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Intrinsic ultracontractivity via capacitary width

Hiroaki Aikawa

Abstract. The semigroup associated with the Dirichlet heat kernel is said
to be intrinsic ultracontractive if

(i) the Dirichlet realization of the associated self adjoint operator
has the first positive eigenvalue with positive L2 eigenfunction;

(ii) the heat kernel is bounded above and below by the product of the
eigenfunctions with positive multiplicative constants depending
on time.

We give an upper and lower estimate of the first eigenvalue in terms of
capacitary width, which yields a sharp sufficient condition for (i). Our
parabolic argument also yields an exponential decay property of a certain
caloric measure. Then, the caloric measure is controlled by the elliptic
Green function with the aid of a parabolic box argument. This is a cru-
cial step for (ii). We give a sharp sufficient integral condition for intrinsic
ultracontractivity in terms of capacitary width. A similar integral condi-
tion for the boundary Harnack principle is also obtained. Under geometric
specifications, these integral conditions generalize known results and give
more precise conditions. Sharpness is examined by an infinite funnel, for
which we obtain a complete characterization of intrinsic ultracontractivity.
Our method is purely analytic and elementary; it enables us to dispense
with logarithmic Sobolev inequalities.

1. Introduction

1.1. Main results

Let D be a domain in R
n, n ≥ 2. Let L be a uniformly elliptic operator in

divergence form on D, i.e.,

Lf(x) =
n∑

i,j=1

∂

∂xi

(
ai,j(x)

∂f

∂xj

)
(x),
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where a(x) = (aij(x)) is a smooth symmetric n× n matrix satisfying

(1.1) c−1
L |ξ|2 ≤

n∑
i,j=1

aij(x)ξiξj ≤ cL |ξ|2 for all x ∈ R
n and ξ = (ξ1, . . . , ξn) ∈ R

n,

with 1 < cL < ∞. A solution u to the parabolic equation (L − ∂/∂t)u = 0 is
referred to as an L-caloric function. For simplicity we suppress the prefix “L-”
and we say caloric for L-caloric. Similarly, harmonic means L-harmonic, unless
otherwise stated. The difference between L and Δ will be illustrated in the ap-
pendix. Let pD(t, x, y), t > 0, x, y ∈ D, be the heat kernel for L− ∂/∂t on D, i.e.,
the fundamental solution to (L − ∂/∂t)u = 0 subject to the Dirichlet boundary
condition u(t, x) = 0 for x ∈ ∂D and t > 0. We have the semigroup property

pD(s+ t, x, y) =

∫
D

pD(s, x, z) pD(t, z, y) dz for all s, t > 0 and x, y ∈ D.

Definition 1.1. We say that the semigroup associated with pD(t, x, y) is intrin-
sically ultracontractive (abbreviated to IU) if the following two conditions are sat-
isfied:

(i) The eigenvalue problem −Lu = λu in D subject to the Dirichlet boundary
condition u = 0 on ∂D has the first eigenvalue λD > 0 with corresponding
positive eigenfunction ϕD normalized by ‖ϕD‖2 = 1. (ϕD is referred to as
the ground state.)

(ii) For every t > 0, there exist constants 0 < ct < 1 < Ct depending on t such
that

(1.2) ctϕD(x)ϕD(y) ≤ pD(t, x, y) ≤ CtϕD(x)ϕD(y) for all x, y ∈ D.

For simplicity, we say that D itself is IU if the semigroup associated with pD(t, x, y)
is IU.

The purpose of this paper is to give several sharp sufficient conditions for IU
by using capacitary width, which was introduced in [1] in connection with the
Cranston–McConnell inequality, an intimate property with IU. Capacitary width
was also useful for the elliptic boundary Harnack principle ([2], [4] and [5]). It
also plays a crucial role for IU via a parabolic box argument, a counterpart of the
box argument used for the boundary Harnack principle ([11]). We shall observe
that IU and the boundary Harnack principle can be dealt with in a unified fashion
with capacitary width. Our results are new even if L is the Laplacian Δ.

For an open set U we consider a quadratic form

QU [ϕ] =

∫
U

n∑
i,j=1

aij(x)
∂ϕ

∂xi

∂ϕ

∂xj
dx.

For E ⊂ U we define capacity associated with L by

CapLU (E) = inf
{
QU [ϕ] : ϕ ≥ 1 on E, ϕ ∈ C∞

0 (U)
}
.
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Let GL
U (x, y) be the Green function for L, normalized by −LGL

U (·, y) = δy. Observe

that CapLU (E) coincides with the Green capacity of E with respect to U , i.e.,

(1.3) CapLU (E) = sup
{
‖μ‖ : suppμ ⊂ E and

∫
U

GL
U (x, y) dμ(y) ≤ 1 on D

}
.

Let us write CapU (E) if L is the Laplacian Δ. In view of (1.1) we have

(1.4) c−1
L CapU (E) ≤ CapLU (E) ≤ cL CapU (E).

We write B(x, r) for the open ball with center at x and radius r.

Definition 1.2. Let 0 < η < 1. For an open set D we define the capacitary width
wη(D) as

wη(D) = inf
{
r > 0 :

CapB(x,2r)(B(x, r) \D)

CapB(x,2r)(B(x, r))
≥ η for all x ∈ D

}
.

Remark 1.3. The value of η has no significance. In fact, if 0 < η < η′ < 1, then
we have

wη(D) ≤ wη′(D) ≤ Awη(D) for every open set D,

where A > 1 depends only on η, η′ and n. See Proposition 2 in [1] or Lemma 12.8
in the appendix.

Remark 1.4. We can replace

CapB(x,2r)(B(x, r) \D)

CapB(x,2r)(B(x, r))
by

CapB(x,2r)(B(x, r) \D)

CapB(x,2r)(B(x, r))
.

This has an advantage that E = B(x, r) \ D and B(x, r) are compact sets, so
that we can consider the capacitary potentials of E and B(x, r) in B(x, 2r). See
Remark 12.4 for details. Gyrya and Saloff-Coste [21] adopted this definition. For
capacitary potential, capacity and related subjects, we refer to Chapter 5 in [7].

Let us begin with an estimate of λD. Note that λD is characterized by the
variational problem:

λD = inf
{QD[ϕ]

‖ϕ‖22
: ϕ ∈ C∞

0 (D)
}
.

If L is the Laplacian, then λD is referred to as the principal frequency of D.
There are a number of papers dealing with the principal frequency. Very precise
estimates are known under geometrical hypothesis on D. We present an estimate
not so precise but applicable to arbitrary domains.

Theorem 1.5. We have

(1.5)
A−1

wη(D)2
≤ λD ≤ A

wη(D)2
,

where A > 1 depends only on cL, η and n. In particular, λD > 0 if and only if
wη(D) <∞.
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Remark 1.6. Maz’ya–Shubin [26] gave the same estimate with rD,γ in place
of wη(D). They defined rD,γ as the supremum of radius r for which there exists
an open ball Br of radius r such that Br \D is γ-negligible with 0 < γ < 1, i.e.,
the Wiener capacity of Br \D is less than γ times of that of Br. It is easy to see
that rD,γ is comparable to our capacitary width wη(D).

With the aid of Persson’s argument [34], we see that the bottom of the essential
spectrum of −L is +∞ if and only if

(1.6) lim
R→∞

wη(D \B(0, R)) = 0.

In particular, we obtain the following.

Corollary 1.7. If (1.6) holds, then Definition 1.1 (i) is valid.

It is known that if D is IU, then −L has only purely discrete spectrum. So, we
can replace Definition 1.1 (i) by (1.6). We shall present a proof of Theorem 1.5 in
the parabolic context, which is inspired by Souplet [37]. Our approach is shorter
and more transparent than Maz’ya–Shubin [26]. In the course of the proof, we
naturally obtain useful information about the heat kernel, which plays a crucial
role in the study of Definition 1.1 (ii). For instance, a decay estimate of

P (t, x,D) =

∫
D

pD(t, x, y) dy

will be derived. Observe that P (t, x,D) is the caloric function on the cylinder
(0,∞) ×D with initial condition P (0, x,D) = 1 for x ∈ D and lateral boundary
condition P (t, x,D) = 0 for x ∈ ∂D. We can regard P (t, x,D) as a caloric measure,
a parabolic counterpart of harmonic measure. Obviously, 0 ≤ P (t, x,D) ≤ 1. We
shall observe in Section 3 that if wη(D) < ∞, then it decays exponentially. More
precisely, we obtain the following proposition.

Proposition 1.8. There exist positive constants A0 and A1 depending only on cL, η
and n such that

(1.7) P (t, x,D) ≤ A0 exp
(
− A1t

wη(D)2

)
for all t > 0 and x ∈ D.

Hereafter, we assume that (1.6) holds. Verification of Definition 1.1 (ii) is still
subtle under this assumption. The validity of Definition 1.1 (ii) requires some
regularity of D, although it is very mild. The notion of IU was introduced by
Davies–Simon [17]. IU has several equivalent conditions and enjoys many interest-
ing properties in functional analysis and in probability theory. See [16] for analytic
aspects. IU has important consequences in the study of the lifetime of conditioned
Brownian motions. Many authors are fascinated by IU and have given a number
of contributions. See e.g. [8], [9], [12], [15], [18], [24], [27], and so on. Nowa-
days, IU for general processes is extensively studied from a probabilistic point of
view. Murata gave many interesting applications of IU to perturbations of Green
functions, Martin boundaries and the heat equation on manifolds. See [28], [29],
[30], [31], [32], and references therein.
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There are basically two different general methods available to prove sufficient
conditions for IU. The first is based on the theory of logarithmic Sobolev inequali-
ties ([8], [15],[17], and [27]). The second is based on handcrafted probabilistic work
(Bass–Burdzy [12]).

In this paper, we propose a new approach, a parabolic box argument, which
is a parabolic counterpart of the box argument invented by Bass–Burdzy [11] for
the boundary Harnack principle for harmonic functions. We can treat IU and the
boundary Harnack principle in a unified fashion. We shall show several sufficient
conditions for IU and the boundary Harnack principle in terms of capacitary width.

Let us state our results for Definition 1.1 (ii). For simplicity let us suppress
scripts and write simply p(t, x, y) and G(x, y) for the heat kernel and the Green
function for L in D. For a generic positive function f(x) on D and t > 0 we write
wη(f < t) = wη({x ∈ D : f(x) < t}).
Theorem 1.9. Let g = G(·, x0) with x0 ∈ D. If

(1.8)

∫ 1

0

wη(g < t)2
dt

t
<∞,

then D is IU. Moreover, for each ε > 0, the constant Ct in (1.2) has an estimate

(1.9) Ct ≤ A2

m2+ε
t−n/2,

with m > 0 being chosen so that

(1.10)

∫ m

0

wη(g < s)2
ds

s
< A3 t,

where the positive constants A2 and A3 depend only on cL, n, η and ε.

Sharper estimates of Ct will be obtained under more specific conditions. See
Propositions 5.5, 7.4, 8.2, and 9.7. Theorem 1.9 has a counterpart for the global
boundary Harnack principle.

Definition 1.10. We say that D enjoys the global boundary Harnack principle
(abbreviated to GBHP) if for each pair (V,K) of a bounded open set V ⊂ R

n and
a compact set K ⊂ R

n such that

K ⊂ V, K ∩D 	= ∅ and K ∩ ∂D 	= ∅,
we have the following property: if u and v are positive superharmonic functions
in D such that

(i) u and v are bounded, positive and harmonic in V ∩D,

(ii) u and v vanish on V ∩ ∂D outside a polar set,

then

(1.11)
u(x)/u(y)

v(x)/v(y)
≤ A for x, y ∈ K ∩D,

where A depends only on D, V and K.
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The GBHP can be reformulated in a fashion reminiscent of IU. In view of
Theorem 2.3 in [4], we see that D enjoys the GBHP if and only if

(1.12) A−1g(x)g(y) ≤ G(x, y) ≤ Ag(x) g(y) for x ∈ K ∩D and y ∈ F ∩D,

whenever K and F are disjoint compact sets intersecting D such that x0 	∈ K ∪F .
For the reader’s convenience we shall provide a proof of this equivalence (Proposi-
tion 2.4). Let us give an elliptic counterpart of Theorem 1.9.

Theorem 1.11. If

(1.13)

∫ 1

0

wη(g < t)
dt

t
<∞,

then D satisfies the GBHP.

Remark 1.12. Compare (1.2) and (1.12). The difference of these estimates comes
from the difference of parabolic and elliptic dilation exponents. Note also that the
Green function G(x, y) diverges on the diagonal x = y, whereas the heat kernel
is continuous on the diagonal if t > 0. Philosophically, G(x, y) is estimated by
reducing the range of points x and y (the elliptic box argument); while p(t, x, y)
is estimated by reducing the range of time t (the parabolic box argument). See
Sections 4 and 6.

Remark 1.13. In view of Definition 1.10, we see that the GBHP is a property of
bounded nature, i.e., D enjoys the GBHP if and only if D ∩ V enjoys the GBHP
for every bounded open set V . Hence we can relax (1.13) to∫ 1

0

wη

({x ∈ D ∩ V : GD∩V (x, x0) < t}) dt
t
<∞

for every bounded open set V containing x0.

Remark 1.14. There is another type of boundary Harnack principle, which is
usually referred to as the local boundary Harnack principle (LBHP) or the scale-
invariant boundary Harnack principle. The LBHP is a much stronger property; it
holds for Lipschitz domains, NTA domains and, more generally, uniform domains.
The LBHP characterizes uniform domains. See [2] and [3].

1.2. Applications

Theorems 1.9 and 1.11 yield many sufficient conditions for IU and the GBHP. We
can give more geometric conditions not involving g. Define the quasihyperbolic
metric kD(x, y) as

kD(x, y) = inf
γ

∫
γ

ds

δD(γ(s))
for x, y ∈ D,
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where the infimum is taken over all rectifiable curves γ connecting x and y in D; γ
is parameterized as γ(s), 0 ≤ s ≤ 
(γ), by arc length s with 
(γ) being the length
of γ. If h is a positive harmonic function in D, then

(1.14) exp(−AkD(x, y)) ≤ h(y)

h(x)
≤ exp(AkD(x, y)) for x, y ∈ D,

where A > 0 depends only on cL and n, since the shortest length of Harnack
chains connecting x and y in D is estimated by the quasihyperbolic distance
kD(x, y). Since g is a positive harmonic function in D \ {x0}, it follows that
g(x′0)/g(x) ≤ exp(AkD(x, x0)), where x

′
0 ∈ ∂B(x0, δD(x0)/2). Hence we obtain

g(x) ≥ exp(−AkD(x, x0)), in other words,

(1.15) kD(x, x0) ≥ A log(1/g(x)).

with A changed. In particular, {x ∈ D : g(x) < t} ⊂ {x ∈ D : kD(x, x0) >
A log(1/t)}. By the change of variable s = A log(1/t) we obtain the following
immediate corollary to Theorems 1.9 and 1.11.

Corollary 1.15. The following statements hold:

(i) If

∫ ∞

0

wη(kD(·, x0) > s)2 ds <∞, then D is IU.

(ii) If

∫ ∞

0

wη(kD(·, x0) > s) ds <∞, then D satisfies the GBHP.

Let us give an Orlicz type condition. Let Φ(t) be a positive nondecreasing
continuous function of t > 0 with Φ(0) = 0 and let

LΦ(D) =
{
f :

∫
D

Φ(|f(x)|) dx <∞
}
.

If Φ(t) = tp, then LΦ(D) coincides with the usual Lp-space Lp(D). We do not
discuss properties of LΦ(D) as a function space, so we do not assume any further
hypothesis on Φ such as convexity. Let log+(u) = max{log u, 0} for u > 0.

Theorem 1.16. The following statements hold:

(i) Let n = 2. If log+(1/g) ∈ L1(D), then D is IU.

(ii) Let n ≥ 3. Suppose

(1.16)

∫ ∞

1

( t

Φ(t)

)2/(n−2)

dt <∞.

If log+(1/g) ∈ LΦ(D), then D is IU.

(iii) Let n ≥ 2. Suppose

(1.17)

∫ ∞

1

( t

Φ(t)

)1/(n−1)

dt <∞.

If log+(1/g) ∈ LΦ(D), then D satisfies the GBHP.
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Remark 1.17. (i) Let n ≥ 3. Typical examples of Φ(t) satisfying (1.16) are
Φ(t) = tp with p > n/2 and Φ(t) = tn/2 logα(e + t) with α > (n − 2)/2. See
Theorem 3 in [15]. See Proposition 7.4 for an estimate of Ct in (1.2).

(ii) Let n ≥ 2. Typical examples of Φ(t) satisfying (1.17) are Φ(t) = tp, with
p > n, and Φ(t) = tn logα(e + t) with α > n− 1.

With the aid of (1.15), we have an immediate corollary to Theorem 1.16.

Corollary 1.18. The following statements hold:

(i) Let n = 2. If kD(·, x0) ∈ L1(D), then D is IU.

(ii) Let n ≥ 3 and suppose Φ satisfies (1.16). If kD(·, x0) ∈ LΦ(D), then D is
IU (cf. Theorem 6 in [15]).

(iii) Let n ≥ 2 and suppose Φ satisfies (1.17). If kD(·, x0) ∈ LΦ(D), then D
satisfies the GBHP.

Remark 1.19. The sufficient conditions for the GBHP in Theorem 1.16 and Corol-
lary 1.18 are new even if Φ(t) = tp with p > n.

Let us consider families of domains defined by conditions in terms of the quasi-
hyperbolic metric. Smith–Stegenga ([35] and [36]) said that D is a “Hölder do-
main” if

(1.18) kD(x, x0) ≤ A log
δD(x0)

δD(x)
+A′ for all x ∈ D,

with some positive constants A and A′. Bañuelos [8] called such a domain a Hölder
domain of order 0. However, the term “Hölder domain” is often used for a domain
whose boundary is given by the graph of a Hölder continuous function. To avoid
the confusion, we say that D satisfies the quasihyperbolic boundary condition (of
order 0) (abbreviated to QHB(0)) if (1.18) holds. Extending (1.18), we consider
the following condition for α > 0:

(1.19) kD(x, x0) ≤ A
(δD(x0)

δD(x)

)α

+A′ for all x ∈ D

with some positive constants A and A′. Let us say that D satisfies the quasihyper-
bolic boundary condition of order α (abbreviated to QHB(α)) if (1.19) holds.

So far, we have considered interior conditions. Let us introduce an exterior
condition, which will be useful to estimate capacitary width. See Lemma 3.13.

Definition 1.20. Let 0 < r0 ≤ ∞. We say that D satisfies the capacity density
condition (abbreviated to CDC) up to r0 if there exists positive constant η such
that

CapB(x,2r)(B(x, r) \D)

CapB(x,2r)(B(x, r))
≥ η

whenever x ∈ ∂D and 0 < r < r0. We simply say that D satisfies the CDC if it
satisfies the CDC up to r0 for some r0 > 0.
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The following theorem is known:

Theorem A ([8] and [4]). Suppose D satisfies the CDC.

(i) If D satisfies the QHB(α) with 0 ≤ α < 2, then D is IU.

(ii) If D satisfies the QHB(α) with 0 ≤ α < 1, then the GBHP holds.

Remark 1.21. In case α=0, the CDC can be removed (Bañuelos [8], Theorem 1).
This result can be derived from Theorem 1.16 and the integrability of the quasihy-
perbolic metric due to Smith–Stegenga [35] and [36], i.e., if D satisfies the QHB(0),
then there exists a positive constant τ such that∫

D

exp(τkD(x, x0)) dx <∞,

or equivalently kD(·, x0) ∈ LΦ(D) with Φ(t) = exp(τt). Obviously, Φ(t) = exp(τt)
satisfies (1.16) and (1.17), so that D is IU and it satisfies the GBHP by Theo-
rem 1.16.

