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Energy estimates for a class of semilinear elliptic

equations on half Euclidean balls

Ying Guo and Lei Zhang

Abstract. For a class of semi-linear elliptic equations with critical Sobolev
exponents and boundary conditions, we prove pointwise estimates for
blowup solutions and energy estimates. A special case of this class of
equations is a locally defined prescribing scalar curvature and mean cur-
vature type equation.

1. Introduction

In this article we consider the problem

(1.1)

⎧⎨⎩
−Δu = g(u), in B+

3 ,

∂u

∂xn
= h(u), on ∂B+

3 ∩ ∂Rn
+,

where u > 0 is a positive continuous solution, B+
3 is the upper half ball centered

at the origin with radius 3, g is a continuous function on (0,∞) and h is locally
Hölder continuous on (0,∞).

If g(s) = s(n+2)/(n−2) and h(s) = c sn/(n−2), the equation (1.1) is a typical
curvature equation. If we use δ to represent the Euclidean metric, then u4/(n−2) δ is
conformal to δ. Equation (1.1) in this special case means that the scalar curvature
under the new metric is 4(n− 1)/(n− 2), and that the boundary mean curvature
under the new metric is − 2

n−2 c. Equation (1.1) is very closely related to the well-
known Yamabe problem and to the boundary Yamabe problem. For g and h we
assume:

GH0 : g is a continuous function on (0,∞), h is Hölder continuous on (0,∞), and

GH1 :

{
g(s) s−(n+2)/(n−2) is non-increasing, lims→∞ g(s) s−(n+2)/(n−2) ∈ (0,∞),

s−n/(n−2) h(s) is non-decreasing and lims→∞ s−n/(n−2) h(s) < ∞.
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Let

(1.2) ch := lim
s→∞ s−n/(n−2) h(s).

Then if ch > 0 we assume

GH2 : sup
0<s≤1

g(s)

s
< ∞, and sup

0<s≤1

|h(s)|
s

< ∞.

If ch ≤ 0 our assumption on g, h is

GH3 : sup
0<s≤1

g(s) < ∞, and sup
0<s≤1

|h(s)| < ∞.

The main result of this article is concerned with the case ch > 0:

Theorem 1.1. Let u > 0 be a solution of (1.1) where g and h satisfy GH0

and GH1. Suppose ch > 0 and GH2 also holds. Then,

(1.3)

∫
B+

1

|∇u|2 + u2n/(n−2) ≤ C,

for some C > 0 that depends only on g, h and n.

Obviously, if

(1.4) g(s) = c1 s
(n+2)/(n−2), c1 > 0 and h(s) = ch s

n/(n−2), ch > 0,

then g and h satisfy the assumptions in Theorem 1.1. The energy estimate (1.3)
for this special case has been proved by Li–Zhang [9]. It is easy to see that the
assumptions on g and h in Theorem 1.1 include a much larger class of functions.
For example, for any non-increasing function c1(s) satisfying lims→∞ c1(s) > 0
and lims→0+ c1(s) s

4/(n−2) < ∞, g(s) = c1(s) s
(n+2)/(n−2) satisfies the assump-

tions of g. Similarly h(s) = c2(s) s
n/(n−2) for a nondecreasing function c2(s) with

lims→∞ c2(s) = ch and lims→0+ |c2(s)| s2/(n−2) < ∞, satisfies the requirement of h
in Theorem 1.1.

For the case ch ≤ 0 we have:

Theorem 1.2. Let u > 0 be a solution of (1.1) where g and h satisfy GH0

and GH1. Suppose ch ≤ 0 and g and h satisfy GH3. Then the energy estimate (1.3)
holds for C depending only on g, h and n.

If we allow lims→∞ s−(n+2)/(n−2) g(s) = 0, then the energy estimate (1.3) may
not hold. For example, let g(s) = 1

4 (s + 1)−3; then g satisfies the assumption in

Theorem 1.2 except that lims→∞ s−(n+2)/(n−2) g(s) = 0. Let uj(x) =
√
x1 + j− 1.

It is easy to verify that uj satisfies⎧⎨⎩
−Δuj = g(uj) in B+

3 ,

∂uj

∂xn
= 0, on ∂B+

3 ∩ ∂Rn
+.

Note that h = 0 in this case. Then clearly (1.3) does not hold for uj .
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The energy estimate (1.3) is closely related to the following Harnack type in-
equality:

(1.5)
(
max
B+

1

u
) (

min
B+

2

u
) ≤ C,

which was proved by Li–Zhang [9] for the special case (1.4). Li–Zhang [9] also
proved (1.3) for equation (1.4) using (1.5) in their argument in a nontrivial way.

In the past two decades Harnack type inequalities similar to (1.5) have played
an important role in blowup analysis for semilinear elliptic equations with critical
Sobolev exponents. Pioneer works in this respect can be found in Schoen [13],
Schoen–Zhang [14], Chen–Lin [3] and Li [8], etc. Further results can be found in
[2], [4], [5], [7], [9], [10], [12], [14], [16] and the references therein. Usually for a
semi-linear equation without boundary condition, for example the conformal scalar
curvature equation

Δu +K(x)u(n+2)/(n−2) = 0, in B3,

a Harnack inequality of the type(
max
B1

u
)(

min
B2

u
) ≤ C

immediately leads to the energy estimate∫
B1

|∇u|2 + u2n/(n−2) ≤ C

by Green’s representation theorem and integration by parts (see [3] for a proof).
However, when a boundary condition as in (1.1) intervenes, using the Harnack
inequality (1.5) to derive (1.3) is much more involved. In order to derive energy
estimate (1.3) and pointwise estimates for blow up solutions, Li and Zhang prove
the following results in [9]:

Theorem A (Li–Zhang, [9]). Let u > 0 be a solution of (1.1), where g and h
satisfy GH0, GH1 and GH3. Then(

max
B+

1

u
) (

min
B+

2

u
) ≤ C.

Here we note that in Theorem A no sign of ch is specified. One would expect the
energy estimate (1.3) to follow directly from Li–Zhang’s theorem. This is indeed
the case if ch ≤ 0. However for ch > 0 substantially more estimates are needed in
order to establish a precise pointwise estimate for blowup solutions. As a matter
of fact we need to assume (GH2) instead of (GH3) in order to obtain (1.3).

