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Dynamical dessins are dense

Christopher J. Bishop and Kevin M. Pilgrim

Abstract. We apply a recent result of the first author to prove the follow-
ing result: any continuum in the plane can be approximated arbitrarily
closely in the Hausdorff topology by the Julia set of a postcritically finite
polynomial with two finite postcritical points.

1. Introduction
Given compact subsets A, B C C their Hausdorff distance d(A, B) is given by
d(A,B) :=inf{r: A C N,(B), BC N,(A)}
where N,.(A), N,.(B) denote the r-neighborhoods of A and B, respectively. Given
a polynomial g € C[z], we denote by g7 the jth iterate of g, and define its
e filled-in Julia set K(g) := {z: ¢/(z) /> oo}, and
o Julia set J(g) := 0K (g).
K. Lindsey ([4], Theorem 2.2) has shown:

Theorem 1. Given any Jordan curve J bounding a closed topological disk K and
any € > 0, there exists a polynomial g € C[z] such that

(1) d(K(9),K) <e,
(2) d(J(9),J) <

The proof is constructive; the above paper illustrates the result of applying the
method of proof to a Jordan domain K outlining the figure of a cat, yielding a
polynomial g of degree 301.

In this note, a continuum is a compact connected subset of C. It is elementary to
show that any continuum can be approximated arbitrarily closely in the Hausdorff
topolology by a Jordan curve. Conclusion (2) of Theorem 1 then implies:
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Corollary 1. Given any continuum K and any € > 0, there exists a polynomial
g € Clz] such that d(J(g), K) < e.

In this note, we generalize Corollary 1.

Before stating our main result, we recall some definitions. A continuum is
a dendrite if it is locally connected and has empty interior. Given a complex
polynomial p € C|z], a complex number ¢ is a critical point of p if p’(c) = 0; its
image p(c) is a critical value. We denote by C(p) := {c: p’(c) = 0} the set of critical
points of p. A polynomial f is a Belyi polynomial if deg(f) > 1 and if its set of
critical values f(C(f)) is contained in the set {0, 1}; these have been much studied
from many points of view, see, e.g., [7]. We next introduce some dynamical notions.
A polynomial g € C[z] is postcritically finite if P(g) := {g’(c) : ¢ € C(g),j > 0}
is finite. If g is postcritically finite, the following facts are known (see, e.g., [5]):
J(g) is connected and locally connected, and is a dendrite if and only if no element
of C(g) is periodic. In [6], a Belyi polynomial g is called an extra-clean dynamical
Belyi polynomial* if P(g) = {0,1}, g(0) = g(1) = 0, and ¢’(0) # 0,¢'(1) # 0; we
denote the set of such polynomials by X DBP. Note that if g € X DBP then J(g)
is a dendrite. Theorem 3.6 in [3] implies that each g € X DBP is naturally a point
on a zero-dimensional variety defined over Q. It follows that if ¢ € X DBP then
the coefficients of g lie in the field Q of algebraic numbers. Two polynomials g1, g2
are conjugate as dynamical systems if there exists A(z) = az + b,a,b € C, a # 0,
such that go = Ao g; o A~'. We denote by

G:={AogoA ™ : A(z)=az+b,a,bcQ,a#0,9€ XDBP} C Q[2].

Since Q[z] is countable, so is G.

Our main result is:

Theorem 2. Given any continuum K C C and any e > 0, there exists a polynomial
g € G with d(J(g),K) < e.

A key ingredient in our proof is an approximation result of the first author
wherein continua are approximated by sets of the form f~1([0,1]), where f is a
Belyi polynomial and [0,1] C C is the unit interval.

In this paragraph, we introduce some terminology and perspective related
to Belyi polynomials; see [7]. We denote by BP the set of Belyi polynomials.
If f € BP, its dessin is D(f) := f~1([0,1]). By ibid. Lemma 3.4, D(f) is a tree
with vertices V(f) := f~1({0,1}); an edge e of D(f) is the closure of a component
of £71((0,1)). Thinking of [0, 1] as a tree with a single edge and with two vertices
vg = 0,v1 = 1, the map f: D(f) — [0,1] sends a closed edge e of D(f) homeomor-
phically to the edge [0, 1]. Thus the valence of a vertex © of D(f), defined as the
number of edges incident to ¥, coincides with the local degree deg(f,?) of f at o,
defined as the multiplicity of the zero of the polynomial z — f(z) — f(0). A leaf
of D(f) is a vertex ¥ of valence 1. Hence a vertex 0 of D(f) is a critical point of f
if and only if it is not a leaf.