Remark 1.22. Bass–Burdzy (Definition 2.2 in [12]) defined a twisted Lp-domain
and proved that if p > n− 1, then every twisted Lp-domain with the CDC is IU.
In view of their definition, we see that D is a twisted Lp-domain if and only if
it satisfies the QHB((n + p − 1)/p). Hence Bass–Burdzy’s result is the same as
Theorem A (i).

By using Theorems 1.9 and 1.11, we can give a further extension. Let Φ(t) be
a positive nondecreasing continuous function of t > 0. We say that D satisfies the
QHB(Φ) condition if

(1.20) kD(x, x0) ≤ Φ
(δD(x0)

δD(x)

)
for all x ∈ D.

Theorem 1.23. Suppose D satisfies the CDC.

(i) If D satisfies the QHB(Φ) with

(1.21)

∫ ∞

1

Φ(t)
dt

t3
<∞,

then D is IU.

(ii) If D satisfies the QHB(Φ) with

(1.22)

∫ ∞

1

Φ(t)
dt

t2
<∞,

then D satisfies the GBHP.

Remark 1.24. (i) Typical examples of Φ(t) satisfying (1.21) are Φ(t) = tα with
α < 2 and Φ(t) = t2 log−α(e + t) with α > 1. See Corollary 2.8 in [8]. See
Proposition 8.2 for an estimate of Ct in (1.2).
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(ii) Typical examples of Φ(t) satisfying (1.22) are Φ(t) = tα with α < 1, and
Φ(t) = t log−α(e+ t) with α > 1.

Davis [18] and Bass–Burdzy [12] studied IU for domains above the graph of
a function. We write x = (x′, xn) ∈ R

n. By B′(x′, R) we denote the (n − 1)-
dimensional open ball with center at x′ and radius R.

Theorem B. For a negative upper semicontinuous function f(x′) on B′(0, R),
write

Df = {(x′, xn) : |x′| < R, f(x′) < xn < 1}.
Then we have the following assertions:

(i) If n = 2 and f ∈ L∞(B′(0, R)), then Df is IU (Theorem 2 in [18]).

(ii) If f ∈ Lp(B′(0, R)) with p > n− 1, then Df is IU (Theorem 1.22 in [12]).

(iii) If n ≥ 3, then there exists f ∈ Lp(B′(0, R)) with p < n− 1 such that Df is
not IU (Section 4 in [12]).

Obviously, (i) is included in (ii). Note that Df can be unbounded in (ii). We
remark that Df satisfies the quasihyperbolic boundary condition.

Proposition 1.25. If f ∈ Lp(B′(0, R)) with p > 0, then Df satisfies the QHB((p+
n− 1)/p) condition.

It is easy to see that (p+ n− 1)/p < 2 if and only if p > n− 1. Hence, under
the additional assumption of the CDC, Theorem B (ii) can be derived from Theo-
rem A (i). The significance of Theorem B (ii) is that IU follows without the CDC.
This remarkable phenomenon is rooted in Lemma 2.4 in [12], which is reformu-
lated analytically as an extended Harnack inequality with exceptional sets in [5].
The critical case p = n − 1 in Theorem B (iii) was open. Actually, we shall show
in Corollary 1.31 below that there is f ∈ Ln−1(B′(0, R)) such that Df is not IU
in case n ≥ 3. So, let us consider a condition sharper than f ∈ Ln−1(B′(0, R)).
Let Φ(t) be a positive nondecreasing function of t > 0.

Theorem 1.26. Assume that Φ(t)/tn−1 is nondecreasing and that

(1.23)

∫ ∞

1

Φ(t)1/(1−n) dt <∞.

If f ∈ LΦ(B′(0, R)), then Df is IU.

Remark 1.27. Typical examples of Φ(t) satisfying (1.23) are Φ(t) = tp with
p > n− 1 and Φ(t) = tn−1 logα(e + t) with α > n− 1. See Proposition 9.7 for an
estimate of Ct in (1.2).

Theorem 1.26 can be extended to LΦ-domains. See Theorem 10.5. A counter-
part of Theorem 1.26 for the GBHP has very different appearance since (1.13) is
much more stringent than (1.8). We say that a bounded domain in R

n is a ψ-Hölder
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domain if its boundary is locally given by the graph of a ψ-Hölder continuous func-
tion in R

n−1. We showed an upper estimate of capacitary width

wη(g < t) ≤ A

log(1/t)
ψ
( 1

log(1/t)

)
for small t > 0,

provided that lim supt→0 ψ(Mt)/ψ(t) < M with someM > 1 (Corollary 7.7 in [5]).
Since ∫ 1

0

wη(g < t)
dt

t
≤

∫ 1/e

0

1

log(1/t)
ψ
( 1

log(1/t)

) dt
t

=

∫ 1

0

ψ(t)

t
dt

by a change of variable, Theorem 1.11 gives the following immediate corollary.

Theorem C (Theorem 1.3 in [5]). Let ψ(t) be a nondecreasing continuous function
for t > 0. Suppose that ψ satisfies lim supt→0 ψ(Mt)/ψ(t) < M for some M > 1
and ∫ 1

0

ψ(t)

t
dt <∞

Then every ψ-Hölder domain satisfies the GBHP.

So far, we have studied sufficient conditions for IU and the GBHP to hold.
For some specific type of domains, we can determine whether these conditions
are sharp, and even further, we can obtain characterizations for IU. Bañuelos–
Davis [9] gave a geometrical characterization of intrinsic ultracontractivity for
planar domains with boundaries given by the graphs of functions. Let us give
a characterization of intrinsic ultracontractivity for a solid of rotation of a Lips-
chitz graph, which may be visualized as an infinite funnel. This is inspired by the
counterexample of Bass–Burdzy (Section 4 in [12]).

Theorem 1.28. Let L > 0 and let r(t) be a positive nonincreasing L-Lipschitz
function of t ∈ [−1,∞), i.e.,

(1.24) 0 ≤ r(t) − r(T ) ≤ L(T − t) for − 1 ≤ t < T <∞.

Define an infinite funnel or a solid of rotation by

V = {(x′, xn) : −∞ < xn < 1, |x′| < r(−xn)}.

See Figure 1. Then the following statements are equivalent:

(i) V is IU.

(ii) V satisfies the Cranston–McConnell inequality, i.e.,

sup
x∈V

1

u(x)

∫
V

GV (x, y)u(y) dy ≤ A

for every superharmonic function u > 0 in V , where A is independent of u.
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(iii)

∫ ∞

0

r(t)dt <∞.

(iv)

∫ ∞

0

wη(kV (·, x0) > s)2ds <∞.

(v)

∫ 1

0

wη(g < t)2
dt

t
<∞.

(0, 1)

x0 = (0, 0)

r(t)−t

Figure 1. Infinite funnel.

Remark 1.29. Because of its local nature we can relax (1.24) into

0 ≤ r(t) − r(T ) ≤ L(T − t) for t1 ≤ t < T <∞

with some t1 > −1.

Corollary 1.30. Let r(t) = (t+ 3)−1. Then V satisfies the QHB(2) and yet V is
not IU.

Corollary 1.31. Let n ≥ 3 and let r(t) = (t+3)−1 log−α(t+3) with (n− 1)−1 <
α ≤ 1. Then V is not IU and yet V is represented as Df = {(x′, xn) : |x′| <
r(−1), xn > f(x′)} with f ∈ Ln−1(B′(0, r(−1))).

Remark 1.32. The sharpness of sufficient conditions for the GBHP is much more
delicate. It will be treated elsewhere. Actually, the infinite funnel V in Theo-
rem 1.28 is irrelevant for a test of the GBHP. The infinite funnel V always satisfies
the GBHP, no matter how slowly r(t) decays at infinity. See Remark 1.13.

1.3. Plan of the paper

In Section 2 we shall provide basic material for IU in order to increase the reader’s
familiarity with IU. We include several basic properties of IU such as an estimate
of Ct and the implication: “the upper estimate =⇒ the lower estimate”. It is
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well known for probabilists that “IU =⇒ the Cranston–McConnell inequality”.
However, we include an elementary analytic proof, as we have not been able to find
a good reference in the literature except for Theorem 2.8 in [24], which deals with
the rather general nonsymmetric case. We also provide a proof of “(1.12) ⇐⇒
the GBHP.”

In Section 3 we shall prove Theorem 1.5 as a corollary to more general result
(Theorem 3.1), which also yields (1.7). This estimate will be crucial in the parabolic
box argument. We also exploit comparison of capacitary width with other quan-
tities such as volumetric width and inradius. With the aid of this comparison, we
shall apply Theorems 1.9 and 1.11 to specific domains and obtain more explicit
sufficient conditions for IU and the GBHP later in Sections 7–11. We also observe
that (1.6) is not preserved by taking the union of two domains. Section 4 is devoted
to the parabolic box argument, which controls the caloric measure P (t, x,D), with
the aid of the upper estimate of (1.7). In Section 5 we shall prove Theorem 1.9.
The comparison between the ground state and the Green function is also obtained.
Section 6 is devoted to the elliptic box argument and the proof of Theorem 1.11.
The main idea was already given in the previous paper [5]. These sections do not
depend on the geometry of the domain D.

In Sections 7–11 we shall specify the geometry of the domain D and we shall
give more precise conditions for IU and the GBHP. In Section 7 we give sufficient
integral conditions of Orlicz type in terms of the Green function and the quasi-
hyperbolic metric. Theorem 1.16 will be proved. In Section 8 we give sufficient
conditions by pointwise upper estimates of the quasihyperbolic metric for domains
satisfying the CDC. Theorem 1.23 will be proved. In Section 9 we shall dispense
with the CDC and study Df with f ∈ LΦ(B′(0, R)). It will require the extended
Harnack inequality with exceptional sets (Lemma 2.4 in [12] and [5]). We note
that the results in this section work only for IU. The GBHP requires much more
stringent geometrical hypothesis. In Section 10 we shall study pasting domains and
introduce LΦ-domains. In Section 11, we shall obtain Theorem 1.28, a complete
characterization of IU for an infinite funnel. We shall give precise estimates for
the quasihyperbolic metric. We shall employ a scale invariant boundary Harnack
principle to give a sharp estimate of the product of the Green function and the
Martin kernel at infinity; in fact, the Martin boundary of the infinite funnel is
homeomorphic to the union of the Euclidean boundary and the point at infinity.
We are inspired by Hansen [22] for a counterexample of the 3G-inequality in R

n,
n ≥ 3. Theorem 1.28 asserts that our sufficient conditions are sharp.

Our arguments are based on the L-harmonic versions of several results in [1].
Although the L-harmonic counterparts are essentially the same as the classical
ones, they require more careful arguments. So, the appendix is devoted to such
generalizations for the reader’s convenience. In particular, we shall replace the
usage of balayage measures in Proof of Lemma 5 in [1] by a uniform estimate of
capacity of balls (Lemma 12.1).

We shall freely use basic results from potential theory. For accounts on potential
theory, see [7], [10], [19] and [38]. We frequently use the elliptic and parabolic com-
parison principles. Let D be an arbitrary open set in R

n with wη(D)<∞. Since D
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is arbitrary, it may be irregular with respect to the Dirichlet problem. However,
irregular boundary points of D forms a polar set, so that we have the following
elliptic comparison principle of Phragmén–Lindelöf type: Suppose u (resp. v) is
a bounded subharmonic (resp. superharmonic) function in D. If u ≤ v on ∂D
outside a polar set, i.e.,

lim sup
x→ξ

u(x) ≤ lim inf
x→ξ

v(x) for q.e. ξ ∈ ∂D,

then u ≤ v in D. Here, ‘q.e.’ (quasi-everywhere) means that the property holds
outside a polar set. Note that wη(D) < ∞ is used for the control at infinity (see
Lemma E). The parabolic comparison principle is as follows: suppose u (resp. v) is
a bounded subcaloric (resp. supercaloric) function on the cylinder (s, t)×D. If u ≤
v on ({s}×D)∪((s, t)×(∂D\E)) with a polar set E in R

n, then u ≤ v on (s, t)×D.
See Theorem 8.2 in [38]. As a result of the parabolic comparison principle, the
Dirichlet heat kernel pD(t, x, y) is increasing with respect to D. Moreover, p(t, x, y)
is majorized by the heat kernel pRn(t, x, y) for the whole space Rn. Recall the well-
known estimate:

pRn(t, x, y) � 1

tn/2
exp

(
− |x− y|2

t

)
,

i.e., there are positive constants A and A′ depending only on the ellipticity con-
stant cL and n such that

pRn(t, x, y) ≤ A

tn/2
exp

(
−A′ |x− y|2

t

)
and the opposite inequality holds with different A and A′. Hence, in particular,

(1.25) p(t, x, y) ≤ A

tn/2
exp

(
−A′ |x− y|2

t

)
.

Of course, there is no good lower estimate for p(t, x, y) in general. See [20]. Note
also that the Dirichlet Green function G(x, y) exists and it is represented by the
following well-known identity:

(1.26) G(x, y) =

∫ ∞

0

p(t, x, y) dt.

See e.g. [19], Part 1. Chapter XVII. Section 18. In fact, (1.26) holds for every
domain if n ≥ 3; it holds for D with R

2 \D being non-polar if n = 2.
We use the following notation. By the symbol A we denote an absolute positive

constant whose value is unimportant and may change from one occurrence to the
next. If necessary, we use A0, A1, . . . , to specify them. We say that two positive
quantities f and g are comparable, and write f ≈ g, if they satisfy A−1 ≤ f/g ≤ A
with some constant A ≥ 1. The constant A is referred to as the constant of
comparison. We have to pay attention for the dependency of the constant of
comparison.

Acknowledgments. The author would like to thank Minoru Murata for valuable
discussions, and Masaharu Nishio for the opportunity to lecture on the contents
of this paper at Osaka City University in June 2013. The author is grateful to the
referee for his careful reading of the manuscript and many useful suggestions.
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2. Background

Let us provide basic material for IU. Although the results are well known, our
elementary proofs may profit the reader. We need neither deep functional analysis
nor probability theory. We basically use the comparison principle only. First, we
observe that if the upper estimate of (1.2) holds at some time, then so does it after
that time with exponentially decaying constant Ct.

Proposition 2.1. Suppose p(t0, x, y) ≤ Ct0ϕD(x)ϕD(y) for all x, y ∈ D with
some t0 > 0. If t ≥ t0, then

p(t, x, y) ≤ Ct0 e
−λD(t−t0) ϕD(x)ϕD(y) for all x, y ∈ D.

In other words, p(t, x, y)≤CtϕD(x)ϕD(y) holds with Ct≤Ct0e
−λD(t−t0) for t≥ t0.

Proof. Fix y ∈ D. It is easy to see that u(t, x) = Ct0 e
−λD(t−t0)ϕD(x)ϕD(y)

is a caloric function with vanishing lateral boundary values. By assumption,
p(t0, x, y) ≤ u(t0, x) for x ∈ D. Hence the comparison principle on (t0,∞) × D
yields the required inequality. �

Second, we observe that the upper estimate of IU automatically implies the
lower estimate.

Proposition 2.2. Suppose, for every t > 0, there exists Ct > 0 such that

p(t, x, y) ≤ Ct ϕD(x)ϕD(y) for all x, y ∈ D.

Then, for every t > 0, there exists C′
t > 0 such that

p(t, x, y) ≥ C′
t ϕD(x)ϕD(y) for all x, y ∈ D.

Proof. Represent a caloric function e−λDtϕD(x) by an integral,

e−λDt ϕD(x) =

∫
D

p(t, x, y)ϕD(y) dy.

Let K = K(t) be a compact subset of D to be determined later. Split the integral
domain D into D\K andK and then apply the upper estimate to the first integral.
We have

e−λDt ϕD(x) ≤
∫
D\K

Ct ϕD(x)ϕD(y)2 dy +

∫
K

p(t, x, y)ϕD(y) dy.

Since ϕD ∈ L2(D), we can choose K = K(t) so large that the first integral is less
than 2−1e−λDtϕD(x). Hence we obtain

(2.1) e−λDt ϕD(x) ≤ 2

∫
K

p(t, x, y)ϕD(y) dy.

Observe that α = inf
{ p(t,z,w)
ϕD(z)ϕD(w) : z, w ∈ K

}
> 0.



1056 H. Aikawa

By the semigroup property we have

p(3t, x, y) =

∫
D

(∫
D

p(t, x, z) p(t, z, w) dz
)
p(t, w, y) dw

≥
∫
K

∫
K

p(t, x, z) p(t, z, w) p(t, w, y) dz dw

≥ α

∫
K

∫
K

p(t, x, z)ϕD(z)ϕD(w)p(t, w, y) dz dw ≥ α

4
e−2λDt ϕD(x)ϕD(y),

where we have used the symmetry of p(t, w, y) and (2.1) twice in the last inequality.
Hence changing 3t by t gives the required lower estimate. �

Third, we prove that IU implies the Cranston–McConnell inequality. This fact
is well known to probabilists. However we have not been able to find a good
reference in the literature except for Theorem 2.8 in [24], which deals with a non-
symmetric case.

Proposition 2.3. If IU holds, then there exists a positive constant A such that

sup
x∈D

1

u(x)

∫
D

G(x, y)u(y) dy ≤ A,

whenever u is a positive superharmonic function on D.

Proof. In view of Fubini’s theorem and (1.26), we have∫
D

G(x, y)u(y) dy =

∫ 1

0

dt

∫
D

p(t, x, y)u(y) dy +

∫ ∞

1

dt

∫
D

p(t, x, y)u(y) dy.

Let us estimate the two integrals in the right-hand side separately. Regard u(x)
as a stationary supercaloric function. By the comparison principle

(2.2) u(x) ≥
∫
D

p(t, x, y)u(y) dy,

since the right-hand side is a caloric function with vanishing lateral boundary
values. Hence ∫ 1

0

dt

∫
D

p(t, x, y)u(y) dy ≤
∫ 1

0

u(x) dt = u(x).

Observe from (2.2) with t = 1 and the lower estimate of IU that

u(x) ≥
∫
D

p(1, x, y)u(y) dy ≥ C′
1

∫
D

ϕD(x)ϕD(y)u(y) dy.

Hence the upper estimate of IU with control of Ct (Proposition 2.1) gives∫ ∞

1

dt

∫
D

p(t, x, y)u(y)dy ≤
∫ ∞

1

dt

∫
D

C1e
−λD(t−1)ϕD(x)ϕD(y)u(y) dy ≤ C1

λD C′
1

u(x).

Thus we obtain the required Cranston–McConnell inequality. �

Finally, we observe that the GBHP can be characterized by the estimate (1.12)
of the Green function.
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Proposition 2.4. The GBHP holds if and only if (1.12) holds for every disjoint
compact sets K and F intersecting D such that x0 	∈ K ∪ F .
Proof. First we prove the ‘only if’ part. Let K and F be disjoint compact sets
intersecting D such that x0 	∈ K ∪ F . Let R = dist(K,F ∪ {x0}) > 0 and put
V = {x ∈ R

n : dist(x,K) < R/2}. Then V is a bounded open set containing K
such that V ∩ (F ∪ {x0}) = ∅. Apply (1.11) to u = G(·, y)/g(y) with y ∈ F ∩ D
and v = g. If x, x1 ∈ K ∩D, then

A ≥ u(x)/u(x1)

v(x)/v(x1)
=
G(x, y)/G(x1, y)

g(x)/G(x1, x0)
≈ G(x, y)

g(x)g(y)
,

since g(x1) = G(x1, x0) ≈ 1 and G(x1, y) ≈ G(x0, y) = g(y) by the usual Harnack
principle and the symmetry of the Green function. Replacing the roles of u and v,
we obtain (1.12).