The organization of this article is as follows. In Section 2 we prove Theorem 1.1.
The idea of the proof is as follows. First we use a selection process to locate re-
gions in which the bubbling solutions look like global solutions. Then we consider
the interaction of the bubbling regions. Using delicate blowup analysis and Po-
hozaev identity we prove that bubbling regions must be a positive distance apart.
In Section 3 we prove Theorem 1.2 using Theorem A and integration by parts.
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The following notations will be used throughout the paper:

B(x, σ) is the ball centered at x with radius σ,

B+(x, σ) := B(x, σ) ∩ R
n
+, Bσ = B(0, σ), B+

σ = Bσ ∩ R
n
+

BT (x, σ) := B(x, σ) ∩ {yn > T }, BT
R = BT (0, R),

∂′BT (x, σ) := ∂BT (x, σ) ∩ {yn = T }, ∂′′BT (x, σ) = ∂BT (x, σ) ∩ {yn > T }.
Acknowledgement. The authors are grateful to the anonymous referee who
reviewed the paper and gave many excellent suggestions to improve its writing.

2. Proof of Theorem 1.1

First we recall that Theorem 1.1 deals with the ch > 0 case, which is substantially
harder than the other case. The proof of Theorem 1.1 is by contradiction. Suppose
there is no energy bound; then there exists a sequence uk such that

(2.1)

∫
B1

|∇uk|2 + u
2n/(n−2)
k −→ ∞.

We claim that maxB+
3/2

uk → ∞. Indeed, if this is not the case, which means

that there is a uniform bound for uk on B+
3/2, we just take a cut-off function η ∈ C∞

such that η ≡ 1 on B+
1 and η ≡ 0 on B+

3/2 \ B+
5/4 and |∇η| ≤ C. Multiplying the

equation (1.1) by ukη
2, using integration by parts and Cauchy’s inequality we

obtain a uniform bound of
∫
B1

|∇uk|2, a contradiction to (2.1).

Since the remaining part of the proof is technical in nature, it may be helpful to
explain the outline of the approach. First we use a selection process to determine a
bubbling area which consists of disjoint balls. Each ball is shrinking to a point as k
tends to infinity and the profile of bubbling solutions in each ball is very similar to
that of a globally defined solution. In the second step we focus on the interaction
of the bubbling balls, which is the most essential part of the proof. We shall
employ the standard moving sphere method to obtain an upper bound of solutions
not only within each bubbling ball, but also on the region outside the bubbling
balls. Then by comparing the lower and upper bound of solutions we prove that
all the bubbles are of comparable magnitude. Then we use the Pohozaev identity,
a balancing condition, around a bubbling ball to prove that all bubbling balls have
to be a positive distance apart and the distance is independent of k. Finally in
step three the conclusion of Theorem 1.1 follows from standard elliptic estimates.

2.1. Step one: locating bubbling balls

Proposition 2.1. Let u be a solution of (1.1). Then, for any ε ∈ (0, 1) and
R > 1, there exist positive constants C0(n, ε, R, g, h) and C1(n, ε, R, g, h) such that
if maxB+

1
u > C0, there exists a set Z = {q1, . . . , qL} ⊂ B+

2 of local maximum

points of u such that∥∥∥u(qj)−1u
(
u(qj)

−2/(n−2) y + qj
)− (

1 +
A

n(n− 2)
|y|2

)−(n−2)/2∥∥∥
C2(B

−Tj
R )

< ε,
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where Tj = u(qj)
2/(n−2) qjn, qjn is the last component of qj, and

(2.2) A = lim
s→∞ g(s) s−(n+2)/(n−2).

Moreover, letting rj = u(qj)
−2/(n−2) R, we have

B(ri, qi) ∩B(rj , qj) = ∅, for i �= j,

|qi − qj |(n−2)/2u(qj) < C0, for j > i,

u(q) ≤ C1 dist (q, Z)−(n−2)/2, for all q ∈ B+
2 .

The proof of Proposition 2.1 requires the following lemma.

Lemma 2.2. Given any R > 1, ε ∈ (0, 1), there exists C2(n,R, ε, g, h) > 1 such
that for any compact K ⊂ B̄+

1 and any u of (1.1) with

max
q∈B+

2 \K
dist (q,K)2/(n−2) u(q) ≥ C2,

there exists q0 ∈ B+
5/2 \K, which is a local maximum of u, and

(2.3)
∥∥∥u−1(q0)u

(
u(q0)

−2/(n−2) y+q0
)−(

1+
A

n(n− 2)
|y|2

)−(n−2)/2∥∥∥
C2(B−T

R )
< ε,

where T = u(q0)
2/(n−2) q0n.

Proof of Lemma 2.2. We prove it by contradiction. Suppose no such C2 exists
for some ε and R. Then there exist compact subsets Kk ⊂ B̄+

1 and a sequence of
solutions uk such that max

B+
2 \Kk

dist(x,Kk)
2/(n−2) uk(x) > k and no q0 as in (2.3)

exists. Let xk satisfy

uk(xk) dist (xk,Kk)
(n−2)/2 > k, dk = dist (xk,Kk),

and
Sk(y) = uk(y)

(
dk − |y − xk|

)(n−2)/2
, ∀y ∈ B+

5/2.

Suppose that Sk reaches its maximum in B+(xk, dk) at x̂k. Then

(2.4) Sk(x̂k) ≥ Sk(xk) = uk(xk) d
(n−2)/2
k > k.

Let σk = 1
2 (dk − |xk − x̂k|). Then clearly (2.4) can be written as

(2.5) uk(x̂k) 2
(n−2)/2 σ

(n−2)/2
k ≥ uk(xk) dk

(n−2)/2 −→ ∞ as k −→ ∞.

For all x ∈ B+(x̂k, σk), since

uk(x)
(
dk − |x− xk|

)(n−2)/2 ≤ uk(x̂k)
(
dk − |xk − x̂k|

)(n−2)/2
,
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we have

uk(x) ≤ uk(x̂k)
(dk − |xk − x̂k|
dk − |x− xk|

)(n−2)/2

.

