is homeomorphic to caX . (In particular, this is applied to
algebras of Examples 1.2 and 1.4.)
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Next, there exists a continuous map

(2.3) ι = ιa : X → caX

induced by the equivariant (with respect to the corresponding actions of G on G
and Ĝa) map j. Clearly, ι(X) is dense in caX (thus, if X0 is Stein and a is self-
adjoint, we have a corona-type theorem for algebra Oa(X) as its maximal ideal
space is homeomorphic to caX , see [13]). The map ι is an injection if and only if
a separates points of G.

Definition 2.2. A function f ∈ C(caX) is called holomorphic if its pullback ι∗f
is holomorphic on X . The algebra of functions holomorphic on caX is denoted
by O(caX).

Proposition 2.3. The following is true:

(1) A function f in Oa(X) determines a unique function f̂ in O(caX) such that

ι∗f̂ = f . Thus, there is a continuous embedding Oa(X) ↪→ O(caX).

(2) If a is self-adjoint, then the correspondence f �→ f̂ determines an isomor-
phism of algebras: Oa(X) ∼= O(caX).

So, for a self-adjoint we can work with algebra O(caX) instead of Oa(X).

Definition 2.4. Let U ⊂ caX be an open subset. A function f ∈ C(U) is called
holomorphic if ι∗f ∈ O

(
ι−1(U)

)
. The algebra of functions holomorphic on U is

denoted by O(U).

Thus, we obtain the structure sheaf O := OcaX of germs of holomorphic func-
tions on caX . Now, a coherent sheaf A on caX is a sheaf of modules over O such
that every point in caX has an open neighbourhood U over which, for every N ≥ 1,
there is a free resolution of A of length N , i.e., an exact sequence of sheaves of
modules of the form

(2.4) OmN |U
ϕN−1�� . . .

ϕ2 ��Om2 |U
ϕ1 ��Om1 |U

ϕ0 ��A|U �� 0,

where ϕi, 0 ≤ i ≤ N − 1, are homomorphisms of sheaves of O-modules.

If X = X0 and p = Id, then this definition gives the classical definition of a
coherent sheaf on a complex manifold.

Our main results are stated as follows.

Let X0 be a Stein manifold, a be self-adjoint, A be a coherent sheaf on caX .

Theorem 2.5 (Cartan A). Each stalk xA (x ∈ caX) is generated as an xO-module
by global sections of sheaf A over caX.

Theorem 2.6 (Cartan B). Čech cohomology groups Hi(caX,A) = 0 for all i ≥ 1.
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Note that the classical proof of Cartan theorems A and B on complex manifolds
does not work in our case, in particular, because of absence of the Oka coherence
lemma and since the fibre Ĝa being an arbitrary compact Hausdorff space does
not admit open covers by contractible sets as required for the proof of the classical
Cartan lemma. Instead, we paste together free resolutions (2.4) of a coherent
sheaf A first over sets p̄−1(U0), with U0 ⊂ X0 being open simply connected, using
continuous partition of unity in C(Ĝa) (∼= a) and employing some constructions
of L. Lempert [31]. Then we paste the obtained free resolutions of A on sets
p̄−1(U0) to get free resolutions of A over preimages by p̄ of relatively compact
open subsets of X0 forming an exhaustion of caX . At this stage, we use the results
of J. Leiterer [30] on Banach-valued coherent sheaves on Stein manifolds. Finally,
having these free resolutions of A, we complete the proof of Theorems 2.5 and 2.6
as in the classical case.

Remark 2.7. (1) An important example of a coherent sheaf on caX is given
by the sheaf of ideals of germs of holomorphic functions vanishing on a complex
submanifold of caX . To define the latter, we will need the following notation.
Let U0 ⊂ X0 be open and simply connected, K ⊂ Ĝa be open. We denote by ψ̄U0

the trivialization p̄−1(U0) → U0 × Ĝa (see Definition 2.1), and define

Π̂(U0,K) = ψ̄−1
U0

(K) ⊂ caX.

In what follows, we identify Π̂(U0,K) with U0×K (see subsection 4.2 for details).

Definition 2.8. A closed subset Y ⊂ caX is called a complex submanifold of
codimension k if for every x ∈ Y there exist a neighbourhood U = Π̂(U0,K) ⊂ caX
of x and functions h1, . . . , hk ∈ O(U) such that

(a) Y ∩ U = {x ∈ U : h1(x) = · · · = hk(x) = 0};

(b) The rank of map z �→
(
h1(z, ω), . . . , hk(z, ω)

)
is k at each point (z, ω)∈Y ∩U .

We use coherence of the sheaf of ideals of Y together with Theorem 2.6 in [13]
to obtain results on interpolation within algebra Oa(X). In the same paper we
extend Cartan theorems A and B to work with coherent-type sheaves on complex
submanifolds of caX .

(2) The assumption that subalgebra a is self-adjoint is essential for our proofs
of Theorems 2.5 and 2.6. Nevertheless, using a technique different from that based
on Theorem 2.6, we show in [13] that the problem of interpolation within alge-
bra Oa(X) can be solved (although for a restrictive class of sets) without the
latter assumption.

(3) An interesting example of the algebra of holomorphic a-functions with a
not self-adjoint is given by Bohr’s holomorphic almost periodic functions on an
open horizontal strip T ⊂ C (see Example 1.2) whose restrictions to each fibre
p−1(x) ∼= Z belong to the subalgebra AP+(Z) of the von Neumann almost periodic
functions on Z with positive spectra, i.e., those functions on Z that admit uniform
approximation by exponential polynomials

∑m
k=1 cke

iλkt (t ∈ Z) with λk ≥ 0
(see [8]). One can show that the maximal ideal space of algebra OAP+(T ) can
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be presented as inverse limit of an inverse limiting system of holomorphic fibre
bundles over an annulus whose fibres are biholomorphic to disjoint unions of open
polydisks, see Example 4.2 below.

3. Examples

Example 3.1 (Examples of algebras a). In addition to algebras �∞(G), c(G),
AP (Zn) (see Examples 1.2 and 1.4) we mention the following important examples
of self-adjoint subalgebras of �∞(G) invariant with respect to actions of G by right
translations.

(1) If a group G is residually finite (respectively, residually nilpotent), i.e., for
each element g ∈ G, g �= e, there exists a normal subgroup Gg �� g such that G/Gg
is finite (respectively, nilpotent), we consider the closed subalgebra �̂∞(G) ⊂ �∞(G)
generated by pullbacks to G of algebras �∞(G/Gg) for all Gg as above.

(2) Recall that a bounded complex function f on a (discrete) group G is called
almost periodic if the families of its left and right translates

{t �→ f(st)}s∈G, {t �→ f(ts)}s∈G
are relatively compact in �∞(G) (J. von Neumann [37]). (It was proved in [35] that
the relative compactness of either the left of the right family of translates already
gives almost periodicity.) The algebra of almost periodic functions on G is denoted
by AP (G).

The basic examples of almost periodic functions on G are matrix elements of
finite-dimensional irreducible unitary representations of G.

Recall that a topological group G is called maximally almost periodic if its
finite-dimensional irreducible unitary representations separate points of G. Equiv-
alently, G is maximally almost periodic if and only if it admits a (continuous)
monomorphism into a compact topological group.

Any residually finite discrete group G belongs to this class. In particular, Zn,
finite groups, free groups, finitely generated nilpotent groups, pure braid groups,
fundamental groups of three dimensional manifolds are maximally almost periodic.

We denote by AP0(G) ⊂ AP (G) the space of functions

t �→
m∑
k=1

ck σ
k
ij(t), t ∈ G, ck ∈ C, σk = (σkij),

where σk, 1 ≤ k ≤ m, are finite-dimensional irreducible unitary representations
of G. The von Neumann approximation theorem states that AP0(G) is dense
in AP (G) [37].

In particular, algebra AP (Zn) of almost periodic functions on Zn contains as
a dense subset the set of exponential polynomials t �→

∑m
k=1 cke

i〈λk,t〉, t ∈ Zn,
ck ∈ C, λk ∈ Rn. Here 〈·, ·〉 is the standard inner product on Rn.

(3) Algebra APQ(Z
n) of almost periodic functions on Zn with rational spectra.

This is the subalgebra of AP (Zn) generated (over C) by functions of the form
t �→ ei〈λ,t〉 with λ ∈ Q.
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(4) Suppose that the covering p : X → X0 is not regular. Still, we can define
algebras O�∞(X) and Oc(X) and include them in the framework of our theory by
lifting them (by the pullback of the covering map) to the universal covering of X0.

Example 3.2 (Holomorphic almost periodic functions). Elements of OAP (X),
where X → X0 is a regular covering of a connected complex manifold X0 with
a deck transformation group G and AP := AP (G), see Example 3.1 (2), are
called holomorphic almost periodic functions. Equivalently, a function f ∈ O(X)
is called holomorphic almost periodic if each orbit {g · x}g∈G ⊂ X has an open
neighbourhood U ⊂ X , invariant with respect to the action of G on X , such that
the family of translates {z �→ f(g · z), z ∈ U}g∈G is relatively compact in the
topology of uniform convergence on U (see [11] for the proof of the equivalence).

This is a variant of the definition in [42], where G is taken to be the group
of all biholomorphic automorphisms of the complex manifold X . An interesting
result in [41] states that on Siegel domains of the second kind there are no non-
constant holomorphic almost periodic functions in the sense of [42] (although on
Siegel domains of the first kind, i.e., on tube domains in Cn, such holomorphic
almost periodic functions even separate points). A similar result holds for the
algebra OAP (X); for instance, if X0 is a compact complex manifold, then all
holomorphic almost periodic functions on X are constant, see Theorem 2.3 in [11].

Example 3.3 (Compactification of deck transformation group G). (1) Let a :=
c(G), cardG = ∞ (see Example 1.4 (2)). Then Ĝc, c := c(G), is the one-point
compactification of G.

(2) Let a = AP (G) (=: AP ) (see Example 3.1 (2)). Then ĜAP is homeomorphic
to a compact topological group bG, called the Bohr compactification of G, uniquely
determined by the universal property: there exists a homomorphism μ : G → bG
such that for any compact topological group H and any homomorphism ν : G→ H
there exists a continuous homomorphism ν̃ : bG→ H such that the following dia-
gram

G

H

ν

��

G bG
μ �� bG

H

ν̃
��
��
�

�����
��

is commutative.
Applying this property to unitary groups H := Un, n ≥ 1, we obtain that

group G is maximally almost periodic (see Example 3.1 (2)) if and only if μ is a
monomorphism.

The universal property implies that there exists a bijection between sets of
finite-dimensional irreducible unitary representations of G and bG. It turn, the
Peter–Weyl theorem for C(bG) and the von Neumann approximation theorem
for AP (G) (see Example 3.1 (2)) imply that AP (G) ∼= C(bG). Therefore, bG
is homeomorphic to the maximal ideal space MAP (G) of algebra AP (G) and μ(G)
is dense in bG. Under this homeomorphism, the set j(G) (see Section 2 for its
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definition) is identified with the subgroup μ(G) ⊂ bG. In case G is maximally
almost periodic, we will identify G with μ(G) ⊂ bG by means of μ so that the action
of G on ĜAP :=MAP (G) coincides with that of G on bG by right translations.

By the Peter–Weyl theorem, the group bG can be presented as inverse limit of an
inverse system of finite-dimensional compact Lie groups. In particular, the Bohr
compactification bZ of the group of integers Z is inverse limit of an inverse system
of compact abelian Lie groups Tk ×⊕ml=1Z/(nlZ), k,m, nl ∈ N, where Tk := (S1)k

is the real k-torus. It follows that bZ is disconnected and has infinite covering
dimension. The limit homomorphisms bZ → Tk × ⊕ml=1Z/(nlZ) are defined by
finite families of characters Z → S1. For instance, let λ1, λ2 ∈ R \ Q be linearly
independent over Q and χλi : Z → S1, χλi(n) := e2πiλin, i = 1, 2, be the corre-
sponding characters. Then the map (χλ1 , χλ2) : Z → T2 is extended by continuity
to a continuous surjective homomorphism bZ → T2. If λ1, λ2 are linearly depen-
dent over Q, then the corresponding extended homomorphism has image in T2

isomorphic to S1 × Z/(mZ) for some m ∈ N.

(3) Let a = APQ(Z
n) (see Example 3.1 (3)). Then ĜAPQ(Zn) is homeomorphic

to the profinite completion of group Zn; it is defined as inverse limit of an inverse
system of groups ⊕ml=1Z/(nlZ), m,nl ∈ N. It follows that covering dimension

of ĜAPQ(Zn) is zero.

(4) Let a = �∞(G) (=: �∞) (see Example 1.4 (1)). Then Ĝ�∞
∼= βG, the Stone–

Čech compactification of group G. Covering dimension of Ĝ�∞ is zero (see, e.g.,
Theorem 9-5 in [36]).

4. Structure of fibrewise compactification caX

4.1. Set structure of caX

As a set, caX is the disjoint union of connected complex manifolds, each is a
covering of X0. Indeed, let Υ := Ĝa/G be the set of orbits of elements of Ĝa by
the (right) action of G; since any orbit H ∈ Υ is invariant with respect to the
action of G, we may consider the associated to the action of G on H fibre bundle
pH : XH → X0 with fibre H . We assume that H is endowed with discrete topology.
Then pH : XH → X0 is an unbranched covering of X0 (in general non-regular).
Since X is connected and X is a covering of XH , the complex manifold XH is
connected as well. For each H ∈ Υ we have the natural continuous injective map

ιH : XH ↪→ caX

determined by (equivariant with respect to the action of G) inclusion H ↪→ Ĝa.
We denote X̂H := ιH(XH). In view of (2.1), we have j(G) ∈ Υ. Hence, if j is
injective, then X = Xj(G) and ι = ιj(G) (see (2.3)).

It follows that, as a set,

caX =
⊔
H∈Υ

ιH(XH).
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Example 4.1. Ĝc := G ∪ {∞}, cardG = ∞, is the one-point compactification
of G, and the action of G on Ĝc fixes point ∞, so Υ = {{G}, {∞}}. It follows
that, as a set, caX is the disjoint union of two spaces homeomorphic to X and X0,
respectively.