Next we prove the ‘if’ part. Let (V,K) be a pair consisting of a bounded
open set V ⊂ R

n and a compact set K ⊂ R
n such that K ⊂ V , K ∩D 	= ∅ and

K∩∂D 	= ∅. Suppose u and v are positive superharmonic functions on D such that

(i) u and v are bounded, positive and harmonic in V ∩D,

(ii) u and v vanish on V ∩ ∂D outside a polar set.

Let us prove (1.11). Without loss of generality we may assume that x0 ∈ D \ V .
Let W be an open set such that K ⊂ W ⊂ W ⊂ V and let F = ∂W . Observe
that DR̂F∩D

u and DR̂F∩D
v are Green potentials which coincide with u and v in

W ∩ D, respectively. By the Riesz decomposition theorem we find measures μ
and ν, concentrated on F ∩D, such that

u =

∫
F∩D

G(·, z) dμ(z), v =

∫
F∩D

G(·, z) dν(z) on W ∩D.

See Figure 2.

x

y

z

W

F ∩ D

K

u = v = 0

D

Figure 2. Green kernel estimate =⇒ GBHP.

Evaluating u at x ∈ K ∩ D, we obtain from (1.12) with z in place of y that
u(x) ≈ g(x)

∫
F∩D

g(z) dμ(z). We have similar estimates for u(y), v(x) and v(y).
Hence

u(x)/u(y)

v(x)/v(y)
≈

{
g(x)

∫
F∩D g(z) dμ(z)

}/{
g(y)

∫
F∩D g(z) dμ(z)

}{
g(x)

∫
F∩D

g(z) dν(z)
}/{

g(y)
∫
F∩D

g(z) dν(z)
} = 1.

Thus (1.11) follows. �
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3. First eigenvalue, capacitary width and related widths.
Proof of Theorem 1.5

3.1. Proof of Theorem 1.5

Capacitary width gives a two-sided estimate of the supremum of the Green poten-
tial of constant density. In this section we let

v(x) =

∫
D

G(x, y) dy.

The following lemma is known in the case L = Δ. But, for completeness, we shall
provide a proof in the appendix.

Lemma D (Theorem 1 in [1]). There is a constant A > 1 depending only on cL,
η and n such that

A−1wη(D)2 ≤ ‖v‖∞ ≤ Awη(D)2.

Let us consider a parabolic counterpart. For simplicity let us write π(t) =
supx∈D P (t, x,D). We shall show several relationships among π(t), ‖v‖∞, and the
first eigenvalue λD. The following theorem, together with Lemma D, readily yields
Theorem 1.5.

Theorem 3.1. The following conditions are equivalent:

(i) λD > 0.

(ii) wη(D) <∞.

(iii) ‖v‖∞ <∞.

(iv) π(t) < 1 for some t > 0.

(v) π(t) ≤ A exp(−αt) for all t > 0 with some A,α > 0.

Moreover,

(3.1)
A−1

wη(D)2
≤ 1

‖v‖∞ ≤ λD ≤ A

‖v‖∞ ≤ A2

wη(D)2
,

where A > 1 depends only on cL, η and n.

See [13] and [14] for the second and third inequalities of (3.1). Our argument
is inspired by Souplet [37]. First we give a lower estimate of π(t).

Lemma 3.2. We have

exp(−λDt) ≤ π(t) for all t > 0.

Proof. Let β > λD. Then we find ϕ ∈ C∞
0 (D) such that QD[ϕ]

/‖ϕ‖22 ≤ β.
We may assume that ϕ ≥ 0. Take a relatively compact subdomain Ω such that
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suppϕ ⊂ Ω � D. Let λΩ and ϕΩ ≥ 0 be the first eigenvalue and its eigenfunction
with ‖ϕΩ‖2 = 1 for Ω, respectively. By definition

λΩ = inf
{QΩ[ψ]

‖ψ‖22
: ψ ∈ C∞

0 (Ω)
}
≤ QD[ϕ]

‖ϕ‖22
≤ β.

Since u(t, x) = exp(−λΩt)ϕΩ(x) is a caloric function in (0,∞) × Ω such that
u(0, x) = ϕΩ(x) and u(t, x) = 0 on (0,∞) × ∂Ω, it follows from the comparison
principle that

exp(−λΩt)ϕΩ(x) ≤
∫
Ω

p(t, x, y)ϕΩ(y) dy ≤ ‖ϕΩ‖∞ P (t, x,D) ≤ ‖ϕΩ‖∞ π(t)

on (0,∞) × Ω. Now, taking the supremum for x ∈ Ω, and then dividing by
0 < ‖ϕΩ‖∞ <∞, we obtain

exp(−βt) ≤ exp(−λΩt) ≤ π(t).

Since β > λD is arbitrary, we have the required inequality. �

Next we give an upper estimate of π(t) in terms of ‖v‖∞, which readily yields
Proposition 1.8.

Lemma 3.3. Let C > 1. If ‖v‖∞ <∞, then

π(t) ≤ C

C − 1
exp

(
− t

C‖v‖∞
)

for all t > 0.

Proof. Let α = 1/(C‖v‖∞) and let w(t, x) = (v(x) + (C − 1)‖v‖∞)e−αt. Since v
enjoys the Poisson equation −Lv = 1 in D, it follows that(
L− ∂

∂t

)
w = Lv · e−αt+α(v + (C−1)‖v‖∞)e−αt=

(
− 1 +

v + (C−1)‖v‖∞
C‖v‖∞

)
e−αt

≤
(
− 1 +

‖v‖∞ + (C−1)‖v‖∞
C‖v‖∞

)
e−αt = 0.

Hence w is supercaloric. By the comparison principle,

(C − 1) ‖v‖∞ P (t, x,D) ≤ w(t, x) = (v(x) + (C − 1)‖v‖∞) e−αt ≤ C ‖v‖∞ e−αt.

Dividing the inequality by 0 < ‖v‖∞ < ∞, and taking the supremum for x ∈ D,
we obtain the lemma. �

Proof of Proposition 1.8. Combine Lemma D and Lemma 3.3 with C > 1 fixed. �

Let us give another upper estimate of π(t) in terms of λD. The following lemma
is a preliminary L2-estimate, which may be well known. However, we give a proof
for completeness.
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Lemma 3.4. For ϕ ∈ L2(D) let u(t, x) =
∫
D p(t, x, y)ϕ(y) dy. Then

‖u(t, ·)‖2 ≤ e−λDt ‖ϕ‖2.
Proof. First assume that D is bounded. Then the spectrum of −L is given by
eigenvalues λ1 < λ2 ≤ · · · with corresponding orthonormal set of eigenfunctions
{ϕ1, ϕ2, . . . }; the heat kernel is expanded as p(t, x, y) =

∑∞
j=1 e

−λjtϕj(x)ϕj(y)

in L2. Let ϕ ∈ L2(D). Writing ϕ =
∑∞

i=1 ciϕi with ‖ϕ‖22 =
∑∞

i=1 c
2
i , we obtain

u(t, x) =

∫
D

∑
i,j

e−λjt ϕj(x)ϕj(y) ci ϕi(y) dy =
∞∑
j=1

e−λjt cj ϕj(x),

so that

‖u(t, ·)‖22 =
∫
D

∑
i,j

e−λit ci ϕi(x) e
−λj t cj ϕj(x) dx =

∞∑
j=1

e−2λjt c2j

≤ e−2λ1t
∞∑
j=1

c2j = e−2λ1t ‖ϕ‖22.

Taking the square root, we obtain the required estimate, as λ1 = λD. In case D
is unbounded, we observe that λD ≤ λD∩B(0,R) and pD∩B(0,R)(t, x, y) ↑ pD(t, x, y)
as R→ ∞. Let ϕ ∈ L2(D). Without loss of generality we may assume that ϕ ≥ 0.
Then

uR(t, x) =

∫
D∩B(0,R)

pD∩B(0,R)(t, x, y)ϕ(y) dy ↑ u(t, x).

The first case gives ‖uR(t, ·)‖22 ≤ e−2λD∩B(0,R)t‖ϕ‖22 ≤ e−2λDt‖ϕ‖22, so that the
monotone convergence theorem completes the proof. �

Lemma 3.5. Let C > 1. There exists a constant M(C) > 1 depending only on C,
cL and n such that

π(t) ≤M(C) exp
(
− λDt

C

)
for all t > 0.

Moreover, if λD > 0, then ‖v‖∞ ≤ A/λD.

Proof. Let x ∈ D fixed. For R > 0 to be determined later, we put Ω = D∩B(x,R).
Let us estimate P (t, x,D) =

∫
D p(t, x, y) dy by decomposing D into Ω and D \ Ω.

Let 0 < ε < 1 − 1/C. By the semigroup property, Fubini’s theorem, Lemma 3.4
with ϕ = χΩ, and (1.25) we have∫

Ω

p(t, x, y) dy =

∫
D

p(εt, x, z)
(∫

Ω

p((1− ε)t, z, y) dy
)
dz

≤
{∫

D

p(εt, x, z)2 dz
}1/2{∫

D

(∫
Ω

p((1− ε)t, z, y) dy
)2

dz
}1/2

≤ A

(εt)n/2

{∫
Rn

exp
(
−A′ |x− z|2

εt

)
dz

}1/2

e−λD(1−ε)t |Ω|1/2

≤ A

(εt)n/4
exp(−λD(1− ε)t)Rn/2.
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On the other hand, (1.25) and the change of the variable x− y =
√
t z give∫

D\Ω
p(t, x, y) dy ≤ A

tn/2

∫
|y−x|≥R

exp
(
− A′|x− y|2

t

)
dy

= A

∫
|z|≥R/

√
t

exp(−A′|z|2) dz

≤ A exp
(
− A′R2

2t

) ∫
|z|≥R/

√
t

exp
(
− A′|z|2

2

)
dz ≤ A exp

(
− A′R2

2t

)
,

since exp(−A′|z|2/2) is integrable over Rn. Letting R = t
√
2λD/A′, we obtain

P (t, x,D) ≤ Aε−n/4λ
n/4
D tn/4 exp(−λD(1− ε)t) +A exp(−λDt) ≤ A exp

(
− λDt

C

)
,

since 1− ε > 1/C. Taking the supremum for x ∈ D, we obtain the first assertion
of the theorem with M(C) = A. Suppose λD > 0. By (1.26) and Fubini’s theorem
we have∫

D

G(x, y) dy =

∫ ∞

0

P (t, x,D) dt ≤
∫ ∞

0

π(t) dt ≤ A

∫ ∞

0

exp
(
− λDt

C

)
dt =

AC

λD
.

Taking the supremum for x ∈ D, we obtain the second assertion. �

Proof of Theorem 3.1. We have the following implications, which complete the first
assertion of the theorem:

(ii) ⇐⇒ (iii) by Lemma D.
(i) =⇒ (iii), (v) by Lemma 3.5.
(v) =⇒ (iv) trivial.
(iv) =⇒ (i) by Lemma 3.2.
(iii) =⇒ (v) by Lemma 3.3.

We have the comparison ‖v‖∞ ≈ wη(D)2 by Lemma D. If ‖v‖∞ < ∞, then
Lemmas 3.2 and 3.3 give

exp(−λDt) ≤ π(t) ≤ C

C − 1
exp

(
− t

C‖v‖∞
)

for all t > 0,

whenever C > 1. Hence λD ≥ 1/(C‖v‖∞) for every C > 1, and so λD ≥ 1/‖v‖∞.
Conversely, if λD > 0, then Lemma 3.5 gives ‖v‖∞ ≤ A/λD. Thus we have

1

‖v‖∞ ≤ λD ≤ A

‖v‖∞ .

which, together with Lemma D, yields (3.1) and, in particular, (1.5). �

Remark 3.6. Let L=Δ and let D be the infinite strip {(x, y) :x∈R, |y| < π/2}
in R

2. Then it is easy to see that λD = 1 and ϕD(x, y) = cos y. So, ϕD 	∈
L2(D). Obviously, wη(D) = Aπ with A > 1 depending only on η; moreover,
wη(D \B(0, R)) = Aπ for every R > 0. Hence (1.6) does not hold.
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3.2. Volumetric width and inradius

Replacing capacity by volume, we obtain another width related to capacitary width.

Definition 3.7. Let 0 < η < 1. For an open set D we define the volumetric width
vη(D) by

vη(D) = inf
{
r > 0 :

|B(x, r) \D|
|B(x, r)| ≥ η for all x ∈ D

}
.

We see that volumetric width is essentially larger than capacitary width. Let us
begin with a comparison between capacity and volume.

Lemma 3.8. Let τ > 1. Then there is a positive constant A4 depending only on τ
and n such that

|E|
|B(x, r)| ≤ A4

CapB(x,τr)(E)

CapB(x,τr)(B(x, r))

for every Borel set E ⊂ B(x, r).

Proof. Let us use the characterization (1.3) of capacity. In this proof, the Green
function is for the Laplacian. Let K ⊂ E be an arbitrary compact set and let μ
be the restriction of Lebesgue measure over K. Since∫

B(x,τr)

GB(x,τr)(y, z) dμ(z) ≤
∫
B(x,τr)

GB(x,τr)(y, z) dz ≤Ar2 for all y∈B(x, τr),

where A depends only on τ and n, it follows from (1.3) that CapB(x,τr)(E) ≥
A−1r−2|K|, so that CapB(x,τr)(E) ≥ A−1r−2|E|, as K ⊂ E is arbitrary. Dividing

the inequality by CapB(x,τr)(B(x, r)) = Arn−2, we obtain the lemma. �

Lemma 3.9. There is a positive constant A depending only on η and n such that

wη(D) ≤ Avη(D) for every open set D.

Proof. Let D be an open set with vη(D) < ∞. By definition we find r ≥ vη(D)
arbitrarily close to vη(D) such that |B(x, r) \D|/|B(x, r)| ≥ η for all x ∈ D.
By Lemma 3.8 with τ = 2 we have

η ≤ |B(x, r) \D|
|B(x, r)| ≤ A4

CapB(x,2r)(B(x, r) \D)

CapB(x,2r)(B(x, r))
for all x ∈ D.

Hence wη/A4
(D) ≤ r, and so wη/A4

(D) ≤ vη(D) by the arbitrariness of r. Since, by
Lemma 12.8, wη(D) ≈ wη′(D) for 0 < η, η′ < 1, we obtain the required inequality.

�

Volume and volumetric width have the following relationship.

Lemma 3.10. There is a positive constant A depending only on η and n such that

vη(D) ≤ A |D|1/n for every open set D.
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Proof. We may assume that |D| < ∞. Let R > 0 be such that (1 − η)|B(0, R)| =
|D|, i.e., bn(1 − η)Rn = |D| with bn being the volume of a unit ball. Then, for
every x ∈ D,

(1− η)−1|D| = |B(x,R) ∩D|+ |B(x,R) \D| ≤ |D|+ |B(x,R) \D|,
so that

η

1− η
=

1

1− η
− 1 ≤ |B(x,R) \D|

|D| =
|B(x,R) \D|

(1− η)|B(x,R)| .

Hence vη(D) ≤ R =
( |D|
bn(1− η)

)1/n

, as required. �

In view of (3.1), Lemmas 3.9 and 3.10 we have the following lower bound of
the first eigenvalue.

Corollary 3.11. There are positive constants A and A′ depending only on cL, η
and n such that

λD ≥ A

vη(D)2
≥ A′

|D|2/n .

Remark 3.12. The first inequality of Corollary 3.11 was first proved by Lieb [25];
the second is the classical Faber–Krahn inequality modulo sharp constant.

Another related quantity is the inradius :

Inr(D) = sup{δD(x) : x ∈ D}.
In other words, Inr(D) is the supremum of radii of balls included in D. Obviously,
Inr(D) ≤ vη(D) and Inr(D) ≤ wη(D). The opposite inequality (up to a multiplica-
tive constant) of the last inequality holds if D satisfies the CDC up to ∞. To see
this, recall the following estimate.

Lemma 3.13 (Proposition 1 in [1]). Suppose D satisfies the CDC up to r0. Then
there is a positive constant A such that

(3.2) wη({x ∈ D : δD(x) < r}) ≤ Ar for 0 < r < r0.

In particular, if D satisfies the CDC up to ∞, then Inr(D) ≈ wη(D).

Corollary 3.14. If D satisfies the CDC up to ∞, then λD ≈ 1/Inr(D)2.

Remark 3.15. Corollary 3.14 was proved by Ancona [6] by establishing the Hardy
inequality. Maz’ya–Shubin [26] obtained the same estimate by using rD,γ . See
Remark 1.6.

Remark 3.16. We say thatD is a John domain if there exist a positive constant cJ
and a point x0 ∈ D for which each x ∈ D can be connected to x0 by a rectifiable
curve γ ⊂ D such that

δD(y) ≥ cJ 
(γ(x, y)) for all y ∈ γ,

where γ(x, y) is the subarc of γ from x to y and 
(γ(x, y)) is the length of γ(x, y).
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Then (3.2) holds for a John domain D without the CDC. In fact, let U ={x∈D :
δD(x) < r} with (1 + 2/cJ)r < δD(x0). If x ∈ U , then |x0 − x| ≥ δD(x0) − r >
2r/cJ . Let γ be the curve connecting x and x0 as above. We find a point y ∈ γ
such that 
(γ(x, y)) = 2r/cJ . Then δD(y) ≥ 2r and |x − y| ≤ 2r/cJ , so that
B(y, r) ⊂ B(x, (1 + 2/cJ)r) \ U , and hence

|B(x, (1 + 2/cJ)r) \ U |
|B(x, (1 + 2/cJ)r)| ≥ |B(y, r)|

|B(x, (1 + 2/cJ)r)| =
1

(1 + 2/cJ)n
.

Since x ∈ U is arbitrary, it follows that vη(U) ≤ (1+2/cJ)r with η = (1+2/cJ)
−n.

Hence wη(U) ≤ Ar by Lemma 3.9. This is the key observation to dispense with
barrier conditions from the boundary Harnack principle.

Finally, we prove that (1.6) is not preserved by taking the union of two domains.

Proposition 3.17. There are two domains D0 and D1 such that limR→∞ wη(D0\
B(0, R)) = limR→∞ wη(D1 \B(0, R)) = 0 and yet D0 ∪D1 = R

n.

Proof. For simplicity we assume that n=2 and use complex notation. The n≥ 3
case is similar and is left to the reader. We place countably many small closed
disks so that their complement satisfies the required properties. See Figure 3.

R1

R2

R3

Figure 3. Domains outside closed disks; D0 = R
2 \⋃∞

k=1 E
0
k with E0

k being the union of
shaded disks. R1 = 1, R2 = 3/2, R3 = 11/6, . . . .

For a positive integer k we let

Rk =
1

1
+ · · ·+ 1

k
and kRk ≤ Nk < kRk + 1.

We place 2Nk many points {Rk exp(iπj/Nk) : 0 ≤ j ≤ 2Nk − 1} uniformly on the
circle {|z| = Rk}. Then the distance dk between two consecutive points satisfies

1

k
< 2

Rk

Nk
≤ dk = 2Rk sin

π

2Nk
≤ π

Rk

Nk
≤ π

k
.
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Hence

Ek =

2Nk−1⋃
j=0

B
(
Rk exp

( iπj
Nk

)
,
1

4k

)
is the union of 2Nk many disjoint closed disks. In particular, the even union E0

k

and the odd union E1
k are disjoint, i.e., E0

k ∩ E1
k = ∅ with

E0
k =

Nk−1⋃
j=0

B
(
Rk exp

( iπ2j
Nk

)
,
1

4k

)
and E1

k =

Nk−1⋃
j=0

B
(
Rk exp

( iπ(2j + 1)

Nk

)
,
1

4k

)
.