Using |x− x̂k| ≤ σk, and

dk − |x− xk| ≥ dk − |xk − x̂k| − |x− x̂k| ≥ σk,

we obtain

(2.6) uk(x) ≤ 2(n−2)/2uk(x̂k), for all x ∈ B+(x̂k, σk).

Let Mk = uk(x̂k) and

vk(y) = Mk
−1uk(Mk

−2/(n−2) y + x̂k), M
−2/(n−2)
k y + x̂k ∈ B+

3 .

Direct computation shows

(2.7) Δvk(y) + (Mkvk(y))
−(n+2)/(n−2)

g
(
Mkvk(y)

) · vk(y)(n+2)/(n−2)
= 0.

By (2.6) we have

(2.8) 0 ≤ vk(y) ≤ 2(n−2)/2 ∀y ∈ B
(
0,Mk

2/(n−2) σk

) ∩ {
yn ≥ −Mk

2/(n−2) x̂kn

}
.

We consider two cases.

Case one in Lemma 2.2: along a subsequence limk→∞ Mk
2/(n−2) x̂kn = ∞.

Throughout this article we do not distinguish sequences and their subsequences.
Since we always consider subsequence instead of the whole sequence with no differ-
ence on their notation, this process will not be repeatedly stated in the remaining
part of the article.

Since M
2/(n−2)
k σk and M

2/(n−2)
k x̂nk both tend to infinity, (2.7) is defined on

|y| ≤ lk for some lk → ∞. By (2.8) vk is bounded above in Blk . We claim that
along a subsequence vk → V uniformly over all compact subsets of Rn, where V
satisfies

(2.9) ΔV +AV (n+2)/(n−2) = 0, R
n, V > 0 in R

n.

with A = lims→∞ s−(n+2)/(n−2)g(s). To prove the claim we shall show that for
any R > 1,

(2.10) vk(y) ≥ C(R) > 0, |y| ≤ R.

Once (2.10) is established, we have Mkvk → ∞ over all BR, thus

M
−(n+2)/(n−2)
k g(Mkvk) = (Mkvk)

−(n+2)/(n−2) g(Mkvk) v
(n+2)/(n−2)
k

−→ AV (n+2)/(n−2)

over all compact subsets of Rn. Then it is easy to see that V solves (2.9).
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Therefore we only need to establish (2.10) for fixed R > 1. Let

ΩR,k :=
{
y ∈ BR : vk(y) ≤ 3M−1

k

}
and

ak(y) = M
−(n+2)/(n−2)
k g(Mkvk)/vk.

It follows from (GH1) that in BR \ ΩR,k

ak(y) ≤ g(3) v
4/(n−2)
k ≤ 4 g(3).

For y ∈ ΩR,k we use (GH2) to obtain

ak(y) ≤ CM
−4/(n−2)
k , y ∈ ΩR,k.

In either case ak(y) is a bounded function. From

Δvk(y) + ak(y) vk(y) = 0 in BR

and the standard Harnack inequality we have

1 = vk(0) ≤ max
BR/2

vk ≤ C(R) min
BR/2

vk.

Thus (2.10) is established.
By the classification theorem of Caffarelli–Gidas–Spruck [1], V is comparable

to O(|y|2−n) at infinity and there is only one maximum point, ȳ, in R
n. Corre-

spondingly there exists a sequence of local maximum points of uk, denoted x̄k,
that tends to ȳ after scaling. Thus if the scaling is centered at x̄k in the first place,
the limit function would be a solution to (2.9) with V (0) = 1 = maxRn V . By the
classification theorem of Caffarelli–Gidas–Spruck,

(2.11) V (y) =
(
1 +

A

n(n− 2)
|y|2

)−(n−2)/2

.

Thus (2.3) holds for all large k. Consequently this case is ruled out and we only
need to consider:

Case two in Lemma 2.2: limk→∞ M
2/(n−2)
k x̂kn < ∞.

It is easy to verify that vk satisfies⎧⎪⎨⎪⎩
Δvk + (Mkvk)

− n+2
n−2 g(Mkvk) v

n+2
n−2

k = 0, in
{
y; M

−2/(n−2)
k y + x̂k ∈ B+

3

}
,

∂vk
∂yn

= (Mkvk)
−n/(n−2) h(Mkvk) v

2/(n−2)
k vk, on

{
yn = −M

2/(n−2)
k x̂kn

}
.

We claim that for any R > 1, there exists C(R) > 0 such that

(2.12) vk(y) ≥ C(R) in BR ∩ {
yn ≥ −M

2/(n−2)
k x̂kn

}
.
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The proof of (2.12) is similar to the interior case. Let Tk = M
2/(n−2)
k xkn and

pk = (0′,−Tk). On B(pk, R) ∩ {yn ≥ −Tk} we write the equation for vk as

(2.13)

{
Δvk + akvk = 0, in B(pk, R) ∩ {yn > −Tk},
∂nvk + bkvk = 0, on B(pk, R) ∩ {yn = −Tk}.

where it is easy to use GH2 to prove that |ak|+ |bk| ≤ C for some C independent
of k and R. By a classical Harnack inequality with boundary terms (see, for
example, Lemma 6.2 of [15], or Han–Li [6]), we have

1 = vk(0) ≤ max
B(pk,R/2)∩{yn≥−Tk}

vk ≤ C(R) min
B(pk,R/2)∩{yn≥−Tk}

vk.