Example 4.2. Let a = AP (G) and G be maximally almost periodic. In what
follows, we assume that ĜAP is endowed with the group structure of the Bohr
compactification bG, see Example 3.3 (2).

Since G is a subgroup of bG, every orbit H ∈ Υ is a right coset of G in bG,
XH = X for all H ∈ Υ, and each set X̂H is dense in cAPX .

The fibre bundle cAPX can be presented as inverse limit of an inverse sys-
tem of smooth fibre bundles on X0. Indeed, by the Peter-Weil theorem, bG can
be presented as inverse limit of an inverse system of finite-dimensional compact
Lie groups {Gs}s∈S (see Example 3.3 (2)). By πs : bG → Gs we denote the cor-
responding limit homomorphisms. The right action of G on bG determines an
action rs of G on Gs, rs(g)(h) := h · πs(g), g ∈ G, h ∈ Gs. Let ps : Xs → X0

be the associated to rs fibre bundle on X0 with fibre Gs. Then Xs has a smooth
manifold structure and inverse limit along {Gs}s∈S determines inverse limit along
the corresponding inverse system {Xs}s∈S which is homeomorphic to cAPX .

Example 4.3. Let a = APQ(Z
n). Since covering dimension of ĜAPQ(Zn) is zero

(see Example 3.3 (3)), covering dimension of cAPQ(Zn)X is equal to dimRX0.

Example 4.4. Let a = �∞(G). Then Ĝ�∞
∼= βG, the Stone–Čech compactification

of group G. Since covering dimension of Ĝ�∞ is zero, covering dimension of c�∞X
coincides with real dimension of X0.

It is easy to see that c�∞X is the maximal fibrewise compactification of covering
X → X0 in the sense that if a ⊂ �∞(G) is a (closed) subalgebra, then there
exists a surjective bundle morphism c�∞X → caX . Indeed, let κ : Ĝ�∞ → Ĝa

be a continuous surjective map adjoint to the inclusion a ↪→ �∞(G); since κ is
equivariant with respect to the corresponding (right) actions of G, it determines
the required surjective bundle morphism.

4.2. Complex structure on caX

A function f ∈ C(U) on an open subset U ⊂ caX is called holomorphic if ι∗f is
holomorphic on ι−1(U) ⊂ X in the usual sense.

Let U0 ⊂ X0 be open. A function f ∈ C(U) on an open subset U ⊂ U0 × Ĝa

is called holomorphic if j̃∗f , j̃ := Id × j : U0 × G → U0 × Ĝa, is holomorphic on
the open subset j̃−1(U) of the complex manifold U0 × G (see Section 2 for the
definition of the map j).

For sets U as above, let O(U) denote the algebra of holomorphic functions
on U endowed with the topology of uniform convergence on compact subsets of U .
Clearly, f ∈ C(caX) belongs to O(caX) if and only if each point in caX has an
open neighbourhood U such that f |U ∈ O(U), see Definition 2.2.

By OU we denote the sheaf of germs of holomorphic functions on U .
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The category M of ringed spaces of the form (U,OU ), where U is either an
open subset of caX and X is a regular covering of a complex manifold X0 or is
an open subset of U0 × Ĝa with U0 ⊂ X0 open, contains in particular complex
manifolds.

Definition 4.5. A morphism of two objects in M, that is, a map F ∈ C(U1, U2),
where (Ui,OUi) ∈ M, i = 1, 2, such that F ∗OU2 ⊂ OU1 , is called a holomorphic
map.

The collection of holomorphic maps F : U1 → U2, (Ui,OUi) ∈ M, i = 1, 2,
is denoted by O(U1, U2). If F ∈ O(U1, U2) has inverse F

−1 ∈ O(U2, U1), then F is
called a biholomorphism.

The next result shows that, in a sense, the holomorphic structure on caX is
concentrated in ‘horizontal layers’ X̂H ⊂ caX (H ∈ Υ).

Theorem 4.6. For a connected complex manifold M and a map F ∈ O(M, caX)
there exists H ∈ Υ such that F (M) ⊂ X̂H .

If covering dimension of Ĝa is zero (see Examples 4.3 and 4.4), then the assertion
of Theorem 4.6 holds true even for continuous maps, i.e., for every F ∈ C(M, caX)
there exists H ∈ Υ such that F (M) ⊂ X̂H (see the argument in the proof of
Theorem 1.2 (d) in [7]).

Further, over each simply connected open subset U0 ⊂ X0 there exists a biholo-
morphic trivialization ψ = ψU0 : p−1(U0) → U0 ×G of covering p : X → X0 which
is a morphism of fibre bundles with fibres G. Then there exists a biholomorphic
trivialization ψ̄ = ψ̄U0 : p̄−1(U0) → U0 × Ĝa of bundle caX over U0, which is a
morphism of fibre bundles with fibre Ĝa, such that the following diagram

p−1(U0)

U0 ×G

ψ

��

p−1(U0) p̄−1(U0)
ι �� p̄−1(U0)

U0 × Ĝa

ψ̄

��
U0 ×G U0 × Ĝa

Id×j ��

is commutative.
For a given subset S ⊂ G we denote

(4.1) Π(U0, S) := ψ−1(U0 × S)

and identify Π(U0, S) with U0 × S where appropriate (here Π(U0, G) = p−1(U0)).

For a subset K ⊂ Ĝa we denote

(4.2) Π̂(U0,K)
(
= Π̂a(U0,K)

)
:= ψ̄−1(U0 ×K).

A pair of the form (Π̂(U0,K), ψ̄) will be called a coordinate chart for caX . Simi-
larly, sometimes we identify Π̂(U0,K) with U0 ×K. If K ⊂ Ĝa is open, then, by
our definitions, ψ̄∗ : O(U0×K) → O(Π̂(U0,K)) is an isomorphism of (topological)
algebras.
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4.3. Basis of topology on caX

We denote by Q the basis of topology of Ĝa consisting of sets of the form

(4.3)
{
η ∈ Ĝa : max

1≤i≤m
|hi(η)− hi(η0)| < ε

}

for η0 ∈ Ĝa, h1, . . . , hm ∈ C(Ĝa), and ε > 0.
The fibrewise compactification caX is a paracompact Hausdorff space (as a

fibre bundle with a paracompact base and a compact fibre); thus, caX is a normal
space.

It is easy to see that the family

(4.4) B := {Π̂(V0, L) ⊂ caX : V0 is open simply connected in X0 and L ∈ Q}.

forms a basis of topology of caX .

4.4. Coherent sheaves on caX

A sheaf of modules on an open subset U ⊂ caX over O|U will be called an ana-
lytic sheaf. A homomorphism between analytic sheaves will be called an analytic
homomorphism.

Recall that a coherent sheaf A on caX is an analytic sheaf such that every
point in caX has an open neighbourhood U over which, for every N ≥ 1, there is
an exact sequence of sheaves of modules of the form

(4.5) OmN |U
ϕN−1�� · · ·

ϕ2 ��Om2 |U
ϕ1 ��Om1 |U

ϕ0 ��A|U �� 0,

where ϕi, 0 ≤ i ≤ N − 1, are analytic homomorphisms.
An analytic sheaf A on caX is called a Fréchet sheaf if for each open set U ∈ B

the module of sections Γ(U,A) of A over U is endowed with topology of a Fréchet
space.

Proposition 4.7. Every coherent sheaf can be turned in a unique way into a
Fréchet sheaf so that the following conditions are satisfied:

(1) If A is a coherent subsheaf of O, then for any open subset U ∈ B the module
of sections Γ(U,A) has topology of uniform convergence on compact subsets
of U .

(2) If A,B are coherent sheaves on caX, then for any U ∈ B the spaces Γ(U,A),
Γ(U,B) are Fréchet spaces, and any analytic homomorphism ϕ : A → B is
continuous in the sense that the homomorphisms of sections of A and B over
sets U ∈ B induced by ϕ are continuous.

The topology on Γ(U,A) can be defined by a family of semi-norms

‖f‖Vk
:= inf

h

{
sup
x∈Vk

|h(x)| : h ∈ Γ(Vk,Om1), f = ϕ̄0(h)
}
,

where ϕ̄0 is the homomorphism of sections induced by ϕ0 in (4.5), and open sets
Vk ∈ B are such that Vk � Vk+1 � U for all k, and U = ∪kVk (see Lemma 5.3 (2)
below for existence of such an exhaustion of U).
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The proof essentially repeats that of an analogous result for coherent analytic
sheaves on complex manifolds, see, e.g., [24]. For the sake of completeness, we
provide the proof of the proposition in the Appendix.

Theorem 4.8 (Runge-type approximation). Let X0 be a Stein manifold and A be
a coherent sheaf on caX. Suppose that Y0 � X0, Ŷ ⊂ caX are open and such that

(1) either Y0 is holomorphically convex in X0 and Ŷ = p̄−1(Y0),

(2) or Y0 is holomorphically convex in X0 and is contained in a simply connected
open subset of X0, and Ŷ = Π̂(Y0,K) for some K ∈ Q (see subsection 4.3).

Then the image of the restriction map Γ(caX,A) → Γ(Ŷ ,A) is dense (in the
topology of Proposition 4.7).

5. Proofs: preliminaries

5.1. Čech cohomology

For a topological space X and a sheaf of abelian groups S on X let Γ(X,S) denote
the abelian group of sections of S over X .

Let U be an open cover ofX . By Ci(U ,S) we denote the space of Čech i-cochains
with values in S, by δ : Ci(U ,S) → Ci+1(U ,R) the Čech coboundary operator
(see, e.g., [20] for details), by Zi(U ,S) := {σ ∈ Ci(U ,S) : δσ = 0} the space of
i-cocycles, and by Bi(U ,S) := {σ ∈ Zi(U ,S) : σ = δ(η), η ∈ Ci−1(U ,S)} the space
of i-coboundaries. The Čech cohomology groups Hi(U , S) (i ≥ 0) of U with values
in S are defined by

Hi(U , S) := Zi(U ,S)/Bi(U ,S), i ≥ 1,

and H0(U ,S) := Γ(U ,S).

5.2. ∂̄-equation

Let B be a complex Banach space, D0 ⊂ X0 be a strictly pseudoconvex domain in
a complex manifold X0. We fix a system of local coordinates on D0 and consider a

cover {W0,i}i≥1 of D0 by coordinate patches. By Λ
(0,q)
b (D0, B), q ≥ 0, we denote

the space of bounded continuous B-valued (0, q)-forms ω on D0 endowed with
norm

(5.1) ‖ω‖D0 = ‖ω‖(0,q)D0
:= sup

i,α,x∈W0,i

‖ωα,i(x)‖B ,

where ωα,i (α is a multiindex) are coefficients of form ω|W0,i∈Λ
(0,q)
b (W0,i,B) written

in the local coordinates on W0,i.
The next lemma follows easily from results in [25] (proved for B = C), as

all integral presentations and estimates are preserved when passing to the case of
Banach-valued forms.
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Lemma 5.1. There exists a bounded linear operator

RD0,B : Λ
(0,q)
b (D0, B) → Λ

(0,q−1)
b (D0, B), q ≥ 1,

such that, if ω ∈ Λ
(0,q)
b (D0, B) is C∞ and satisfies ∂̄ω = 0 on D0, then ∂̄RD0,B(ω)

= ω on D0.

5.3. Auxiliary topological results

In our proofs, we make use of the following results.
Let L = {Li} be an open cover of Ĝa. Recall that a refinement of L is an open

cover L′ = {L′
j} of Ĝa such that each L′

j � Li for some i = i(j).

Since Ĝa is compact, each open cover of Ĝa has a finite subcover.

Lemma 5.2. Let L be a finite open cover of Ĝa. There exist finite refinements
Lk = {Lkj : Lkj ∈ Q} of L of the same cardinality such that Lk+1

j � Lkj for all j, k.

Proof. Since Ĝa is compact, there exists a finite refinement L′ = {L′
j} of L = {Li}

such that every L′
j � Li for some i = i(j), and functions {ρj} ⊂ C(Ĝa) such that

ρj ≡ 1 on L̄′
j, ρj ≡ 0 on Ĝa \ Li. We set Lkj := {η ∈ Ĝa : ρj(η) > 1 − 1/(2k)},

k ≥ 1. By definition, Lkj ∈ Q for all j, k (see (4.3)). It follows that Lk := {Lkj}
are the required refinements of L. �

Lemma 5.3. Let K ∈ Q, U0 ⊂ X0 be open. We set U := U0 ×K. The following
is true:

(1) There exist open subsets Nk ∈ Q, 1 ≤ k <∞, such that Nk � Nk+1 � K for
all k and K = ∪kNk.

(2) There are open subsets Vk = V0,k×Nk, 1 ≤ k <∞, such that Vk � Vk+1 � U
for all k and U = ∪kVk. Here V0,k � U0 is open and Nk ∈ Q for all k.

(3) Let L ∈ Q be such that L � K. There exists a collection of sets Lm ∈ Q,
m ≥ 1, such that L � · · · � Lm+1 � Lm � · · · � L1 � K for all m.

(4) Let N � K and {Li} be a finite collection of open subsets of K such that
N � ∪iLi. There exists a finite family of open subsets L′

j ⊂ K, L′
j ∈ Q,

such that N � ∪jL′
j and for each j we have L′

j � Li for some i = i(j).

Proof. (1) Recall that the basis Q of topology of Ĝa consists of sublevel sets of
functions in C(Ĝa), see (4.3), so K = {η ∈ Ĝa : max1≤i≤m |hi(η)) − hi(η0)| < ε}
for some η0 ∈ Ĝa, h1, . . . , hm ∈ C(Ĝa) and ε > 0. Let a′ be the subalgebra of
C(Ĝa) generated by functions h1, . . . , hm, h̄1, . . . , h̄m. Since algebra a′ is finitely
generated, the maximal ideal space Ma′ of a′ is a compact subset of some Cp, and
we have a′ ∼= C(Ma′). The map π : Ĝa →Ma′ adjoint to the inclusion a′ ⊂ C(Ĝa)
is proper and surjective. By definition, there exists an open subset K ′ ⊂Ma′ such
that K = π−1(K ′). Since Ma′ is a compact metric space (as a compact subset
of Cp), there exist open subsets N ′

k ⊂Ma′ such that N ′
k−1 � N ′

k � K ′ for all k and
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K ′ = ∪kN ′
k. We define Nk := π−1(Nk) ∈ Q. Clearly, each set N ′

k can be chosen
in the form N ′

k = {y ∈Ma′ : max1≤i≤rk |fik(y)− fik(y0)| < ε} for some y0 ∈Ma′ ,

fik ∈ C(Ma′) and ε > 0. Since π∗C(Ma′) ⊂ C(Ĝa), Nk ∈ Q (see (4.3)) as required.