IThe adjective ‘clean’ is inherited from a technical symmetry-breaking condition commonly
assumed in the theory of dessins d’enfants; see [7]. The modifier ‘extra’ refers to the additional
condition g(0) = g(1) = 0, and ¢’(0) # 0, g’(1) # 0.
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The approximation result we use is the following theorem.

Theorem 3. Given any continuum K C C and any € > 0, there exists f € BP
for which (1) d(D(f), K) < ¢, (ii) for each v € V(f), deg(f,?) < 4, and (iii) the
coefficients of f belong to Q.

Proof. Conclusion (i) is Theorem 1.1 in [2]; (ii) follows from its proof; see op. cit. § 3,
paragraph 3. We now prove (iii). Let f € BP satisfy (i) with d(D(f), K) < ¢/2
and also (ii). Belyi’s theorem and the Grothendieck correspondence [7] imply that
there exists ho(z) = apz + bo, ag,bo € C,ag # 0, for which f o hy € Q[z]. Using
the density of Q in C, choose aj,b; € Q with a; ~ ag, by ~ by so that

max{|(hy o hy')(2) — 2| : 2 € D(f)} < €/2,

and put f; := fohgohy' € Q[z]. Then f; satisfies conditions (ii) and (iii), and (i)
holds since D(f1) = (hy o hy')(D(f)) and

d(D(fr), K) < d(D(f1), D(f)) +d(D(f), K) < e. O

The proof of our main result, Theorem 2, has two steps. Suppose K C C is a
continuum and € > 0 is given.

(1) We apply Theorem 3 to obtain a polynomial f € BP N Q[z] satisfying both
d(D(f), K) < €/2 and the valence condition (ii).

(2) We define a sequence of polynomials g,, € G such that d(J(g,), D(f)) — 0 as
n — oo. The convergence will be proven in Lemma 1; it is here we use the
valence condition on f. Then, choosing n such that d(J(g,), D(f)) < €/2
will establish that d(J(g,), K) < €, completing the proof.

In the next two paragraphs, we construct the polynomials g,,.

Let q(z) := 42(1 — 2). Note that ¢ € BP, that ¢([0,1]) = ¢~ *([0,1]) = [0, 1],
and that ¢(0) = ¢(1) = 0, with C(q) = {1/2}. For each n € N, n > 1, we have
q" o f € BPNQz] and D(q¢" o f) = D(f) as subsets of C. Their tree structures
differ: each edge of D(f) is a union of 2" edges of D(¢™ o f). It is easy to see that
the set of leaves of D(q™ o f) coincides with the set of leaves of D(f), and that
if 0 is such a leaf then (¢” o f)(0) = 0. Lemma 2 will say that we can make edges
of ¢"o f as small as we like by choosing n sufficiently large. Since D(¢"o f) = D(f)
as sets, the valence of the tree D(¢" o f) remains bounded above by 4.

We now turn ¢” o f into a dynamical system; cf. [6]. Suppose vg,v1 € V(f) are
leaves of D(f), that is, vertices of valence 1. By replacing f with ¢ o f, we may
assume that f(vp) = f(v1) = 0. The assumption f € Q[z] implies vo,v; € Q. Let
A(z) = (v1—vp)z+vo, so that A(0) = vy, A(1) = v1. Fixn € N. Let g,, :== Aog"of.

The paragraph below discusses the properties of the polynomials g,.