Therefore vk is bounded below by positive constants over all compact subsets.
Thus the limit function V1 solves

(2.14)

⎧⎪⎨⎪⎩
ΔV1 +AV

(n+2)/(n−2)
1 = 0, in R

n ∩ {yn > −T }, V1 > 0,

∂V1

∂yn
= chV

n/(n−2)
1 , on {yn = −T },

where T = limk→∞ Tk. Note that T > 0 because ch > 0. By Li–Zhu’s classification
theorem, V1 is just the restriction of a solution to (2.9) to {yn > −T }. Thus there
is a global maximum of V1 in the interior of {yn > −T }. Correspondingly there is
a sequence of local maximum points xk of uk tending to that point after scaling.
If the scaling is centered at xk in the first place, the limit function V1 is just V
as in (2.11), and (2.3) holds for all large k in this case as well. Lemma 2.2 is
established. �

Proof of Proposition 2.1. First we apply Lemma 2.2 by letting K = ∅ (which im-
plies d(q,K) = 1). From Lemma 2.2 we obtain q1. Then we let K = B+(q1, r1),
where r1 = Ru−2/(n−2)(q1). If

max
q∈B+

2 \K
dist (q,K)2/(n−2) u(q) ≤ C0,

we stop. Otherwise, there is q2 that satisfies B(q2, r2) ∩ B(q1, r1) = ∅, where
r2 = u(q2)

−2/(n−2)R. We continue this process by adding B+(q2, r2) to K. This
process stops in a finite number of steps, since each selection process implies∫
B+(qi,ri)

|∇u|2 ≥ C(n) because of the profile of the standard bubbles. Then it

is easy to conclude that Proposition 2.1 holds. �

2.2. Step two: all bubbles are far apart

The following theorem plays an important role in the proof of our main theorem,
Theorem 1.1.

Theorem 2.3. Let u be a solution to (1.1) and Z be the set of maximum points de-
termined in Proposition 2.1. Then for suitably large R (that only depends on n, g, h)
and ε ∈ (0, e−R), there exists d0(R, ε) > 0 such that if maxB+

1
u ≥ C0(n,R, ε, g, h),

min
{
dist(qi, qj), ∀qi, qj ∈ Z ∩B+

2 , qi �= qj
} ≥ d0.
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Proof of Theorem 2.3. By the way of contradiction, we assume that there exists a
sequence of solutions {uk} such that maxB+

1
uk → ∞ and

min
{
dist (qka , q

k
b ); 1 ≤ a, b ≤ Nk, a �= b

} −→ 0 as k → ∞,

where qk1 , . . . , q
k
Nk

are the points determined by Proposition 2.1 for u = uk.

Let Zk be the set of local maximum points of uk determined in Proposition 2.1.
Let qk ∈ Zk and suppose σk = dist (qk, Zk \ {qk}) and we let

ũk(y) = σ
(n−2)/2
k uk(qk + σky), in Ωk

where Ωk := {y : qk + σky ∈ B+
3 }. By the selection process we have

(2.15) ũk(y) ≤ C|y|−(n−2)/2, |y| ≤ 3/4, y ∈ Ωk

and

(2.16) ũk(0) −→ ∞.

We prove in the following proposition that ũk decays like a harmonic function.

Proposition 2.4. There exists C > 0 independent of k such that along a subse-
quence

(2.17) ũk(0) ũk(y) |y|n−2 ≤ C, for y ∈ B2/3 ∩ Ωk.

Proof of Proposition 2.4. Direct computation shows that ũk satisfies

(2.18)

{
Δũk(y) + σ

(n+2)/2
k g

(
σ
−(n−2)/2
k ũk

)
= 0, in Ωk,

∂nũk(y) = σ
n/2
k h

(
σ
−(n−2)/2
k ũk

)
, on ∂Ωk ∩

{
yn = −σ−1

k qkn
}
,

Let M̃k = ũk(0). By (2.16) M̃k → ∞. Set

vk(z) = M̃−1
k ũk(M̃

−2/(n−2)
k z), for z ∈ Ω̃k,

where
Ω̃k :=

{
z : |z| ≤ M̃

2/(n−2)
k , M̃

−2/(n−2)
k z ∈ Ωk

}
Note that vk is defined on a bigger set, but for the proof of Proposition 2.4 we only
need to consider the part in Ω̃k.

Direct computation gives

(2.19)

⎧⎪⎨⎪⎩
Δvk(z) + l

−(n+2)/(n−2)
k g(lkvk) = 0, z ∈ Ω̃k,

∂vk
∂zn

= l
−n/(n−2)
k h(lkvk), {zn = −Tk} ∩ ∂Ω̃k.

where lk = σ
−(n−2)/2
k M̃k and Tk = l

2/(n−2)
k qkn. We consider two cases.
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Case one in Proposition 2.4: Tk −→ ∞.

As in the proof of Proposition 2.1, there exist Rk → ∞ such that∥∥∥ vk(z)− (
1 +

A

n(n− 2)
|z|2

)−(n−2)/2∥∥∥
C1,α(BRk

)
≤ CR−1

k .

Clearly (2.17) holds for |z| ≤ M̃
−2/(n−2)
k Rk, so we just need to prove (2.17) for the

case |z| > M̃
−2/(n−2)
k Rk.

Lemma 2.5. There exists k0 > 1 such that for all k ≥ k0 and r ∈ (
Rk, M̃

2/(n−2)
k

)
,

(2.20) min
∂Br∩Ω̃k

vk ≤ 2
(n(n− 2)

A

)(n−2)/2

r2−n.

Proof of Lemma 2.5. Suppose (2.20) does not hold. Then there exist rk such that

(2.21) vk(z) ≥ 2
(n(n− 2)

A

)(n−2)/2

r2−n
k , |z| = rk, z ∈ Ω̃k.

Clearly rk ≥ Rk. Let

vλk (z) =
( λ

|z|
)n−2

vk(z
λ), zλ =

λ2z

|z|2 .

One checks that vλk satisfies

(2.22) Δvλk (z) +
( λ

|z|
)n+2

l
−(n+2)/(n−2)
k g

(
lk

( |z|
λ

)n−2

vλk (z)
)
= 0, in Σλ

where
Σλ :=

{
z ∈ Ω̃k; |λ| < |z| < rk

}
.

Clearly vλk → V λ in C1,α
loc (R

n) for fixed λ > 0. By direct computation,

V (z) > V λ(z), for λ ∈
(
0,
(n(n− 2)

A

)1/2)
, |z| > λ

V (z) < V λ(z), for λ >
(n(n− 2)

A

)1/2

, |z| > λ.

(2.23)

We shall apply the method of moving spheres for λ ∈ (12 (
n(n−2)

A )1/2, 2(n(n−2)
A )1/2).