Moreover,

Rk +
1

4k
< Rk+1 − 1

4(k + 1)

since

Rk+1 −Rk =
1

k + 1
>

1

2k
>

1

4k
+

1

4(k + 1)
.

This means that {Ek}∞k=1 is pairwise disjoint, so that

D0 ∪D1 = R
2 with D0 = R

2 \
∞⋃
k=1

E0
k and D1 = R

2 \
∞⋃
k=1

E1
k.

It is easy to see from construction that limR→∞ vη(Dj \B(0, R)) = 0 for j = 0, 1,
and hence limR→∞ wη(Dj \B(0, R)) = 0 by Lemma 3.9. �

4. Parabolic box argument

The Green function g(x) = G(·, x0) can be regarded as a time-independent caloric
function on (0,∞) × (D \ {x0}). In this section we shall show a decay estimate
of P (t, x,D) as x approaches the boundary ∂D in terms of g(x). We shall invoke
a parabolic box argument, a parabolic counterpart of the box argument for the
boundary Harnack principle. See Section 6. See also [11], [5] and references therein.
The decomposition of the domain D with respect to the level surfaces of g plays
an important role. First we give a general framework.

Lemma 4.1. Let {αj}∞j=1 be a decreasing sequence converging to 0 and let {tj}∞j=0

be an increasing sequence converging to t∞ < ∞ with t0 = 0. Put Dj = {x ∈ D :
g(x) < αj}. If t ≥ t∞, then P (t, x,D) ≤ A∗g(x) for x ∈ D, where

A∗ =
1

α1
+

∞∑
j=1

A0

αj+1
exp

(
− A1(tj − tj−1)

wη(Dj)2

)
.

Proof. Let Ej = {x ∈ D : αj+1 ≤ g(x) < αj}, D̃j = (tj−1,∞) × Dj and Ẽj =
(tj ,∞)× Ej . Put

qj = sup
(t,x)∈Ẽj

P (t, x,D)

g(x)
.

It is sufficient to show that supj≥1 qj ≤ A∗. See Figure 4.
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t3

t2

t1

t0

t3

t2

t1

t0

g < α1 g < α1

D̃1 D̃1

D̃2 D̃2

D̃3 D̃3Ẽ1

Ẽ2

Ẽ3

Ẽ1

Ẽ2

Ẽ3

g ≥ α1

Figure 4. Parabolic box argument.

By the parabolic comparison principle over D̃1 we have

P (t, x,D) ≤ g(x)

α1
+ P (t, x,D1) for (t, x) ∈ D̃1 = (0,∞)×D1.

Divide both sides by g(x) and take the supremum over Ẽ1. Then (1.7) gives

q1 ≤ 1

α1
+ sup

(t,x)∈Ẽ1

P (t, x,D1)

g(x)
≤ 1

α1
+
A0

α2
sup
t≥t1

exp
(
− A1t

wη(D1)2

)
≤ 1

α1
+
A0

α2
exp

(
− A1(t1 − t0)

wη(D1)2

)
≤ A∗.

Let j ≥ 2. By the parabolic comparison principle over D̃j we have

P (t, x,D) ≤ qj−1g(x) + P (t− tj−1, x,Dj) for (t, x) ∈ D̃j = (tj−1,∞)×Dj.

Divide both sides by g(x) and take the supremum over Ẽj . In the same way as
above, we obtain from (1.7) that

qj ≤ qj−1 +
A0

αj+1
exp

(
− A1(tj − tj−1)

wη(Dj)2

)
.

Hence

qj ≤ q1 +
∞∑
j=2

A0

αj+1
exp

(
− A1(tj − tj−1)

wη(Dj)2

)
≤ 1

α1
+

∞∑
j=1

A0

αj+1
exp

(
− A1(tj − tj−1)

wη(Dj)2

)
= A∗.

The lemma follows. �

Second, we choose αj and tj . Let us begin with a rather simple case. Suppose
that g(x) ≥ AδD(x)α for x ∈ D with α > 0. Then

{x ∈ D : g(x) < t} ⊂ {x ∈ D : δD(x) ≤ (t/A)1/α}.
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Hence, if D satisfies the CDC, or if D is a John domain,

(4.1) wη(g < t) ≤ At1/α for t > 0

(Lemma 3.13 and Remark 3.16). In this case, we have the following sharp com-
parison between P (t, x,D) and g(x).

Lemma 4.2. Suppose (4.1) holds. If t > 0, then

P (t, x,D) ≤ A

tα/2
g(x) for x ∈ D.

Proof. Let t > 0 be fixed. Define αj = 2−jtα/2 and tj = (1− (j + 1)−1)t for j ≥ 1
and t0 = 0. Then

tj − tj−1 = t
(1
j
− 1

j + 1

)
≥ t

(j + 1)2

so that tj ↑ t and
1

α1
+

∞∑
j=1

A0

αj+1
exp

(
− A1(tj − tj−1)

wη(Dj)2

)
≤ 2t−α/2 +A0

∞∑
j=1

2j+1t−α/2 exp
(
− A1(j + 1)−2t

(A(2−jtα/2)1/α)2

)
=

{
2 +A0

∞∑
j=1

2j+1 exp
(
− A12

2j/α

A2(j + 1)2

)}
t−α/2.

Hence the required estimate follows from Lemma 4.1. �

Now let us consider the general case when (1.8) holds. We have to choose αj

and tj more carefully.

Lemma 4.3. For each ε > 0 there exist positive constants A2 and A3 depending
only on cL, n, η and ε with the following property: Suppose (1.8) holds. If t > 0,
then

P (t, x,D) ≤ A2

m1+ε
g(x) for x ∈ D

with m > 0 being chosen so that (1.10) holds.

Proof. Let κ = (1 + ε)1/2, αj = exp(−κj) and

A3 =
A1(κ− 1)

(κ+ 1)κ
.

Let t > 0 be fixed. Choose m ∈ (0, 1) satisfying (1.10). Let k be the positive
integer such that αk ≤ m < αk−1. Define

tj =
κ+ 1

A1

j∑
i=k+1

κi wη(g < αi)
2 for j ≥ k + 1,

and tk = 0.



1068 H. Aikawa

Since∫ αj−1

αj

wη(g < s)2
ds

s
≥ wη(g < αj)

2

∫ αj−1

αj

ds

s
=
κ− 1

κ
κj wη(g < αj)

2,

it follows from (1.10) and αk ≤ m that

lim
j→∞

tj =
κ+ 1

A1

∞∑
j=k+1

κjwη(g < αj)
2 ≤ (κ+ 1)κ

A1(κ− 1)

∞∑
j=k+1

∫ αj−1

αj

wη(g < s)2
ds

s

= A−1
3

∫ αk

0

wη(g < s)2
ds

s
≤ t.

Observe that

1

αj+1
exp

(
− A1(tj − tj−1)

wη(g < αj)2

)
= exp(κj+1 − (κ+ 1)κj) = exp(−κj).

Hence Lemma 4.1 (with slight modification) yields P (t, x,D) ≤ A∗g(x) for x ∈ D
with

A∗ =
1

αk+1
+

∞∑
j=k+1

A0

αj+1
exp

(
− A1(tj − tj−1)

wη(Dj)2

)
= exp(κk+1) +

∞∑
j=k+1

exp(−κj).

Since m < αk−1 = exp(−κk−1), it follows that

exp(κk+1) = (exp(κk−1))κ
2

<
1

mκ2 =
1

m1+ε
,

so that

A∗ ≤ 1

m1+ε
+

∞∑
j=1

exp(−κj) ≤ A

m1+ε
.

The lemma is proved. �

Remark 4.4. We note that the decomposition in Lemma 4.1 does not break the
boundary ∂D. More precisely, every ∂Dk contains ∂D except for a polar set, since
g(x) → 0 as x ∈ D tends to a regular boundary point of ∂D and since the set of
all irregular boundary points forms a polar set. This is a big difference between
the parabolic and elliptic box arguments.

5. Proof of Theorem 1.9

Let us begin with the following two general lemmas.

Lemma 5.1 (Proof of Theorem 1.2 in [12]). There exists a positive constant A
depending only on cL and n such that

p(3t, x, y) ≤ At−n/2 P (t, x,D)P (t, y,D) for x, y ∈ D.
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Proof. In view of (1.25), we have p(t, x, y) ≤ pRn(t, x, y) ≤ At−n/2. Observe that
the heat kernel is symmetric, i.e., p(t, x, y) = p(t, y, x) for x, y ∈ D. Let x, y, z ∈ D.
Then

p(2t, z, y) =

∫
D

p(t, z, w)p(t, w, y) dw ≤ At−n/2

∫
D

p(t, w, y) dw = At−n/2P (t, y,D),

so that p(3t, x, y) is bounded by∫
D

p(t, x, z)p(2t, z, y) dz ≤ At−n/2

∫
D

p(t, x, z)P (t, y,D) dz

= At−n/2 P (t, x,D)P (t, y,D). �

Lemma 5.2. We have
‖ϕD‖∞ ≤ Aλ

n/4
D ,

where A depends only on cL and n.

Proof. Observe that e−λDtϕD(x) is a caloric function with vanishing lateral bound-
ary values, so that

e−λDtϕD(x) =

∫
D

p(t, x, y)ϕD(y) dy ≤ ‖p(t, x, ·)‖2‖ϕD‖2 = ‖p(t, x, ·)‖2.

By (1.25) we have∫
D

p(t, x, y)2 dy ≤
∫
Rn

A

tn
exp

(
− 2A′ |x− y|2

t

)
dy

=
A

tn
(
√
t)n

∫
Rn

exp(−2A′|z|2) dz = At−n/2.

Hence ϕD(x) ≤ At−n/4eλDt. Letting t = 1/λD and taking the supremum for
x ∈ D, we obtain the lemma. �

We compare now the Green function g(x) and the ground state ϕD(x) near the
boundary. In general, g(x) is majorized by ϕD(x) whenever it exists.

Lemma 5.3. Suppose (1.6) holds. Then

g(x) ≤ AϕD(x) for x ∈ D \B(x0, δD(x0)/2),

where A > 0 depends only on cL, D and x0.

Proof. By Corollary 1.7 we have the ground state ϕD ∈ L2(D). Let us invoke
the elliptic comparison principle. Since −LϕD = λDϕD > 0, it follows that ϕD is
superharmonic in D. Let m0 = infB(x0,δD(x0)/2)

ϕD(x). This is a positive quan-
tity depending on D and x0. On the other hand, g is bounded and harmonic in
D \B(x0, δD(x0)/2) and vanishes q.e. on ∂D, so that the comparison principle
yields

g(x) ≤ M0

m0
ϕD(x) for x ∈ D \B(x0, δD(x0)/2)

with M0 = sup∂B(x0,δD(x0)/2) g. �
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Proof of Theorem 1.9. Combining Lemmas 4.3, 5.1 and 5.3, we obtain

p(3t, x, y) ≤ At−n/2m−2(1+ε) g(x) g(y) ≤ At−n/2m−2(1+ε) ϕD(x)ϕD(y)

for x, y ∈ D \ B(x0, δD(x0)/2), where m satisfies (1.10). Since ϕD ≥ A > 0
on a compact subset of D, the same inequality holds for x, y ∈ B(x0, δD(x0)/2).
Replacing t and ε by t/3 and ε/2, respectively, we obtain

p(t, x, y) ≤ A

m2+ε
t−n/2 ϕD(x)ϕD(y) for x, y ∈ D,

which implies (1.9). The opposite inequality p(t, x, y) ≥ C′
tϕD(x)ϕD(y) holds by

Proposition 2.2. Hence D is IU. The theorem is proved. �

Remark 5.4. The above proof says

g(x) ≈ ϕD(x) for x ∈ D \B(x0, δD(x0)/2),

where the constant of comparison depends on cL, D and x0.

Using Lemma 4.2 instead of Lemma 4.3, we obtain the following estimate of Ct.

Proposition 5.5. Let g(x) ≥ AδD(x)α for x ∈ D with α > 0. Suppose, either D
satisfies the CDC, or D is a John domain. Then Ct in (1.2) has an estimate
Ct ≤ At−n/2−α.

Remark 5.6. With the aid of the log-Sobolev inequality, Ouhabaz and Wang
(Corollary 2.4 (b) in [33]) proved the same estimate of Ct under an assumption
including the Hardy inequality, which is related to the CDC (Theorems 1, 2, and
Proposition 1 in [6]).

6. Elliptic box argument. Proof of Theorem 1.11

Let us state an elliptic counterpart of Lemma 4.1. This is essentially given in the
proof of Theorem 1.3 in [5]. For completeness, and for the comparison with the
parabolic box argument, we provide a proof. Let us begin by recalling an elliptic
counterpart of (1.7). The following lemma is known in the case L = Δ. But, for
completeness, we shall provide a proof in the appendix.

Lemma E (Proposition 2 in [1] and Lemma 1 in [2]). Denote by ωx(E,D) the
harmonic measure of E in D, evaluated at x. Let D be an open set, x ∈ D
and R > 0. Then

ωx(D ∩ ∂B(x,R), D ∩B(x,R)) ≤ A5 exp
(
− A6R

wη(D)

)
,

where positive constants A5 and A6 depend only on n, cL and η > 0.
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Remark 6.1. Compare the exponent 1 of wη(D) in Lemma E and the exponent 2
of wη(D) in (1.7). This difference suggests that IU is a condition much weaker
than the boundary Harnack principle.

Lemma 6.2 (Elliptic box argument). Suppose (1.13) holds. Let K be a compact
set intersecting D and let R > 0. Then

ω(D ∩ ∂K,D \K) ≤ AR g on {x ∈ D : dist(x,K) > R},

where AR > 0 depends on R, K and D.

Proof. For r ≥ 0 we put L(r) = {x ∈ D : dist(x,K) = r} and U(r) = {x ∈ D :
dist(x,K) > r}. Let ω0 = ω(D ∩ ∂K,D \K). It is sufficient to show that

(6.1) ω0 ≤ AR g on U(R).

The dependency of R on AR has no significance for the GBHP, so we fix κ = 2
and apply an argument similar to the proof of Lemma 4.3. We have from (1.13)

∞∑
i=0

2iwη(Di) <∞,

where Di = {x ∈ D : g(x) < exp(−2i)}. We find a positive integer k such that

R∞ :=
3

A6

∞∑
i=k

2iwη(Di) < R,

where A6 > 0 is the constant in Lemma E. Let Rk−1 = 0 and let

Rj =
3

A6

j∑
i=k

2iwη(Di)

for j ≥ k. Then Rj ↑ R∞ < R and

(6.2) Rj −Rj−1 =
3

A6
2j wη(Dj)

for j ≥ k. Put

Uj = {x ∈ U(Rj−1) : 0 < g(x) < exp(−2j)},
Tj = {x ∈ U(Rj) : exp(−2j+1) ≤ g(x) < exp(−2j)},

qj =

⎧⎨⎩sup
Tj

ω0

g
if Tj 	= ∅,

0 if Tj = ∅.

See Figure 5.
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K

Uk+1

Uk+1

g ≥ exp(−2k)

exp(−2k+1) ≤ g < exp(−2k)Tk

L(Rk) ∩ ∂Uk+1

Tk+1

Tk+2

Tk+1

Tk+2

Rk
Rk+1

Rk+2

Rk
Rk+1

Rk+2

g = exp(−2k)

g = exp(−2k+1)

g = exp(−2k+2)

g = exp(−2k+3)

Figure 5. Elliptic box argument.

By definition, qk ≤ exp(2k+1). Let j > k. Let us invoke the maximum principle
over Uj . Observe that

D ∩ ∂Uj ⊂ {x ∈ D ∩ ∂Uj : g(x) = exp(−2j)} ∪ (
L(Rj−1) ∩ ∂Uj

)
⊂ Tj−1 ∪

(
L(Rj−1) ∩ ∂Uj

)
.

The maximum principle yields

ω0 ≤ qj−1 g + ω(L(Rj−1) ∩ ∂Uj, Uj) on Uj ,

so that

(6.3) qj = sup
Tj

ω0

g
≤ qj−1 + exp(2j+1) sup

Tj

ω(L(Rj−1) ∩ ∂Uj, Uj).

Let us estimate the harmonic measure on the right-hand side. Let x ∈ Tj. Then
B(x,Rj −Rj−1) ⊂ U(Rj−1) by definition. Hence the maximum principle yields

ω(L(Rj−1) ∩ ∂Uj, Uj) ≤ ω(∂B(x,Rj −Rj−1) ∩ Uj , B(x,Rj −Rj−1) ∩ Uj)

on B(x,Rj −Rj−1)∩Uj . Evaluating at x, and then applying Lemma E, we obtain

ωx(L(Rj−1) ∩ ∂Uj, Uj) ≤ ωx(∂B(x,Rj −Rj−1) ∩ Uj , B(x,Rj −Rj−1) ∩ Uj)

≤ A5 exp
(
− A6(Rj −Rj−1)

wη(Uj)

)
≤ A5 exp

(
− A6(Rj −Rj−1)

wη(Dj)

)
.

Hence (6.3) becomes

qj ≤ qj−1 +A5 exp
(
2j
(
2− A6(Rj −Rj−1)

2jwη(Dj)

))
= qj−1 +A5 exp(−2j),

where the equality follows from (6.2). Hence

qj ≤ exp(2k+1) +A5

∞∑
j=k+1

exp(−2j) <∞.
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With A7 > 0 being the right-hand side we have

ω0 ≤ A7 g on
∞⋃
j=k

Tj.

Since U(R) ⊂ {x : g(x) ≥ exp(−2k)} ∪⋃∞
j=k Tj, it follows that

ω0 ≤ max{A7, exp(2
k)}g = A7 g on U(R).

Thus (6.1) follows. The lemma is proved. �

Proof of Theorem 1.11. Actually, the first inequality of (1.12) holds for an arbi-
trary domain D. Let K and F be disjoint compact sets such that x0 	∈ K ∪F . We
find a ball B0 = B(x0, r0) such that 0 < r0 < min{δD(x0), dist(x0,K ∪ F )}. Let
y ∈ D ∩ F . By the Harnack inequality we have G(·, y) ≈ G(x0, y) = g(y) on ∂B0.
Obviously, g ≤ A on ∂B0. Compare G(·, y)/g(y) and g on D \B0. Since the first is
superharmonic and the second is harmonic, and since both are bounded near ∂D,
say in D \ (B0 ∪ B(y, δD(y)/2)), and both vanish q.e. on ∂D, it follows from the
maximum principle that

G(·, y)
g(y)

≥ Ag on D \B0,

and, in particular,

G(x, y) ≥ Ag(x) g(y) for x ∈ D ∩K.
For the second inequality of (1.12) we employ Lemma 6.2. Let dist(K,F ) = 3R

and put Kj = {z ∈ R
n : dist(z,K) ≤ jR} for j = 1, 2. Observe that

A(K,F ) = sup
z1∈D∩∂K1, z2∈D∩∂K2

G(z1, z2) <∞.

Fix z ∈ D ∩ ∂K2 for a moment. Then the maximum principle yields

G(x, z) ≤ A(K,F )ωx(D ∩ ∂K1, D \ ∂K1) for x ∈ D ∩K1.

Hence Lemma 6.2 implies that G(x, z) ≤ Ag(x) for x ∈ D∩K. Now fix x ∈ D∩K.
Then

sup
z∈D∩∂K2

G(x, z) ≤ Ag(x),

so that the maximum principle yields

G(x, y) ≤ Ag(x)ωy(D ∩ ∂K2, D \ ∂K2) for y ∈ D \K2.