A similar argument yields (3).

(2) It is clear that there exists a sequence of open sets V0,k such that V0,k �
V0,k+1 � U0 for all k and U0 = ∪kV0,k. We set Vk := V0,k ×Nk.

(4) We apply Lemma 5.2 to the finite open cover of Ĝa consisting of the sets Li
and set Ĝa \ N̄ to obtain a finite refinement {L′

j} ⊂ Q of this cover. We exclude

subsets L′
j such that L′

j � Ĝa \ N̄ . Then for the obtained family N̄ ⊂ ∪jL′
j, and

by the definition of the refinement, for each j we have L′
j � Li for some i, as

required. �

6. Proof of Proposition 2.3

We retain notation of the proposition. Given f ∈ Oa(X) denote fx0 := f |p−1(x0).

Let f̂x0 ∈ C(Ĝa) be such that j∗f̂x0 = fx0 . The family {f̂x0}x0∈X0 determines a

function f̂ on caX such that f̂(x) = f̂x0(x) for x0 := p̄(x). Using a normal family

argument one shows that f̂ ∈ O(caX), see, e.g., [33] or [12], Lemma 2.3, for similar

results. Clearly, ι∗f̂ = f . Since the homomorphism ˆ: a → C(Ĝa) is an injection,

the constructed homomorphism i : Oa(X) → O(caX), i(f) := f̂ , is an injection as
well. This completes the proof of the first assertion.

For the proof of the second assertion suppose that a is self-adjoint. Then
a ∼= C(Ĝa) and we can define the inverse homomorphism i−1 : O(caX) → O(X)
by the formula

i−1(f̂) := ι∗f̂ , f̂ ∈ O(caX).

Since i−1(f̂)|p−1(x0) = j∗
(
f̂ |p̄−1(x0)

)
∈ a for all x0 ∈ X0, we have i−1(f̂) ∈ Oa(X),

i.e., i−1 maps O(caX) into Oa(X).

7. Proofs of Theorems 2.5, 2.6 and 4.8 and Proposition 4.7

In what follows all polydisks are assumed to have finite polyradii.

Proof of Theorem 2.6. We will need the following results.

Proposition 7.1. Let U := Π̂(U0,K), where U0 ⊂ X0 is open and biholomorphic
to an open polydisk in Cn, and K ∈ Q (see (4.3)).

The following is true:

(1) Let R be an analytic sheaf over U having a free resolution of length 4N :

(7.1) Ok4N |U
ϕ4N−1�� · · ·

ϕ2 ��Ok2 |U
ϕ1 ��Ok1 |U

ϕ0 ��R|W �� 0.
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If N ≥ n := dimC U0, then the induced sequence of sections truncated to the
N -th term

Γ(U,OkN )
ϕ̄N−1�� · · ·

ϕ̄2 �� Γ(U,Ok2)
ϕ̄1 �� Γ(U,Ok1)

ϕ̄0 �� Γ(U,R) �� 0

is exact.

(2) Suppose that free resolution (7.1) exists for every N . Then Hi(U,R) = 0 for
all i ≥ 1.

Let A be a coherent sheaf on caX .

Proposition 7.2. Every point x0 ∈ X0 has a neighbourhood U0 such that for
each N ≥ 1 there exists a free resolution of sheaf A over p̄−1(U0) having length N
(see Definition 2.4).

(In other words, we may assume that the open sets W in Definition 2.4 have
the form U = p̄−1(U0), U0 ⊂ X0 is open.)

We prove Propositions 7.1 and 7.2 in subsections 7.1 and 7.2, respectively.

Now, let Â := p̄∗A be the direct image of sheafA under projection p̄ : caX → X0.

By definition, Â is a sheaf of modules over the sheaf of rings OC(Ĝa) of germs of
holomorphic functions on X0 taking values in the Banach space C(Ĝa). By Propo-
sitions 7.2 and 7.1 (2) every x0 ∈ X0 has a basis of neighbourhoods U0 such that
Hi(U,A) = 0, i ≥ 1, U := p̄−1(U0). Therefore,

(7.2) Hi(caX,A) ∼= Hi(X0, Â), i ≥ 0

(see, e.g., [23], Ch. F, Cor. 6, for the proof). By definition, we have

Γ(U,A) ∼= Γ(U0, Â), Γ(U,O) ∼= Γ(U0,OC(Ĝa)).

It follows from Proposition 7.2 and Proposition 7.1 (1) that for every x0 ∈ X0 and
each N ≥ 1 there exist a neighbourhood U0 of x0 and an exact sequence of sections

Γ(U0, (OC(Ĝa))kN ) �� · · · �� Γ(U0, (OC(Ĝa))k1) �� Γ(U0, Â) �� 0.

By definition, this means that we have an exact sequence of sheaves

(7.3) (OC(Ĝa))kN |U0
�� · · · �� (OC(Ĝa))k1 |U0

�� Â|U0
�� 0.

Next, for every open set U0 ⊂ X0 the spaces of sections Γ(U0, Â), Γ(U0,OC(Ĝa))
can be endowed with a Fréchet topology so that the homomorphisms of sections
induced by sheaf homomorphisms in (7.3) are continuous; indeed, since Γ(U0, Â) ∼=
Γ(U,A), Γ(U0,OC(Ĝa)) ∼= Γ(U,O), this follows from Proposition 4.7 with U =
p̄−1(U0) (we prove Proposition 4.7 below, using the results that will be obtained
in the proofs of Propositions 7.1 and 7.2). Hence, in the terminology of [30], Â is a
Banach coherent analytic Fréchet sheaf. Therefore, according to Theorem 2.3 (iii)
in [30], Hi(X0, Â) = 0 for all i ≥ 1. Isomorphism (7.2) now implies the required
statement. The proof of Theorem 2.6 is complete. �
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Proof of Theorem 4.8. We need to show that sections of a coherent sheaf A over
certain subsets of caX (we distinguish two kind of such subsets) can be approxi-
mated by the global sections of A over caX .

(1) Due to the arguments from the previous proof, we have isomorphisms of
Fréchet spaces Γ(caX,A) ∼= Γ(X0, Â), Γ(Ŷ ,A) ∼= Γ(Y0, Â). Now, the result follows
from Theorem 2.3 (iv) in [30] applied to Â.

(2) It suffices to show that the restriction map Γ(p̄−1(Y0),A) → Γ(Ŷ ,A) has
dense image and then to apply the result of case (1).

We have Ŷ = Π̂(Y0,K) for some Y0 � X0 open simply connected, and K ∈ Q.
Since Ŷ ∈ B, we may use the last assertion of Proposition 4.7: it suffices to show
that given a section f ∈ Γ(Ŷ ,A) for every ε > 0 and every k there exists a section
f̃k ∈ Γ(p̄−1(Y0),A) such that ‖f − f̃k‖Vk

< ε.

Without loss of generality we may identify Ŷ with Y0×K, and p̄−1(Y0) with Y0×
Ĝa (see subsection 4.2). Then sets Vk have the form Vk = V0,k×Nk, where each V0,k
is open and simply connected and Nk ∈ Q are such that Nk � Nk+1 � K for all k,
and K = ∪kNk (see Lemma 5.3 (1)). Since space Ĝa is compact and, therefore,
normal, for each k there exists a function ρk ∈ C(Ĝa) such that 0 ≤ ρk ≤ 1 on Ĝa,
ρk ≡ 1 on Nk, and ρk ≡ 0 on Ĝa \ N̄k+1. Since Γ(Y0 × K,A) is a module over
Γ(Y0 × K,O), we can define f̃k := ρkf ∈ Γ(Y0 × Ĝa,A). Then f − f̃k = 0 on
Y0 ×Nk, so ‖f − f̃k‖Vk

= 0. Thus, f̃k is the required approximation. �

Proof of Theorem 2.5. Let N ≥ n. Since sheaf A is coherent, there exists a neigh-
bourhood U of x over which there is a free resolution

(7.4) Om4N |U
ϕ4N−1�� · · ·

ϕ2 ��Om2 |U
ϕ1 ��Om1 |U

ϕ0 ��A|U �� 0

of length 4N . It follows from the exactness of sequence (7.4) that there exist
sections h1, . . . , hm1 ∈ Γ(U,A) that generate xA as an xO-module. Now, it suffices
to show that there exist a neighbourhood V ⊂ U of x, global sections f1, . . . , fm1 ∈
Γ(caX,A) and functions rij ∈ O(V ), 1 ≤ i, j ≤ m1, such that

(7.5) hi|V =

m1∑
j=1

rij fj|V , 1 ≤ i ≤ m1.

Without loss of generality we may assume that U = Π̂(U0,K) ∈ B, where U0 ⊂ X0

is biholomorphic to an open polydisk in Cn and is holomorphically convex in X0,
and K ∈ Q. By Proposition 4.7 the topology on Γ(W,A) is determined by semi-
norms

(7.6) ‖h‖Vk
:= inf

h

{
sup
x∈Vk

|g(x)| : g ∈ Γ(Vk,Om1), h = ϕ̄0(g)

}
,

where ϕ̄0 is the homomorphism of sections induced by ϕ0 in (7.4), and open sets
Vk ∈ B are such that Vk � Vk+1 �W for all k, andW = ∪kVk, see Lemma 5.3 (2);
by definition, Vk = V0,k × Nk, where V0,k � U0, Nk � K are open. Without loss
of generality we may assume that each V0,k is biholomorphic to an open polydisk
in Cn and is holomorphically convex in X0.
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Let V := Vk0 , where k0 is chosen so that x ∈ Vk0 . It follows from the proof
of Theorem 4.8 (case (2) for Ŷ := U) that for every ε > 0 there exist sections
f1, . . . , fm1 ∈ Γ(caX,A) such that ‖hi − fi‖V < ε for all i. Now, by Proposi-
tion 7.1 (1) the sequence of sections corresponding to (7.4),

(7.7) · · · �� Γ(V,Om1)
ϕ̄0 �� Γ(V,A) �� 0

is exact. Note that Γ(V,Om1) consists ofm1-tuples of holomorphic functions on V .
Let h̃i := (0, . . . , 1, . . . , 0) (1 is in the i-th position), 1 ≤ i ≤ m1. Without loss of
generality we may assume that hi|V = ϕ̄0(h̃i). Since ϕ̄0 is surjective, there exist
functions f̃i ∈ Γ(V,Om1) such that ϕ̄0(f̃i) = fi|V . It follows from the definition of
semi-norm ‖ · ‖V , see (7.6), that functions f̃i can be chosen in such a way that

(7.8) sup
x∈V

|h̃i(x)− f̃i(x)| < 2ε.

Since ϕ̄0 is aO(V )-module homomorphism, the required identity (7.5) would follow
once we found functions rij ∈ Γ(V,O), 1 ≤ i, j ≤ m1, such that

h̃i =

m1∑
j=1

rij f̃j, 1 ≤ i ≤ m1.

The latter system of linear equations (with respect to rij) can be rewritten as a
matrix equation H = FR with respect to R = (rij)

m1

i,j=1 ∈ O
(
V,Mn(C)

)
, where

Mn(C) denotes the set of n × n complex matrices, H = (h̃i)
m1

i=1 ∈ O
(
V,GLn(C)

)
(h̃i are the columns of H) is the identity matrix, here GLn(C) ⊂ Mn(C) is the
group of invertible matrices and F = (f̃i)

m1

i=1 ∈ O
(
V,Mn(C)

)
(f̃i are the columns

of F ). Since ε > 0 can be chosen arbitrarily small, in view of (7.8) we may assume
that F ∈ O

(
V,GLn(C)

)
. Hence, we can define R := F−1H .

This completes the proof of Theorem 2.5. �

7.1. Proof of Proposition 7.1

The (rather technical) proof of this proposition is presented at the end of this
subsection. In the proof we will use the following preliminary results.

Let U0 � Cn be an open polydisk, K ∈ Q (see (4.3)). We set

(7.9) U := U0 ×K.

The sets U and Π̂(U0,K) ⊂ caX are biholomorphic (see subsection 4.2). Defini-
tions of an analytic homomorphism and a free resolution (of an analytic sheaf over
an open subset of caX , see subsection 4.4) are transferred naturally to analytic
sheaves over U . Thus, it suffices to prove Proposition 7.1 in the assumption that
analytic sheaf R and free resolution (7.1) are given over U .

A function f ∈ C(U) is said to be C∞ if all its derivatives with respect to
variable x ∈ U0 (in some local coordinates on U0) are in C(U). The algebra of C∞

functions on U will be denoted by C∞(U).
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Let Λp,q(U0) be the collection of all C∞ (p, q)-forms on U0. We define the space
Λp,q(U) of C∞ (p, q)-forms on U by the formula Λp,q(U) := C∞(U) ⊗ Λp,q(U0),
where ⊗ denotes symmetric tensor product.

We have an operator ∂̄ : Λp,q(U) → Λp,q+1(U) defined as follows. Suppose that
ω ∈ Λp,q(U) is given (in local coordinates on U0) by the formula

ω =
∑
|I|=p

∑
|J|=q

fIJ dzI ∧ dz̄J , fIJ ∈ C∞(U),

where I = (i1, . . . , ip), J = (j1, . . . , jq), dzI = dzi1∧· · ·∧dzip , dz̄J = dz̄j1∧· · ·∧dz̄jq ;
then

(7.10) ∂̄f :=
∑
|I|=p

∑
|J|=q

∂̄fIJ ∧ dzI ∧ dz̄J ,

where

∂̄fIJ(z, η) :=
n∑
j=1

∂fIJ(z, ξ)

∂z̄j
dz̄j , z = (z1, . . . , zn), (z, ξ) ∈ U = U0 ×K.

