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Nonsolvability of the asymptotic Dirichlet

problem for some quasilinear elliptic PDEs
on Hadamard manifolds

Ilkka Holopainen and Jaime B. Ripoll

Abstract. We show, by modifying Borbély’s example, that there are
3-dimensional Cartan–Hadamard manifolds M , with sectional curvatures
≤ −1, such that the asymptotic Dirichlet problem for a class of quasilinear
elliptic PDEs, including the minimal graph equation, is not solvable.

1. Introduction

In this paper we construct a 3-dimensional Cartan–Hadamard manifold of sectional
curvatures ≤ −1 where the asymptotic Dirichlet problem is not solvable with any
continuous non-constant boundary data for a large class of equations

(1.1) Q[u] := divA(|∇u|2)∇u

including, in particular, the minimal graph equation

(1.2) div
∇u√

1 + |∇u|2 = 0.

Examples of such manifolds were earlier constructed for the usual Laplace equation
by Ancona [4] and Borbély [8] and for the p-Laplace equation by Holopainen [19],
whereas no counterexamples, with Sect ≤ −1, were known for the minimal graph
equation (1.2). Recall that a Cartan–Hadamard manifold M is a complete, con-
nected and simply connected Riemannian n-manifold, n ≥ 2, of non-positive
sectional curvature. By the Cartan–Hadamard theorem, the exponential map
expo : ToM → M is a diffeomorphism for every point o ∈ M . In particular, M
is diffeomorphic to R

n. It is well-known that M can be compactified by adding
a natural geometric boundary, called the sphere at infinity (or the boundary at
infinity) and denoted by M(∞), so that the resulting space M̄ = M ∪ M(∞)
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equipped with the cone topology will be homeomorphic to a closed Euclidean ball;
see [15]. The Dirichlet problem at infinity (or the asymptotic Dirichlet problem) on
a Cartan–Hadamard manifold M for the operator Q is then the following: given
a continuous function h on M(∞) does there exist a (unique) function u ∈ C(M̄)
such that Q[u] = 0 on M and u|M(∞) = h?

We assume that A : (0,∞) → [0,∞) is a smooth function such that

(1.3) A(t) ≤ A0 t
(p−2)/2

for all t > 0, with some constants A0 > 0 and p ≥ 1, and that B := A′/A satisfies

(1.4) − 1

2t
< B(t) ≤ B0

t

for all t > 0 with some constant B0 > −1/2. Furthermore, we assume that

(1.5) tA(t2) → 0 as t→ 0+,

and therefore we interprete A(|X |2)X as a zero vector whenever X is a zero vector.
The equation Q[u] = 0 is interpreted in the weak sense. More precisely, a function
u is a solution to the equation Q[u] = 0 in an open set Ω ⊂M if it belongs to the
local Sobolev space W 1,p

loc (Ω) and

(1.6)

∫
Ω

〈A(|∇u|2)∇u,∇ϕ〉 dm = 0

for every ϕ ∈ C∞
0 (Ω). Such function u will be called a Q-solution in Ω. Further-

more, we say that a function u ∈ W 1,p
loc (Ω) is a Q-subsolution in Ω if Q[u] ≥ 0

weakly in Ω, that is

(1.7)

∫
Ω

〈A(|∇u|2)∇u,∇ϕ〉 dm ≤ 0

for every non-negative ϕ ∈ C∞
0 (U). Similarly, a function v ∈ W 1,p

loc (U) is called a
Q-supersolution in Ω if −v is a Q-subsolution in Ω. Note that u+ c is a Q-solution
(respectively, Q-subsolution, Q-supersolution) for every constant c ∈ R if u is a
Q-solution (respectively, Q-subsolution, Q-supersolution). Furthermore, u and −u
are Q-solutions simultaneously. It follows from the growth condition (1.3) that test
functions ϕ in (1.6) and (1.7) can be taken from the classW 1,p

0 (Ω) if |∇u| ∈ Lp(Ω).
We call a relatively compact open set Ω � M Q-regular if for any continuous

boundary data h ∈ C(∂Ω) there exists a unique u ∈ C(Ω̄) which is a Q-solution
in Ω and u|∂Ω = h. In addition to the growth conditions on A, we occasionally
assume that

(A) there is an exhaustion of M by an increasing sequence of Q-regular do-
mains Ωk, and that

(B) locally uniformly bounded sequences of continuous Q-solutions are compact
in relatively compact subsets of M .
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We want to emphasize that in this paper we do not study which operators
satisfy the assumptions (A) and (B) above because our primary motivation is a
nonsolvability result for the asymptotic Dirichlet problem for the minimal graph
equation (1.2) which is known to fulfil all the conditions above. Indeed,

A(t) =
1√
1 + t

and B(t) = − 1

2(1 + t)

satisfy (1.5) and growth conditions (1.3) and (1.4) with A0 = 1 and B0 = 0, re-
spectively. Furthermore, the condition (A) for the minimal graph equation follows
from Theorem 2 in [13] where the sets Ωk can be chosen as geodesic balls B(o, k)
centered at a fixed point o ∈ M , and the condition (B) follows from Theorem 1.1
in [29] (see also Theorem 1 in [13]). We also note that u satisfies (1.2) if and only
if G := {(x, u(x)) : x ∈ Ω} is a minimal hypersurface in the product space M ×R.

The class of equations considered here include also the usual Laplace–Beltrami
equation (A(t) ≡ 1 and B(t) ≡ 0) and, more generally, the p-Laplace equation
div

(|∇u|p−2∇u) = 0, 1 < p <∞, in which case

A(t) = t(p−2)/2 and B(t) = p− 2

2t
,

and so A0 = 1 and B0 = (p−2)/2. It is well known that the properties (A) and (B)
above hold for the p-Laplace equation and that (weak) solutions of the p-Laplace
equation have Hölder-continuous representatives, usually called p-harmonic func-
tions; see [17].

The main result of this paper is the following nonsolvabity theorem whose main
special case is stated separately in Corollary 1.2. We want to point out that the
properties (A) and (B) are not needed in the part (a) below.

Theorem 1.1. There exists a 3-dimensional Cartan–Hadamard manifold M with
sectional curvatures ≤ −1 such that

(a) for any operator Q, with A satisfying (1.3), (1.4), and (1.5), the asymp-
totic Dirichlet problem for the equation Q[u] = 0 is not solvable with any
continuous non-constant boundary data on M(∞),

(b) there are non-constant bounded continuous Q-solutions on M if, in addition,
Q satisfies the properties (A) and (B).

Corollary 1.2. There exists a 3-dimensional Cartan–Hadamard manifold M with
sectional curvatures ≤ −1 such that the asymptotic Dirichlet problem for the mini-
mal graph equation (1.2) is not solvable with any continuous non-constant boundary
data, but there are non-constant bounded continuous solution of (1.2) on M .