By construction, g, € Q[z] and g,, has two critical values, namely vy and v;.
We have D(f) = D(¢" o f) = g, ([vo,v1]) as sets. As trees, now an edge e of
D(g"of) is the closure of a component of g,, ! ((vg,v1)), where (vg, v1) is the interval
[vo, v1] minus its endpoints. Abusing notation slightly, we denote by V(g,) :=
9. Y ({vo, v1}) the set of vertices of D(g"of). Each critical point of g,, maps under g,
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either to vy or to vy; by construction, vog = g,(vo) = gn(v1), and g/, (vy) # 0,
gl (v1) # 0. Tt follows that P(g,) = {vo,v1} C Q, so that g, is postcritically finite,
and that every critical point lands on the fixed point vy under iteration of g,. It is
a general fact that all fixed points of a postcritically finite map g,, are either critical
points or they lie in the Julia set. We conclude vy € J(gy,). Since g, (v1) = vo, we
have v; € J(gn) too. Hence V(gy,) = g, ({vo,v1}) C J(gn) by invariance of J(g,);
moreover, J(g,) is a dendrite. The valence condition on f implies that the local
degree of g,, at any point is at most 4. Since A"t og,0A € XDBP and A € Q[z],
we conclude g, € G.

Vi

FIGURE 1. At left: the dessin D(¢® o f) = D(f) where f(z) = 25,
with leaves vo,v1 marked. At right: an approximation of J(gs) by the
set g5 ' (D(f)); its greater apparent thickness is an artifact of plotting
the 3% - 2'% — 1 preimages of the vertices of D(f). Images courtesy of
Don Marshall.

The proof of Theorem 2 then rests upon establishing the closeness that Figure 1
suggests:

Lemma 1. The Hausdorff distance d(J(gn), D(f)) = 0 as n — oo.

2. Proof of Lemma 1

Suppose f,q,n, g, are as in step 2 of the outline given in the Introduction.

Lemma 2. The maximum diameter of an edge e of D(q™ o f) tends to zero as
n — oo.

Proof. An easy exercise shows the conclusion holds when f = ¢q. Now suppose
f € BP. Since the inverse branches of f are uniformly continuous on (0,1), the
general conclusion holds. O

Let D := D(f). We recall from step 2 the following: D = g, ([vo,v1]); the set
9, *({vo, v1}) is the set of vertices of the tree D; the edges of D are the closures
of the components of g, *(vg,v1), where (vg,v1) is the Euclidean segment [vg, v1]
minus its endpoints.

We are going to cover D by a certain pair of Jordan domains W; with the
property that W; N {vp,v1} = v;, i =0, 1. See Figure 2.
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FIGURE 2. Caricature of Wy. The domai/li Wy is similar. The disk shown
is B:=B (%, IOM). The domain Wi is the portion of the disk to
the right of the longer vertical segment. The figure is not to scale; one
should imagine that vg, v1 appear much closer together compared to the
diameter of B, and that D is contained in the smaller disk 11—0B with the
same center and g th the radius.

Their precise definition is a bit technical; we will give it later. Let W denote
either of the domains Wy, W1, and let W be a connected component of g, ' (W); it
will also be a Jordan domain. We will show diam W — 0 uniformly in 7 (Lemma 3).
Lemma 1 will then follow easily.

In order to control the dlameters of the domams W we will thlcken the domains
Wo, Wi to Jordan domains WO, W1 so that W, C W and in addition W N{wvg,v1} =

W; N {vg,v1} = v, = 0,1. Now suppose W, W are as in the previous paragraph.
Let W be the thickening of W. There is a unique component W of In 1(W) that

contains W; it is a thickening of W. The “Koebe space” W \ W will allow us

to control distortion and relate the diameter of W to the diameter of the edge it
meets.

Suppose W, W, W,W are as in the previous two paragraphs. Choose a point
v := W N {vg,v1}; it is a branch value of g,,. Since g, is a polynomial, we obtain

a map of pairs g, : (W,W) — (W, W) in which each restriction is proper and
each domain is a Jordan domain. Since W contains exactly one branch value of

gn, the preimage wn g, 1 (v) consists of a single point which we will denote by v,
which is a vertex of D. Since v € W, we have 0 € W. Let k := deg(gn, ). Since

the ramification of g, : W — W, if there is any, occurs at the unique point o,

we have deg(g, : W — W) = k as well. The control on the local degrees of the
polynomial f in Theorem 3 shows that k& < 4. Let D denote the open unit disk
in C. Up to precomposition with a rotation about the origin, there exists a unique

Riemann map ¢ : (D,0) — (W,v) Since In W — W is ramified only possibly
at ¥, we obtain a Riemann map ¢ : (ID,0) — (W, 0) such that the following diagram
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commutes:

(D,0) —— (D,0)
Z—>z

We will apply the Koebe distortion principle to the map 5 and conclude that
the diameter of W is bounded from above in terms of the diameters of the edges
of D; by Lemma 2, these tend to zero as n — co.