A form ω ∈ Λp,q(U) is called ∂̄-closed if ∂̄ω = 0.
Let Λp,q be the sheaf of germs of C∞ (p, q)-forms on U , and Zp,q ⊂ Λp,q be the

subsheaf of germs of ∂̄-closed (p, q)-forms. Note that Z0,0 = O.

In what follows we fix an open polydisk

(7.11) V0 � U0.

Let W0 ⊂ V̄0 be open in V̄0 and such that W0 = V̄0 ∩ W̃0 for some product domain
W̃0 = W̃ 1

0 × · · · × W̃n
0 � U0, where each W̃ i

0 � C (1 ≤ i ≤ n) is simply connected
and has smooth boundary (clearly, given an open neighbourhood of W̄0 in U0, we
can find such a set W̃0 contained in this neighbourhood).

Fix a subsetW ′
0 �W0 open in V̄0 and satisfying the same intersection condition

as W0 (i.e. W ′
0 coincides with the intersection of V̄0 and a product domain having

the properties as described above). Let

(7.12) S ⊂ K be a closed subset, and let L′ � L ⊂ S be open in S.

Lemma 7.3. For every ω ∈ Γ(W0 × L,Z0,q) there exists η ∈ Γ(W̄ ′
0 × L̄′,Λ0,q−1)

such that ∂̄η = ω.

Proof. By definition, a section of sheaf Z0,q over W0 × L is the restriction of a
section of Z0,q over some open neighbourhood of W0 × L. Therefore, we may
assume, without loss of generality, that L is open in K, and ω ∈ Γ(W̃0 × L,Z0,q)
for some product domain W̃0 as above.

Clearly, there exists a product domain Ŵ0 � W̃0 open in U0, where Ŵ0 =
Ŵ 1

0 × · · · × Ŵn
0 and each domain Ŵ i

0 � W̃ i
0 has smooth boundary, such that

W ′
0 � Ŵ0. Further, since Ĝa is a normal space, there exists an open set L′′ � L

such that L′ � L′′.
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Let C(L̄′′) be the Banach space of continuous functions on L̄′′ endowed with
sup-norm, Λ0,q(W̃0, C(L̄

′′)) be the space of C∞ C(L̄′′)–valued (0, q)-forms on W̃0,
and

Z0,q(Ŵ0, C(L̄
′′)) ⊂ Λ0,q(Ŵ0, C(L̄

′′))

be the subspace of ∂̄C(L̄′′)-closed forms on Ŵ0. Here

∂̄C(L̄′′) : Λ
0,q(Ŵ0, C(L̄

′′)) → Z0,q+1(Ŵ0, C(L̄
′′))

is the standard operator of differentiation of C(L̄′′)-valued forms.
It is easy to see that the restriction to W̃0 × L̄′′ of a form in Γ(W̃0 × L,Λ0,q)

can be naturally identified with a form in Λ0,q(W̃0, C(L̄
′′)) and, since Ŵ0×L′′ is a

neighbourhood of W̄ ′
0 × L̄′, every form in Λ0,q(W̃0, C(L̄

′′)) determines (under such
identification) a unique form in Γ(W̄ ′

0×L̄′,Λ0,q); these identification maps commute
with the actions of operators ∂̄ and ∂̄C(L̄′′). In particular, form ω determines

a form ω̂ ∈ Z0,q(W̃0, C(L̄
′′)). Note that since W̃0 � Cn is a product domain,

it is pseudoconvex. Hence W0 admits an exhaustion by strictly pseudoconvex
subdomains (see, e.g., [28]). Therefore, there exists a strictly pseudoconvex domain
D0 � W̃0 such that Ŵ0 � D0. We restrict form ω̂ to D0 (clearly, ω̂|D0 is bounded)
and apply Lemma 5.1, where we take B := C(L̄′′). We obtain that there exists a
form η̂ ∈ Λ0,q−1(Ŵ0, C(L̄

′′)) such that ∂̄C(L̄′′)η̂ = ω̂ over Ŵ0. It follows that the

form η ∈ Γ(W̄ ′
0 × L̄′,Λ0,q−1) determined by η̂ is the required one. �

We will need the following:

Definition 7.4. We say that a finite open cover U = {Uα} of V̄0 × S (see (7.11)
and (7.12)) is of class (P ) if the following conditions are satisfied:

(1) Uα = U0,l × Lj , α = (l, j), where {U0,l} and {Lj} are finite open covers of
V̄0 and S, respectively;

(2) Each Lj = S ∩ L̃j for some L̃j ∈ Q such that L̃j ⊂ K;

(3) Each U0,l = V̄0 ∩ Ũ0,l for some product domain Ũ0,l = Ũ1
0,l × · · · × Ũn0,l � U0,

where domains Ũ i0,l � C (1 ≤ i ≤ n) are simply connected and has smooth
boundaries.

Lemma 7.5. (1) Each open cover of V̄0 × S has a refinement of class (P ).

(2) Each open cover of V̄0 × S of class (P ) has a refinement of class (P ) of the
same cardinality.

Proof. (1) Since V̄0, S are compact, and hence their direct product V̄0 × S is
compact as well, there exists a refinement of a given open cover of V̄0 × S by open
sets of the form U0,l×Oj , where {U0,l} and {Oi} are finite open covers of V̄0 and S,
respectively. By the definition of the induced topology on S, there exist open sets
Õi ⊂ K such that Oi = S ∩ Õi. Now, we apply Lemma 5.3 (4) to {Õi} (there we
take N̄ := S) to obtain open sets {L̃j} such that Lj � Li for some i = i(j) and

L̃j ∈ Q for all j. Finally, we set Lj := S∩ L̃j . The sets U0,l×Lj form the required
refinement of class (P ).

(2) Follows from assertions (3) and (4) of Lemma 5.3. �
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Let U = {Uα := U0,l × Lj} be a finite open cover of V̄0 × S of class (P ), and
U ′ = {U ′

α := U ′
0,l × L′

j} be a refinement of U of class (P ) of the same cardinality
(see Lemma 7.5 (2)). By definition, {U ′

0,l} and {L′
j} are refinements of open covers

{U0,l} and {Lj}, respectively.
We have an injective refinement map ιU ,U ′ : Zi(U ,R) → Zi(U ′,R) (see sub-

section 5.1 for notation). If no confusion arises, we write σ for ιU ,U ′(σ).

Lemma 7.6. The following is true:

(1) Let σ ∈ Zi(U ,O), i ≥ 1. Then σ ∈ Bi(U ′,O).

(2) Hi(V̄0 × S,O) = 0, i ≥ 1.

Proof. (1) We will prove a more general result: if σ ∈ Zi(U , Z0,q), i ≥ 1, q ≥ 0,
then σ ∈ Bi(U ′, Z0,q). In particular, taking q = 0 we obtain assertion (1).

Let i = 1, σ1 ∈ Z1(U , Z0,q). Since V̄0 × S is a paracompact space, there exist
partitions of unity {λl} and {ρj} subordinate to covers {U ′

0,l} and {L′
j} (C∞ and

continuous, respectively). We define a 0-cocycle σ∞
0 ∈ C0(U ′,Λ0,q) by the formula

(7.13) (σ∞
0 )α(x, ξ) :=

∑
β=(l,j)

ρj(ξ)λl(x)(σ1)β,α(x, ξ), (x, ξ) ∈ U ′
α for all α.

Since (σ1)α,β = (δσ∞
0 )α,β = (σ∞

0 )α−(σ∞
0 )β and ∂̄(σ1)α,β = 0, the family {∂̄(σ∞

0 )α}
determines ω ∈ Γ(V̄0 × S,Z0,q+1), ω|Uα := ∂̄(σ∞

0 )α. By Lemma 7.3 (with W ′
0 =

W0 = V̄0 and L′ = L = S) there exists η ∈ Γ(V̄0 × S,Λ0,q) such that ∂̄η = ω. We
define a 0-cochain σ0 ∈ C0(U ′, Z0,q) by the formula (σ0)α = (σ∞

0 )α − η. It follows
that σ1 = δσ0; therefore σ1 ∈ B1(U ′, Z0,q).

Using Lemma 7.5 (2) we may assume that there exists a refinement U ′′ =
{U ′′

α := U ′′
0,l × L′′

j } of cover U of class (P ) of the same cardinality as U such
that U ′ is a refinement of U ′′.

Now, let i > 1. Assume that we have shown for all 1 ≤ l < i, q ≥ 0 that each
σ ∈ Z l(U , Z0,q) belongs to Bl(U ′′, Z0,q). For a given σi ∈ Zi(U , Z0,q) we define
an (i − 1)-cocycle σ∞

i−1 ∈ Ci−1(U ′′,Λ0,q) by the formula

(σ∞
i−1)α1,...,αi(x, ξ) :=

∑
β=(l,j)

ρj(ξ)λl(x)(σi)β,α1,...,αi(x, ξ), (x, ξ) ∈ U ′′
α1,...,αi

for all α1, . . . , αi, where U
′′
α1,...,αi

:= ∩ir=1U
′′
αr

�= ∅.

We have δ(σ∞
i−1) = σi, so ∂̄δ(σ

∞
i−1) = δ(∂̄σ∞

i−1) = 0. Define μi−1 := ∂̄σ∞
i−1 ∈

Ci−1(U ′′, Z0,q+1). Since δ(μi−1) = ∂̄μi−1 = 0, by the induction assumption
there exists an (i − 2)-cochain μi−2 ∈ Ci−2(U ′′, Z0,q) such that δ(μi−2) = μi−1

and ∂̄μi−2 = 0. Now, by Lemma 7.3 (1) there exists an (i − 2)-cochain ηi−2 ∈
Ci−2(U ′,Λ0,q) such that ∂̄ηi−2 = μi−2. We define σi−1 := σ∞

i−1 − δ(ηi−2). Then
δ(σi−1) = σi; so σi ∈ Bi(U ′, Z0,q), as required.

(2) By Lemma 7.5 (1) any open cover of V̄0 × S has a finite refinement of
class (P ), hence the required result follows from (1). �
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Let {Vk}∞k=1 be the exhaustion of U by open sets obtained in Lemma 5.3 (2).
By definition, each Vk has the form Vk = V0,k ×Nk, where V0,k � U0, Nk � K are
open, and Nk ∈ Q for all k. Since U0 is an open polydisk in Cn, we may choose
each V0,k to be an a open polydisk as well.

Definition 7.7 (see [20], Chapter IV). We say that an analytic sheaf R on U
satisfies the Runge condition if the following holds for every k ≥ 1:

(a) The space of sections Γ(V̄k,R) is endowed with a semi-norm | · |k such that
Γ(U,R)|V̄k

is dense in Γ(V̄k,R).

(b) There exist constants Mk > 0 such that for every f ∈ Γ(V̄k+1,R) we have
|f |V̄k

|k ≤Mk|f |k+1.

(c) If {fj} is a Cauchy sequence in Γ(V̄k+1,R), then {fj|V̄k
} has a limit in

Γ(V̄k,R).

(d) If f ∈ Γ(V̄k+1,R) and |f |k+1 = 0, then f |V̄k
= 0.

Lemma 7.8 (see [20], Chapter IV, for the proof). Let R be an analytic sheaf on U .
The following is true:

(1) Suppose that Hi(V̄k,R) = 0 for all i ≥ 1, k ≥ 1. Then Hi(U,R) = 0 for all
i ≥ 2.

(2) If R satisfies the Runge condition and H1(V̄k,R) = 0 for all k ≥ 1, then
H1(U,R) = 0.

Lemma 7.9. The sheaf O|U satisfies the Runge condition.

Proof. For a given section f ∈ Γ(V̄k,O) let us denote by f̂(ω) ∈ C the common
value of representatives of germ f(ω) at point ω ∈ V̄k.

We endow each space Γ(V̄k,O) with semi-norm |f |k := supω∈V̄k
|f̂(ω)|. Con-

ditions (b)–(d) are trivially satisfied. For the proof of (a), let us fix a section
f ∈ Γ(V̄k,O). By definition, a section of sheaf O over V̄k := V̄0,k × N̄k is the
restriction of a section of O over an open neighbourhood of V̄k. In particular,
there exists an open neighbourhood L ⊂ K of N̄k such that section f |V̄k

admits

a bounded extension to V̄0,k × L. Since Ĝa (⊃ K) is a normal space, there exists
a function ρk ∈ C(K) such that ρk ≡ 1 on N̄k and ρk ≡ 0 on K \ L. We set

f̃ := fρk ∈ Γ(V0,k ×K,O). Then function f̃ determines a holomorphic function f̂
defined in a neighbourhood of V̄0,k with values in the Banach space Cb(K) of
bounded continuous functions on K endowed with sup-norm ‖ · ‖. Now, we apply
the Runge-type approximation theorem for Banach-valued holomorphic functions,
see [15], to obtain that for every ε > 0 there is a function F̂ ∈ O(U0, Cb(K)) such

that supx∈V̄0,k
‖f̂(x) − F̂ (x)‖ < ε. Then F̂ determines a function F ∈ O(U) such

that supω∈V̄k
|f(ω)− F (ω)| < ε, which implies (a). �

Corollary 7.10. Hi(U,O) = 0 for all i ≥ 1.

Proof. Follows from Lemmas 7.6 (2), 7.8 and 7.9. �
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Lemma 7.11. Let B, R be analytic sheaves on U . Let V0 � U0 be an open
polydisk, S ⊂ K a closed subset. Suppose that the sequence

(7.14) B
ψ ��R �� 0

is exact. Then the sequence

(7.15) q∗(B|V̄0×S)
q∗ψ �� q∗(R|V̄0×S) �� 0

is also exact. Here q : V̄0×S → V̄0 is the projection onto the first component and q∗
is the direct image functor.

Proof. We denote B̂ := q∗(B|V̄0×S), R̂ := q∗(R|V̄0×S), ψ̂ := q∗ψ. We have to show

that ψ̂ is surjective. Given open subsets W0 ⊂ V̄0, L ⊂ S by ΨW0×L we denote
the homomorphism of modules of sections Γ(W0 × L,B) → Γ(W0 × L,R) induced
by ψ, and by Ψ̂W0 the homomorphism of modules of sections Γ(W0, B̂) → Γ(W0, R̂)

induced by ψ̂. By the definition of direct image sheaf (see, e.g., Chapter F in [23]),

(7.16) Γ(W0 × S,B) ∼= Γ(W0, B̂), Γ(W0 × S,R) ∼= Γ(W0, R̂).