The asymptotic Dirichlet problem for the Laplace–Beltrami operator has been
extensively studied during the last three decades. It was solved affirmatively by
Choi [10] under assumptions that sectional curvatures satisfy Sect ≤ −a2 < 0
and the so-called convex conic neighborhood condition holds. The latter means
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that for any pair of points x, y ∈ M(∞), x �= y, there exist disjoint neighbor-
hoods Vx, Vy ⊂ M̄ in the cone topology such that Vx ∩ M is convex with a C2

boundary. Such appropriate convex sets were constructed by Anderson [5] for
manifolds of pinched sectional curvature −b2 ≤ Sect ≤ −a2 < 0. Independently,
Sullivan [30] solved the Dirichlet problem at infinity under the same pinched cur-
vature assumption by using probabilistic arguments. In [6], Anderson and Schoen
presented a simple and direct solution to the Dirichlet problem again in the case
of pinched negative curvature. Important contributions to the Dirichlet problem
were given by Ancona in a series of papers [1], [2], [3], and [4]. In particular, he
was able to replace the curvature lower bound by a bounded geometry assumption
that each ball up to a fixed radius is L-bi-Lipschitz equivalent to an open set in Rn

for some fixed L ≥ 1; see [1]. On the other hand, in [4] Ancona constructed a 3-
dimensional Cartan–Hadamard manifold with sectional curvatures bounded from
above by −1 where the asymptotic Dirichlet problem is not solvable. Another ex-
ample of a (3-dimensional) Cartan–Hadamard manifold, with sectional curvatures
≤ −1, on which the asymptotic Dirichlet problem is not solvable was constructed
by Borbély [8].

The Dirichlet problem at infinity has been studied also in a more general context
of p-harmonic and A-harmonic functions as well as for operators Q. In the case
of the p-Laplace equation the Dirichlet problem at infinity was solved in [18] on
Cartan–Hadamard manifolds of pinched negative sectional curvature by modifying
the direct approach of Anderson and Schoen [6]. In [20], Holopainen and Vähä-
kangas studied the asymptotic Dirichlet problem for the p-Laplace equation on a
Cartan–Hadamard manifold M under a curvature assumption

(1.8) − b
(
ρ(x)

)2 ≤ Sectx ≤ −a(ρ(x))2

outside a compact set. Here ρ(x) stands for the distance between x ∈ M and a
fixed point o ∈ M and, furthermore, a, b : [0,∞) → [0,∞), b ≥ a, are smooth
functions subject to certain growth conditions; see Theorem 1.3 and Theorem 1.4
below for the two important special cases of functions a and b.

Concerning the minimal graph equation (1.2) there has been a growing interest
in entire minimal hypersurfaces in product spaces M × R. Indeed, in [11] Collin
and Rosenberg constructed harmonic diffeomorphisms from the complex plane C

onto the hyperbolic plane H2 disproving a conjecture of Schoen and Yau [28]. This
result was extended by Gálvez and Rosenberg [16] to any Cartan–Hadamard sur-
face M with curvature bounded from above by a negative constant. The method
in both papers is to construct an entire minimal surface Σ = (x, u(x)) ⊂ H

2 × R

(Σ ⊂ M × R, resp.) of conformal type C, and thus to construct an entire un-
bounded solution u to the minimal graph equation. Harmonic diffeomorphisms
C → H2 (C →M , resp.) are then obtained by composing conformal diffeomor-
phisms C → Σ with harmonic vertical projections Σ → H2 (Σ → M , resp.). In
both papers the construction of an entire unbounded solution u to the minimal
graph equation is based on a Jenkins–Serrin type theorem [22] on the Dirichlet
problem on unbounded ideal polygons. Motivated by these unexpected results, by
the desire to understand minimal hypersurfaces in product spaces M ×R, and by
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the recent research in this field (see for example, [12], [14], [23], [24], [25], [26], [27],
[29]), the authors of the current paper together with Casteras extended the results
obtained in [20] for the p-Laplacian to the minimal graph equation under curvature
assumptions (1.8). In fact, their results cover the equation (1.1), with A satisfy-
ing (1.3), (1.4), (1.5), and conditions (A) and (B). As special cases of their main
theorem (Theorem 1.6 in [9]) we state here the following two solvability results.

Theorem 1.3 (Theorem 1.5 in [9]). Let M be a Cartan–Hadamard manifold of
dimension n ≥ 2. Fix o ∈ M and set ρ(·) = d(o, ·), where d is the Riemannian
distance in M . Assume that

−ρ(x)2(φ−2)−ε ≤ Sectx(P ) ≤ −φ(φ− 1)

ρ(x)2
,

for some constants φ > 1 and ε > 0, where Sectx(P ) is the sectional curvature of
a plane P ⊂ TxM and x is any point in the complement of a ball B(o,R0). Then
the asymptotic Dirichlet problem for the minimal graph equation (1.2) is uniquely
solvable for any boundary data f ∈ C

(
M(∞)

)
.

Theorem 1.4 (Corollary 1.7 in [9]). Let M be a Cartan–Hadamard manifold of
dimension n ≥ 2. Fix o ∈ M and set ρ(·) = d(o, ·), where d is the Riemannian
distance in M . Assume that

(1.9) − ρ(x)−2−ε e2kρ(x) ≤ Sectx(P ) ≤ −k2

for some constants k > 0 and ε > 0 and for all x ∈ M \ B(o,R0). Then the
asymptotic Dirichlet problem for the equation (1.1) is uniquely solvable for any
boundary data f ∈ C

(
M(∞)

)
.

Earlier solvability results of the asymptotic Dirichlet problem for the mini-
mal graph equation were established only under hypothesis which included the
condition Sectx(P ) ≤ c < 0 (see [16], [25]). In [25] Ripoll and Telichevesky in-
troduced the following strict convexity condition (SC condition) that applies to
equations (1.1). A Cartan–Hadamard manifold M satisfies the strict convexity
condition if, for every x ∈M(∞) and relatively open subset W ⊂M(∞) contain-
ing x, there exists a C2 open subset Ω ⊂ M such that x ∈ Int(Ω(∞)) ⊂ W and
M \Ω is convex. They proved that the asymptotic Dirichlet problem for (1.1) onM
is solvable if Sect ≤ −k2 < 0 and M satisfies the SC condition; see Theorem 7
in [25]. Furthermore, they showed by modifying Anderson’s and Borbély’s argu-
ments that the SC condition holds on M under the curvature assumption (1.9).
Thus there exist two different kinds of proofs for the result in Theorem 1.4. We
remark that 2-dimensional Cartan–Hadamard manifolds M with Sect ≤ −k2 < 0
satisfy the SC condition since any two points ofM(∞) can be joined by a geodesic.
Thus a sectional curvature upper bound Sect ≤ −k2 < 0 alone is sufficient for the
solvability of the asymptotic Dirichlet problem for (1.1) for 2-dimensional Cartan–
Hadamard manifolds.