Lemma 6.2 says that

ωy(D ∩ ∂K2, D \ ∂K2) ≤ Ag(y) for y ∈ D ∩ F,
so that G(x, y) ≤ Ag(x) g(y) as required. �
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7. Sufficient conditions of Orlicz type. Proof of Theorem 1.16

Combining Theorems 1.9 and 1.11, Lemmas 3.9 and 3.10, we obtain the following
corollary.

Corollary 7.1. The following statements hold:

(i) If

∫ 1

0

|{x ∈ D : g(x) < t}|2/n dt
t
<∞, then D is IU.

(ii) If

∫ 1

0

|{x ∈ D : g(x) < t}|1/n dt
t
<∞, then D satisfies the GBHP.

Let s = log(1/t). Then {x ∈ D : g(x) < t} = {x ∈ D : log(1/g(x)) > s}.
For simplicity we write |{log(1/g) > s}| for the Lebesgue measure of the set in
the right-hand side. By a change of variable, we see that the first assumption of
Corollary 7.1 (i) becomes

(7.1)

∫ ∞

0

|{log(1/g) > s}|2/n ds <∞.

Proof of Theorem 1.16 (i). Let n = 2. Then (7.1) becomes∫ ∞

0

|{log(1/g) > s}| ds =
∫
{x∈D:g(x)<1}

log(1/g) dx <∞.

Hence if log+(1/g) ∈ L1(D), then D is IU. �

For the remaining assertions of Theorem 1.16 we need an estimate of Φ-integrals.
The next lemma says that there is no harm in assuming that Φ(t) is strictly in-
creasing.

Lemma 7.2. Let ϕ(t) be a nondecreasing positive continuous function of t > 0.
Then there exists a strictly increasing positive continuous function Φ(t) such that
ϕ(t) ≤ Φ(t) ≤ 2ϕ(t).

Proof. Observe that

Φ(t) = ϕ(t) +

∫ t

0

e−τϕ(τ) dτ

has the required properties. �

In the rest of this section we assume that Φ(t) is strictly increasing and con-
tinuous and let Ψ(t) be its inverse function.

Lemma 7.3. If f is a positive measurable function on D, then

∞∑
j=1

2j |{f > Ψ(2j)}| ≤ 2

∫
D

Φ(f) dx.
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Proof. By definition,∫
D

Φ(f) dx =

∫ ∞

0

|{f > t}| dΦ(t)

≥
∫ ∞

Ψ(1)

|{f > t}| dΦ(t) =
∞∑
j=1

∫ Ψ(2j)

Ψ(2j−1)

|{f > t}| dΦ(t)

≥
∞∑
j=1

|{f > Ψ(2j)}|(Φ(Ψ(2j))− Φ(Ψ(2j−1))) =
∞∑
j=1

|{f > Ψ(2j)}| 2j−1.

This gives the required inequality. �

Proof of Theorem 1.16 (ii) and (iii). (ii) Let n ≥ 3 and suppose Φ satisfies (1.16).
Assume that log+(1/g) ∈ LΦ(D). Observe that∫ ∞

Ψ(1)

|{log(1/g) > s}|2/n ds =
∞∑
j=0

∫ Ψ(2j+1)

Ψ(2j)

|{log(1/g) > s}|2/n ds

≤
∞∑
j=0

|{log(1/g) > Ψ(2j)}|2/n(Ψ(2j+1)−Ψ(2j)),

which is less than or equal to

(7.2)
( ∞∑

j=0

2j|{log(1/g)>Ψ(2j)}|
) 2

n
( ∞∑

j=0

(2j)2/(2−n)(Ψ(2j+1)−Ψ(2j))n/(n−2)
)1− 2

n

by Hölder’s inequality. From Lemma 7.3 with f = log+(1/g) we have

∞∑
j=0

2j |{log(1/g) > Ψ(2j)}| ≤ 2

∫
D

Φ(log+(1/g)) dx <∞.

Since n/(n− 2) > 1, we have

(Ψ(2j+1)−Ψ(2j))n/(n−2) ≤ Ψ(2j+1)n/(n−2) −Ψ(2j)n/(n−2),

so the second series in (7.2) is less than or equal to

(7.3)

∞∑
j=0

(2j)2/(2−n) [Ψ(2j+1)n/(n−2) −Ψ(2j)n/(n−2)].

Observe that∫ Ψ(2j+1)

Ψ(2j)

( t

Φ(t)

)2/(n−2)

dt ≥ Φ(Ψ(2j+1))2/(2−n)

∫ Ψ(2j+1)

Ψ(2j)

t2/(n−2) dt

=
n− 2

n
(2j+1)2/(2−n)[Ψ(2j+1)n/(n−2) −Ψ(2j)n/(n−2)].

Taking the summation for j ≥ 0, we obtain from (1.16) that (7.3) is convergent,
and hence (7.2) is finite. Therefore (7.1) holds, and hence D is IU.
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(iii) The proof is similar. Let n ≥ 2 and suppose Φ satisfies (1.17). Put
f = log+(1/g) and assume that f ∈ LΦ(D). It suffices to observe that∫ ∞

Ψ(1)

|{f > s}|1/n ds

≤
( ∞∑

j=0

2j|{f >Ψ(2j)}|
)1/n( ∞∑

j=0

(2j)1/(1−n)[Ψ(2j+1)n/(n−1)−Ψ(2j)n/(n−1)]
)1−1/n

,

and that∫ Ψ(2j+1)

Ψ(2j)

( t

Φ(t)

)1/(n−1)

dt ≥ n− 1

n
(2j+1)1/(1−n)[Ψ(2j+1)n/(n−1) −Ψ(2j)n/(n−1)] .

�

If log+(1/g) ∈ Lp(D) with p > n/2, then the constant Ct in (1.2) can be easily
estimated.

Proposition 7.4. If log+(1/g) ∈ Lp(D) with p > n/2, then Ct in (1.2) has

an estimate log(Ct) = O(tn/(n−2p)) as t → 0. In particular, if p > n, then
limt→0 t log(Ct) = 0.

Proof. Observe that

‖ log+(1/g)‖pp =

∫ ∞

0

|{log(1/g) > s}| dsp <∞.

Let 0 < m < 1 and put M = log(1/m). By Lemmas 3.9 and 3.10,∫ m

0

wη(g < s)2
ds

s
=

∫ ∞

M

wη(log(1/g) > s})2 ds ≤ A

∫ ∞

M

|{log(1/g) > s}|2/n ds.

If n = 2, then∫ ∞

M

|{log(1/g)>s}| ds ≤M1−p

∫ ∞

M

|{log(1/g)>s}|sp−1 ds≤M1−p

p
‖ log+(1/g)‖pp,

so that we can choose log(1/m) = At1/(1−p) in (1.10), and hence log(Ct) ≤
log(A2/m

2+ε) + A log(1/t) ≤ Atn/(n−2p) with n = 2. If n ≥ 3, then the Hölder
inequality gives∫ ∞

M

|{log(1/g) > s}|2/n ds

≤
( ∫ ∞

M

|{log(1/g) > s}|sp−1 ds
)2/n( ∫ ∞

M

s2(p−1)/(2−n) ds
)1−2/n

≤ A ‖ log+(1/g)‖2p/np M (n−2p)/n,

so that we can choose log(1/m) = Atn/(n−2p) in (1.10), and hence log(Ct) ≤
log(A2/m

2+ε) +A log(1/t) ≤ Atn/(n−2p) as well. �
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8. Sufficient conditions in terms of quasihyperbolic metric.
Proof of Theorem 1.23

Let us give elementary estimates of some integrals. In view of Lemma 7.2 we may
assume that Φ(t) is a strictly increasing positive function of t > 0 and let Ψ(t) be
its inverse function.

Lemma 8.1. Let Φ(t) and Ψ(t) be as above. Then the following inequalities hold:∫ ∞

Φ(1)

dt

Ψ(t)
≤ 4

∫ ∞

2

Φ(t)
dt

t2
and

∫ ∞

Ψ(2)

Φ(t)
dt

t2
≤ 4

∫ ∞

1

dt

Ψ(t)
,(8.1) ∫ ∞

Φ(1)

dt

Ψ(t)2
≤ 32

3

∫ ∞

2

Φ(t)
dt

t3
and

∫ ∞

Ψ(2)

Φ(t)
dt

t3
≤ 2

∫ ∞

1

dt

Ψ(t)2
.(8.2)

Proof. Let j be an integer. Then∫ Φ(2j)

Φ(2j−1)

dt

Ψ(t)
≤ 1

Ψ(Φ(2j−1))

∫ Φ(2j)

Φ(2j−1)

dt ≤ Φ(2j)

2j−1
,

∫ 2j+1

2j
Φ(t)

dt

t2
≥ Φ(2j)

∫ 2j+1

2j

dt

t2
=

Φ(2j)

2j+1
,

so that ∫ Φ(2j)

Φ(2j−1)

dt

Ψ(t)
≤ 4

∫ 2j+1

2j
Φ(t)

dt

t2
.

Summing up the above inequality for j ≥ 1, we obtain the first inequality of (8.1).
Similarly, we have∫ Ψ(2j+1)

Ψ(2j)

Φ(t)
dt

t2
≤ Φ(Ψ(2j+1))

( 1

Ψ(2j)
− 1

Ψ(2j+1)

)
≤ 4

2j−1

Ψ(2j)
≤ 4

∫ 2j

2j−1

dt

Ψ(t)
.

Summing for j ≥ 1, we obtain the second inequality of (8.1). We can prove (8.2)
in a similar manner. Details are left to the reader. �

Proof of Theorem 1.23. Let Φ(t) and Ψ(t) be as above. We assume that D satisfies
the QHB(Φ) condition. Observe that (1.20) is equivalent to

Ψ(kD(x, x0)) ≤ δD(x0)

δD(x)
for all x ∈ D.

Let us estimate the capacitary width of the set {x ∈ D : g(x) < t}. For simplicity
we write {g(x) < t} for this set; and use the same convention for sets given by
conditions on x. Observe from (1.15) that

{g(x) < t} ⊂ {kD(x, x0) > A log(1/t)}

⊂ {Ψ(kD(x, x0)) > Ψ(A log(1/t))} ⊂
{
δD(x) <

δD(x0)

Ψ(A log(1/t))

}
.

Hence

wη(g < t) = wη({g(x) < t}) ≤ A

Ψ(A log(1/t))
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by Lemma 3.13. Therefore,∫
0

wη(g < t)
dt

t
≤
∫
0

A

Ψ(A log(1/t))

dt

t
and

∫
0

wη(g < t)2
dt

t
≤
∫
0

A

Ψ(A log(1/t))2
dt

t
.

By the change of variable A log(1/t) = s we have∫
0

A

Ψ(A log(1/t))

dt

t
=

∫ ∞ A

Ψ(s)
ds and

∫
0

A

Ψ(A log(1/t))2
dt

t
=

∫ ∞ A

Ψ(s)2
ds.

We see from Lemma 8.1 that these integrals converge if (1.22) and (1.21) hold,
respectively. Hence the theorem follows from Theorems 1.9 and 1.11. �

If D satisfies the QHB(α) and the CDC, then the constant Ct in (1.2) can be
easily estimated.

Proposition 8.2. If D satisfies the CDC and the QHB(α) with α < 2, then Ct

in (1.2) has an estimate log(Ct) = O(tα/(α−2)) as t → 0. In particular, if α < 1,
then limt→0 t log(Ct) = 0.

Proof. In view of (1.15), the QHB(α), the CDC and Lemma 3.13

wη(log(1/g) > s) ≤ wη(kD(·, x0) > As) ≤ wη(δD(x) < As−1/α) ≤ As−1/α.

Let 0 < m < 1 and put M = log(1/m). Then∫ m

0

wη(g<s)
2 ds

s
=

∫ ∞

M

wη(log(1/g)>s)
2 ds≤A

∫ ∞

M

s−2/α ds =
A

2/α−1
M (α−2)/α.

Hence we can choose log(1/m)=Atα/(α−2) in (1.10), so that log(Ct)≤ log(A2/m
2+ε)

+A log(1/t) ≤ Atα/(α−2). �

9. Domains above the graph of a function. Proof of Theo-
rem 1.26

We assume that f(x′) < −a for some a, 0 < a < 1, and let x0 be the origin. First we
prove Proposition 1.25, providing a relationship between Df with f ∈ Lp(B′(0, R))
and the quasihyperbolic boundary condition.

Proof of Proposition 1.25. Let x0 = (0, . . . , 0). It is easy to see that

(9.1) kD(x, x0) ≤ A log
δD(x0)

δD(x)
+A ≤ AδD(x)(1−n−p)/p +A

for x ∈ D with xn ≥ −a/2. Let x ∈ D with xn < −a/2. Since B(x, δD(x)) ⊂ D,
it follows from geometry that

f(y′) ≤ xn for y′ ∈ B′(x′, δD(x)).
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Hence

AδD(x)n−1|xn|p ≤
∫
B′(x′,δD(x))

|f(y′)|p dy′ ≤
∫
B′(0,R)

|f(y′)|p dy′ <∞,

so that |xn| ≤ AδD(x)(1−n)/p. Let x∗ = (x′, 0) and let γ be the line segment
connecting x and x∗. Since the distance between x∗ and B′(0, R) × {1} (the top
of D) is equal to 1, it follows that

δD(x∗) ≥ dist(γ, ∂D) = min{δD(x), 1},
so that kD(x, x∗) ≤ AδD(x)(1−n−p)/p + A. It follows from (9.1) with x∗ in place
of x that

kD(x, x0) ≤ kD(x, x∗) + kD(x∗, x0) ≤ AδD(x)(1−n−p)/p +A.

Thus D satisfies the QHB((p+ n− 1)/p) condition. �

The above proposition says that if f ∈ Lp(B′(0, R)), then Df is a twisted
Lp-domain in the sense of Bass–Burdzy (Definition 2.2 in [12]). Hence, if p >
n − 1, then Df is IU under the additional assumption of the CDC (Theorem A).
It is a hard problem to dispense with the CDC. Let us illustrate the difficulty
in case n ≥ 3. Take an upper semicontinuous function f(x′) ∈ Lp(B′(0, R)) with
f(x′) ≤ −a. Let E′ be a countable subset of B′(0, R) with no accumulation points
in B′(0, R) and put

f̃(x′) =
{ −a if x′ ∈ E′,
f(x′) if x′ ∈ B′(0, R) \E′.

Then f̃ is an upper semicontinuous function in Lp(B′(0, R)) such that f̃ = f
a.e. in B′(0, R). Since E′ × R is a polar set, it follows that Ω = {(x′, xn) : x′ ∈
B′(0, R), f(x′) < xn < 1} and Ω̃ = {(x′, xn) : x′ ∈ B′(0, R), f̃(x′) < xn < 1}
share many properties such as volume, and yet they have completely different
nature. For instance, Ω \ Ω̃ consists of irregular boundary points of Ω̃ and the
quasihyperbolic metric kΩ̃ diverges there.

In order to overcome the difficulty, Bass–Burdzy [12] established their Lem-
ma 2.4. That was our motivation of the previous paper [5], where we proved
an extended Harnack inequality with an exceptional set. Let us state the result
as Theorem 9.2 below, adapted for the present setting. The same result holds
for L-harmonic functions by uniform ellipticity. See also (1.4).

Let us introduce regularized reduced functions, which are closely related to
capacity and capacitary width. See Sections 5.3–7 in [7] for the case L = Δ. Let U
be an open set. For E ⊂ U and a nonnegative function u on E, we define the
reduced function URE

u by

URE
u (x) = inf{v(x) : v ≥ 0 is superharmonic in U and v ≥ u on E} for x ∈ U.

The lower semicontinuous regularization of URE
u is called the regularized reduced

function or balayage and is denoted by U R̂E
u . It is known that UR̂E

u is a nonneg-

ative superharmonic function, U R̂E
u ≤ URE

u on U and the equality sign holds q.e.
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on U . If u is a nonnegative superharmonic function on U , then UR̂E
u ≤ u on U .

By the maximum principle UR̂E
u is nondecreasing with respect to U and E. If u is

the constant function 1, then U R̂E
1 (x) is the probability of hitting E before leav-

ing U when the diffusion starts at x. Reduced functions and capacity are closely
related. The following lemma is known in case L = Δ. But, for completeness, we
shall provide a proof in the appendix.

Lemma F (Lemmas 4.6 and 4.7 in [5]). Let 0 < r < R. If E is a compact subset
of B(x,R), then

inf
B(x,r)

B(x,R)R̂E
1 ≤ CapLB(x,R)(E)

CapLB(x,R)(B(x, r))
.

Moreover, if E ⊂ B(x, r), then

CapLB(x,R)(E)

CapLB(x,R)(B(x, r))
≤ A inf

B(x,r)

B(x,R)R̂E
1 ,

where A > 1 depends only on n, cL and r/R.

Reduced functions have a lower estimate in terms of Lebesgue measure.

Lemma 9.1. Let τ > 1. Then

B(x,τr)R̂E
1 (x) ≥ A

|E|
|B(x, r)| for every Borel set E ⊂ B(x, r),

where A depends only on τ , cL and n.

Proof. In view of (1.4), Lemmas F and 3.8, we have

B(x,τr)R̂E
1 (x) ≥ A

CapLB(x,τr)(E)

CapLB(x,τr)(B(x, r))
≈ CapB(x,τr)(E)

CapB(x,τr)(B(x, r))
≥ A

|E|
|B(x, r)| . �

Theorem 9.2 (Theorem 5.5 in [5]). Let A8 > 1 and τ > 1. Let {B(xj , rj)}Jj=0 be
a chain of balls satisfying the following:

(i) If 1 ≤ j ≤ J , then

A−1
8 rj−1 ≤ rj ≤ A8rj−1,

B(xj−1, rj−1) ∩B(xj , rj) includes a ball of radius greater than A−1
8 rj ,

B(xj , rj) \B(xj−1, rj−1) includes a ball of radius greater than A−1
8 rj.

(ii) If |i− j| ≥ 2, then B(xi, τri) ∩B(xj , τrj) = ∅.
Then there exist positive constants ε0 < 1 and A9 > 1 depending only on n,

A8, and τ with the following property: suppose that a closed set E satisfies E ∩
B(xJ , rJ ) = ∅,

B(x0,τr0)R̂
E∩B(x0,r0)
1 (x0) < ε0,

CapB(xj ,τrj)(E ∩B(xj , rj))

CapB(xj ,τrj)(B(xj , rj))
< ε0 for j = 1, . . . , J − 1.
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Then

(9.2)
h(xJ )

h(x0)
≤ exp(A9 J),

whenever h is a positive harmonic function in B(x0, r0) ∪ · · · ∪B(xJ , rJ ) \ E.

The intuitive meaning of the theorem is as follows: The Harnack type inequal-
ity (9.2) holds if the exceptional set E has

(i) uniformly small, measured by capacity, intersection with intermediate balls
B(xj , rj), 1 ≤ j ≤ J − 1,

(ii) no intersection with the last ball B(xJ , rJ),

(iii) small intersection with the first ball B(x0, r0) influencing little the value at x0
of the regularized reduced function.

A chain of balls {B(xj , rj)}Jj=0 satisfying (i) and (ii) of Theorem 9.2 is referred
to as a Harnack simple chain. We can easily construct a Harnack simple chain for
a domain above a graph.

R
n \ D

D

0

xJ

x2

x1

x

xn = f(x′)

Figure 6. A domain above a graph and a Harnack simple chain with exceptional set.