To prove exactness of (7.15) it suffices to show that for every point x0 ∈ V̄0, a

neighbourhood W0 ⊂ V̄0 of x0, and a section f̂x0 ∈ Γ(W0, R̂) there exists a section

ĝx0 ∈ Γ(W̃0, B̂) over a neighbourhood W̃0 ⊂W0 of x0 such that Ψ̂W̃0
(ĝx0) = f̂x0 |W̃0

.

Let fx0 ∈ Γ(W0 × S,R) be the section corresponding to f̂x0 under the second
isomorphism in (7.16). By definition, a section of sheaf R over W0 × S is the
restriction of a section of R over an open neighbourhood of W0 × S. Therefore,
shrinking W0, if necessary, we obtain that fx0 can be extended to a section of R
over W0 × M1, where M1 ⊂ K is an open neighbourhood of S. Since ψ is a
surjective sheaf homomorphism, for each point y ∈ {x0} ×M1 there exist open
sets W0,y ⊂ W0, Ly ⊂ M1 and a section sy ∈ Γ(W0,y × Ly,B) such that y ∈
W0,y × Ly and ΨW0,y×Ly(sy) = fx0|Wy×Ly . Since space Ĝa (⊃ M1) is compact
Hausdorff and, hence, is normal, there exists an open subset M2 ⊂ M1 such that
S ⊂ M2, and M̄2 ⊂ M1. Since M̄2 is compact, there exist finitely many points
{yj}mj=1 ⊂ S such that M̄2 ⊂ ∪jLyj . We set L̃yj := M̄2∩Lyj for all j. There exists a
partition of unity {ρj} ⊂ C(M̄2) subordinate to {L̃yj}. We define W̃0 := ∩jW0,yj ,
and set

gx0(z, η) :=
∑
j

ρj(η)syj (z, η), (z, η) ∈ W̃0 × S.

Then gx0 ∈ Γ(W̃0 ×M2,B). We have

ΨW̃0×S(gx0) =
∑
j

ρjΨW̃0×L̃yj
(syj ) =

∑
j

ρjfx0|W̃0×L̃yj
= fx0 |W̃0×S .

Let ĝx0 denote the section in Γ(W̃0, B̂) corresponding to gx0 under the first iso-

morphism in (7.16). Then Ψ̂W̃0
(ĝx0) = f̂x0|W̃0

, as required. �



Oka–Cartan theory for algebras of holomorphic functions I 1013

Definition 7.12. We say that an analytic sheaf R (on U) admits a free resolution
of length N ≥ 1 over U if there exists an exact sequence

(7.17) FN |U
ϕN−1�� · · ·

ϕ2 �� F2|U
ϕ1 �� F1|U

ϕ0 ��R �� 0,

where Fi are free sheaves, i.e., sheaves of the form Ok for some k ≥ 0 (by definition,
O0 = {0}).

Lemma 7.13. Let R be an analytic sheaf on U having a free resolution of length 3N,

(7.18) F3N |U
ϕ3N−1�� · · ·

ϕ2 �� F2|U
ϕ1 �� F1|U

ϕ0 ��R �� 0.

If N ≥ n (= dimC U0), then for each k the induced sequence of sections

(7.19) Γ(V̄k,FN )
ϕ̄N−1�� · · ·

ϕ̄2 �� Γ(V̄k,F2)
ϕ̄1 �� Γ(V̄k,F1)

ϕ̄0 �� Γ(V̄k,R) �� 0

is exact.

Proof. Let us fix k ≥ 1. Let q : V̄k → V̄0,k be the projection, q(x, η) = x,
(x, η) ∈ Vk := V0,k × Nk (see notation before Definition 7.7). Let q∗ denote the

direct image functor; set F̂i := q∗(Fi|V̄k
), R̂ := q∗(R|V̄k

), ϕ̂i := q∗ϕi. Applying q∗
to (7.18) we obtain a complex of sheaf homomorphisms

(7.20) F̂3N

ϕ̂3N−1�� · · ·
ϕ̂1 �� F̂1

ϕ̂0 �� R̂ �� 0

(a priori this sequence is not exact). By the definition of a direct image sheaf, the
sequence of sections of (7.20) over V̄0,k truncated to the N -th term,

(7.21) Γ(V̄0,k, F̂N) �� · · · �� Γ(V̄0,k, F̂1) �� Γ(V̄0,k, R̂) �� 0,

coincides with sequence (7.19). Hence, the assertion would follow once we proved
that sequence (7.21) is exact.

Now, the exact sequence (7.18) yields the collection of short exact sequences

(7.22) 0 ��Ri|V̄k

ι �� Fi|V̄k

ϕi−1��Ri−1|V̄k
�� 0, 1 ≤ i ≤ 3N − 1,

where Ri := Im ϕi (0 ≤ i ≤ 3N−1), R0 := R and ι stands for inclusion. We apply
to (7.22) the direct image functor q∗ and Lemma 7.11 to obtain the collection of
short exact sequences (recall that q∗ is left exact, see, e.g., Chapter F in [23])

(7.23) 0 �� Ti
ι̂ �� F̂i

ϕ̂i−1�� Ti−1
�� 0, 1 ≤ i ≤ 3N − 1,

where Ti := q∗Ri (0 ≤ i ≤ 3N − 1). An argument similar to that in the proof of
Lemma 7.6 implies H l(V̄0,k, F̂i) = 0, l ≥ 1, k ≥ 1, 1 ≤ i ≤ 3N . Hence, each short
exact sequence (7.23) yields a long exact sequence of the form

0 �� Γ(V̄0,k, Ti) �� Γ(V̄0,k, F̂i) �� Γ(V̄0,k, Ti−1) ��

H1(V̄0,k, Ti) �� 0 ��H1(V̄0,k, Ti−1) ��H2(V̄0,k, Ti) �� · · ·
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Thus, Hm(V̄0,k, Ti) ∼= Hm+1(V̄0,k, Ti+1), m ≥ 1, 1 ≤ i ≤ 3N − 2, and so

Hm(V̄0,k, Ti) ∼= Hm+l+1(V̄0,k, Ti+l+1), l ≥ −1.

Let us take m = 1, 1 ≤ i ≤ N , l := 2n− 2. Then

H1(V̄0,k, Ti) ∼= H2n+1(V̄0,k, Ti+2n−1), 1 ≤ i ≤ N.

Since N ≥ n, we have i + 2n − 1 ≤ 3N − 1 for all 1 ≤ i ≤ N ; hence, Ti+2n−1 is
well defined for all 1 ≤ i ≤ N . Since covering dimension of V̄0,k is equal to 2n,
H2n+1(V̄0,k, Ti+2n−1) = 0; therefore H1(V̄0,k, Ti) = 0, 1 ≤ i ≤ N . Thus, we obtain
the collection of short exact sequences

0 �� Γ(V̄0,k, Ti) �� Γ(V̄0,k, F̂i) �� Γ(V̄0,k, Ti−1) �� 0, 1 ≤ i ≤ N,

which yields exactness of sequence (7.21). The proof is complete. �

Lemma 7.14. Let R be an analytic sheaf on U having a free resolution of length 3N

(7.24) F3N |U
ϕ3N−1�� · · ·

ϕ2 �� F2|U
ϕ1 �� F1|U

ϕ0 ��R �� 0.

If N ≥ n, then R satisfies the Runge condition.

Proof. We have a short exact sequence

0 ��Ker ϕ0

ι �� F1|U
ϕ0 ��R �� 0,

where ι stands for inclusion. In the proof of Lemma 7.13 we have shown that,
under the present assumptions, for each k ≥ 1 the sequence of sections

0 �� Γ(V̄k,Ker ϕ0)
ῑ �� Γ(V̄k,F1)

ϕ̄0 �� Γ(V̄k,R) �� 0

is exact. Given a section h ∈ Γ(V̄k,F1), F1 := Om1 for some m1 ∈ Z+, we

define semi-norm |h|k := supx∈V̄k
‖ĥ(x)‖, where ‖ ·‖ is the Euclidean norm in Cm1 ,

and ĥ(ω) ∈ Cm denotes the value of germ h(ω) (i.e. the common value of its
representatives) at ω ∈ U . Now, for a section h ∈ Γ(V̄k,R) we set

(7.25) |f |k := inf
h
{|h|k : h ∈ Γ(V̄k,F1), ϕ̄0(h) = f}.

We obtain a family of semi-norms {| · |k : k ≥ 1} on Γ(U,R). Let us show that for
this family of semi-norms conditions (a)-(d) of Definition 7.7 are satisfied.

(a) Let f ∈ Γ(V̄k,R). There exists a section h ∈ Γ(V̄k,F1) such that f = ϕ̄0(h).
Using the same argument as in the proof of Lemma 7.9, we obtain that for any
ε > 0 there exists a section h̃ ∈ Γ(U,F1) such that |h̃ − h|k < ε. We set f̃ :=
ϕ̄0(h̃) ∈ Γ(U,R). By definition, |f̃ − f |k < ε, as required.

(b) Let f ∈ Γ(V̄k+1,R). Since

{h ∈ Γ(V̄k+1,F1), f = ϕ̄0(h)}|V̄k
⊂ {g ∈ Γ(V̄k,F1), f |V̄k

= ϕ̄0(g)}

and |h|k ≤ |h|k+1 for every h ∈ Γ(V̄k+1,F1), condition (b) is satisfied with Mk = 1
(k ≥ 1) (see (7.25)).
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(c) Let {fj} be a Cauchy sequence in Γ(V̄k+1,R). We must show that {fj|V̄k
}

has a limit in the space
(
Γ(V̄k,R), | · |k

)
. In fact, there exists a Cauchy sequence

{hj} ⊂ Γ(V̄k+1,Om1) such that fj = ϕ̄0(hj) for all j. Clearly, there exists a
function h ∈ O(Vk+1,C

m1) ∩C(V̄k+1,C
m1) such that

(7.26) sup
ω∈V̄k+1

|h(ω)− ĥj(ω)| → 0 as j → ∞.

Then h ∈ Γ(V̄k, O
m1) and by (7.26) |h − hj|k → 0 as j → ∞. Now, we set

f := ϕ̄0(h) ∈ Γ(V̄k,R), so by continuity |f − fj |k → 0 as j → ∞.

(d) Let f ∈ Γ(V̄k+1,R), |f |k+1 = 0. We must show that f |V̄k
= 0. Indeed, by

definition, there exists a sequence of sections hl ∈ Γ(V̄k+1,F1) such that f = ϕ̄0(hl)

for all l and supω∈V̄k+1
‖ĥl(ω)‖ → 0 as l → ∞. Let gl := h1 − hl, l ≥ 1. Then

gl ∈ Γ(V̄k+1,Ker ϕ0) and

(7.27) ĝl(ω) → ĥ1(ω) uniformly in ω ∈ V̄k+1 as l → ∞.

Now, suppose to the contrary that f |V̄k
�= 0. Then h1|V̄k

�∈ Γ(V̄k,Ker ϕ0).
Consider the second fragment of the free resolution of R:

(7.28) 0 ��Ker ϕ1

ι �� F2|U
ϕ1 ��Ker ϕ0

�� 0,

and the corresponding sequence of sections (see Lemma 7.13)

(7.29) 0 �� Γ(V̄k+1,Ker ϕ1)
ῑ �� Γ(V̄k+1,F2)

ϕ̄1 �� Γ(V̄k+1,Ker ϕ0) �� 0,

where ϕ̄1 is given by a matrix with entries in Γ(V̄k+1,O).
Recall that Γ(V̄k+1,F2) is endowed with sup-norm

(7.30) |g|k+1 = sup
ω∈V̄k+1

‖ĝ(ω)‖, g ∈ Γ(V̄k+1,F2).

Each section in the space Γ(V̄k+1,F2) determines a continuous function on V̄k+1

holomorphic in Vk+1. Let A(V̄k+1,F2) denote the completion of the space of
these functions with respect to norm (7.30). Analogously, we endow the space
Γ(V̄k+1,F1) with sup-norm and denote by A(V̄k+1,Ker ϕ0) the completion (with
respect to this norm) of its subspace Γ(V̄k+1,Ker ϕ0). Then (7.29) yields an exact
sequence of Banach spaces

A(V̄k+1,F2)
ϕ̄1 ��A(V̄k+1,Ker ϕ0) �� 0.

It follows from (7.27) that {gl}, with gl viewed as functions in A(V̄k+1,Ker ϕ0),
is a Cauchy sequence and hence has a limit g ∈ A(V̄k+1,Ker ϕ0). Then there
exists r ∈ A(V̄k+1,F2) such that g = ϕ̄1(r). Also, by Lemma 7.13 we obtain that
sequence (7.28) induces an exact sequence of sections

0 �� Γ(V̄k,Ker ϕ1)
ῑ|V̄k �� Γ(V̄k,F2)

ϕ̄1|V̄k�� Γ(V̄k,Ker ϕ0) �� 0.

Clearly, we have

A(V̄k+1,F2)|V̄k
⊂ Γ(V̄k,F2) and A(V̄k+1,Ker ϕ0)|V̄k

⊂ Γ(V̄k,Ker ϕ0).
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Hence, r|V̄k
∈ Γ(V̄k,F2) and g|V̄k

= ϕ̄1(r|V̄k
) ∈ Γ(V̄k,Ker ϕ0). Since, by our

definition, h1|V̄k
= g|V̄k

, we have h1|V̄k
∈ Γ(V̄k,Ker ϕ0), which contradicts the

assumption f |V̄k
�= 0. �

Lemma 7.15. Let R be an analytic sheaf over U admitting a free resolution of
length 4N

(7.31) F4N |U
ϕ4N−1�� · · ·

ϕ2 �� F2|U
ϕ1 �� F1|U

ϕ0 ��R �� 0.