All in all, it is rather surprising that asymptotic Dirichlet problems for various
equations are solvable under essentially similar curvature assumptions. Moreover,
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these solvability results have been obtained by using different kinds of proofs.
Indeed, Hsu [21] solved the Dirichlet problem at infinity for the usual Laplace
equation under quite similar curvature conditions than those in 1.3 and 1.4 by us-
ing probabilistic arguments. In [20] and [9] the asymptotic Dirichlet problem were
solved by constructing barrier functions by direct computations. In [31] Vähäkan-
gas considered so-called A-harmonic equations (of type p ∈ (1,∞))

(1.10) − divA(∇u) = 0

and solved the asymptotic Dirichlet problem again under similar curvature as-
sumptions. He used PDE-methods to obtain barrier functions. Above in (1.10),
A : TM → TM is an operator subject to certain conditions; for instance

〈A(V ), V 〉 ≈ |V |p, 1 < p <∞,

and A(λV ) = λ|λ|p−2A(V ) for all λ ∈ R \ {0}. Note that this class of equations
is different from ours in the current paper, although both include the p-Laplace
equation. We refer to the recent paper [9] for a more detailed discussion on the
asymptotic Dirichlet problem for equations of type (1.1) and (1.10).

Our paper owes much to the paper [8] by Borbély. Indeed, the construction of
the manifold M and the idea for the proof of the existence of non-trivial bounded
continuous solutions to Q[u] = 0 on M that can not be extended continuously
to M(∞) are essentially due to him. On the other hand, computations and esti-
mates for solutions to Q[u] = 0 in Sections 4 and 6 are more involved than those
for the Laplacian in [8]. For the details in the construction of the manifold M we
mainly refer to [19] and to the original construction [8] by Borbély. However, for
the convenience of the reader we feel obliged to repeat quite an amount of details
in the construction of M .

2. Main results

Our main result, Theorem 1.1, follows from the condition (a) below since it clearly
implies that no non-constant bounded continuous Q-solution on M can have a
continuous extension to x0 ∈M(∞).

Theorem 2.1. There exists a 3-dimensional Cartan–Hadamard manifold M with
sectional curvatures ≤ −1 and a point x0 ∈M(∞) such that

(a) for any operator Q, with A satisfying (1.3), (1.4), and (1.5), for all bounded
continuous Q-solutions u on M , and for all (cone) neighborhoods U of x0,

inf
M
u = inf

U∩M
u, sup

M
u = sup

U∩M
u, and

(b) there are non-constant bounded continuous Q-solutions on M if, in addition,
Q satisfies the properties (A) and (B).

The claim (b) above follows from the next result.
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Theorem 2.2. LetM and x0 ∈M(∞) be as in (2.1) and suppose that, in addition
to (1.3), (1.4), and (1.5), Q satisfies also the properties (A) and (B). Then there
exists a family of continuous Q-solutions ua,c on M, with a ∈ R and c > 0, such
that

(a) 0 ≤ ua,c ≤ c,

(b) for all a ∈ R and x ∈M(∞) \ {x0},
lim
y→x

ua,c(y) = 0

(c) and, for all x ∈M ,
lim

a→−∞ua,c(x) = c.

The proofs of Theorem 2.1 and Theorem 2.2 are based on the following theorem.

Theorem 2.3. There exists a 3-dimensional Cartan–Hadamard manifold M of
sectional curvatures ≤ −1 and a point x0 ∈ M(∞) with the following properties.
For all operators Q, with A satisfying (1.3), (1.4), and (1.5), there exist families of
functions ϕa,c and ψa,c in M , with a ∈ R and c ≥ 0, such that ϕa,c is a continuous
Q-subsolution on M , ψa,c is a continuous Q-supersolution on M , and that

(a) 0 ≤ ϕa,c ≤ ψa,c ≤ c,

(b) for all a ∈ R and x ∈M(∞) \ {x0},
lim
y→x

ψa,c(y) = 0,

(c) and, for all x ∈M ,
lim

a→−∞ϕa,c(x) = c.

Since 0 ≤ ϕa,c ≤ ψa,c ≤ c, we also have

(b’) for all a ∈ R and x ∈M(∞) \ {x0},
lim
y→x

ϕa,c(y) = 0

(c’) and, for all x ∈M ,
lim

a→−∞ψa,c(x) = c.

In order to deduce Theorem 2.1 and Theorem 2.2 from Theorem 2.3 we state
the following important comparison principle, cf. Lemma 3.18 in [17] and Lemma 3
in [25]. We refer to Lemma 2.1 in [9] for its short proof which is based on the fact
that t �→ tA(t2) is strictly increasing by (1.4).

Lemma 2.4. If u ∈ W 1,p(Ω) is a Q-supersolution and v ∈ W 1,p(Ω) is a Q-
subsolution such that ϕ = min(u− v, 0) ∈W 1,p

0 (Ω), then u ≥ v a.e. in Ω.

As a consequence, we obtain the uniqueness of Q-solutions with fixed (Sobolev)
boundary data.
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Corollary 2.5. If u ∈ W 1,p(Ω) and v ∈ W 1,p(Ω) are Q-solutions with u − v ∈
W 1,p

0 (Ω), then u = v a.e. in Ω.

Proof of Theorem 2.2 assuming Theorem 2.3. Let M, x0 ∈ M(∞), and the fam-
ilies {ϕa,c} and {ψa,c} be as in Theorem 2.3. Furthermore, let Ωi � M, i ∈ N,
be an exhaustion of M by Q-regular domains. Note that the existence of such
an exhaustion is part of our assumptions on the operator Q in Theorem 2.2. For
each fixed a ∈ R and c > 0, let ui ∈ C(M) be the unique function that is a
Q-solution in Ωi with boundary values ϕa,c and coincides with ϕa,c in M \ Ωi.
By the comparison principle (Lemma 2.4), we have ϕa,c ≤ ui ≤ ψa,c in M . Thus
the sequence (ui) is uniformly bounded and hence, by the assumption (B) and a
diagonal process, we obtain a subsequence of (ui) that converges to a function ua,c
which is a continuous Q-solution inM , satisfies ϕa,c ≤ ua,c ≤ ψa,c inM , and hence
conditions (a)–(c) in Theorem 2.2. �

Proof of Theorem 2.1 assuming Theorem 2.3. Let M and x0 ∈ M(∞) be as in
Theorem 2.3. Condition (b) in Theorem 2.1 follows from Theorem 2.2. To
prove (a), suppose that h is a bounded continuous Q-solution in M , U is a cone
neighborhood of x0, and let

b = inf
M
h, and B = inf

U∩M
h.

Then b ≤ B and we claim that b = B. Write c = B − b and let {ϕa,c} and {ψa,c},
with a ∈ R, be as in Theorem 2.3. Then for each a ∈ R an auxiliary continuous
Q-subsolution

fa = b+ ϕa,c

satisfies, for all x ∈M(∞) \ {x0},
lim inf
y → x
y∈M

(
h(y)− fa(y)

)
= lim inf

y → x
y∈M

(
h(y)− b− ϕa,c(y)

)

≥ lim inf
y → x
y∈M

(
h(y)− b

)− lim
y → x
y∈M

ϕa,c(y) ≥ 0.

Furthermore,

lim inf
y → x0
y∈M

(
h(y)− fa(y)

)
= lim inf

y → x0
y∈M

(
h(y)− b− ϕa,c(y)

)

= lim inf
y → x0
y∈M

((
c− ϕa,c(y)

)
+h(y)−B

) ≥ lim inf
y → x0
y∈M

(
h(y)−B

) ≥ 0.