First we prove that, for

(2.24) λ0 =
1

2

(n(n− 2)

A

)1/2

,

we have

(2.25) vk(z) > vλ0

k (z), z ∈ Σλ0 .
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To prove (2.25) we first observe that vk > vλ0

k in BR \ Bλ for any fixed R large.

Indeed, vk = vλ0

k on ∂Bλ0 . On ∂Bλ0 we have ∂νV > ∂νV
λ0 . Thus the C1,α

convergence of vk to V gives that vk > vλ0

k near ∂Bλ0 . Then by the uniform
convergence we further know that (2.25) holds on BR \Bλ0 . On ∂BR, we have

(2.26) vk(z) ≥
((n(n− 2)

A

)(n−2)/2

− ε
)
|z|2−n, |z| = R

and

(2.27) vλ0

k (z) ≤
((n(n− 2)

A

)(n−2)/2

− 2ε
)
|z|2−n, |z| ≥ R

for some ε > 0 independent of k. Next we shall use the maximum principle to
prove that

(2.28) vk(z) >
((n(n− 2)

A

)(n−2)/2

− 2ε
)
|z|2−n > vλ0

k (z), z ∈ Σλ0 \BR.

The proof of (2.28) is by contradiction. We shall compare vk and

fk :=
((n(n− 2)

A

)(n−2)/2

− 2ε
)
|z|2−n.

Clearly vk − fk is super harmonic in Σλ0 − BR and, by (2.26), (2.27) and (2.21),
vk − fk > 0 on ∂BR and ∂Σλ0 ∩ (Rn

+ \BR). If there exists z0 ∈ ∂Σλ0 ∩{zn = −Tk}
and

0 > vk(z0)− fk(z0) = min
Σλ0

\BR

vk − fk

we would have

(2.29) 0 < ∂n(vk − fk)(z0) = l
−n/(n−2)
k h(lkvk(z0))− ∂nfk(z0).

It is easy to verify that ∂nfk(z0) > Nkfk(z0)
n/(n−2) for some Nk → ∞. However,

by GH1,

l
−n/(n−2)
k h(lkvk(z0)) ≤ C vk(z0)

n/(n−2).

Thus it is impossible to have vk(z0) < fk(z0) and (2.29). Therefore, (2.28) is
established.

Before we employ the method of moving spheres, we set

Oλ :=
{
z ∈ Σλ : vk(z) < min

(( |z|
λ

)n−2

, 2
)
vλk (z)

}
.

Clearly Oλ contains a neighborhood of ∂Bλ in Σλ. Later we shall consider the
equation of vk − vλk in Oλ only, since outside this region vk is already much greater
than vλk , there is no need to apply maximum principles.
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In order to apply the maximum principle in Oλ we first estimate the second
term in (2.22): by GH1,( λ

|z|
)n+2

l
−(n+2)/(n−2)
k g

(
lk

( |z|
λ

)n−2

vλk

)
=

(( |z|
λ

)n−2

lkv
λ
k

)−(n+2)/(n−2)

g
(( |z|

λ

)n−2

lkv
λ
k

)
(vλk )

(n+2)/(n−2)

≤ (lkvk)
−(n+2)/(n−2) g(lkvk) (v

λ
k )

(n+2)/(n−2), in Oλ.

Therefore, we have

(2.30) Δvλk + (lkvk)
−(n+2)/(n−2) g(lkvk) (v

λ
k )

(n+2)/(n−2) ≥ 0, in Oλ.

Then we write (2.19) as

(2.31) Δvk + (lkvk)
−(n+2)/(n−2) g(lkvk) v

(n+2)/(n−2)
k = 0.

Let wλ,k = vk − vλk . We have, from (2.30) and (2.31),

(2.32) Δwλ,k + n(n− 2) (lkvk)
−(n+2)/(n−2) g(lkvk) ξ

4/(n−2)
k wλ,k ≤ 0, in Oλ,

where ξk is obtained from the mean value theorem.

Now we apply the method of moving spheres to wλ,k. Let

λ̄k = sup
{
λ ∈ [λ0, λ1]; vk > vμk in Σμ, ∀μ ∈ (0, λ)

}
where λ0 is defined in (2.24), λ1 is given by

λ1 =
(n(n− 2)

A

)1/2

+ ε0,

ε0 > 0 is chosen to be independent of k, and

(2.33) vk(z) > vλ(z), on ∂B(0, rk) ∩ Ω̃k, ∀λ ∈ [λ0, λ1].

Here we recall that rk is defined in (2.21). From (2.21) we see that ε0 can be
chosen easily. By (2.25), λ̄k > λ0. We claim that λ̄k = λ1. Suppose that this is
not the case and that we have λ̄k < λ1. By continuity, wλ̄k,k

≥ 0, and by (2.21),
wλ̄k,k > 0 on the outside boundary: ∂Σλ̄k

\ (∂Bλ̄k
∪ {zn = −Tk}). By (2.32), if

minΣ̄λ̄k
wλ̄k,k = 0, the minimum has to appear on ∂Σλ̄k

. From (2.33) we see that

the minimum does not appear on ∂Σλ̄k
\ (∂Bλ̄k

∪ {zn = −Tk}). If there exists a
minimum x0 ∈ ∂Σλ̄k

∩ {zn = −Tk}, we have

∂znwλ̄k,k(x0) > 0.

Note that we have strict inequality because of Hopf’s lemma. On the other hand,
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using Tk → ∞ we have

∂vλ̄k

k

∂zn
=

∂

∂zn

( λ̄k

|z|
)n−2

vk(z
λ̄k),

(
where zλ̄k :=

λ̄2
kz

|z|2
)
,

= (n− 2)λ̄n−2
k

Tk

|z|n vk(z
λ̄k)− 2

( λ̄k

|z|
)n−2 n−1∑

j=1

∂j vk(z
λ̄k)

λ̄2
kzjzn
|z|4

+
( λ̄k

|z|
)n

∂nvk(z
λ̄k)

λ̄2
k|z|2 − 2λ̄2

kz
2
n

|z|4

>
n− 2

2
λ̄n−2
k

Tk

|z|n vk(z
λ̄k) > Nk (v

λ̄k

k )n/(n−2), in Oλ̄k
∩ { zn = −Tk},

for some Nk → ∞.
For vk, GH1 implies

∂znvk ≤ ch v
n/(n−2)
k , in Oλ̄k

∩ { zn = −Tk}

where ch = lims→∞ s−n/(n−2)h(s). It is easy to see that wλ̄k
> 0 on {zn = −Tk}.