If N ≥ n, and for each k, the sequence of sections

(7.32) Γ(V̄k,FN )
ϕ̄N−1�� · · ·

ϕ̄2 �� Γ(V̄k,F2)
ϕ̄1 �� Γ(V̄k,F1)

ϕ̄0 �� Γ(V̄k,R) �� 0

is exact, then the sequence of sections

(7.33) Γ(U,FN)
ϕ̄N−1�� · · ·

ϕ̄2 �� Γ(U,F2)
ϕ̄1 �� Γ(U,F1)

ϕ̄0 �� Γ(U,R) �� 0

is also exact.

Proof. Exact sequence (7.31) yields the collection of short exact sequences

(7.34) 0 ��Ri

ι �� Fi|U
ϕi−1��Ri−1

�� 0, 1 ≤ i ≤ N − 1,

where Ri := Im ϕi (0 ≤ i ≤ N − 1), R0 := R, and ι stands for inclusion. Recall
that the section functor Γ is left exact (see, e.g., Chapter 3 in [23]), hence we have
the collection of exact sequences

0 �� Γ(U,Ri)
ῑ �� Γ(U,Fi)

ϕ̄i−1�� Γ(U,Ri−1), 1 ≤ i ≤ N − 1.

It suffices to show that ϕ̄i−1 is surjective; this would imply that (7.33) is exact.
It follows from the exactness of sequence (7.32) that for each k, the sequences

(7.35) 0 �� Γ(V̄k,Ri)
ῑ �� Γ(V̄k,Fi)

ϕ̄i−1�� Γ(V̄k,Ri−1) �� 0, 1 ≤ i ≤ N − 1,

are exact. By Lemma 7.6 H1(V̄k,Fi) = 0, 1 ≤ i ≤ N , for all k ≥ 1, therefore the
long exact sequence induced by (7.34) over V̄k has the form

0 �� Γ(V̄k,Ri) �� Γ(V̄k,Fi) �� Γ(V̄k,Ri−1) ��

H1(V̄k,Ri) �� 0 ��H1(V̄k,Ri−1) ��H2(V̄k,Ri) �� · · · , 1 ≤ i ≤ N − 1.

Now it follows from (7.35) that H1(V̄k,Ri) = 0 for all k ≥ 1, 1 ≤ i ≤ N − 1.
The long exact sequence induced by (7.34) over U has the form

(7.36) 0 �� Γ(U,Ri) �� Γ(U,Fi) �� Γ(U,Ri−1) ��

H1(U,Ri) ��H1(U,Fi) ��H1(U,Ri−1) ��H2(U,Ri) �� · · · , 1 ≤ i ≤ N−1.
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Each sheaf Ri, 1 ≤ i ≤ N − 1, has a free resolution of length 3N , hence by
Lemma 7.14 it satisfies the Runge condition. It follows from Lemma 7.8 (2) that
H1(U,Ri) = 0 for all 1 ≤ i ≤ N − 1. We obtain from (7.36) that sequences

0 �� Γ(U,Ri)
ῑ �� Γ(U,Fi)

ϕ̄i−1�� Γ(U,Ri−1) �� 0, 1 ≤ i ≤ N − 1,

are exact, which implies exactness of sequence (7.33). �

Proof of Proposition 7.1. (1) Follows from Lemmas 7.13 and 7.15.
(2) According to Lemma 7.14 sheaf R satisfies the Runge condition. Hence, by

Lemma 7.8 we only have to show that Hi(V̄k,R) = 0 for all i ≥ 1 and k ≥ 1.
Let V be an open cover of V̄k := V̄0,k × K̄. It suffices to show that given an

i-cocycle σ ∈ Zi(V ,R) (see notation before Lemma 7.6) there exists a refinement
V ′ of V such that the image of σ by the refinement map Zi(V ,R) → Zi(V ′,R)
belongs to Bi(V ′,R).

By Lemma 7.5 (1) there exists a finite refinement U = {Uα}, Uα := U0,l × Lj ,
α = (l, j), of cover V of class (P ) (see Definition 7.4). Let s = sU be the number
of elements of U and let N ≥ max{n, s} be the length of the free resolution of R
over U . By the definition of an open cover of class (P ), a section of sheaf R
over an element Uα of U admits an extension to Ũα = Ũ0,l × Lj , where Ũ0,l =

Ũ1
0 × · · · × Ũn0 � U0 is a product domain such that each Ũ i0 ⊂ C (1 ≤ i ≤ n) is

simply connected and has smooth boundary, and U0,l = V̄0,k ∩ Ũ0,l. By part (1) of
the proposition, over each Uα the sequence of sections Uα corresponding to (7.1)
is exact (there we can take product domain Ũ0,l instead of polydisk U0). Hence,
we have a sequence of cochain complexes

C·(U ,FN ) �� · · · �� C·(U ,F1) �� C·(U ,R) �� 0.

By Lemma 7.5 (2) there exists a refinement U ′ of cover U of class (P ) of the same
cardinality. We have a commutative diagram with exact rows

C·(U ′,FN ) · · ·�� · · · C·(U ′,F1)�� C·(U ′,F1) C·(U ′,R)�� C·(U ′,R) 0��

C·(U ,FN ) · · ·�� · · · C·(U ,F1)�� C·(U ,F1) C·(U ,R)�� C·(U ,R) 0��C·(U ,FN )

C·(U ′,FN )
��

C·(U ,F1)

C·(U ′,F1)
��

C·(U ,R)

C·(U ′,R)
��

or, equivalently, the collection of commutative diagrams with exact rows

0 C·(U ′,Ri)�� C·(U ′,Ri) C·(U ′,Fi)�� C·(U ′,Fi) C·(U ′,Ri−1)�� C·(U ′,Ri−1) 0,��

0 C·(U ,Ri)�� C·(U ,Ri) C·(U ,Fi)�� C·(U ,Fi) C·(U ,Ri−1)�� C·(U ,Ri−1) 0��C·(U ,Ri)

C·(U ′,Ri)
��

C·(U ,Fi)

C·(U ′,Fi)
��

C·(U ,Ri−1)

C·(U ′,Ri−1)
��

where Ri := Im ϕi (0 ≤ i ≤ N − 1), R0 := R.
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In turn, each row yields the long exact sequence

0 �� Γ(V̄k,Ri) �� Γ(V̄k,Fi) �� Γ(V̄k,Ri−1) ��

H1(U ,Ri) ��H1(U ,Fi)
ϕ1

i−1��H1(U ,Ri−1)
ψ2

i ��H2(U ,Ri) �� · · · , 1 ≤ i ≤ N − 1,

(and a similar one for U ′), where H l(U ,Ri) := Z l(U ,Ri)/Bl(U ,Ri) are the Čech
cohomology groups corresponding to cover U . These sequences form the commu-
tative diagram

· · · H l(U ′,Ri)�� H l(U ′,Ri) H l(U ′,Fi)�� H l(U ′,Fi) H l(U ′,Ri−1)
(ϕl

i−1)
′
�� H l(U ′,Ri−1) H l+1(U ′,Ri)

(ψl+1
i )′�� H l+1(U ′,Ri) · · ·��

· · · H l(U ,Ri)�� H l(U ,Ri) H l(U ,Fi)�� H l(U ,Fi) H l(U ,Ri−1)
ϕl

i−1 �� H l(U ,Ri−1) H l+1(U ,Ri)
ψl+1

i �� H l+1(U ,Ri) · · ·��H l(U ,Ri)

H l(U ′,Ri)
��

H l(U ,Fi)

H l(U ′,Fi)

ιli

��

H l(U ,Ri−1)

H l(U ′,Ri−1)

γl
i−1

��

H l+1(U ,Ri)

H l+1(U ′,Ri)

γl+1
i

��

where ιli, γ
l
i−1, γ

l+1
i are the corresponding refinement maps.

We have to show that given σ∈H l(U ,R), l≥1, there exists a refinement W of
cover U such that the image of σ in H l(W ,R) is zero. We construct this refinement
using the following algorithm.

Suppose that there exists a non-zero σ ∈ H l(U ,Ri−1). Consider the following
case:

(*) ψl+1
i (σ) = 0. Then there exists η ∈ H l(U ,Fi) such that σ = ϕli−1(η).

We have γli−1(σ) = (ϕli−1)
′(ιli(η)). By Lemma 7.6 ιli

(
H l(U ,Fi)

)
= 0, hence the

image of σ by the refinement map γli−1(σ) = 0 ∈ H l(U ′,Ri−1).
We start with R0 = R assuming that there exists a non-zero σ ∈ H l(U ,R),

l ≥ 1. If case (*) occurs we set W := U ′. For otherwise, there exists 2 ≤ k ≤ s such
that (ψl+kk ◦ · · · ◦ ψl+1

1 )(σ) = 0 ∈ H l+k(U ,Rk). (Indeed, assuming the opposite
we obtain a non-zero element of H l+s(U ,Rs); however, since the cardinality of U
is s, we have H l+s(U ,Rs) = 0, a contradiction.) Thus case (*) occurs for σ̃ :=
(ψl+k−1
k−1 ◦ · · · ◦ ψl+1

1 )(σ) instead of σ which implies that the image of σ̃ under the

refinement map H l+k−1(U ,Rk−1) → H l+k−1(U ′,Rk−1) is zero. Further, starting
with cover U ′ (instead of U) and applying consequently case (*) to images of
(ψl+pp ◦ · · · ◦ ψl+1

1 )(σ), p = k − 2, . . . , 1, under the corresponding refinement maps
we finally obtain the required refinement W of U such that the image of σ under
the refinement map H l(U ,R0) → H l(W ,R0) is zero. �

7.2. Proof of Proposition 7.2

The proof is based on the following lemma.

Lemma 7.16. Let U0 � Cn be an open polydisk, and K1, K2 ∈ Q. Let R be an
analytic sheaf over U0 × (K1 ∪K2). Let x0 ∈ U0.

Suppose that for every N ≥ 1 sheaf R admits free resolutions of length N over
U0 × K1 and U0 × K2. Then for any open subsets L1 � K1, L2 � K2 such that
Li ∈ Q (i = 1, 2), there exists an open neighbourhood V0 ⊂ U0 of x0 such that for
every N ≥ 1 sheaf R admits a free resolution of length N over V0 × (L1 ∪ L2).
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We prove Lemma 7.16 in the next subsection but now we use it in the proof of
the proposition.

Proof of Proposition 7.2. Let U0 � Cn be an open polydisk, x0 ∈ U0. Since sets
p̄−1(U0) and U0 × Ĝa are biholomorphic (see subsection 4.2), it suffices to prove
the proposition for a coherent sheaf A over U0 × Ĝa.

By the definition of a coherent sheaf (see (2.4)), there exists a finite open cover
of {x0} × Ĝa by sets W0,i × Li, where W0,i ⊂ U0 is an open neighbourhood of x0,

∪iLi = Ĝa, and for every N ≥ 1 sheaf A admits free resolutions of length N over
each W0,i × Li.

By Lemma 5.2 there exists a collection of finite refinements

Lk(m) = {Lkj : Lkj ∈ Q, 1 ≤ j ≤ m}, k ≥ 1,

of open cover {Li} such that Lk+1
j � Lkj for all 1 ≤ j ≤ m, k ≥ 1.

Let k = 1. We apply Lemma 7.16 to sheaf A with K1 := L1
m−1, K2 := L1

m,
L1 := L1

m−1, L2 := L2
m−1 to obtain an open neighbourhood V0 := V0,m ⊂ ∩iW0,i

of x0 such that for each N ≥ 1 sheaf A has a free resolution of length N over
V0,m × (L2

m−1 ∪ L2
m−1).

Next, we set

Lk(m− 1) := {Lk1 , . . . , Lkm−2, L̃
k
m−1}, L̃km−1 := Lkm−1 ∪ Lkm, k ≥ 2.

Taking k = 2 we apply an argument similar to the above to the cover L2(m−1)
of Ĝa obtaining that for each N ≥ 1 sheaf A has a free resolution of length N over
V0,m−1× (L3

m−2∪ L̃3
m−1) for some open neighbourhood V0,m−1 ⊂ V0,m of x0. Then

we define

Lk(m− 2) := {Lk1 , . . . , Lkm−3, L̃
k
m−2}, L̃km−2 := Lkm−2 ∪ L̃km−1, k ≥ 3, etc.

After m − 1 steps we obtain that there exists an open neighbourhood V0,1 ⊂⋂
iW0,i of x0 such that for each N ≥ 1 sheaf A has a free resolution over V0,1× Ĝa,

as required. �

7.3. Proof of Lemma 7.16

We will use the following notation.
Let Ml×k(C) be the space of l × k matrices C = (cij) with entries cij ∈ C

endowed with norm |C| := max{|cij |}l,ki,j=1. We set Mk(C) :=Mk×k(C).
Let GLk(C) ⊂ Mk(C) be the group of invertible matrices. We denote by

I = Ik ∈ GLk(C) the identity matrix.
Let U0 ⊂ Cn be an open polydisk, K ∈ Q; set U := U0 × K. The space

O(U,Mk(C)) of holomorphic Mk(C)-valued functions is endowed with norm

‖F‖U := sup
x∈U

|F (x)|, F ∈ O(U,Mk(C)).

The subset O(U,GLk(C)) ⊂ O(U,Mk(C)) of holomorphic GLk(C)-valued maps
on U has the induced topology of uniform convergence on compact subsets of U
(see Lemma 5.3 (2)).
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The identity map (z, ω) → I, (z, ω) ∈ U , will be denoted also by I.

Lemma 7.17. Let U ′ := U0 ×K ′, U ′′ := U0 ×K ′′, where K ′, K ′′ ∈ Q. Suppose
that H ∈ O

(
U ′ ∩ U ′′, GLk(C)

)
belongs to the connected component of the identity

map I in O(U ′ ∩ U ′′, GLk(C)).
Then for any open polydisk V0 � U0 and open subsets L′ � K ′, L′′ � K ′′ there

exists a function H ′ ∈ O
(
V ′ ∪ V ′′, GLk(C)

)
, where V ′ := V0 ×L′, V ′′ := V0 × L′′,

such that H ′|V ′∩V ′′ = H |V ′∩V ′′ .

Proof. We may assume without loss of generality that polydisks V0, U0 are centered
at the origin 0 ∈ Cn.