Hence

(2.1) lim inf
y → x
y∈M

(
h(y)− fa(y)

) ≥ 0

for all x ∈M(∞). It follows from the comparison principle that h ≥ fa inM for all
a ∈ R. To be precise, suppose on the contrary that h(y) < fa(y)−ε for some y ∈M
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and ε > 0. LetA be the y-component of the set {x ∈M : h(x) < fa(x)−ε}. Then A
is an open set with a compact closure Ā ⊂M by (2.1) and continuity of h−fa. On
the other hand, h = fa−ε on ∂A, and therefore h ≥ fa−ε in A by the comparison
principle leading to a contradiction. Since lima→−∞ ϕa,c(x) = c = B − b for all
x ∈M , we obtain

h(x) ≥ lim
a→−∞ fa(x) = B

for all x ∈M . Hence b ≥ B, and so b = B.

To complete the proof, we just apply the above to the bounded continuous
Q-solution −h and obtain

sup
M

h = − inf
M

(−h) = − inf
U∩M

(−h) = sup
U∩M

h. �

Remark 2.6. As is seen in the proof above, only the family {ϕa,c} is needed in
order to get the non-solvability of the asymptotic Dirichlet problem.

3. Construction of M : first step

The construction of the Riemannian manifoldM is up to some minor modifications
(mostly in notation) essentially due to Borbély [8]; see also [4], and [7]. For the
details of the construction, we refer to [19].

We start with the standard upper half space model for the hyperbolic 3-space

H
3 = {(x1, x2, x3) ∈ R

3 : x3 > 0}

equipped with the hyperbolic metric ds2
H3 of constant sectional curvature −1. The

sphere at infinity, H3(∞), can be realized as the union of the x1x2-plane and the
“common endpoint (x1, x2,+∞)” of all vertical geodesics. Let x0 = (0, 0, 0) ∈
H3(∞) be a point at infinity and L a unit speed geodesic terminating at x0
(L(+∞) = x0) such that L(0) = (0, 0, 1). Thus L is the positive x3-axis. We
will denote by L also the image L(R). The Fermi coordinates (s, r, ϑ) along L are
defined as follows. For any point x ∈ H

3, there exists a unique point L(s) on L
closest to x. This determines the s-coordinate uniquely. The r-coordinate of x is
the distance r = dist(x, L) = d(x, L(s)). Finally, the third Fermi coordinate ϑ of
x ∈ H3 \ L is the angle ϑ ∈ S1 obtained from the polar coordinate representation
x1 = t cosϑ, x2 = t sinϑ of x = (x1, x2, x3). For x = L(s) ∈ L, the third Fermi
coordinate ϑ is not defined, and we will write x = (s, 0, ∗). On H3 \ L, the vector
fields

S =
∂

∂s
, R =

∂

∂r
, and Θ =

∂

∂ϑ

form a frame, with {ds, dr, dϑ} as a coframe. Furthermore, S, R, and Θ are
commuting as coordinate vector fields, i.e., their Lie brackets vanish:

[S,R] = [S,Θ] = [R,Θ] = 0.
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From now on we abbreviate h(r) = cosh r and usually write

v′r = Rv, v′s = Sv, v′′rs = S(Rv), etc.

for partial derivatives of a function v.
The (standard) hyperbolic metric of H3 in Fermi coordinates is given by

ds2
H3 = dr2 + h2(r) ds2 + sinh2 r dϑ2.

The Riemannian manifold M is then obtained from H3 by modifying the metric
in Θ-directions as

(3.1) ds2M = dr2 + h2(r) ds2 + g2(s, r) dϑ2,

where g : R × [0,+∞[→ R is a C∞-function which is positive in the complement
of L, that is when r > 0,

g(s, 0) = 0,

gr(s, 0) :=
∂g

∂r
(s, 0) = 1,

and whose partial derivatives of even order with respect to r vanish at r = 0. Thus,
with respect to the Riemannian metric ds2M , we have

(3.2) 〈R,S〉 = 〈R,Θ〉 = 〈S,Θ〉 = 0, 〈R,R〉 = 1, 〈Θ,Θ〉 = g2, and 〈S, S〉 = h2.

Above and in what follows 〈·, ·〉 refers to the Riemannian metric of M . Further-
more, for later purposes we record the covariant derivatives of the coordinate vector
fields obtained from (3.2) by a direct computation:

∇RR = 0, ∇RS = ∇SR =
h′
r

h S, ∇RΘ = ∇ΘR =
g′
r

g Θ, ∇SS = −hh′rR,
∇SΘ = ∇ΘS =

g′
s

g Θ, and ∇ΘΘ = −gg′rR− gg′
s

h2 S.
(3.3)

It is crucial to note that all geodesic rays ofH3 starting at L will remain geodesic
rays also in M , and therefore the sphere at infinity, M(∞), of M and the cone
topology of M̄ can be identified with those of H3. The Riemannian manifold M
will then be of sectional curvature ≤ −1 if and only if the following four inequalities
hold:

h′′rr
h

≥ 1,(3.4)

g′′rr
g

≥ 1,(3.5)

g′′ss
gh2

+
g′rh

′
r

gh
≥ 1,(3.6)

(
− g′′rs
gh

+
g′sh

′
r

gh2

)2

≤
(g′′rr
g

− 1
)( g′′ss
gh2

+
g′rh

′
r

gh
− 1

)
;(3.7)

see [19]. The first condition (3.4) holds as an equality since h(r) = cosh r. Thus it
suffices to verify conditions (3.5) and (3.7).
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4. The operator Q for functions ϕa,c

The family {ϕa,c} in Theorem 2.3 will be constructed following the idea of Borbély
in [8]. For c = 0 these functions vanish identically, therefore we assume from now
on that c > 0. We consider a family of vector fields

Xa = R+ qaS, a ∈ R,

on M \ L, where, for each a ∈ R, qa : M → R is a C∞ function depending only
on the r-coordinate of a point (s, r, ϑ) ∈ M \ L and qa|L = 0. ¿From now on we
usually omit the parameter a and abbreviate X = Xa, and write q(r) = qa(r) =
qa(s, r, ϑ). All integral curves of X can be extended to L, and therefore we will
talk about integral curves of X starting at a point of L even though X is not
defined on X ; see [19] for details. Since X does not have the Θ-component, the
(Fermi) ϑ-coordinate remains constant along integral curves of X . Furthermore,
integrals curves of X starting at L(s) are rotationally symmetric around L; each
of them is obtained from another by a suitable rotation around L. Denote by γa,s
any integral curve of Xa starting at L(s). Let Sa

s be the surface that is obtained
by rotating any γa,s around L. Note also that the relation between the (Fermi)
s-coordinate of a point (s, r, ϑ) ∈ Sa

s0 and s0 is given by

(4.1) s = s0 +

∫ r

0

qa(t) dt.

The functions ϕa,c are constructed so that the surfaces Sa
s are the level sets of ϕa,c.

Thus ϕa,c|Sa
s has a constant value f(s) = f (a,c)(s) depending only on a, c, and s.

It is convenient to choose

(4.2) f(s) = f (a,c)(s) = c max
{
0, tanh

(
δ(s− a)

)}
,

where δ = 1
2(1+2B0)

and B0 is the constant in (1.4). Hence ϕa,c|M \ Ma = 0,

where Ma is the open set

Ma =
⋃
s>a

Sa
s .