Finally, an application of Hopf’s lemma on ∂Bλ̄k
gives that ∂νwλ̄k

> 0 on ∂Bλ̄k
.

Then it is easy to see that one can move the spheres a little further than λ̄k,
a contradiction of the definition of λ̄k. Thus we have proved λ̄k = λ1. However
by (2.23) it is impossible to have limk→∞ λ̄k > (n(n− 2)/A)1/2. This contradiction
proves (2.20) under Case one. Lemma 2.5 is established. �

From Lemma 2.5 we further prove the spherical Harnack inequality for vk. For

fixed k, consider 2Rk ≤ r ≤ 1
2M̃

2/(n−2)
k and let

ṽk(z) = r(n−2)/2vk(rz).

By (2.15), ṽk(z) ≤ C. Direct computation yields⎧⎨⎩Δṽk(z) + r(n+2)/2 l
−(n+2)/(n−2)
k g

(
lk r

−(n−2)/2 ṽk
)
= 0,

1

2
< |z| < 2, r z ∈ Ω̃k,

∂nṽk = rn/2 l
−n/(n−2)
k h

(
r−(n−2)/2 lk ṽk

)
, ∂′Ω̃k.

Let

ak = r(n+2)/2 l
−(n+2)/(n−2)
k g

(
lk r

−(n−2)/2 ṽk
)
/ṽk

bk = rn/2 l
−n/(n−2)
k h

(
r−(n−2)/2 lk ṽk

)
/ṽk

By the definition of lk and r, we see that r = o(1) l
2/(n−2)
k (recall that lk =

σ
−(n−2)/2
k M̃k). Using the assumptions on g, h we have

ak(z) ≤
{
g(1) ṽ

4/(n−2)
k ≤ C, if lk r

−(n−2)/2 ṽk(z) ≥ 1,

C r2 l
−4/(n−2)
k = o(1), if lk r

−(n−2)/2 ṽk(z) ≤ 1,
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and

|bk(z)| ≤
{
ch ṽ

2/(n−2)
k ≤ C, if lk r

−(n−2)/2 ṽk(z) ≥ 1,

C r l
−2/(n−2)
k = o(1), if lk r

−(n−2)/2 ṽk(z) ≤ 1.

Hence ak and bk are both bounded functions.
Consequently, the equation for ṽk can be written as⎧⎨⎩Δṽk(z) + ak ṽk = 0,

1

2
< |z| < 2, rz ∈ Ω̃k,

∂n ṽk = bk ṽk, ∂Ω̃k ∩ { zn = −Tk/r}.

We apply the classical Harnack inequality for two cases: either Tk/r > 1 or
Tk/r ≤ 1. In the first case we have

max
|z|=3/4

ṽk(z) ≤ C min
|z|=3/4

ṽk.

In the second case we have

max
|z|=1,zn≥−Tk/r

ṽk(z) ≤ C min
|z|=1,zn≥−Tk/r

ṽk.

Now (2.17) follows from (2.20) and the spherical Harnack inequality above. Propo-
sition 2.4 is established for Case one.

Case two in Proposition 2.4: limk→∞ Tk = T .

Recall that vk satisfies (2.19). As in Case one there exists Rk → ∞ such that∥∥∥ vk(y)− (
1 +

A

n(n− 2)
|y|2

)−(n−2)/2∥∥∥
C1,α(B

−Tk
Rk

)
≤ CR−1

k .

Clearly (2.17) holds for |y| ≤ M̃
−2/(n−2)
k Rk ∩ {yn ≥ −Tk}, so we just need to

prove (2.17) for { |y| > M̃
−2/(n−2)
k Rk} ∩ { yn ≥ −Tk}.

Lemma 2.6. There exists k0 > 1 such that, for all k ≥ k0 and r ∈ (Rk, M̃
2/(n−2)
k ),

the estimate (2.20) still holds.

Remark 2.7. Even though (2.20) also holds for case two, the domain for case two
is different.

Proof of Lemma 2.6. Just like in the interior case, suppose there exist rk ≥ Rk

such that

(2.34) min
∂Brk

∩Ω̃k

vk > 2
(n(n− 2)

A

)(n−2)/2

r2−n
k .

Let

ṽk(z) = vk(z − Tken), ṽλk (z) =
( λ

|z|
)n−2

ṽk

(λ2z

|z|2
)
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and
Dk := { z; M̃

−2/(n−2)
k (z − Tken) ∈ Ωk ∩Brk}

be the domain of ṽk. Then Dk ⊂ R
n
+. Set

Σλ := { z ∈ Dk; |z| > λ}.

Let Ṽ be the limit of ṽk in C2
loc(R

n
+):

Ṽ (z) =
(
1 +

A

n(n− 2)
|z − Ten|2

)−(n−2)/2

.

Then there exist λ2 and λ3 (λ2 < λ3), depending only on n, A and T , such that

Ṽ > Ṽ λ2 in R
n
+ \Bλ2

and

(2.35) Ṽ < Ṽ λ3 in R
n
+ \Bλ3 .

We shall employ the method of moving spheres to compare ṽk and ṽλk on Σλ

for λ ∈ [λ2, λ3].
We use the uniform convergence of ṽk to Ṽ to assert that, for any fixed R > 1,

(2.36) ṽk(y) > ṽλ2

k (y), y ∈ Σλ2 ∩BR.

For R large we have, with a1 = (n(n− 2)/A)(n−2)/2,

ṽk(y) ≥ (a1 − ε/5) |y|2−n on ∂BR ∩R
n
+

and
ṽλ0

k (y) ≤ (a1 − 2ε/5) |y|2−n, |y| > λ2.

To prove ṽk > ṽλ2

k in Σλ2 \BR, we compare ṽk with

w = (a1 − 3ε/10) |y−A1en|2−n

where A1 = 1
n−2 ch a

2/(n−2)
1 . For R chosen sufficiently large we have

w ≥ ṽλ2

k in Σλ2 \BR, and ṽk > w on ∂BR ∩ Σλ2 .