First, suppose that ‖I − H‖V ′∩V ′′ < 1/2. Then we can define F := logH =

−
∑∞
j=1

(I−H)j

j ∈ O
(
V ′∩V ′′,Mk(C)

)
∩C

(
V̄ ′∩V̄ ′′,Mk(C)

)
. Let us show that there

exists a function F ′ ∈ O
(
V ′ ∪ V ′′,Mk(C) such that F ′|V ′∩V ′′ = F |V ′∩V ′′ . Indeed,

we can expand the C(L̄′ ∩ L̄′′,Mk(C))-valued holomorphic function F (z, ·) in the
Taylor series about 0,

F (z, η) =

∞∑
m=0

bm(η)zm, z ∈ Ṽ0, η ∈ L̄′ ∩ L̄′′,

where bm ∈ C(L̄′ ∩ L̄′′,Mk(C)) and Ṽ0 is an open neighbourhood of V̄0. Note
that L̄′ ∪ L̄′′ is compact (as a closed subspace of compact space Ĝa), and hence is
normal. Therefore, using the Tietze–Urysohn extension theorem, we can extend
each bm to a function b̃m ∈ C(L̄′ ∪ L̄′′,Mk(C)) such that supω∈L̄′∩L̄′′ |bm(ω)| =
supω∈L̄′∪L̄′′ |b̃m(ω)|. Then we define

F ′(z, ω) :=
∞∑
m=0

b̃m(ω)zm, z ∈ V0, ω ∈ L′ ∪ L′′.

(Since the above series converges uniformly on relatively compact subsets of Ṽ0,
F ′ ∈ O

(
V ′ ∪ V ′′,Mk(C) and satisfies the required condition.)

Now, we set H ′ := exp(F ′) ∈ O
(
V ′ ∪ V ′′, GLk(C)

)
completing the proof of the

lemma in this case.
Further, let H ∈ O

(
U ′∩U ′′, GLk(C)

)
be an arbitrary GLk(C)-valued bounded

holomorphic map belonging to the connected component of the identity map I of
O
(
U ′ ∩ U ′′, GLk(C)

)
.

Let us show that H |V ′∩V ′′ can be presented in the form

(7.37) H |V ′∩V ′′ = H1 · · ·H l,

where each Hi ∈ O(V ′ ∩ V ′′, GLk(C)), 1 ≤ i ≤ l, satisfies

(7.38) ‖I −Hi‖V ′∩V ′′ <
1

2
.

In fact, since H belongs to the connected component of the identity map I, there
exists a continuous path Ht ∈ O

(
U ′ ∩ U ′′, GLk(C)

)
(t ∈ [0, 1]) such that H0 = I
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and H1 = H . Consider a partition 0 = t0 < t1 < · · · < tl = 1 of the unit
interval [0, 1], and define

Hi(z, ω) = H−1
ti−1

(z, ω)Hti(z, ω), (z, ω) ∈ V ′ ∩ V ′′, 1 ≤ i ≤ l,

which gives us identity (7.37). Provided that max1≤i≤l−1 |ti+1 − ti| is sufficiently
small, inequality (7.38) holds for all 1 ≤ i ≤ l.

Now, according to the first case there exist (Hi)′ ∈ O(V ′ ∪ V ′′, GLk(C)) such
that (Hi)′|V ′∩V ′′ = Hi|V ′∩V ′′ . We define H ′ := (H1)′ · · · (H l)′. �

Corollary 7.18. In the notation of Lemma 7.17, for any open polydisk V0 � U0

and open subsets L′ � K ′, L′′ � K ′′ there exist functions h′ ∈ O
(
V ′, GLk(C)

)
,

h′′ ∈ O
(
V ′′, GLk(C)

)
such that

H = h′h′′ on V ′ ∩ V ′′.

Proof. Let H ′ ∈ O(V ′ ∪ V ′′, GLk(C)) be as in Lemma 7.17. Since H ′|V ′∩V ′′ =
H |V ′∩V ′′ , we can choose h′ := H ′|V ′ , h′′ := I. �

Lemma 7.19. Any analytic homomorphism ϕ : O|kU → O|lU is determined by a
holomorphic function Φ ∈ O

(
U,Ml×k(C)

)
.

The proof of Lemma 7.19 follows directly from the definitions (cf. Section 4.4).

We extend to our framework the notion of a completely exact sequence of sheaves
from [31]:

Definition 7.20. Let R, Bi, 1 ≤ i ≤ N , be analytic sheaves over U . We say that
a sequence

(7.39) BN �� · · · �� B2
�� B1

��R �� 0

is completely exact if for any m ≥ 1 the sequence of sections

Γ(U,HomO(Om,BN)) �� · · ·
�� Γ(U,HomO(Om,B1)) �� Γ(U,HomO(Om,R)) �� 0

or, equivalently,

(7.40) Γ(U,BmN ) �� · · · �� Γ(U,Bm1 ) �� Γ(U,Rm) �� 0,

is exact.
Here Bmi and Rm stand for the direct product of m copies of Bi and R, re-

spectively, and HomO(Om,Bi), HomO(Om,R) are the sheaves of germs of analytic
homomorphisms Om → Bi, Om → R, respectively.

Note that if sequence (7.40) is exact for m = 1, then it is exact for all m ≥ 1.

Lemma 7.21. Let B, C be analytic sheaves on U . If sequence B γ→ C → 0 is
completely exact, and ϕ : Ok|U → C is an analytic homomorphism, then there is
an analytic homomorphism ψ : Ok|U → B such that ϕ = γψ.
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Proof. We can take ψ in the preimage of ϕ under the surjective homomorphism

γ̄ : Γ(U,HomO(Ok,B)) → Γ(U,HomO(Ok, C))

induced by γ (see Definition 7.20). �

Lemma 7.22 (Three lemma). Let A, B and C be analytic sheaves on U . Suppose
that sequence

0 ��A
β
�� B

γ
�� C �� 0

is completely exact. If two sheaves among A, B and C have free resolutions of
length N + n, where n := dimC U0, N ≥ n + 2, then the third one has a free
resolution of length N − n− 1.

The proof of Lemma 7.22 follows closely the arguments in the proofs of an
analogous result (for “cohesive sheaves”) in [31]. For the sake of completeness, we
provide the proof of Lemma 7.22 in the Appendix; but now we will use it in the
proof of Lemma 7.16.

Proof of Lemma 7.16. We denote U1 := U0 ×K1, U2 := U0 ×K2. Let N ≥ n+ 1.
Consider free resolutions of R of length M ≥ 4N ,

(7.41) OkM,i |Ui
�� · · · ��Ok1,i |Ui

αi ��R|Ui
�� 0, i = 1, 2.

Consider the end portions of (7.41):

(7.42) Oki |Ui

αi ��R|Ui
�� 0, i = 1, 2.

Let U := U0 × (K1 ∪K2). We denote by πi : Ok1 |U ⊕Ok2 |U → Oki |U , i = 1, 2, the
natural projection homomorphisms.

First, let us show that there exists an injective analytic homomorphism H :
Ok1 |U ⊕Ok2 |U → Ok1 |U ⊕Ok2 |U such that α1π1H = α2π2. By Proposition 7.1 (1)
sequence (7.41) truncated to the N -th term (and, hence, sequence (7.42)) is com-
pletely exact. By Lemma 7.21 we can factor α1 = α2ψ, α2 = α1ϕ on U1 ∩ U2

for some analytic homomorphisms ψ : Ok1 |U1∩U2 → Ok2 |U1∩U2 , ϕ : Ok2 |U1∩U2 →
Ok1 |U1∩U2 . Now, identifying sheaf homomorphisms ψ, ϕ with the holomorphic
matrix functions that determine them (see Lemma 7.19), we define

H =

(
Ik1 ϕ
0 Ik2

)(
Ik1 0
ψ Ik2

)−1

∈ O(U1 ∩ U2, GLk(C)),

where k := k1 + k2. It is immediate that α1π1H = α2π2. The map H belongs
to the connected component of the identity map in O(U1 ∩ U2, GLk(C)). Indeed,
consider a path Ht ∈ O(U1 ∩ U2, GLk(C)) (t ∈ [0, 1]),

Ht :=

(
Ik1 tϕ
0 Ik2

)(
Ik1 0
tψ Ik2

)−1

,

so that H0 = Ik, H1 = H .
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Next, let Li � Ki, Li ∈ Q (i = 1, 2) and V0 � U0 be an open polydisk, and
x0 ∈ V0. Let L

m
i ∈ Q (i = 1, 2), m ≥ 1, be the collection of open subsets of Ki such

that Li � Lm+1
i � Lmi � Ki for all m ≥ 1 (i = 1, 2) obtained in Lemma 5.3 (3).

Let {V m0 } be a collection of open polydisks such that V0 � V m+1
0 � V m0 � U0

for all m ≥ 1.
We set V mi := V m0 × Lmi , Vi := V0 × Li (i = 1, 2), m ≥ 1.
We now amalgamate the free resolutions of R over V1 ∪ V2.
Let m = 1. By Corollary 7.18 there exist functions hi ∈ O(V 1

i , GLk(C))
(i = 1, 2) such that H = h1h2 on V 1

1 ∩ V 1
2 . Since α1π1H = α2π2, the sheaf

homomorphisms

α1π1h1 : Ok1 |V 1
1
⊕Ok2 |V 1

1

��R|V 1
1

�� 0,

α2π2h
−1
2 : Ok1 |V 1

2
⊕Ok2 |V 1

2

��R|V 1
2

�� 0

coincide over V 1
1 ∩ V 1

2 ; they induce an analytic homomorphism

α : Ok1 |V 1
1 ∪V 1

2
⊕Ok2 |V 1

1 ∪V 1
2

��R|V 1
1 ∪V 1

2
.

Let R1 := Ker α. The sequence

0 ��R1|V 1
1 ∪V 1

2

��Ok1 |V 1
1 ∪V 1

2
⊕Ok2 |V 1

1 ∪V 1
2

α ��R|V 1
1 ∪V 1

2

�� 0

is completely exact over sets V 1
1 and V 1

2 since sequences (7.42) are. By Lemma 7.22
the analytic sheaf R1 has free resolutions over V 1

1 and V 1
2 (of length 4N − 2n− 1)

because two other sheaves have.
Provided that M was chosen sufficiently large, we can repeat this construction

N − 1 times over subsets V m1 , V m2 , 1 ≤ m ≤ N − 1, obtaining in the end a free
resolution of R over V1 ∪ V2 having length N . Since V0, L1, L2 and N were
arbitrary, the required result follows. �

8. Proof of Theorem 4.6

We have to prove that for a connected complex manifold M and a map F ∈
O(M, caX) there exists a ‘horizontal layer’ X̂H (H ∈ Υ) such that F (M) ⊂ X̂H

(see subsection 4.1 for notation).

Proof. Let y0 := F (z0) for some z0 ∈ M . Then y0 ∈ X̂H0 for some H0 ∈ Υ.
Also, y0 is contained in a coordinate chart Π̂(U0,K) ⊂ caX . In what follows, we
identify Π̂(U0,K) with U0 ×K, see subsection 4.2, so that y0 = (x0, η0) for some
x0 ∈ U0, η0 ∈ K. Let πK : U0 × K → K be the natural projection. Then for
each h ∈ C(K) the pullback hK := (πK)∗h ∈ O(U0,K) and is constant on subsets
U0 × {η} for all η ∈ K. Since F is a holomorphic map, F ∗hK is holomorphic
on open subset F−1(U0 ×K) ⊂ M . Since the complex conjugate h̄K of hK also
belongs to O(U0,K), the function F ∗h̄K = F ∗hK is holomorphic on F−1(U0 ×K)
as well. Therefore, F ∗hK must be locally constant. Let W ⊂M be the connected
component of F−1(U0 ×K) containing z0; then F

∗hK ≡ h(η0) on W .
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Now, let us show that F (W ) ⊂ U0 × {η0} ⊂ X̂H0 . Indeed, there exist open
subsets Lλ ⊂ K (λ ∈ Λ) such that η0 ∈ Lλ for all λ and ∩λ∈ΛLλ = {η0}. Since Ĝa

is a compact space and each subset Lλ is open in Ĝa, for every λ there exists a
continuous partition of unity subordinate to the open cover {Lλ, Ĝa \ {η0}} of Ĝa.
We denote by hλ ∈ C(K) the restriction to K of the element of the partition of
unity with support in Lλ. Then 0 ≤ hλ ≤ 1, hλ(η0) = 1, hλ(η) = 0 on K \ Lλ.
Since F ∗(hλ)K ≡ hλ(η0) = 1 for all λ, we obtain that F (W ) ⊂ U0 × Lλ for all λ;
hence, F (W ) ⊂ U0 × ∩λ∈ΛLλ = U0 × {η0} ⊂ X̂H0 .

We have established that every point in M has a neighbourhood W such that
F (W ) ⊂ X̂H for some H ∈ Υ. Since X̂H1 ∩ X̂H2 = ∅ if H1 �= H2 and M is
connected, the latter implies that F (M) ⊂ X̂H0 for a certain H0 and completes
the proof of the theorem. �

8.1. Proof of Proposition 4.7

The proof of Proposition 4.7 essentially repeats the proof of an analogous result
for coherent analytic sheaves on complex manifolds, see, e.g., [24].

First, let A be a coherent subsheaf of Ok and let U ∈ B (see (4.4)). By
Lemma 5.3 (2) there exist open sets Vk ∈ B such that Vk � Vk+1 � U for all k,
and U = ∪kVk. We endow space Γ(U,A) of sections of sheaf A over U with the
topology of uniform convergence on V̄k for all k. Then Γ(U,A) becomes a metriz-
able topological vector space. We have to show that space Γ(U,A) is complete,
i.e., it is a Fréchet space.