It is worth observing that surfaces Sa
s for fixed a are obtained from each other by a

Euclidean dilation with respect to x0 in our upper half space model of M since qa
is independent of the s-coordinate. More precisely, Ma = {tz : t ∈ (0, 1), z ∈ Sa

s },
where tz stands for the (Euclidean) dilation of z with respect to x0. The func-
tions q = qa will be constructed in such a way that they result in smooth functions
ϕ = ϕa,c in Ma. As in [8] and [19], we have

ϕ′
s(s

′, r, ϑ) = f ′(s),(4.3)

∇ϕ(s′, r, ϑ) = f ′(s)
(
cosh−2 rS − q(r)R

)
,(4.4)

|∇ϕ(s′, r, ϑ)| = f ′(s)
√

cosh−2 r + q2(r), and(4.5)

ϕ′′
ss(s

′, r, ϑ) = f ′′(s),(4.6)
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where the (Fermi) coordinate s′ is related to s by

s′ = s+

∫ r

0

q(t) dt.

Note that |∇ϕa,c| > 0 in Ma. Next we will compute

Q[ϕa,c] = divA(|∇ϕa,c|2)∇ϕa,c

pointwise in Ma. We start with noting that, for a C2-function u (with |∇u| > 0),

divA(|∇u|2)∇u = A(|∇u|)2Δu+ 〈∇A(|∇u|2),∇u〉
= A(|∇u|)2Δu+A′(|∇u|2) 〈∇〈∇u,∇u〉,∇u〉
= A(|∇u|)2Δu+ 2A′(|∇u|2)Hess u(∇u,∇u)(4.7)

= A(|∇u|)2
{
Δu + 2B(|∇u|2)|∇u|2 Hessu

(
∇u
|∇u| ,

∇u
|∇u|

)}
.

In particular, we have

divA(|∇ϕ|2)∇ϕ = A(|∇ϕ|)2
{
Δϕ+ 2B(|∇ϕ|2)|∇ϕ|2 Hessϕ

(
∇ϕ
|∇ϕ| ,

∇ϕ
|∇ϕ|

)}

for functions ϕ = ϕa,c in Ma.
Following Borbély, we define a C∞-function β : M → [0,∞) (denoted by p

in [8]) by

(4.8) β(s, r) =
g′s(s, r)

g′r(s, r)h2(r)
.

Writing Y = ∇ϕ/|∇ϕ| and computing the Laplacian as the trace of the Hessian
in the basis {X,Θ, Y }, cf. pp. 233-234 in [8] and [19], we obtain

divA(|∇ϕ|2)∇ϕ = A(|∇ϕ|)2
{Hessϕ(X,X)

〈X,X〉 +
Hessϕ(Θ,Θ)

〈Θ,Θ〉
+
(
1 + 2B(|∇ϕ|2)|∇ϕ|2)Hessϕ(Y, Y )

}
,

where the Hessians are obtained from (3.3) by simple computations:

Hessϕ(X,X)

〈X,X〉 =
−ϕ′

s

(
hq′r + 2h′rq + h2h′rq

3
)

h(1 + h2q2)
,

Hessϕ(Θ,Θ)

〈Θ,Θ〉 =
ϕ′
sg

′
r(β − q)

g
,

and

Hessϕ(Y, Y ) = ϕ′′
ss(h

−2 + q2)− ϕ′
s(q

′
rq

2 − h′rh
−3q)

h−2 + q2
.

Hence putting these together and simplifying we arrive at the following formula.



Nonsolvability of the asymptotic Dirichlet problem 1119

Lemma 4.1. The operator Q for functions ϕ = ϕa,c is given in Ma by the formula

divA(|∇ϕ|2)∇ϕ

=
A(|∇ϕ|2)ϕ′

s

h

{g′rh(β − q)

g
− hq′r − h′rq +

ϕ′′
ss(1 + h2q2)

ϕ′
sh

[
1 + 2B(|∇ϕ|2)|∇ϕ|2]

− 2B(|∇ϕ|2)|∇ϕ|2 h
3q′rq2 − h′rq
1 + h2q2

}
.

Remark 4.2. It is worth noting already at this stage that, in order to have
Q[ϕ] ≥ 0, the first term above, i.e., the one containing β−q, should be positive and
dominate the others. This requirement puts strong constraints on functions β, g,
and q.

Remark 4.3. In order to guarantee the correct boundary behavior of the func-
tions ϕa,c, i.e., condition (b’) in Theorem 2.3, it is enough to construct functions qa
so that

(4.9)

∫ ∞

0

qa(t) dt = ∞

for all a ∈ R, and that

(4.10)

∫ r

0

qa(t) dt ≤ br <∞

independently of a ∈ R; see Lemma 5.1 in [19].

5. Construction of M : final step

In this section we briefly describe the construction of the function g in (3.1) and
hence the Riemannian metric of M . The function g will be of the form

(5.1) g(s, r) =
1

2
sinh

(
sinh 2
(s, r)

)
,

where 
 is a C∞-function, with 
(s, r) = r for 0 ≤ r ≤ 3 and 
(s, r) ≥ r for all
r ≥ 0. By (4.8), g and 
 both satisfy the partial differential equation

g′s = βh2g′r, and(5.2)


′s = βh2
′r.(5.3)

Note that β is independent of the (Fermi) coordinate ϑ and β(s, r) = 0 for 0 ≤ r ≤ 3
by (5.1). Since ∇
 = 
′r(βS+R), we have ∇
 ⊥ (βh2R−S), and therefore 
 (and
hence g) is constant along any integral curve of the vector field

Z = βh2R− S.
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Now the idea is to construct an unbounded domain Ω ⊂M of the form

(5.4) Ω = {(s, r, ϑ) ∈M : r < 3} ∪ {(s, r, ϑ) ∈M : s < −�(r)}
such that all integral curves of Z will enter Ω, and then construct β so that it
vanishes identically in Ω, and finally fix the “initial condition”

(5.5) 
(s, r) = r

for all (s, r, ϑ) ∈ Ω. Note that (s, r, ϑ) ∈ Ω for all s ≤ s′ if (s′, r, ϑ) ∈ Ω. Conse-
quently, once an integral curve of Z enters Ω, it will then stay in Ω forever. The
function � that appears in (5.4) is closely related to β. Then g, and hence the
Riemannian structure of M , will be completely determined by constructing the
functions β and �.

While constructing β we have to keep in mind Remark 4.2 and (4.9). This
leads to the first requirement that

(5.6)

∫ ∞

0

β(s, r) dr = ∞

for all s ∈ R. For the construction of g we require that

(5.7)

∫ ∞

r0

dr

β(s, r) cosh2 r
= ∞

for all r0 > 3 and s ∈ R. To obtain the curvature conditions (3.5) and (3.7) we
will require that

(5.8) 0 ≤ β ≤ 1

1000
, |β′

r| ≤
1

1000
, 0 ≤ β′

s ≤
1

1000
, ββ′

rh
3 ≤ h′r

1000
,

and that βh2 is a convex non-decreasing function in the variable r, that is

(5.9) (βh2)′r ≥ 0 and (βh2)′′rr ≥ 0.