Let 0 < a ≤ R and let f(x′) be an upper semicontinuous function of x′ ∈
B′(0, R) such that f < −a on B′(0, R). To distinguish a sequence of points and
the component of a point, we write xn for the n-th component of a point x in this
paragraph. Consider the domain

D = Df = {x = (x′, xn) ∈ R
n : |x′| < R, f(x′) < xn < 1}

above the graph of f . Take a point x = (x′, xn) ∈ D with xn < −a/2. Let
0 < ρ < a/4 and 1 < τ ≤ 2. We place a sequence of points xj = (x′, xn + τρj)
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above the point x = (x′, xn). Observe that

|xi − xj | = |i− j|τρ.
Hence, if |i − j| ≥ 2, then |xi − xj | ≥ 2τρ, i.e., B(xi, τρ) ∩ B(xj , τρ) = ∅.

We also see that B(xj−1, ρ)∩B(xj , ρ) contains an open ball with radius (1−τ/2)ρ;
and that B(xj , (τ − 1)ρ) ⊂ B(xj , ρ) \ B(xj−1, ρ). Let J be the integer such that
τρ(J − 1) < |xn| ≤ τρJ . Then xnJ = xn + τρJ satisfies 0 ≤ xnJ < τρ < a/2 < 1/2,
so that B′(x′, R − |x′|) × (xnJ − a/2, xnJ + a/2) ⊂ D. Hence, if |x′| ≤ R − ρ, then
δD(xJ ) ≥ min{R − |x′|, a/2} ≥ ρ, so that {B(x, ρ), B(x1, ρ), . . . , B(xJ , ρ)} is a
Harnack simple chain such that

(9.3) J ≤ A |xn|/ρ and B(xJ , ρ) ⊂ D.

See Figure 6.

We show that if B(x,2r)R̂
B(x,r)\D
1 (x) is sufficiently small, Theorem 9.2 is appli-

cable to the Harnack simple chain {B(x, ρ), B(x1, ρ), . . . , B(xJ , ρ)} with ρ = r/2.

Lemma 9.3. Let a, R, f and D be as above and let ε0 be as in Theorem 9.2.
Then there exists a positive constant η0 depending only on cL and n such that if

x = (x′, xn) ∈ D and if B(x,2r)R̂
B(x,r)\D
1 (x) < η0, then

(i) |x′| ≤ R− ρ,

(ii)
CapB(xj ,τρ)(B(xj , ρ) \D)

CapB(xj ,τρ)(B(xj , ρ))
< ε0 for j = 1, . . . , J − 1,

where ρ = r/2.

Proof. Observe that D is included in the cylinder W = B′(0, R) × (−∞, 1).
Let ρ = r/2. An elementary geometrical argument gives

|B(x, r) \W |
|B(x, r)| > c1 if |x′| > R − ρ

with c1 > 0 depending only on the dimension n. On the other hand, we have from
Lemma 9.1

B(x,2r)R̂
B(x,r)\D
1 (x) ≥ A

|B(x, r) \W |
|B(x, r)| .

Hence (i) follows with η0 ≤ Ac1. We have

B(x,2r)R̂
B(x,r)\D
1 (x) ≥ B(x,τρ)R̂

B(x,ρ)\D
1 (x) ≥ A

CapB(x,τρ)(B(x, ρ) \D)

CapB(x,τρ)(B(x, ρ))

by the monotonicity of B(x,2r)R̂
B(x,r)\D
1 (x) in r and Lemma F. In view of the

geometric nature and translation invariance of capacity, we see that the right-hand
side is greater than or equal to

A
CapB(xj ,τρ)(B(xj , ρ) \D)

CapB(xj ,τρ)(B(xj , ρ))

for j = 1, . . . , J − 1. Hence (ii) follows with η0 ≤ Aε0. The lemma follows. �
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Lemma 9.4. Let a, R, f and D be as above. Let ϕ(t) be a positive nondecreasing
function of t > 0 and let Φ(t) = (tϕ(t))n−1. Suppose f ∈ LΦ(B′(0, R)). Then
there exist positive constants η, T < 1, A10 and A11 with the following property:

let 0 < t < T and put s = log(1/t); if x ∈ D and B(x,2r)R̂
B(x,r)\D
1 (x) < η with

(9.4) r2 s ϕ(A10 rs) ≥ A11,

then g(x) ≥ t.

Remark 9.5. The hypothesis of this lemma allows r > δD(x). Hence the usual
Harnack inequality is not enough to prove the lemma.

Proof of Lemma 9.4. Let x ∈ D. First, consider the case when xn > −a/2. Let
V = {y ∈ D : yn > −a}. Since V coincides with the Lipschitz domain B′(0, R)×
(−a, 1), the estimate (1.18) is available, and hence, by (1.14),

(9.5) g(x) ≥ AδD(x)α

for some α > 0. Suppose g(x) < t. Then δD(x) ≤ At1/α, so that, by the mono-
tonicity of reduced functions,

B(x,4δD(x))R̂
B(x,2δD(x))\D
1 (x) ≤ B(x,4At1/α)R̂

B(x,2At1/α)\D
1 (x).

Moreover, it t is small, then δD(x) < a/2, so that B(x, δD(x)) touches ∂D at x∗ ∈
∂D ∩ ∂V with x∗n > −a. It follows from the convexity of V that B(x, 2δD(x)) \D
contains an open ball of radius δD(x)/2 touching B(x, δD(x)) at x∗. See Figure 7.
Hence Lemma 9.1 yields

(9.6) B(x,4At1/α)R̂
B(x,2At1/α)\D
1 (x) ≥ η1

for some η1 > 0, We claim that if r satisfies (9.4), then rs ≥ A > 0 as s → ∞.
Suppose, to the contrary, r = o(1/s). Then we would have

r2s ϕ(A10rs) = o(s−2) s ϕ(o(1)) = o(s−1) → 0 as s→ ∞,

a contradiction to (9.4). The claim implies that if t > 0 is small, and if r satis-
fies (9.4), then

r ≥ A

s
=

A

log(1/t)
≥ 2At1/α,

so that B(x,2r)R̂
B(x,r)\D
1 (x) ≥ η1 by (9.6). That is, if B(x,2r)R̂

B(x,r)\D
1 (x) < η1,

then g(x) ≥ t. Letting η ≤ η1, we obtain the lemma in case xn > −a/2.
Second, consider the case when xn ≤ −a/2. Since B(x,2r)R̂

B(x,r)\D
1 (x) is in-

creasing in r, we may assume 0 < r < a/4. Let 1 < τ ≤ 2, ρ = r/2 and
0 < η ≤ η0, with η0 as in Lemma 9.3. The lemma says that |x′| ≤ R− ρ, and hence
{B(x, ρ), B(x1, ρ), . . . , B(xJ , ρ)} is a Harnack simple chain satisfying (9.3) as was
observed before Lemma 9.3. Applying Theorem 9.2, we get g(x) ≥ g(xJ ) exp(−AJ),
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1

−a

x x∗

V

Figure 7. B(x, δD(x)) touches ∂D at x∗ ∈
∂D ∩ ∂V .

D

Q \ D

yn = f(y′)

x E′
xn

xn + r/2

xn − r/2

Figure 8. |Q \D| ≥ r

2
Hn−1(E

′).

provided η > 0 is sufficiently small. In view of (9.3) and (9.5) with xJ in place
of x, we have

(9.7) g(x) ≥ g(xJ) exp(−AJ) ≥ Arα exp
(
−A

|xn|
r

)
≥ exp

(
− |xn|
A10r

)
,

where A10 > 0 is taken so small that Arα is absorbed in the last term. This is
possible since |xn| ≥ a/2.

Let Q = B′(x′, r/2)× (xn − r/2, xn + r/2) be a cylinder. Since Q ⊂ B(x, r), it

follows from Lemma 9.1 and B(x,2r)R̂
B(x,r)\D
1 (x) < η that |Q \D| ≤ Aη|B(x, r)|.

Let E′ = {y′ ∈ B′(x′, r/2) : f(y′) ≥ xn}. Then a line segment {y′}×(xn−r/2, xn)
of length r/2 lies outside D for y′ ∈ E′. See Figure 8. Hence

|Q \D| =
∫
B′(x′,r/2)

dy′
∫ xn+r/2

xn−r/2

χQ\D(y) dyn

≥
∫
E′
dy′

∫ xn

xn−r/2

χQ\D(y) dyn ≥ r

2
Hn−1(E

′),

whereHn−1(E
′) stands for the (n−1)-dimensional Hausdorff measure ofE′. There-

fore
r

2
Hn−1(E

′) ≤ Aη rn,

so that Hn−1(E
′) ≤ 1

2Hn−1(B
′(x′, r/2)), provided η is sufficiently small. Hence

Hn−1(B
′(x′, r/2)\E′)≥ 1

2Hn−1(B
′(x′, r/2)). Since f(y′)<xn for y′∈B′(x′, r/2)\E′,

it follows that

∞>

∫
B′(0,R)

Φ(|f(y′)|) dy′≥
∫
B′(x′,r/2)\E′

Φ(|xn|) dy′≥2−1Hn−1(B
′(x′, r/2))Φ(|xn|).

Rewriting Φ by ϕ, we obtain

r |xn|ϕ(|xn|) ≤ A.
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Now let A11 = 2A/A10 with A being the constant in the right-hand side. If
|xn| ≥ A10rs, then we would have

A10 r
2s ϕ(A10rs) ≤ A10A11

2
,

and hence r2sϕ(A10rs) ≤ A11/2. This contradicts (9.4). Hence |xn| < A10rs, so
that by (9.7)

g(x) ≥ exp
(
− A10 rs

A10 r

)
= exp(−s) = exp(− log(1/t)) = t.

This completes the proof. �

Lemma 9.6. Let ϕ, Φ, a, f , D, and η be as in Lemma 9.4. If t > 0 is small, then

wη(g < t) ≤ Ar,

where r satisfies (9.4) with s = log(1/t).

Proof. Define modified capacitary width by

w∗
η(U) = inf

{
r > 0 : B(x,2r)R̂

B(x,r)\U
1 (x) ≥ η for all x ∈ U

}
for an open set U . Lemma 9.4 can be reformulated as w∗

η({x ∈ D : g(x) < t}) ≤ r.
It is known that wη and w∗

η are comparable (Proposition 7.4 in [5]). The lemma
follows. �

Proof of Theorem 1.26. By the change of variable s = log(1/t) we see that (1.8)
becomes

(9.8)

∫ ∞

0

wη(g < t(s))2 ds <∞.

By Theorem 1.9, it is sufficient to show the above inequality. Lemma 9.6 says that
if s = log(1/t) is sufficiently large, say s ≥ s0, then

wη(g < t(s)) ≤ Aρ(s) with ρ(s) = inf{r > 0 : r satisfies (9.4)}.

Let 1/2 < κ < 1. We split the interval [s0,∞) into I = {s ≥ s0 : ρ(s) ≤ s−κ} and
II = {s ≥ s0 : ρ(s) > s−κ}. Then∫

I

ρ(s)2 ds ≤
∫ ∞

s0

s−2κ ds <∞.

Suppose s ∈ II. Take r ∈ (s−κ, ρ(s)). By definition, this r does not satisfy (9.4),
so that, by the monotonicity of ϕ,

r2s ϕ(A10 s
1−κ) ≤ r2s ϕ(A10 rs) < A11.
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Letting r → ρ(s), we obtain

ρ(s)2 ≤ A11

s ϕ(A10 s1−κ)
.

By the change of variable A10s
1−κ = σ we have∫

II

ρ(s)2 ds ≤
∫ ∞

s0

A11 ds

s ϕ(A10 s1−κ)
=

A11

1− κ

∫ ∞

σ0

dσ

σϕ(σ)

=
A11

1− κ

∫ ∞

σ0

Φ(σ)1/(1−n) dσ <∞,

where σ0 = A10 s
1−κ
0 by (1.23). Thus we obtain (9.8). The proof is complete. �

If f ∈ Lp(B′(0, R)) with p > n− 1, then the constant Ct in (1.2) can be easily
estimated.

Proposition 9.7. If f ∈ Lp(B′(0, R)) with p > n− 1, then Ct in (1.2) for Df has
an estimate log(Ct) = O(t(n+p−1)/(n−p−1)) as t→ 0.

Proof. Since tp=Φ(t)=(tϕ(t))n−1, it follows that ϕ(t)= t(p−n+1)/(n−1). Then (9.4)
can be easily solved, and we can take r = As−p/(n+p−1). Hence wη(log(1/g) > s)
≤ As−p/(n+p−1). Let 0 < m < 1 and put M = log(1/m). Then∫ ∞

M

wη(log(1/g)>s)
2 ds ≤A

∫ ∞

M

s−2p/(n+p−1) ds=
A(n+ p− 1)

n− p− 1
M (n−p−1)/(n+p−1).

Hence we can choose log(1/m) = At(n+p−1)/(n−p−1) in (1.10), so that log(Ct) ≤
log(A2/m

2+ε) +A log(1/t) ≤ At(n+p−1)/(n−p−1). �

Remark 9.8. Observe that −∞ < (n+p−1)/(n−p−1) ≤ −1 for n−1 < p ≤ ∞.
So, we do not have limt→0 t log(Ct) = 0 in this setting.

10. Pasting domains and LΦ-domains

Let us give a generalization of Theorem 1.26 by pasting finitely many domains.
In view of Proposition 3.17 and Remark 4.4, space localization is not so obvious.
So, we have to clarify the meaning of pasting.

Definition 10.1. We say that two domains D1 and D2 are well-pasted if there
are two bounded Lipschitz domains Ω and Ω∗ with the following properties:
let D = D1 ∪D2.

(i) D1 ∩D2 ⊂ Ω ⊂ Ω∗ ⊂ D.

(ii) D ∩ ∂Ω ⊂ Ω∗.

(iii) dist(D ∩ ∂Ω, (D1 ∩D2) ∪ (D ∩ ∂Ω∗)) > 0.

See Figure 9.
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D1 ∩ D2K

u = 1

D1 D2

Ω∗

Ω

u = 0

u = 0

Figure 9. Well-pasted domains.

Lemma 10.2. Assume that two domains D1 and D2 are well-pasted. Let D =
D1 ∪ D2, x0 ∈ D1 ∩ D2 and let gj = GDj (·, x0) and g = GD(·, x0). Suppose, for
each t > 0,

P (t, x,Dj) ≤ Cj
t gj(x) for x ∈ Dj

holds with j = 1, 2, where Cj
t is a positive constant depending on t and Dj. Then

for each t > 0,

P (t, x,D) ≤ Ct g(x) for x ∈ D.

Proof. Let Ω and Ω∗ be as in Definition 10.1. Let t > 0. By the parabolic
comparison principle for (0,∞)×D1 and by assumption, we have

P (t, x,D) ≤ P (t, x,D1) + ωx(D2 ∩ ∂D1, D1) ≤ C1
t g1(x) + ωx(D2 ∩ ∂D1, D1)

for x ∈ D1. Let u = ωx(D2∩∂D1, D1) on Ω∗∩D1 and let u = 1 on Ω∗\D1. Then u
is a bounded positive superharmonic function on Ω∗ such that u is harmonic in
Ω∗ ∩D1 and u vanishes q.e. on ∂D1 ∩ ∂Ω∗ ⊂ ∂D1 \D2. Let 0 < r < dist(D ∩ ∂Ω,
(D1 ∩ D2) ∪ (D ∩ ∂Ω∗)). Apply the elliptic boundary Harnack principle to u
and g with K = D1 ∩ ∂Ω and V = {y ∈ R

n : dist(y,K) < r}. Then we have
ωx(D2 ∩ ∂D1, D1) = u(x) ≤ Ag(x) for x ∈ D1 ∩ ∂Ω. By the elliptic comparison
principle

ωx(D2 ∩ ∂D1, D1) ≤ Ag(x) for x ∈ D1 \ Ω.
See Figure 9. Hence we have

P (t, x,D) ≤ (C1
t +A) g(x) for x ∈ D1 \ Ω.

Replacing D1 by D2, we obtain the same inequality with C2
t in place of C1

t for
x ∈ D2 \ Ω. Hence we have

(10.1) P (t, x,D) ≤ (C1
t + C2

t +A) g(x) for x ∈ (D1 ∪D2) \ Ω.

By the parabolic comparison principle for (0,∞)× Ω∗ we have

P (t, x,D) ≤ P (t, x,Ω∗) + ωx(D ∩ ∂Ω∗,Ω∗) for x ∈ Ω∗.
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Since Ω∗ is a Lipschitz domain, we have

P (t, x,Ω∗) ≤ CtGΩ∗(x, x0) ≤ Ct g(x) for x ∈ Ω∗.

Since dist(D ∩ ∂Ω, D ∩ ∂Ω∗) > 0, it follows from the elliptic boundary Harnack
principle on Ω∗ that ωx(D ∩ ∂Ω∗,Ω∗) ≤ Ag(x) for x ∈ Ω. Hence

P (t, x,D) ≤ (Ct +A) g(x) for x ∈ Ω,

which, together with (10.1), gives the required inequality with different Ct. �

Proposition 10.3. Assume that the domains D1 and D2 are well-pasted, and that

lim
R→∞

wη(Dj \B(0, R)) = 0 for j = 1, 2.

Let gj = GDj (·, x0) with x0 ∈ D1 ∩D2. If∫ 1

0

wη({x ∈ Dj : gj(x) < t})2 dt
t
<∞ for j = 1, 2,

then D = D1 ∪D2 is IU.

Proof. Since P (t, x,Dj) ≤ Ct gj(x) for x ∈ Dj by Lemma 4.3, it follows from
Lemma 10.2 that

P (t, x,D) ≤ Ct g(x) for x ∈ D

with g = GD(·, x0). Hence
p(t, x, y) ≤ At g(x) g(y) for x, y ∈ D.

by Lemma 5.1. Since D1 and D2 are well-pasted, we have (1.6), so that

g(x) ≤ AϕD(x) for x ∈ D \B(x0, δD(x0)/2),

by Lemma 5.3. Since ϕD ≥ A > 0 on B(x0, δD(x0)/2) we have

p(t, x, y) ≤ At ϕD(x)ϕD(y) for x, y ∈ D.

Hence D is IU by Proposition 2.2. �

Definition 10.4. Let Φ(t) be a nondecreasing positive function of t > 0. We say
that D is an LΦ-domain if there exist finitely many domains D1, . . . , DN such
that

(i) D = D1 ∪ · · · ∪ DN , where D1 ∪ · · · ∪ Dj and Dj+1 are well-pasted for
j = 1, . . . , N − 1;

(ii) each Dj is represented as Df as in Theorem B with f ∈ LΦ(B′(0, R)) in a
suitable coordinate system.

Combining Theorem 1.26 and Proposition 10.3, we obtain the following.

Theorem 10.5. Assume that Φ(t)/tn−1 is nondecreasing and that (1.23) holds.
Then every LΦ-domain is IU.
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11. Characterization of IU for an infinite funnel. Proof of
Theorem 1.28

Without loss of generality, we may assume that r(0) = 1. For simplicity we let

dV (x) = r(−xn)− |x′| for x ∈ V.

This is the distance between x′ and the horizontal slice of ∂V at height xn.

Lemma 11.1. If x ∈ V and xn ≤ 0, then

(L+ 1)−1dV (x) ≤ δV (x) ≤ dV (x).

Proof. The second inequality readily follows from the definition of V . Let us
estimate |x− y| for y ∈ ∂V . We have

|y−x|≥

⎧⎪⎨⎪⎩
|yn − xn|≥1 = r(0) ≥ dV (x) if yn=1,

|yn − xn|≥(L + 1)−1dV (x) if yn<1 and |yn − xn|≥(L+ 1)−1dV (x),

|y′| − |x′|≥(L+ 1)−1dV (x) if yn<1 and |yn − xn|≤(L+ 1)−1dV (x).