To compare ṽk and w over Σλ2 \BR, it is easy to see that ṽk > w on ∂BR∩Σλ2

and ∂Σλ2 \ (BR ∪ {zn ≥ 0}). Since ṽk − w is super-harmonic, the only thing we
need to prove is, on ∂Rn

+ \Bλ2 ,

(2.37) ∂n(ṽk − w) < ξk(ṽk − w), on {zn = 0} \BR.

for some positive function ξk. Then standard maximum principle can be used to
conclude that ṽk > wk on Σλ0 \BR.
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To obtain (2.37) first for ṽk we use GH2 to have

∂nṽk ≤ ch ṽ
n/(n−2)
k , {zn = 0}.

On the other hand, by the choice of A1 we verify easily that

∂nw > ch w
n/(n−2), on {zn = 0}.

Thus (2.37) holds from mean value theorem. We have proved that the moving
sphere process can start at λ = λ2:

ṽk > ṽλ2

k in Σλ2 .

Let λ̄ be the critical moving sphere position:

λ̄ := sup
{
λ ∈ [λ2, λ3] : ṽk > ṽμk in Σμ, ∀μ ∈ (0, λ)

}
.

As in Case one we shall prove that λ̄ = λ3, thus getting a contradiction to (2.35).
To this end we let

wλ,k = ṽk − ṽλk .

To derive the equation for wλ,k, we first recall from (2.19) and the definition of ṽk
that

(2.38)

⎧⎪⎨⎪⎩
Δṽk(z) + l

−(n+2)/(n−2)
k g(lkṽk) = 0, z ∈ Ω̃k,

∂ṽk
∂zn

= l
−n/(n−2)
k h(lkṽk), {zn = 0} ∩ ∂Ω̃k.

where lk = σ
−(n−2)/2
k M̃k. Correspondingly ṽλk satisfies

(2.39)

⎧⎪⎪⎨⎪⎪⎩
Δṽλk +

( λ

|z|
)n+2

l
−(n+2)/(n−2)
k g

(
lk

( |z|
λ

)n−2

ṽλk (z)
)
= 0, in Σ̃λ,

∂ṽλk
∂zn

=
( λ

|z|
)n

l
−n/(n−2)
k h

(
lk

( |z|
λ

)n−2

ṽλk (z)
)

on ∂Σλ ∩ {zn = 0}.

Let Oλ be defined as before. Then in Oλ we have, by GH1,( λ

|z|
)n+2

l
−(n+2)/(n−2)
k g

(
lk

( |z|
λ

)n−2

ṽλk (z)
)

≤ (vklk)
−(n+2)/(n−2) g(lkvk) (v

λ
k )

(n+2)/(n−2),

and on ∂Oλ ∩ {zn = 0},( λ

|z|
)n

l
−n/(n−2)
k h

(
lk

( |z|
λ

)n−2

ṽλk (z)
)
≥ (lkvk)

− n
n−2 h(lkvk) (v

λ
k )

n
n−2 ,

The inequalities above yield

Δwλ,k + ξ1,k wλ,k ≤ 0, in Oλ,

∂nwλ,k ≤ ξ2,k wλ,k, on ∂Oλ ∩ {zn = 0},
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where ξ1,k > 0 and ξ2,k are continuous functions obtained from mean value theo-
rem. It is easy to see that the moving sphere argument can be employed to prove
that λ̄ = λ3, which leads to a contradiction from the limiting function Ṽ . Thus
Lemma 2.6 is established. �

Lemma 2.6 guarantees that on each radius Rk ≤ r ≤ 1
2M̃k the minimum of

vk is always comparable to |z|2−n. Re-scaling vk as r(n−2)/2vk(rz) we see the
spherical Harnack inequality holds by the GH2 and GH3. Thus Proposition 2.4 is
established in Case Two as well. �

Lemma 2.8. Let {uk} be a sequence of solutions of (1.1) and qk → q ∈ B+
1 be

a sequence of points in Zk. Then there exist C > 0, r2 > 0 independent of k and
Rk → ∞ such that

uk(qk)uk(x) ≥ C|x− qk|2−n in uk(qk)
−2/(n−2)Rk ≤ |x− qk| ≤ r2, x ∈ B+

3 .

Proof. We consider two cases:

Case one: uk(qk)
2/(n−2)qkn → ∞.

Let Mk = uk(qk) and

(2.40) vk(y) = Mk
−1uk(Mk

−2/(n−2)y + qk),

for y ∈ Ωk := {y : M
−2/(n−2)
k y+ qk ∈ B+

3 }. In this case, vk converges uniformly to

(2.41) V (y) =
(
1 +

A

n(n− 2)
|y|

)−(n−2)/2

over all compact subsets of Rn. For ε > 0 small we let

φ =
(n(n− 2)

A
− ε

)(n−2)/2(|y|2−n −M−2
k

)
, |y| ≤ M

2/(n−2)
k

on |y| ≥ R, where R > 1 is chosen so that vk > φ on ∂BR. By direct computation
we have

∂φ

∂yn
> Nk φ

n/(n−2), on
{
yn = −qknMk

}
for some Nk → ∞. It is easy to see that vk ≥ φ on ∂Ωk \ {yn = −M

2/(n−2)
k qkn}.

On {yn = −M
2/(n−2)
k qkn} we have

∂yn(vk − φ) ≤ ch(vk − φ).

Thus standard maximum principle implies vk ≥ φ on Ωk. Lemma 2.8 is established
in this case.

Case two: M
2/(n−2)
k qkn ≤ C.

Let vk be defined as in (2.40). In this case the boundary condition is written as

∂ynvk =
(
M

−2/(n−2)
k vk

)−n/(n−2)
h
(
M

−2/(n−2)
k vk

)
v
n/(n−2)
k ,

on {yn = −M
2/(n−2)
k qkn}.
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The function vk converges to V of (2.41) over all compact subsets of {yn ≥ −T },
where

T = lim
k→∞

M
2/(n−2)
k qkn.