The function β : M → [0,∞) will be of the form

β(s, r) = ξ(s+ �(r))β0(r),

with smooth functions ξ, �, and β0 to be described next. The function ξ : R →
[0, 1] is smooth and non-decreasing such that ξ|(−∞, 0] = 0, ξ|[4,∞) = 1, and
that ξ′, |ξ′′| < 1/2, and ξ′′ + ξ > 0 on (0, 4). The smooth function β0 : [0,∞) →
[0,∞) is constructed such that on [0, r1] it is a smooth non-decreasing function that
vanishes identically on [0, 3], takes the constant (positive) value β0(5) on [5, r1], and
it is a positive slowly increasing function on the interval (3, 5] so that (5.8) and (5.9)
hold. Here r1 is large enough such that β0(r1) cosh

2 r1 = β0(5) cosh
2 r1 > 1. Fur-

thermore, β0 is non-increasing on [r1,∞), with limr→∞ β0(r) = 0, whereas β0 h
2

is an increasing strictly convex function. Finally, β0 satisfies
∫ ∞

0

β0(r) dr = ∞,

∫ ∞

r0

dr

β0(r) cosh
2 r

= ∞
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for all r0 > 3, and

(5.10) (β0 h
2)′′rr >

ε

β0 h2
,

where 0 < ε < 1/4 is small enough depending on the choice of β0|[0, 5]. We refer
to [8] for a detailed construction of β0 (denoted there by p0); see also [19].

The smooth function � : [0,∞) → [0,∞) is constructed so that �(r) = 0 for
r ∈ [0, 3] and

(5.11) �′ =
ε

β0 h2

on the interval [5,∞), with the same ε as in (5.10). Finally, the two pieces are
connected smoothly such that

�′′ ≥ −�′(β0 h2)′r
β0 h2

and 0 ≤ �′ ≤ ε

β0 h2

for all r > 0. Then �(r) → ∞ as r → ∞ and β(s, r) = ξ(s+ �(r))β0(r) satisfies the
conditions (5.6)–(5.9); see [8] for the details.

Next we complete the construction of g. Recall from (5.4) and (5.5) that

Ω = {(s, r, ϑ) ∈M : r < 3} ∪ {s, r, ϑ) ∈M : s < −�(r)}
and hence β ≡ 0 and g(s, r) = 1

2 sinh(sinh 2r) in Ω̄ and β > 0 inM \Ω̄. Notice that
integral curves of W = R − �′S starting at points in ∂Ω ∩ {(s, r, ϑ) ∈ M : r > 3}
will stay in ∂Ω. Since

1

βh2
− �′ ≥ 1

β0 h2
− ε

β0 h2
=

1− ε

β0 h2

we conclude from (5.7) that all integral curves of Z = βh2R−S starting at points in
M \ Ω̄ will enter Ω and stay in there, see p. 229 in [8]. As observed earlier, 
 and g
are constant along any integral curves of Z. This completes the construction of g
and the Riemannian metric of M . We refer to [19] for the proof of the curvature
conditions (3.5) and (3.7).

We finish this section by collecting further properties of g that will be used in
Section 6. Recall from (5.1) and (5.3) that

g(s, r) =
1

2
sinh

(
sinh 2
(s, r)

)
,

where 
 is a C∞-function, with 
(s, r) = r for 0 ≤ r ≤ 3, that satisfies the partial
differential equation


′s = βh2
′r.

Hence we may apply the proof of Lemma 2.2 in [8] to the function 
. Since

′r(s, r) ≡ 1 in Ω, we get


′r ≥ 1, and(5.12)


(s, r) ≥ r(5.13)
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in M . Furthermore,

g′r = 
′r cosh(2
) cosh(sinh 2
), and(5.14)

g′r
g

= 2
′r coth(sinh 2
) cosh2
.(5.15)

6. Construction of Q-subsolutions ϕa,c

In this section we construct the functions qa : [0,∞) → R, a ∈ R, so that the
resulting functions ϕa,c satisfy the conditions in Theorem 2.3. For each fixed a ∈ R,
we first define q = qa piecewise on intervals [0, T0], [T0, T1], [T1, T2], [T2, T3], and
[T3,∞), where T0, . . . , T3 depend only on a and B0, and then finally smooth out q
in neighborhoods of Ti, i = 0, 1, 2, 3. We denote both the piecewisely constructed
functions and the final smooth functions by the same symbol q.

Recall from (4.2) that

f(s) = f (a,c)(s) = c max
{
0, tanh

(
δ(s− a)

)}
.

with δ = 1
2(1+2B0)

. Furthermore, by (4.3) and (4.6), we have

ϕ′
s(s

′, r, ϑ) = f ′(s) > 0 and ϕ′′
ss(s

′, r, ϑ) = f ′′(s) < 0

for s > a, where

s′ = s+

∫ r

0

q(t) dt.

Hence
ϕ′′
ss(1 + h2q2)

ϕ′
sh

[
1 + 2B(|∇ϕ|2)|∇ϕ|2] ≥ −1 + h2q2

h

in Ma. We conclude from Lemma 4.1 that Q[ϕ] > 0 in Ma if

(6.1)
g′rh(β − q)

g
− hq′r − h′rq −

1 + h2q2

h
− 2B̄0

|h3q′rq2 − h′rq|
1 + h2q2

> 0

in Ma, where B̄0 = max(B0, 1/2).
It is straightforward to check that integral curves of vector fields R− tanh r S,

r > 0, are horizontal (Euclidean) lines, i.e., the x3-coordinate remains constant
along an integral curve. Hence we define q(r) = qa(r) = − tanh r for r ∈ [0, T0],
where T0 ≥ 1 will be chosen later. Then the surfaces Sa

s coincide with horizontal
Euclidean planes x3 ≡ e−s near L. Consequently, the functions ϕa are smooth
in Ma. We notice that

q′r = − cosh−2 r, 1 + h2q2 = cosh2 r, −hq′r − h′rq = cosh r,

and
h3q′rq2 − h′rq
1 + h2q2

= 0.
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Furthermore, since β ≥ 0, we get from (5.15) and (6.1) that Q[ϕ] > 0 in Ma ∩
{(s′, r, ϑ) : 0 < r < T0} because there

g′rh(β − q)

g
− hq′r − h′rq −

1 + h2q2

h
− 2B̄0

|h3q′rq2 − h′rq|
1 + h2q2

(6.2)

≥ coth(sinh 2
) sinh(2
) coth(2
) 2 
 
′r
sinh r



≥ 
′r

sinh r



> 0.

Since 
 = r and hence 
′r = 1 for 0 ≤ r ≤ 3, we have 
′r

−1 sinh r → 1 as r → 0.

For r ∈ [T0, T1], we define

q(r) = qa(r) =
− coshT0 sinh r

cosh2 r
.

Then

q′r(r) = coshT0(sinh
2 r − 1) cosh−3 r, 1 + h2q2 = 1 + cosh2 T0 tanh

2 r,

− hq′r − h′rq = coshT0 cosh
−2 r,

and

|h3q′rq2 − h′rq|
1 + h2q2

=
cosh3 T0 tanh

2 r(tanh2 r − cosh−2 r) + coshT0 tanh
2 r

1 + cosh2 T0 tanh
2 r

≤ coshT0.