Here, in the third case, we have used dV (y) = r(−yn)− |y′| = 0, and

|y′| − |x′| = r(−yn)− (r(−xn)− dV (x)) ≥ dV (x)− |r(−yn)− r(−xn)|
≥ dV (x) − L|yn − xn| ≥

(
1− L

L+ 1

)
dV (x).

Taking the infimum of |y− x| for y ∈ ∂V , we obtain δV (x) ≥ (L+ 1)−1dV (x). �

By x(t) we denote the point (0,−t) for t ≥ 0. Let x0 = x(0) = (0, 0). The
quasihyperbolic distance between x(t) and x(T ) is estimated as follows.

Lemma 11.2. Let 0 ≤ t < T . Then

1

L
log

r(t)

r(T )
≤

∫ T

t

dτ

r(τ)
≤ kV (x(t), x(T )) ≤ (L+ 1)

∫ T

t

dτ

r(τ)
.

Proof. By symmetry the quasihyperbolic geodesic between x(t) and x(T ) is the
line segment connecting these points. By Lemma 11.1 we have

(L+ 1)−1r(τ) ≤ δV (x(τ)) ≤ r(τ).

Take the reciprocal of the above inequality and integrate with respect to τ ∈
[t, T ]. Then we have the second and third inequalities of the lemma. Since r(τ) is
L-Lipschitz, we have r(τ) ≤ r(T ) + L(T − τ) for τ ≤ T , so that∫ T

t

dτ

r(τ)
≥

∫ T

t

dτ

r(T ) + L(T − τ)
=

1

L
log

r(T ) + L(T − t)

r(T )
≥ 1

L
log

r(t)

r(T )
. �
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Lemma 11.3. Let t ≥ 0 and let y ∈ V with yn = −t. Then

kV (y, x(t)) ≤ (L+ 1) log
r(t)

dV (y)
.

Proof. Let γ be the line segment connecting x(t) and y. By Lemma 11.1

kV (y, x(t)) ≤
∫
γ

ds

δV (z(s))
≤ (L+ 1)

∫
γ

ds

dV (z(s))

= (L+ 1)

∫ |y′|

0

ds

r(t)− s
= (L+ 1) log

r(t)

r(t) − |y′| .

By definition r(t) − |y′| = dV (y), so that the lemma follows. �

Lemma 11.4. Let T ≥ 0. If y ∈ V satisfies −T ≤ yn ≤ 0 and dV (y) ≥ r(T ), then

kV (y, x0) ≤ L∗ kV (x(T ), x0) with L∗ = max{L(L+ 1), 1}.
Proof. Let t = −yn. Lemmas 11.2 and 11.3 give

kV (y, x(t)) ≤ (L+ 1) log
r(t)

dV (y)
≤ (L+ 1) log

r(t)

r(T )
≤ L(L+ 1)kV (x(T ), x(t)).

Hence

kV (y, x0) ≤ kV (y, x(t)) + kV (x(t), x0) ≤ L(L+ 1) kV (x(T ), x(t)) + kV (x(t), x0)

≤ L∗(kV (x(T ), x(t)) + kV (x(t), x0)) = L∗ kV (x(T ), x0),

where the last equality holds since the line segment connecting x0 and x(T ) is a
geodesic. �

Lemma 11.5. Let L∗ = max{L(L+ 1), 1}. For T ≥ 0 we put

(11.1) s = L∗(L+ 1)

∫ T

0

dτ

r(τ)
.

Then wη(kV (·, x0) > s) ≤ max{A exp(−αs), Ar(T )} with some A,α, η > 0 inde-
pendent of T .

Proof. Let y ∈ V and kV (y, x0) > s. First suppose yn > 0. Then

s < kV (y, x0) ≤ A log
δV (x0)

δV (y)
+A

by the Lipschitz nature of {y ∈ V : yn > −1}. Hence δV (y) ≤ A exp(−αs) with
some A,α > 0 independent of T . Next suppose yn ≤ 0. Then

kV (y, x0) > s = L∗(L+ 1)

∫ T

0

dτ

r(τ)
≥ L∗ kV (x(T ), x0)
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by Lemma 11.2 with t = 0. Hence, either yn < −T or dV (y) < r(T ) holds by
Lemma 11.4. In the first case r(T ) ≥ r(−yn) ≥ dV (y) ≥ δV (y). So, in any case
δV (y) ≤ r(T ). Therefore,

{y ∈ V : kV (y, x0) > s} ⊂ {y ∈ V : δV (y) ≤ max{A exp(−αs), r(T )}}.
Since V satisfies the CDC, the required estimate follows from Lemma 3.13. �

The next lemma shows that, in Theorem 1.28, (iii) =⇒ (iv).

Lemma 11.6. If

∫ ∞

0

r(t) dt <∞, then

∫ ∞

0

wη(kV (·, x0) > s)2 ds <∞.

Proof. In view of Lemma 11.5, we have∫ ∞

0

wη(kV (·, x0) > s)2 ds ≤
∫ ∞

0

max{A exp(−αs), Ar(T )}2 ds

≤ A2

∫ ∞

0

exp(−2αs)ds+A2

∫ ∞

0

r(T )2 ds,

where s and T satisfy (11.1). The first integral is convergent; the second integral
is equal to

L∗(L+ 1)

∫ ∞

0

r(T )2
dT

r(T )
= L∗(L + 1)

∫ ∞

0

r(T ) dT <∞

by regarding (11.1) as the change of variable. �

For (ii) =⇒ (iii) in Theorem 1.28, we shall employ a scale invariant boundary
Harnack principle. For t ≥ 2 let

V (t) =
{
x ∈ V : −t− r(t)

2L
< xn < −t+ r(t)

2L

}
.

We observe that

B′
(
0,
r(t)

2

)
×
(
t− r(t)

2L
, t+

r(t)

2L

)
⊂ V (t) ⊂ B′

(
0,

3r(t)

2

)
×
(
t− r(t)

2L
, t+

r(t)

2L

)
,

and that V (t) is a Lipschitz domain with uniformly bounded Lipschitz nature. We
have the following scale invariant boundary Harnack principle.

Lemma 11.7. There exists a constant A12 > 1 independent of t ≥ 0 with the
following property: Let S(t) = {x ∈ V : xn = −t}. If u and v are positive harmonic
functions in V (t) \ {x(t)}, and if u = v = 0 on {x ∈ ∂V : −t− r(t)/(2L) < xn <
−t+ r(t)/(2L)}, then

u(x)/u(y)

v(x)/v(y)
≤ A12 for x, y ∈ S

(
t+

r(t)

4L

)
.

See Figure 10.
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x
(
t − r(t)

2L

)

x(t)

x
(
t +

r(t)

4L

)
S
(
t +

r(t)

4L

)

Figure 10. Scale invariant boundary Harnack principle for an infinite funnel.

The next lemma is inspired by Hansen [22].

Lemma 11.8. There exists a positive harmonic function h on V vanishing on the
boundary ∂V such that g(x(t))h(x(t)) ≈ r(t)2−n for t > 2.

Proof. In this proof, all constants will be independent of t. Let t > 2. We claim

G
(
x(t), x

(
t+

r(t)

4L

))
≈ r(t)2−n.

Observe that∣∣∣x(t) − x
(
t+

r(t)

4L

))∣∣∣ = r(t)

4L
≈ diamV (t)

≈ dist(x(t), ∂V (t)) ≈ dist
(
x
(
t+

r(t)

4L

))
, ∂V (t)

)
,

so that

G
(
x(t), x

(
t+

r(t)

4L

))
≥ GV (t)

(
x(t), x

(
t+

r(t)

4L

))
≈ r(t)2−n

by uniform ellipticity. Thus the lower estimate of the claim follows. We have the
upper estimate by comparing G and the Green function for the whole space if
n ≥ 3, or the Green function of the complement of a closed disk of radius r(t)
lying outside V if n = 2.

Apply Lemma 11.7 to u = r(t)n−2G(x(t), ·) and v = g/g(x(t)). Since

u
(
x
(
t+

r(t)

4L

))
≈ v

(
x
(
t+

r(t)

4L

))
≈ 1

by the claim and the Harnack inequality, it follows that

r(t)n−2G(x(t), y) ≈ g(y)/g(x(t)),
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or equivalently

g(x(t)) · G(x(t), y)
g(y)

≈ r(t)2−n for all y ∈ S
(
t+

r(t)

4L

)
.

By the maximum principle the same comparison holds for yn ≤ −t − r(t)/(4L).
Letting yn → −∞, and taking a subsequence, if necessary, we obtain a Martin
kernel

h(x) = lim
yn→−∞

G(x, y)

g(y)
.

such that g(x(t))h(x(t)) ≈ r(t)2−n and h(x0) = 1. Thus this h is a required
positive harmonic function. �

Remark 11.9. We can show that the above limit exists and that it is the unique
Martin kernel corresponding to yn → −∞ with reference point at x0. In fact, if H
is another Martin kernel corresponding to yn → −∞ with reference point at x0,
then H enjoys the same estimate as h, so that H ≈ h on V by Lemma 11.7. Now
we can easily show that H = h on V by Kemper’s technique (see Theorem 1.1
in [23] and Proof of Theorem 3 in [2]). Note that Kemper’s proof of the boundary
Harnack principle for a Lipschitz domain had a gap. However his technique for the
uniqueness of Martin kernel was correct.

The next lemma implies that, in Theorem 1.28, (iv)⇐⇒(v).

Lemma 11.10. There are positive constants A,α, β such that

(11.2) A−1 exp(−αkV (x, x0)) ≤ g(x) ≤ A exp(−βkV (x, x0))
for x ∈ V \B(x0, δV (x0)/2).

The proof is elementary but is rather involved. So, we postpone the proof of
the lemma and complete the proof of Theorem 1.28.

Proof of Theorem 1.28. It is well known that IU implies the validity of the Crans-
ton–McConnell inequality for arbitrary domain (Proposition 2.3). Hence (i)=⇒(ii)
holds. In Lemma 11.6 we have shown (iii) =⇒ (iv). Corollary 1.15 asserts that
(iv)=⇒(i). Lemma 11.10 gives (iv)⇐⇒(v). Let us complete the proof by showing
(ii) =⇒ (iii). Let h be the positive harmonic function in Lemma 11.8. Then the
Harnack inequality implies g(x)h(x) ≈ r(−xn)2−n for x ∈ V0 = {x = (x′, xn) :
xn < −2, dV (x) ≤ 2−1r(−xn)}. Hence∫

V

G(x, x0)h(x) dx ≥
∫
V0

g(x)h(x) dx ≈
∫
V0

r(−xn)2−n dx

≈
∫ ∞

2

r(t)2−nr(t)n−1 dt =

∫ ∞

2

r(t) dt.

If (ii) holds, then the first integral is convergent, and so is the last integral.
Thus (iii) holds. �
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Proof of Corollary 1.30. Let r(t) = (t + 3)−1. Let y ∈ V . First suppose that
t = −yn ≥ 0. Observe that δV (y) ≤ (t + 3)−1, or equivalently t + 3 ≤ δV (y)

−1.
Lemmas 11.1, 11.2 and 11.3 yield

kV (y, x0) ≤ kV (y, x(t)) + kV (x(t), x0) ≤ (L+ 1)
{
log

r(t)

dV (y)
+

∫ t

0

dτ

r(τ)

}
≤ (L+ 1)

{
log

1

(t+ 3)δV (y)
+

(t+ 3)2

2

}
≤ A

δV (y)2
+A.

Next suppose yn ≥ 0. Since {y ∈ V : yn > −1} is a Lipschitz domain, it follows
that

kV (y, x0) ≤ A log
A

δV (y)
+A ≤ A

δV (y)2
+A.

Thus V satisfies the QHB(2). Obviously,
∫∞
0
r(t) dt = ∞, so that V is not IU by

Theorem 1.28. �

Proof of Corollary 1.31. Let ϕ(s) = s logα s with (n−1)−1 < α ≤ 1. Then ϕ′(s) =
(log s+α) logα−1 s > 0 for s > 1. Hence r(t) = (t+3)−1 log−α(t+3) = 1/ϕ(t+3)
is strictly decreasing for t > −2. Let f(x′) = −r−1(|x′|) for |x′| < r(−1). Then

V = {(x′, xn) : x′ ∈ B′(0, r(−1)), xn > f(x′)}.
Observe that f(x′) < 0 for |x′| < r(0) and∫

B′(0,r(0))
|f(x′)|n−1 dx′ =

∫ ∞

0

Hn−1({x′ ∈ B′(0, r(0)) : |f(x′)| > t}) dtn−1

=

∫ ∞

0

Hn−1(B
′(0, r(t))) dtn−1 =

∫ ∞

0

bn−1r(t)
n−1 dtn−1,

where bn−1 is the (n − 1)-dimensional volume of a unit ball in R
n−1. The last

integral is convergent by α > (n−1)−1. Since 0 ≤ f(x′) ≤ 1 for r(0) ≤ |x′| ≤ r(−1),
it follows that V is an Ln−1-domain. On the other hand,

∫∞
0 r(t) dt = ∞ by α ≤ 1,

so that V is not IU by Theorem 1.28. �

Proof of Lemma 11.10. The first inequality of (11.2) is nothing but the first in-
equality of (1.14). The second inequality is non-trivial. The argument of the expo-
nential function of the right-hand side of (11.2) is a negative multiple of kD(x, x0),
whereas that of (1.14) is a positive multiple. Since {x = (x′, xn) ∈ V : xn > −2} is
a Lipschitz domain, we can easily show (11.2) for xn ≥ −1. So let us show (11.2)
for xn ≤ −1. For t ≥ 1 we let U(t) = {x ∈ V : xn < −t}, S(t) = {x ∈ V : xn = −t}
and

M(t) = sup
x∈U(t)

g(x).

By the maximum principleM(t) = supx∈S(t) g(x) andM(t) is decreasing for t ≥ 1.
We claim that there exists a constant α0 ∈ (0, 1) such that

(11.3) M(t+ κr(t)) ≤ α0M(t) for t ≥ 1,
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where κ = (2L)−1, with L being the Lipschitz constant of r(t). To see this, let us
consider the harmonic measure vr(x) = ωx(B′(0, r) × {−t}, B′(0, r) × (−∞,−t))
over the half cylinder B′(0, r)× (−∞,−t). By translation and dilation we have

vr(x) ≤ α0 for x ∈ B′(0, r) × (−∞,−t− κr)

with 0 < α0 < 1 depending only on κ, cL and n. Since U(t) ⊂ B′(0, r(t)) ×
(−∞,−t), it follows from the maximum principle that

g(x) ≤M(t)ωx(S(t), U(t)) ≤M(t) vr(t)(x) for x ∈ U(t).

Taking the supremum for x ∈ U(t+ κr(t)), we obtain (11.3).
It follows from (11.3) that M(t) decays exponentially. We claim that

(11.4) M(t) ≤ A exp
(
− β0

∫ t

0

dτ

r(τ)

)
for t ≥ 1 with β0 = L log

1

α0
.

To see this, let

ψ(t) = exp
(
− β0

∫ t

0

dτ

r(τ)

)
and ϕ(t) =

M(t)

ψ(t)
.

It suffices to show that ϕ(t) is bounded for t ≥ 1. Since∫ t+κr(t)

t

dτ

r(τ)
≤ κr(t)

r(t+ κr(t))
≤ κr(t)

r(t) − Lκr(t)
=

κ

1− Lκ
=

1

L
,

it follows that

ψ(t+ κr(t))

ψ(t)
= exp

(
− β0

∫ t+κr(t)

t

dτ

r(τ)

)
≥ exp

(
− β0
L

)
= α0,

so that ψ(t+ κr(t)) ≥ α0ψ(t). This, together with (11.3), implies that

(11.5) ϕ(t+ κr(t)) =
M(t+ κr(t))

ψ(t+ κr(t))
≤ α0M(t)

α0 ψ(t)
= ϕ(t).

We complete the proof of (11.4) by showing that

(11.6) ϕ(t) ≤ A13 for t ≥ 1,

where A13 = sup1≤τ≤1+κr(1) ϕ(τ). In fact, let

t∗ = sup{t ≥ 1 : ϕ(τ) ≤ A13 for 1 ≤ τ ≤ t}.

By definition t∗ ≥ 1 + κr(1). It is sufficient to show that t∗ = ∞. Suppose, to the
contrary, t∗ <∞. Since t �→ t+ κr(t) is a continuous mapping, it follows from the
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mean value theorem that for each τ ∈ [1 + κr(1), t∗ + κr(t∗)] we find t1 ∈ [1, t∗]
such that t1 + κr(t1) = τ . Hence (11.5) with t1 in place of t gives

ϕ(τ) = ϕ(t1 + κr(t1)) ≤ ϕ(t1) ≤ A13,

so that ϕ(τ) ≤ A13 for 1 ≤ τ ≤ t∗+κr(t∗), which contradicts the maximality of t∗.
Hence (11.6) and so (11.4) follow. In view of Lemma 11.2, we have

(11.7) g(x(t)) ≤M(t) ≤ A exp
(
− β0
L+ 1

kV (x(t), x0)
)

for t ≥ 1.

Next we claim that

(11.8) g(y) ≤ A
( δV (y)

δV (x(t))

)β1

g(x(t)) for y ∈ S(t)

with some β1 > 0. Recall that

V (t) =
{
x ∈ V : −t− r(t)

2L
< xn < −t+ r(t)

2L

}
(see the discussion before Lemma 11.7). Let B = B(x(t), δV (t)(x(t))/4) and B

∗ =
B(x(t), δV (t)(x(t))/2). By the Harnack inequality, g ≈ g(x(t)) on B∗, so it suffices
to show (11.8) for y ∈ S(t)\B∗. By the scale invariant boundary Harnack principle
(Lemma 11.7, slightly modified), we have

g ≤ Ag(x(t))ω(∂B, V (t) \B) on S(t) \B∗.

Since V (t) satisfies the CDC, we have a strong barrier s such that Ls+(ε/δ2V (t))s≤0

and s(y) ≈ δV (t)(y)
β1 with ε > 0 and β1 > 0 depending only on L, cL and n (see

Theorem 3 in [6]). In particular, s/s(x(t)) ≈ 1 on B, so that the maximum
principle implies ω(∂B, V (t) \B) ≤ As/s(x(t)) on V (t) \B, and hence

g(y) ≤ Ag(x(t)) · s(y)

s(x(t))
≤ Ag(x(t))

( δV (y)

δV (x(t))

)β1

for y ∈ S(t) \B∗,

as δV (t)(y) ≈ δV (y) for y ∈ S(t). Thus we obtain (11.8).
Now the proof is easy. Since δV (y) ≈ dV (y) for y ∈ S(t), it follows from

Lemma 11.3 that

δV (y)

δV (x(t))
≈ dV (y)

r(t)
≤ exp

(
− 1

L+ 1
kV (y, x(t))

)
.

This, together with (11.7) and (11.8), yields

g(y) ≤ A exp
(
− β0
L+ 1

kV (x(t), x0)− β1
L+ 1

kV (y, x(t))
)
≤ A exp(−βkV (y, x0))

for y ∈ S(t) with β = (L+1)−1min{β0, β1}. Since t ≥ 1 is arbitrary, we have (11.2)
for xn ≤ −1. The proof is complete. �
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12. Appendix. Proofs of Lemmas D, E and F

In this appendix we prove Lemmas D, E and F. These lemmas were proved in [1]
in the case L = Δ. For completeness, we provide complete arguments in the
L-harmonic context. Throughout this appendix, we explicitly write the prefix,
super and subscripts L in order to clarify the difference between L and Δ. Let us
begin with some uniform estimates for the capacity of balls.