We now construct the domains Wy, Wi. First, denote M := diam(D) and
B(a,r) :=={z € C:|z—a| <r}. Next see Figure 2.

We now give the definitions of the sets W; and Wl Let

o = Tvo+v1 . 3vg + v1

0T Ty Ty

o vo + Tv1 o — vy + 3v1

1 8 ’ 1 — 4
W= (" —;UOJOM) N{lz— v < |z —wl}, i=0,1
Wi ::B(UO;U1,9M>Q{|zfv§’| <lz—wl}, i=0,1.

By construction,
o Win{vo,01} = Wn{vg,v} =wvi,i=0,1;

e DC WyuUWry;

.« W, \ W; is an annulus, i = 0, 1.
Lemma 3. The maximum diameter of a component W tends to zero as n — cc.

Proof. Suppose gy, : (W, W) — (W, W) is a map of pairs as in the preceding para-
graphs; we adopt the notation used there. Up to precomposition with rotations
about the origin, the map ¢ is one of only two possible Riemann maps. Hence
there exist 0 < r < s < 1 such that if U := ¢=}(W), then

B(0,7) CcU C B(0,s) C D.

Denote B
U:={zeD|*ecU}.

From the second part of Theorem 3 we have 1 < k < 4. Hence
r<7Ti= rl/k, §:=s"k < 31/4,
and

(2.1) B(0,7) c B(0,7) c U C B(0,3) C B(0,s'*) c D;
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note that 7 and s*/* do not depend on the choice of component w. By definition,

the following diagram commutes:

(U,0) —= (U,0)

Zl—)Z

The rescaled map 1 := |¢/(0)|~1(¢ — $(0)) is an element of the class of so-called
Schlicht functions: injective holomorphic maps ¢ : D — C with the normaliza-
tion ¢(0) = 0,¢'(0) = 1. By Theorem 5.3 in [1], for all z € D and all Schlicht
functions 1,

211+ [2)72 < (=) < [21(1 = [2)2

Hence upon setting
pr=r(l+r)2 oi=sV 1=V 6= 19(0)]
we have by (2.1) that
B(%,p8) C $(U) =W C B(%,00).

Let e be any one of the k components of g, *((vg,v1)) whose closure meets @; the
closure of e is an edge of D containing 0. Since (vg,v1) ¢ W, we have e ¢ W, so

pd < diam(e)

which implies
06 < diam(e)g
p

and so . o
diam(W) < 204 < 2 diam(e); -0

as n — 00, by Lemma 2. The constants p, o are independent of n and of the choice
of ¥, so the proof of Lemma 3 is complete. O

Proof of Lemma 1. Let Wy, W7 be the domains as defined above, and let W{,,
€V =g, ({vo,v1}) denote the components of preimages g, '(W;),i € {0,1}.
Denote J := J(g,). Pick € < %inf{|a —bl:a€ D,be C\WoUW;i}. Apply
Lemma 3 to obtain n so that diam(W;) < € for all © € V(g,). Each W; is a
Jordan domains, so it has the same diameter as its closure.

On the one hand, by our choice of ¢,

gn Wo U W1 U W(, C NE(D) c WoUWh

veV Lemma 3

and so Wy U Wy is backward-invariant under g,,. It is a general fact that J may
be equivalently defined as the smallest closed subset of C satisfying #.J > 1 and
g, (J) C J; see [5].
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Thus J C Wy U W;. By invariance of J we have then

JC g (Wo UWh) = | Ws € Ne(D).
eV
On the other hand, recalling the last sentence of Step 2, we have V C J, and
[vg,v1] C Wo U Wy implies D = g, ([vo,v1]) C g, t(Wo U W1) = Usev Ws, so by
our choice of € and n, we have

Ne(J) D Ne(V) > | Ws o D.
eV

This completes the proof of Lemma 1 and establishes Theorem 2. O
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