Again since β ≥ 0, we may estimate the left hand side of (6.1) from below to
obtain

g′rh(β − q)

g
− hq′r − h′rq −

1 + h2q2

h
− 2B̄0

|h3q′rq2 − h′rq|
1 + h2q2

≥ coshT0

(
2
′r coth(sinh 2
) cosh(2
) tanh r + cosh−2 r(6.3)

− 1 + cosh2 T0 tanh
2 r

coshT0 cosh r
− 2B̄0

)

> coshT0

(
cosh 2r + cosh−2 r − cosh−2 T0 − tanh2 r − 2B̄0

)
> 0

in Ma ∩ {(s′, r, ϑ) : T0 < r < T1} provided T0 = T0(B0) ≥ 1 is large enough.

For r ∈ [T1, T2], we let q = qa be a C∞ continuation of q|[0, T1] such that

− coshT0 sinh r

cosh2 r
≤ q ≤ 0

and

0 <
(− coshT0 sinh r

cosh2 r

)′

r
< q′r <

coshT0
cosh r

.

Thus

−hq′r − h′r ≥ − coshT0,

1 ≤ 1 + h2q2 ≤ 1 + cosh2 T0 tanh
2 r,

−1 + h2q2

h
≥ −1 + cosh2 T0 tanh

2 r

cosh r
,
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and

−2B̄0
|h3q′rq2 − h′rq|

1 + h2q2
= −2B̄0

h3q′rq2 − h′rq
1 + h2q2

≥ −2B̄0(h
3q′rq

2 − h′rq)

≥ −2B̄0 coshT0 tanh
2 r(cosh2 T0 + 1).

We choose T1 = T1(a, T0) > T0 large enough so that s′ + �(r) ≥ 4 for all s′ ≥
a− log coshT0−1 and r ≥ T1, which then implies that for all s ≥ a and r ∈ [T1, T2]
the point (s′, r, ϑ) on any integral curve γa,s of Xa, with

s′ = s+

∫ r

0

q(t) dt ≥ a− log coshT0 − 1,

lies in the set where β(s′, r) = β0(r). Furthermore, we also require that T1 be so
large that β0(r) cosh

2 r ≥ 1 for all r ≥ T1. Then in Ma ∩ {(s′, r, ϑ) : T1 < r < T2},
with T1 large enough, we have

g′rh(β − q)

g
− hq′r − h′rq −

1 + h2q2

h
− 2B̄0

|h3q′rq2 − h′rq|
1 + h2q2

≥ 2(β0 − q)
′r coth(sinh 2
) cosh(2
) cosh r − coshT0

− 1 + cosh2 T0 tanh
2 r

cosh r
− 2B̄0 coshT0 tanh

2 r(cosh2 T0 + 1)(6.4)

≥ 2 cosh2r cosh−1 r − coshT0 − 1 + cosh2 T0 tanh
2 r

cosh r

− 2B̄0 coshT0 tanh
2 r(cosh2 T0 + 1) > 0.

Here we used estimates β0−q ≥ cosh−2 r and 2
′r coth(sinh 2
) cosh(2
) ≥ 2 cosh 2r
for r ≥ T1. The upper interval bound T2 is determined by q(T2) = 0. Such T2
exists since q grows strictly faster than

r �→ − coshT0 sinh r

cosh2 r

which tends to zero as r → ∞. Since∫ ∞

t

β0(r) dr = ∞ and

∫ ∞

t

dr

β0(r) cosh
2 r

= ∞

for every t > 3, β0(r) − 1/ cosh r changes its sign infinitely often, in particular,
there are arbitrary large values of r, with β0(r)− 1/ cosh r = 0. We let T3 > T2 be
a zero of β0 − 1/ cosh specified later. For r ∈ [T2, T3] we let q(r) = 0. Then

g′rh(β − q)

g
− hq′r − h′rq −

1 + h2q2

h
− 2B̄0

|h3q′rq2 − h′rq|
1 + h2q2

=
g′rhβ0
g

− 1

h
≥ 2 cosh 2r − 1

cosh r
> 0(6.5)

in Ma ∩ {(s′, r, ϑ) : T2 < r < T3}.
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For r ≥ T3 we define q(r) = β0(r) − 1/ cosh r. Then

β − q = β0 − q = 1/ cosh r,

−hq′r − h′rq = −β′
0(r) cosh r − β0(r) sinh r,

−1 + h2q2

h
= −β2

0(r) cosh r + 2β0(r)− 2 cosh−1 r,

and

−2B̄0
|h3q′rq2 − h′rq|

1 + h2q2
≥ −2B̄0

|h3q′rq2|+ |h′rq|
1 + h2q2

≥ −2B̄0 (|β′
0(r)| cosh r + β0(r) sinh r + 2 tanh r) .

Hence

g′rh(β − q)

g
− hq′r − h′rq −

1 + h2q2

h
− 2B̄0

|h3q′rq2 − h′rq|
1 + h2q2

≥ 2 cosh 2r − β′
0(r) cosh r − β0(r) sinh r

− β2
0(r) cosh r + 2β0(r)− 2 cosh−1 r(6.6)

− 2B̄0 (|β′
0(r)| cosh r + β0(r) sinh r + 2 tanh r) > 0

in Ma ∩ {(s′, r, ϑ) : r > T3} if T3 is large enough. Finally, since the estimates
in (6.2)–(6.6) involve q and q′r but not higher order derivatives of q, it is clear
that q can be smoothen out in neighborhoods of Ti such that (6.1) holds in Ma.
Hence ϕa,c is a positive Q-subsolution in Ma and continuous in M , with ϕa,c = 0
inM \Ma. Next we use the divergence theorem to show that ϕa,c is aQ-subsolution
in wholeM . To this end, let η ∈ C∞

0 (M) be an arbitrary non-negative test function
and let U �M be an open set such that spt η ⊂ U and that ∂(Ma ∩U) is smooth.
Since ϕa,c = 0 inM \Ma, η = 0 inM \U , and η divA(|∇ϕa,c|2)∇ϕa,c ≥ 0 pointwise
in Ma ∩ U , we obtain from the divergence theorem that
∫
M

〈A(|∇ϕa,c|2
)∇ϕa,c,∇η

〉
dm =

∫
Ma∩U

〈A(|∇ϕa,c|2
)∇ϕa,c,∇η

〉
dm

= −
∫
Ma∩U

η divA(|∇ϕa,c|2)∇ϕa,c dm+

∫
∂(Ma∩U)

〈
ηA(|∇ϕa,c|2

)∇ϕa,c, ν
〉
dσ

≤
∫
∂(Ma∩U)

〈A(|∇ϕa,c|2
)∇ϕa,c, ην

〉
dσ,

where dσ is the (Riemannian) surface measure and ν is the unit outer normal
vector field on ∂(Ma ∩ U). Furthermore,

ην = −η∇ϕa,c

|∇ϕa,c|
on ∂(Ma ∩ U), and therefore
∫
∂(Ma∩U)

〈A(|∇ϕa,c|2
)∇ϕa,c, ην

〉
dσ = −

∫
∂(Ma∩U)

ηA(|∇ϕa,c|2
)|∇ϕa,c| dσ ≤ 0.
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We conclude that ϕa,c is a Q-subsolution in the whole M . Finally,∫ ∞

0

qa(t) dt = ∞

for all a ∈ R since qa(t) = β0(t)− 1/ cosh t for t ≥ T3,∫ ∞

T3

β0(t) dt = ∞,

and ∫ ∞

T3

dt

cosh t
≤

∫ ∞

0

dt

cosh t
= π/2.