Lemma 12.1. Let 0 < t ≤ 1. Define

κ(t) = inf

{
CapLB(x,2R)(B(x, tR))

CapLB(x,2R)(B(x,R))

}
,

where the infimum is taken over all x ∈ R
n, R > 0 and uniformly elliptic opera-

tors L satisfying (1.1). Then κ(t) > 0 and limt→1 κ(t) = 1.

Proof. Let u be the capacitary potential for B(x, tR) in B(x, 2R), i.e.,

Lu = 0 in B(x, 2R) \B(x, tR),

u = 1 on B(x, tR),

u = 0 on ∂B(x, 2R),

CapLB(x,2R)(B(x, tR)) = QB(x,2R)[u].

Put v(y) = u(tRy + x). Then

L̃v = 0 in B(0, 2/t) \B(0, 1),

v = 1 on B(0, 1),

v = 0 on ∂B(0, 2/t),

where L̃ is a uniform elliptic operator satisfying (1.1). Let Ω = B(0, 2) \ B(0, 1)

and let s be the strong barrier for Ω with respect to L̃, i.e., L̃s+ (ε/δ2Ω)s ≤ 0 and

(12.1) A−1δΩ(y)
α ≤ s(y) ≤ AδΩ(y)

α for y ∈ Ω,

where ε > 0, α > 0 and A ≥ 1 depend only on cL and n. See Theorem 3 in [6].
Let us compare 1 − v and s on B(0, 3/2) \ B(0, 1). Since δΩ(y) = |y| − 1 for
y ∈ B(0, 3/2) \B(0, 1), it follows from (12.1) that

s(y) ≥ A−1
(3
2
− 1

)α

=
1

2αA
for y ∈ ∂B(0, 3/2).

so that the maximum principle, together with (12.1), yields

1− v(y) ≤ 2αAs(y) ≤ 2αA2δΩ(y)
α ≤ 2αA2(|y| − 1)α for y ∈ B(0, 3/2) \B(0, 1).

Rewriting the inequality with u, we obtain

(12.2) u(z) ≥ 1− 2αA2
( |z − x|

tR
− 1

)α

for z ∈ B
(
x,

3tR

2

)
\B(x, tR),
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Let

c1 = 1 +
1

21+1/αA2/α
.

Then 1 < c1 < 3/2 and 2αA2(c1 − 1)α = 1/2. Hence (12.2) yields u ≥ 1/2 on
B(x, c1tR) \B(x, tR). Since u = 1 on B(x, tR), we have

u ≥ 1

2
on B(x, c1tR),

which implies that

CapLB(x,2R)(B(x, c1tR)) ≤ QB(x,2R)[2u] = 4QB(x,2R)[u] = 4CapLB(x,2R)(B(x, tR)).

Let k ≥ 1 be the least integer such that ck1 t ≥ 1. Repeated application of the
above inequality gives

CapLB(x,2R)(B(x,R)) ≤ CapLB(x,2R)(B(x, ck1tR)) ≤ 4k CapLB(x,2R)(B(x, tR)).

This shows κ(t) ≥ 4−k. The first assertion of the lemma follows.

For the second assertion we may assume that 2/3 ≤ t < 1. Then (12.2) yields

u ≥ 1− 2αA2
( R
tR

− 1
)α

= 1− 2αA2(t−1 − 1)α on B(x,R) \B(x, tR).

In the same way as above, we have

u ≥ β(t) on B(x,R)

with β(t) = 1 − 3αA2(1 − t)α since 2/3 ≤ t < 1. If t is close to 1, then β(t) > 0,
so that

CapLB(x,2R)(B(x,R)) ≤ QB(x,2R)[β(t)
−1u] = β(t)−2 CapLB(x,2R)(B(x, tR)).

Hence
CapLB(x,2R)(B(x, tR))

CapLB(x,2R)(B(x,R))
≥ β(t)2 ↑ 1 as t→ 1.

Thus limt→1 κ(t) = 1. The lemma is proved. �

We recall regularized reduced functions U R̂E
u used in Section 9. Note that

regularized reduced functions are taken with respect to L-superharmonic functions.
However, we suppress “L-” to simplify notation.

Proof of Lemma F. Let μE and ν be the capacitary measures of E and B(x, r),

respectively. Then μE is supported on E, GL
B(x,R)μE = B(x,R)R̂E

1 and ‖μE‖ =

CapLB(x,R)(E); ν is supported on ∂B(x, r), GL
B(x,R)ν = B(x,R)R̂

B(x,r)
1 and ‖ν‖ =

CapLB(x,R)(B(x, r)). In particular, GL
B(x,R)ν ≤ 1 on B(x,R) and hence

CapLB(x,R)(E) ≥
∫
GL

B(x,R)ν dμE =

∫
GL

B(x,R)μE dν =

∫
B(x,R)R̂E

1 dν

≥
∫ (

inf
B(x,r)

B(x,R)R̂E
1

)
dν =

(
inf

B(x,r)

B(x,R)R̂E
1

)
CapLB(x,R)(B(x, r)).
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Thus the first assertion follows. For the second assertion let ρ = (r + R)/2. We
observe from the Harnack inequality that there are A14, A15 > 1 depending only
on n, r/R and cL such that

A−1
14 ≤

GL
B(x,R)(z, y)

GL
B(x,R)(z, x)

≤ A14 for z ∈ ∂B(x, ρ) and y ∈ B(x, r),

A−1
15 ≤ B(x,R)R̂

B(x,r)
1 ≤ 1 on ∂B(x, ρ).

Let z ∈ ∂B(x, ρ). If E ⊂ B(x, r), then suppμE ⊂ B(x, r), so that

B(x,R)R̂E
1 (z) =

∫
GL

B(x,R)(z, y) dμE(y)

≥ A−1
14 G

L
B(x,R)(z, x)‖μE‖ = A−1

14 G
L
B(x,R)(z, x)Cap

L
B(x,R)(E),

and

A−1
15 ≤ B(x,R)R̂

B(x,r)
1 (z) =

∫
GL

B(x,R)(z, y) dν(y) ≤ A14G
L
B(x,R)(z, x)‖ν‖

= A14G
L
B(x,R)(z, x)Cap

L
B(x,R)(B(x, r)).

Hence

CapLB(x,R)(E)

CapLB(x,R)(B(x, r))
≤

B(x,R)R̂E
1 (z)A14G

L
B(x,R)(z, x)

−1

A−1
15 A

−1
14 G

L
B(x,R)(z, x)

−1
= A2

14A15
B(x,R)R̂E

1 (z).

Since z ∈ ∂B(x, ρ) is arbitrary, the second assertion holds with A = A2
14A15 by

the maximum principle. �

It is convenient to restate the above lemma in terms of L-harmonic measure.
By ωx

L(E,D) we denote the L-harmonic measure of E in D evaluated at x. We see
that if E is a compact subset of B(x,R), then

(12.3) ωL(∂B(x,R), B(x,R) \ E) = 1− B(x,R)R̂E
1 on B(x,R).

Strictly speaking, L-harmonic measure is extended by 0 on E, which coincides q.e.
with the right-hand side. Lemma F reads as follows.

Lemma 12.2. Let 0 < r < R. If E is a compact subset of B(x,R), then

1− CapLB(x,R)(E)

CapLB(x,R)(B(x, r))
≤ sup

B(x,r)

ωL(∂B(x,R), B(x,R) \ E).

Moreover, if E ⊂ B(x, r), then

sup
B(x,r)

ωL(∂B(x,R), B(x,R) \ E) ≤ 1−A−1
CapLB(x,R)(E)

CapLB(x,R)(B(x, r))
,
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where A > 1 depends only on n, cL and r/R; in particular,

sup
B(x,r)

ωL(∂B(x, 2r), B(x, 2r) \ E) ≤ 1−A−1
16

CapLB(x,2r)(E)

CapLB(x,2r)(B(x, r))
,

where A16 > 1 depends only on n and cL.

Let us define capacitary width with respect to L. See Definition 1.2.

Definition 12.3. Let 0 < η < 1. For an open set D we define the capacitary
width wL

η (D) with respect to L by

wL
η (D) = inf

{
r > 0 :

CapLB(x,2r)(B(x, r) \D)

CapLB(x,2r)(B(x, r))
≥ η for all x ∈ D

}
.

If L is the Laplacian, we simply write wη(D).

Remark 12.4. Definitions 1.2 and 12.3 are consistent since CapLB(x,2r)(B(x, r)) =

CapLB(x,2r)(B(x, r)), and since CapLB(x,2r)(B(x, r)\D) ≤ CapLB(x,2r)(B(x, r)\D) ≤
CapLB(x,2r)(B(x, r′) \ D) for 0 < r < r′. Definition 12.3 has an advantage that

E = B(x, r)\D is a compact set, so that we can consider the L-harmonic measure
ωL(∂B(x, 2r), B(x, 2r) \ E) in the classical sense. In case E is not compact, we
consider ωL(∂B(x, 2r), B(x, 2r)\E) in the extended sense, i.e., the right-hand side
of (12.3).

Remark 12.5. In view of (1.4), we have

wη/c2L
(D) ≤ wL

η (D) and wL
η/c2L

(D) ≤ wη(D).

We shall see in Lemma 12.8 below that the constant η is not so important; a
different η gives a comparable capacitary width.

Applying Lemma 12.2 repeatedly, we obtain the following.

Lemma 12.6. Let D be an open set with wL
η (D) <∞. Suppose x ∈ D and R > 0.

If k is a positive integer such that R− 2kwL
η (D) > 0, then

sup
D∩B(x,R−2kwL

η (D))

ωL(D ∩ ∂B(x,R), D ∩B(x,R)) ≤ (1−A−1
16 η)

k.

Proof. For simplicity we let

Ω =

{
ωL(D ∩ ∂B(x,R), D ∩B(x,R)) on D ∩B(x,R),

0 on B(x,R) \D.

Then Ω is an L-subharmonic function in B(x,R) with 0 ≤ Ω ≤ 1. Let wL
η (D) <

ρ <∞. It is sufficient to show that if R− 2kρ > 0, then

(12.4) sup
B(x,R−2kρ)

Ω ≤ (1−A−1
16 η)

k.



Intrinsic ultracontractivity via capacitary width 1101

Let us prove this inequality by induction on k. Since it trivially holds for k = 0, we
assume that k ≥ 1 and (12.4) holds for k − 1. In view of the maximum principle,
it suffices to show that

(12.5) sup
D∩∂B(x,R−2kρ)

Ω ≤ (1−A−1
16 η)

k.

By definition there exists r, wL
η (D) ≤ r < ρ, such that

CapLB(y,2r)(B(y, r) \D)

CapLB(y,2r)(B(y, r))
≥ η for every y ∈ D.

Take an arbitrary point y ∈ D ∩ ∂B(x,R − 2kρ). In view of Lemma 12.2 with
E = B(y, r) \D, we have

ωy
L(∂B(y, 2r), B(y, 2r) ∩D) ≤ ωy

L(∂B(y, 2r), B(y, 2r) \ E) ≤ 1−A−1
16 η.

Since ∂B(y, 2r) ⊂ B(x,R − 2(k − 1)ρ), it follows from the maximum principle
and (12.4) with k − 1 in place of k that

Ω ≤ (1−A−1
16 η)

k−1ωL(∂B(y, 2r), B(y, 2r) ∩D)

in B(y, 2r) ∩D. Evaluating at y, we obtain

Ω(y) ≤ (1−A−1
16 η)

k.

Since y ∈ D∩∂B(x,R−2kρ) is arbitrary, we have (12.5). The lemma is proved. �

Theorem 12.7 (Proposition 2 in [1] and Lemma 1 in [2]). Let D be an open set,
x ∈ D and R > 0. Then

ωx
L(D ∩ ∂B(x,R), D ∩B(x,R)) ≤ A5 exp

(
− A6R

wL
η (D)

)
,

where positive constants A5 and A6 depend only on n, cL and η.

Proof. Let Ω = ωL(D ∩ ∂B(x,R), D ∩ B(x,R)). Since 0 ≤ Ω ≤ 1, the required
inequality trivially holds with A5 = 1 in case wL

η (D) = ∞. So, we may assume

that wL
η (D) <∞. Let k be the integer such that 2kwL

η (D) < R ≤ 2(k+1)wL
η (D).

Then Lemma 12.6 gives

Ω(x) ≤ (1−A−1
16 η)

k = exp
(
− k log

1

1−A−1
16 η

)
≤ exp

(
−
( R

2wL
η (D)

− 1
)
log

1

1−A−1
16 η

)
,

which implies the required inequality with

A5 =
1

1−A−1
16 η

and A6 =
1

2
log

1

1−A−1
16 η

. �

Lemma 12.8 (Proposition 2 in [1]). Let 0 < η < η′ < 1. Then

wL
η (D) ≤ wL

η′(D) ≤ AwL
η (D) for every open set D,

where A > 1 depends only on η, η′, n, and cL.
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Proof. By definition the first inequality is obvious. Let us prove the second in-
equality. In view of Lemma 12.1, we find an integer N ≥ 2 depending only on n
and cL such that

(12.6)
CapLB(x,2R)(B(x, (1 −N−1)R))

CapLB(x,2R)(B(x,R))
≥

√
η′

uniformly for x ∈ R
n and R > 0. We may assume that wL

η (D) < ∞. Take an

integer k > 2 so large that (1−A−1
16 η)

k ≤ 1−√
η′. We apply Lemma 12.6 to x ∈ D

and R = 2Nkρ, where we write ρ = wL
η (D) for simplicity. We have

sup
D∩B(x,R−2kρ)

ωL(D ∩ ∂B(x,R), D ∩B(x,R)) ≤ (1 −A−1
16 η)

k ≤ 1−
√
η′.

Let E = B(x,R) \D. Then the maximum principle yields

ωL(∂B(x, 2R), B(x, 2R) \ E) ≤ ωL(D ∩ ∂B(x,R), D ∩B(x,R)) on D ∩B(x,R),

so that

ωL(∂B(x, 2R), B(x, 2R) \ E) ≤ 1−
√
η′ on B(x,R− 2kρ),

where we use the convention ωL(∂B(x, 2R), B(x, 2R) \ E) = 0 on E. Hence, the
first assertion of Lemma 12.2 with R− 2kρ and 2R in place of r and R gives

1− CapLB(x,2R)(E)

CapLB(x,2R)(B(x,R − 2kρ))
≤ 1−

√
η′,

so that
CapLB(x,2R)(E)

CapLB(x,2R)(B(x,R − 2kρ))
≥

√
η′.

Multiplying the inequality and (12.6), we obtain

CapLB(x,2R)(E)

CapLB(x,2R)(B(x,R))
≥ η′,

as R − 2kρ = (1 − N−1)R. Since x ∈ D is arbitrary, we have wL
η′(D) ≤ R =

2Nkρ = 2NkwL
η (D), which implies the required inequality. �

Proof of Lemma E. Combine Remark 12.5, Lemma 12.8 and Theorem 12.7. �

Theorem 12.9 (Theorem 1 in [1]). There exists a constant A > 1 depending only
on cL, η and n such that

(12.7) A−1wL
η (D)2 ≤ sup

x∈D

∫
D

GL
D(x, y) dy ≤ AwL

η (D)2

for every open set D with Green function GL
D.
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Proof. In view of the monotonicity of the Green function and the monotone con-
vergence theorem, we may assume that D is a bounded open set. Let

v =

∫
D

GL
D(·, y) dy.

Since D is bounded, we have ‖v‖∞ <∞. First, let us prove the second inequality
of (12.7). We may assume that wL

η (D) < ∞. By definition we find r, wL
η (D) ≤

r < 2wL
η (D), such that

CapLB(x,2r)(B(x, r) \D)

CapLB(x,2r)(B(x, r))
≥ η for every x ∈ D.

For a moment we fix x ∈ D and let B = B(x, r), B∗ = B(x, 2r), and E = B \D
for simplicity. Then CapLB∗(E)/CapLB∗(B) ≥ η. In view of Lemma 12.2 we have

(12.8) ωx
L(D ∩ ∂B∗, D ∩B∗) ≤ ωx

L(∂B
∗, B∗ \ E) ≤ 1−A−1

16 η,

where A16 > 1 depends only on n and cL. Let

u =

∫
B∗
GL

B∗(·, y) dy and vK =

∫
K

GL
D(·, y) dy

for a compact subset K ⊂ D. It is easy to see that vK − u is L-subharmonic in
D ∩B∗ and vK = 0 q.e. on ∂D. Hence the maximum principle yields

vK − u ≤ ‖vK‖∞ ωL(D ∩ ∂B∗, D ∩B∗) on D ∩B∗,

so that

vK(x) ≤ u(x) + ‖vK‖∞ ωx
L(D ∩ ∂B∗, D ∩B∗)

≤ u(x) + ‖vK‖∞(1−A−1
16 η) ≤ Ar2 + ‖vK‖∞(1 −A−1

16 η)

by (12.8), and by an easy estimate u(x) ≤ Ar2 with A depending only on n and cL.
Taking the supremum with respect to x ∈ D, we obtain

‖vK‖∞ ≤ AA16 η
−1r2 ≤ 4AA16 η

−1wL
η (D)2.

Letting K ↑ D, we obtain vK ↑ v by the monotone convergence theorem, and
hence, the second inequality of (12.7).

Second, let us prove the first inequality of (12.7). Let x ∈ D and R > 0 to be
determined later. This time, we let B = B(x,R), B∗ = B(x, 2R) and E = B \D
for simplicity. We shall compare v and the Green potential

U =

∫
B

GL
B(·, y) dy.

Observe that

(12.9) U ≤ AR2 on B; U ≥ A17R
2 on B(x,R/2),
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with A and A17 depending only on cL and n. We may assume that ‖v‖∞ < ∞.
Choose R > 0 such that

(12.10) A17R
2 = 2 ‖v‖∞.

Observe that U −v is L-harmonic in D∩B. By the maximum principle and (12.9)

U − v ≤ sup
E
U · ωL(∂E,B \ E) = sup

E
U · (1− ωL(D ∩ ∂B,B \E))

≤ AR2 (1− ωL(∂B∗, B∗ \ E)) on D ∩B,
since ∂(D∩B) ⊂ (B ∩ ∂D)∪ (D ∩ ∂B) ⊂ E ∪ ∂B, and since U = 0 on ∂B. Taking
the infimum over B(x,R/2), we obtain from Lemma 12.2 that

inf
B(x,R/2)

U−‖v‖∞ ≤ AR2
(
1− sup

B(x,R/2)

ωL(∂B∗, B∗\E)
)
≤ AR2 CapLB∗(E)

CapLB∗(B(x,R/2))
.

Hence, by (12.9) and (12.10),

A17 R
2 − A17 R

2

2
≤ AR2 CapLB∗(E)

CapLB∗(B(x,R/2))
.

Dividing by AR2, we obtain

CapLB∗(E)

CapLB∗(B(x,R/2))
≥ A17

2A
,

so that, by Lemma 12.1,

CapLB∗(E)

CapLB∗(B(x,R))
=

CapLB∗(E)

CapLB∗(B(x,R/2))
· Cap

L
B∗(B(x,R/2))

CapLB∗(B(x,R))
≥ A17 κ(1/2)

2A
.

Thus
CapLB∗(B(x,R) \D)

CapLB∗(B(x,R))
≥ η′ with η′ =

A17 κ(1/2)

2A
.

Since x ∈ D is arbitrary, we have wL
η′(D) ≤ R and so wL

η (D) ≤ AR by Lemma 12.8.

Hence wL
η (D)2 ≤ A‖v‖∞ by (12.10). The proof is complete. �

Proof of Lemma D. Combine Remark 12.5, Lemma 12.8 and Theorem 12.9. �
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