It is easy to see that space Γ(U,Ok) endowed with such topology is complete.
Since A is coherent, we may assume that there exists a free resolution (2.4) of A
over U of length 4N , N > n := dimCX0. Therefore, we have a short exact sequence

0 ��Ker ϕ
ι ��Om|U

ϕ ��A|U �� 0,

where ι denotes the inclusion. In the proof of Proposition 7.1 (1) we have shown
that the sequence of sections

(8.1) 0 �� Γ(U,Ker ϕ)
ῑ �� Γ(U,Om)

ϕ̄ �� Γ(U,A) �� 0

is exact (see Lemmas 7.13 and 7.15). By our assumption Γ(U,A) ⊂ Γ(U,Ok).
By Lemma 7.19 the Γ(U,O)-module homomorphism ϕ̄ : Γ(U,Om) → Γ(U,Ok)
is determined by a k × m matrix with entries in O(U), hence it is continuous;
further, ῑ is continuous. Since sequence (8.1) is exact, Γ(U,Ker ϕ) ∼= Ker ϕ̄, hence
Γ(U,Ker ϕ) is closed. Therefore, Γ(U,A), being a quotient of a complete space by
its closed subspace, is a complete space.

We note that by the open mapping theorem the topology on Γ(U,A) coincides
with the quotient topology determined by (8.1).

Now, let A be an arbitrary coherent sheaf on caX . Similarly, we have a free
resolution (2.4) of A over a neighbourhood U of length 4N , N > n, which yields
a short exact sequence of sheaves

(8.2) 0 ��Ker ϕ
ι ��Om|U

ϕ
��A|U �� 0
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and an exact sequence of sections

(8.3) 0 �� Γ(U,Ker ϕ)
ῑ �� Γ(U,Om)

ϕ̄ �� Γ(U,A) �� 0.

Using Lemma 7.22 (Three lemma), we obtain that Ker ϕ is a coherent subsheaf
of Om|U , so by the previous part the subspace Γ(U,Ker ϕ) ⊂ Γ(U,Om) is closed.
We introduce in Γ(U,A) the quotient topology defined by (8.3) which makes it a
complete (i.e., Fréchet) space and also implies the last assertion of the proposition
concerning the family of semi-norms determining the topology in Γ(U,A).

Let us show that thus defined topology on Γ(U,A) does not depend on the
choice of resolution (8.2). Suppose that there is another resolution

0 ��Ker ϕ′ ι ��Om′ |U
ϕ′

��A|U �� 0.

By Lemma 9.1 there is a homomorphism ψ : Om|U → Om′ |U such that the diagram
of exact sequences of sheaves

Om′ |U A|U
ϕ′

�� A|U 0��

Om|U A|U
ϕ �� A|U 0��Om|U

Om′ |U

ψ

��

A|U

A|U

λ

��

is commutative. Therefore, we have a commutative diagram

Γ(U,Om′
) Γ(U,A)

ϕ̄′
�� Γ(U,A) 0��

Γ(U,Om) Γ(U,A)
ϕ̄ �� Γ(U,A) 0��Γ(U,Om)

Γ(U,Om′
)

ψ̄

��

Γ(U,A)

Γ(U,A)

λ̄

��

of exact sequences of sections. By our construction ϕ̄, ϕ̄′ are continuous and
surjective, ψ̄ is continuous as a homomorphism of sections of free sheaves. By the
open mapping theorem the preimage of an open set by λ̄−1 = ϕ̄ ◦ (ψ̄)−1 ◦ (ϕ̄′)−1 is
open, so λ̄ is continuous and, hence, it is a homeomorphism.

Finally, let γ : A → B be an analytic homomorphism. Let us show that γ is
continuous. Analogously to the previous part applying Lemma 9.1 we obtain a
commutative diagram of exact sequences of sheaves which yields a commutative
diagram of exact sequences

Γ(U,Om′
)|U Γ(U,B)ϕ̄′

�� Γ(U,B) 0.��

Γ(U,Om) Γ(U,A)
ϕ̄ �� Γ(U,A) 0��Γ(U,Om)

Γ(U,Om′
)|U

ψ̄

��

Γ(U,A)

Γ(U,B)

γ̄

��

As before, the continuity of γ̄ can be deduced from the continuity of the other
homomorphisms in the diagram. This completes the proof of the proposition.
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9. Appendix

9.1. Proof of Lemma 7.22

The proof follows closely the arguments in [31]. We will need the following lemmas.

Lemma 9.1. Let A be an analytic sheaf on U that admits a free resolution of
length N

(9.1) FN |U
ϕN−1�� · · ·

ϕ2 �� F2|U
ϕ1 �� F1|U

ϕ0 ��A �� 0.

Given a completely exact sequence of analytic sheaves Bi on U , 0 ≤ i ≤ N ,

(9.2) BN
βN−1�� · · · �� B2

β1 �� B1

β0 �� B0
�� 0

a sheaf homomorphism Φ0 : A → B0 can be extended to a homomorphism Φj : Fj|U
→ Bj (0 ≤ j ≤ N) of sequences (9.1) and (9.2).

Proof. The proof is by induction. We put ϕ−1 := 0, β−1 := 0. Suppose that for
0 ≤ j ≤ r, r ≤ N − 1 the homomorphisms Φj : Fj |U → Bj have been constructed,
so that Φj−1ϕj−1 = βj−1Φj . If r = N − 1, then we are done. For r < N − 1 we
have βr−1(Φrϕr) = Φr−1ϕr−1ϕr = 0. The sequence

Γ(U,HomO(Fr+1,Br+1)) �� · · · �� Γ(U,HomO(Fr+1,B0)) �� 0

is exact since (9.2) is completely exact (see Definition 7.20), hence there is a ho-
momorphism Φr+1 ∈ Γ(U,HomO(Fr+1,Br+1)) such that Φrϕr = βrΦr+1 over U ,
as required. �

Lemma 9.2. Given a free resolution (9.1) of an analytic sheaf A on U of length N
the sheaf Ker ϕn−1 = Im ϕn on U , 1 ≤ n ≤ N − 1, has a free resolution of
length N − n.

Proof. Follows immediately from Definition 7.12 of a free resolution of an analytic
sheaf. �

Lemma 9.3. Let A0 be an analytic sheaf over U . Suppose that for a given N ≥ 1
there exists a completely exact sequence of analytic sheaves Ai on U , 1 ≤ i ≤
2N + 2,

(9.3) A2N+2

αM−1�� · · ·
α1 ��A1

α0 ��A0
�� 0

such that sheaves Ai, 1 ≤ i ≤ 2N +2, have free resolutions of length n+N , where
n := dimC U0. Then A0 has a free resolution of length N .

Proof. Let M := 2N + 2.
(1) First, we construct a completely exact sequence of lengthM −2 of the form

(9.4) BM−2

βM−3�� · · ·
β2 �� B2

β1 �� B1

ε0 ��A0
�� 0,
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where B1 = Ok|U for some k ≥ 0 is a free sheaf and Bk, 2 ≤ k ≤ M − 2, are
analytic sheaves on U having free resolutions of length N + n− 1. Let

Fn+N,k �� · · · �� F1,k

ωk ��Ak
�� 0

be a free resolution of Ak, 1 ≤ k ≤ M . By Lemma 9.1 there exist analytic
homomorphisms ψk such that the diagram

(9.5) AM

0��

F1,M

AM

ωM

��AM · · ·
αM−1 ��

F1,M · · ·
ψM−1 ��

· · · A2
α2 �� A2

0��

A1

0��

A2 A1
α1 �� A1 A0

α0 �� A0 0��

· · · F1,2
ψ2 �� F1,2 F1,1

ψ1 ��F1,2

A2

ω2

��

F1,1

A1

ω1

��

is commutative. Let us show that the sequence

(9.6) F1,M ⊕Ker ωM−1

βM−1�� · · ·
β2 �� F1,2 ⊕Ker ω1

β1 �� F1,1

β0 ��A0
�� 0

truncated to term F1,M−2⊕Ker ωM−3 is completely exact. Here β0 := α0ω1, β1 :=
ψ1 − ι1, where ιk : Ker ωk ↪→ F1,k is an inclusion, and βk = (ιk ⊕ ψk−1)(ψk − ιk),
for k ≥ 2.

Indeed, we apply to (9.5) and (9.6) left exact functor Γ(U,HomO(E , ·)), where E
is a free sheaf. Let

Ak := Γ(U,HomO(E ,Ak)), (0 ≤ k ≤M),

Fk := Γ(U,HomO(E ,F1,k)), (1 ≤ k ≤M).

Then we obtain commutative diagrams of abelian groups

(9.7) AM · · ·
aM−1 �� · · · A2

a2 �� A2 A1
a1 �� A1 A0

a0 �� A0 0��

FM · · ·
pM−1 �� · · · F2

p2 �� F2 F1
p1 ��FM

AM

wM

��

F2

A2

w2

��

F1

A1

w1

��AM

0��

A2

0��

A1

0��

and

(9.8) FM ⊕Ker wM−1

bM−1�� · · ·
b2 �� F2 ⊕Ker w1

b1 �� F1

b0 �� A0
�� 0.
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Note that complete exactness of sequence (9.6) truncated to F1,M−2 ⊕Ker ωM−3

is equivalent by definition to the exactness of sequence (9.8) truncated to term
FM−2 ⊕ Ker wM−3. By Definition 7.20 the middle row of (9.7) is exact. Also, by
Proposition 7.1 (1) each wk, 1 ≤ k ≤ M , is surjective, so the columns of (9.7) are
exact. Hence, we have analogous identities

(9.9) b0 = a0w1, b1 = p1 − i1, bk = (ik ⊕ pk−1)(pk − ik),

where ik : Ker wk ↪→ Fk is an inclusion. Let us show that (9.8) is exact up to
term FM−2 ⊕Ker wM−3. First, note that b0 is surjective because both a0 and w1

are. Second, if ξ ∈ Ker b0, then w1(ξ) ∈ Ker a0 = Im a1 = Im a1w2 = Im w1p1.
Here we have used the fact that w2 is surjective. Let w1(ξ) = w1(p1(ζ)) and
τ := p1(ζ)−ξ ∈ Ker w1, so that ξ = b1(ζ, τ) ∈ Im b1. Third, if 1 ≤ k ≤M−3, and
(ξ, η) ∈ Ker bk = Ker (pk − ik), then η = pk(ξ) and 0 = wk(pk(ξ)) = ak(wk+1(ξ));
hence wk+1(ξ) ∈ Im ak+1 = Im ak+1wk+2 = Im wk+1pk+1. Choose ζ so that
wk+1(ξ) = wk+1(pk+1(ζ)). Then τ := pk+1(ζ) − ξ ∈ Ker wk+1. We conclude
that (ξ, η) = bk+1(ζ, τ) ∈ Im bk+1, i.e., sequence (9.8) is indeed exact up to term
FM−2 ⊕Ker wM−3.

Now, by Lemma 9.2 each F1,k ⊕ Ker ωk−1 has a free resolution of length N +
n− 1. Hence, if we take

B1 := F1,1, ε0 := β0, Bk := F1,k ⊕Ker ωk−1, 2 ≤ k ≤M − 2,

we obtain the required completely exact sequence (9.4).

(2) Now, consider completely exact sequence obtained from (9.4),

BM
βM−1�� · · ·

β2 �� B2

β1 ��Ker ε0 �� 0.

Applying case (1) to this sequence we obtain that there is a completely exact
sequence

DM−4
�� · · · ��D3

��D2

ε1 ��Ker ε0 �� 0,

where D2 is a free sheaf, and each sheaf Dk, 3 ≤ k ≤ M − 4, has a free resolution
of length N + n− 2. Therefore, we have a completely exact sequence

DM−4
�� · · · ��D3

��D2

ε1 �� B1
��A0

�� 0.

Continuing in this way (applying a similar argument to resolution of Ker ε1, etc.)
we finally obtain a free resolution of A0 of length N . �

Proof of Lemma 7.22. We can assume that A ⊂ B and that β is the inclusion map.

(a) If A and B have free resolutions of length N + n, then Lemma 9.3 implies
that C has a free resolution of length N (and, in particular, of length N − n− 1).

Consider two remaining cases. Sheaf C has a free resolution of length N + n,

(9.10) FN+n
�� · · · �� F1

ϕ
�� C �� 0
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for some open V0 ⊂ U0. By Proposition 7.1 (1), the sequence (9.10) is completely
exact. By Lemma 7.21 there is a commutative diagram

(9.11) 0 A�� A Bβ �� B Cγ �� C 0��

F1

C

ϕ

��

F1

B
ψ

�������������

C

0��

.

Let ι : Ker ϕ→ F1 denote the inclusion. Let us show that the sequence

(9.12) 0 ��Ker ϕ
ψ⊕ι

��A⊕F1

β−ψ
�� B �� 0

is completely exact.
We apply functor Γ(U,HomO(E , ·)) to (9.11) and (9.12), where E is a free sheaf.

We obtain diagrams of abelian groups

0 A�� A B
b �� B C

c �� C 0��

F1

C

f

��

F1

B

p

�������������

C

0��

and

(9.13) 0 ��Ker f
p⊕i

��A⊕ F1

b−p
��B �� 0.

The first diagram is commutative, its top row is exact (see Definition 7.20). By
Proposition 7.1 (1), we may assume that f is surjective. The latter sequence is a
complex and is exact at Ker f . We have to check that it is exact at the next two
terms. If (ξ, η) ∈ Ker (b − p) then p(η) = b(ξ) = ξ, 0 = c(p(η)) = f(η). Thus,
η ∈ Ker f and (ξ, η) = (p⊕ i)(η) ∈ Im (p⊕ i), hence (9.13) is exact in the middle
term. On the other hand, if ζ ∈ B, then with some η ∈ F ,

−c(ζ) = f(η) = c(p(η)),

i.e.,
ζ + p(η) = ξ ∈ Ker c = A.

Thus, ζ = ξ − p(η) ∈ Im (b − p). We obtain that sequence (9.13) is exact, hence
sequence (9.12) is completely exact.

Note that by Lemma 9.2 Ker ϕ has a free resolution of length N + n− 1.



1030 A. Brudnyi and D. Kinzebulatov

(b) The sheaf A⊕F1 has a free resolution of length N +n− 1 over U0×K. By
Lemma 9.3 sheaf B has a free resolution of length N−1 over U0×K (in particular,
of length N − n− 1).

(c) We may assume that B has a free resolution of length N+n−1 over V0×K.
Since Ker ϕ has a free resolution of length N + n − 1, by (b) A ⊕ F has a free
resolution of length N−1. Since sequence 0 → F → A⊕F → A → 0 is completely
exact as F is a free sheaf (see Corollary 7.10), we obtain by part (a) that A has a
free resolution of length N − n− 1. �
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