Furthermore, ∫ r

0

qa(t) dt ≤
∫ r

0

β0(t) dt+

∫ r

0

dt

cosh t
=: br <∞

independently of a ∈ R. Hence the family {ϕa,c} satisfies conditions (a), (b’),
and (c) in Theorem 2.3.

7. Construction of Q-supersolutions ψa,c

The construction of the family of continuous Q-supersolutions ψa,c, a ∈ R, c > 0,
is similar to that in [8] and [19]. It is based on the following theorem from e.g. The-
orem 4.3 in [10]:

Theorem 7.1. Let N be an n-dimensional Cartan–Hadamard manifold with sec-
tional curvatures ≤ −1. Let Ω ⊂ N be a domain with C∞-smooth boundary such
that Ω̄ is convex. Then the distance function ρ : N \ Ω̄ → (0,∞),

ρ(x) = dist(x, Ω̄),

is C∞ and

(7.1) Δρ ≥ (n− 1) tanh ρ

in N \ Ω̄.
Suppose then that Ω̄ ⊂ N is a convex set and ρ = dist(·, Ω̄) is a distance

function as in Theorem 7.1. Define a continuous function v : N → [0, c) by setting
v = 0 in Ω̄ and v(x) = c tanh

(
δρ(x)

)
for x ∈ N \ Ω̄, where c > 0 and δ = δ(B0) is

a positive constant depending only on the constant B0 in (1.4). Then in N \ Ω̄ we
have

∇v = cδ cosh−2(δρ)∇ρ and |∇v| = cδ cosh−2(δρ).

To compute Q[v], we first observe that

Hess v
(

∇v
|∇v| ,

∇v
|∇v|

)
= Hess v(∇ρ,∇ρ) = ∇ρ〈∇v,∇ρ〉 − (∇∇ρ∇ρ)v

= ∇ρ(cδ cosh−2(δρ)
)
=

−2cδ2 tanh(δρ)

cosh2(δρ)
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and that

Δv = div
(
cδ cosh−2(δρ)∇ρ) = cδ cosh−2(δρ)

(
Δρ− 2δ tanh(δρ)

)
.

Hence by (1.4), (4.7), and (7.1) we have

Q[v] = divA(|∇v|2)∇v = A(|∇v|2)
{
Δv + 2B(|∇v|2)|∇v|2 Hess v

(
∇v
|∇v| ,

∇v
|∇v|

)}

≥ cδA(|∇v|2)
cosh2(δρ)

(
(n− 1) tanh ρ− 2δ(1 + 2B0) tanh(δρ)

)
.

Choosing δ = min(1, 1
2(1+2B0)

) yields

divA(|∇v|2)∇v ≥ 0

in N \ Ω̄. Hence the function ψ = c − v is a continuous positive function in N ,
a Q-supersolution in N \ Ω̄, ψ = c in Ω̄, and ψ(x) → 0 as dist(x, Ω̄) → ∞. By a
similar argument based on the divergence theorem as in the previous section, we
conclude that ψ is, in fact, a Q-supersolution in whole N .

Thus to construct the family {ψa,c}, a ∈ R, c > 0, it is enough to find appropri-
ate convex subsets of M . This is done in [8] as follows. Denote by αa any integral
curve of −∇ΘΘ = gg′r(R + βS) starting at L(a). Furthermore, denote by Pa the
surface obtained by rotating αa around L and let Va be the component of M \ Pa

containing points L(s), with s > a. Observe that Pa is also obtained by rotating
integral curves of R + βS starting at L(a) around L. It is proven on p. 235 in [8]
that V̄a is convex for every a ∈ R. Next we observe that, for each fixed a ∈ R, the
set Ma = {x ∈ M : ϕa(x) > 0} is contained in V̄a−b for some b = b(a,B0). This
is seen by comparing the (Fermi) s-coordinates of points (s′′, r, ϑ) and (s′, r, ϑ)
on integral curves αa−b and γa,s, s ≥ a, respectively. More precisely, s′ ≥ s′′

for all such points (s′′, r, ϑ) and (s′, r, ϑ) if b = b(a,B0) is large enough since
β0(r) − qa(r) = 1/ cosh r for r ≥ T3 = T3(a,B0) and

∫∞
0 1/ cosh r dr = π/2 < ∞.

Finally, for each a ∈ R and c > 0, let ψa,c = c − va,c, where va,c = c tanh(δρa),
where ρa = dist(·, V̄a−b) and δ =

1
2(1+2B0)

. Then, by the discussion above, ψa,c is

a continuous positive Q-supersolution in M , 0 ≤ ϕa,c ≤ ψa,c ≤ c, ψa,c = c in V̄a−b,
and limy→x ψa,c(y) = 0 for all y ∈M(∞) \ {x0}.

In conclusion, the families {ϕa,c} and {ψa,c} satisfy the conditions in Theo-
rem 2.3, and thus Theorems 1.1, 2.1, 2.2, and 2.3 are proven.
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[8] Borbély, A.: The nonsolvability of the Dirichlet problem on negatively curved
manifolds. Differential Geom. Appl. 8 (1998), no. 3, 217–237.

[9] Casteras, J.-B., Holopainen, I. and Ripoll, J.: On the asymptotic Dirichlet
problem for the minimal hypersurface equation in a Hadamard manifold. Preprint,
arXiv: 1311.5693, 2013.

[10] Choi, H. I.: Asymptotic Dirichlet problems for harmonic functions on Riemannian
manifolds. Trans. Amer. Math. Soc. 281 (1984), no. 2, 691–716.

[11] Collin, P. and Rosenberg, H.: Construction of harmonic diffeomorphisms and
minimal graphs. Ann. of Math. (2) 172 (2010), no. 3, 1879–1906.

[12] Dajczer, M., Hinojosa, P.A. and de Lira, J. H.: Killing graphs with prescribed
mean curvature. Calc. Var. Partial Differential Equations 33 (2008), no. 2, 231–248.

[13] Dajczer, M., Lira, J. H. and Ripoll, J.: An interior gradient estimate for the
mean curvature equation of Killing graphs. To appear in J. Anal. Math. Preprint at
ArXiv:1206.2900, 2012.
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Anal. Non Linéaire 28 (2011), no. 3, 385–393.

[15] Eberlein, P. and O’Neill, B.: Visibility manifolds. Pacific J. Math. 46 (1973),
45–109.

[16] Gálvez, J. A. and Rosenberg, H.: Minimal surfaces and harmonic diffeomor-
phisms from the complex plane onto certain Hadamard surfaces. Amer. J. Math.
132 (2010), no. 5, 1249–1273.
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