For R large and ε > 0 small, both independent of k, we have

vk(y) ≥
(n(n− 2)

A
− ε

)(n−2)/2

|y|2−n, |y| = R.

In B−T
R we have the uniform convergence of vk to V1. Our goal is to prove that vk

is bounded below by O(1) |y|2−n outside BR. To this end let

w(y) =
(n(n− 2)

A
− 2ε

)(n−2)/2

|y −A1en|2−n

where

A1 = ch

(n(n− 2)

A

)
− T.

Then it is easy to check that

∂w

∂yn
> chw(y)

n/(n−2), on
{
yn = −M

2/(n−2)
k qkn

}
.

By choosing R larger if needed we have

vk(y) >
(n(n− 2)

A
− ε

)(n−2)/2

|y|2−n > w(y), |y| = R, y ∈ R
n
+.

Then it is easy to apply maximum principle to prove vk > w in Ωk\BR. Lemma 2.8
is established. �

Let qk1 ∈ Zk and qk2 be its nearest or almost nearest sequence in Zk:

|qk2 − qk1 | =
(
1 + o(1)

)
d
(
qk1 , Zk \ {qk1}

)
.

Lemma 2.9. There exists C > 0 independent of k such that

1

C
uk(q

k
1 ) ≤ uk(q

k
2 ) ≤ C uk(q

k
1 ).

Proof. Let σk = d(qk1 , Zk \ {qk1}) and

ũk(y) = σ
(n−2)/2
k uk(q

k
1 + σky).

We use ek to denote the image of qk2 after scaling (so |ek| → 1). Then in B1,
ũk(x) ∼ ũk(0)

−1|x|2−n for |x| ∼ 1/2. On one hand, for |x| = 1/2 we have, by
Lemma 2.8 applied to ek,

ũk(0)
−1

(1
2

)2−n

≥ C ũk(ek)
−1

which is just uk(q
k
1 ) ≤ Cuk(q

k
2 ).
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On the other hand, the same moving sphere argument can be applied to uk

near qk2 with no difference. The Harnack type inequality gives

max
B(qk2 ,1/4)∩B+

3

uk min
B(qk2 ,1/2)∩B+

3

uk ≤ C.

Using

max
B(qk2 ,1/4)∩B+

3

uk ≥ uk(q
k
2 ), and min

B(qk2 ,1/2)∩B+
3

uk ≥ min
B(qk1 ,σk)∩B+

3

uk,

we have

(2.42) ũk(ek) ũk(0)
−1 ≤ C.

Thus (2.42) gives uk(q
k
2 ) ≤ Cuk(q

k
1 ). Lemma 2.9 is established. �

Remark 2.10. Proposition 2.4 is not needed in the proof of Lemma 2.9.

The following lemma is concerned with Pohozaev identity that can be verified
by direct computation.

Lemma 2.11. Let u solve⎧⎨⎩
Δu+ g(u) = 0, in B+

σ ,

∂u

∂xn
= h(u) on ∂′B+

σ .

Then ∫
∂′B+

σ

h(u)
( n−1∑

i=1

xi∂iu+
n− 2

2
u
)
+

∫
B+

σ

(
nG(u)− n− 2

2
g(u)u

)
(2.43)

=

∫
∂′′B+

σ

(
σ
(
G(u)− 1

2
|∇u|2 + (∂νu)

2
)
+

n− 2

2
u ∂νu

)
where G(s) =

∫ s

0 g(t)dt, ν stands for the outer normal vector of the domain.

Now we finish the proof of Theorem 2.3.

Recall that σk = (1 + o(1))|qk1 − qk2 |. We prove by contradiction. Suppose
σk → 0. Let M̃k = ũk(0). We claim that

(2.44) M̃kũk(y) → a|y|2−n+ b(y) in C2
loc(B3/4∩ Ω̃k \{0}), with a > 0, b(0) > 0

where Ω̃k = {y; σky + qk1 ∈ B+
3 }.

Proof of (2.44). As usual we consider the following two cases:

Case one in (2.44): limk→∞ qk1n M̃
2/(n−2)
k → ∞.

Let
Tk = M̃

2/(n−2)
k qk1n.

Recall the equation for ũk is (2.18). Multiplying M̃k on both sides and letting
k → ∞ we see from the assumptions of g and h that M̃kũk → h in C2

loc(B1 \ {0})
where h is a harmonic function defined in B1 \ {0}.
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Thus,

h(y) = a|y|2−n + b(y)

for some harmonic function b(y) in B1. From the pointwise estimate in Lemma 2.8
we see that a > 0. Given any ε > 0, we compare ũk and

wk := (a− ε) (|y|2−n −R2−n
k )

on |y| ≤ Rk. Here Rk → ∞ is less than Tk. Observe that ũk > wk on ∂BRk
and

|y| = ε1 for ε1 sufficiently small. Thus ũk > wk by the maximum principle. Letting
k → ∞, we have, in B1,

a|y|2−n + b(y) ≥ (a− ε)|y|2−n, B1 \Bε1 .

Then let ε → 0, which implies ε1 → 0 we have b(y) ≥ 0 in B1. Next we claim that
b(0) > 0 because by Lemma 2.8 and Lemma 2.9 we have

a|y|2−n + b(y) ≥ a1|y − e|2−n in B1

for some a1 > 0, where e = limk→∞ ek. Thus b(y) > 0 when y is close to e, which
leads to b(0) > 0. (2.44) is established in Case one.

Case two in (2.44): limk→∞ qk1n M̃
2/(n−2)
k → T < ∞.

Again we first have M̃kũk → h in C2
loc(B

−T
1 \ {0}) and h is of the form

h(y) = a|y|2−n + b(y), yn ≥ −T.

To prove b(y) ≥ 0 we compare, for fixed ε > 0, M̃kũk with

wk(y) = (a− ε)
(|y − bken|2−n − (Rk − 1)2−n

)
where bk → 0 and Rk → ∞ are chosen to satisfy

(n− 2) bk R
−2
k > c0σk, c0 = sup

0<s≤1
s|h(s)|

and

(n− 2)bk > ch M̃
−2/(n−2)
k a2/(n−2).

It is easy to see that such bk and Rk can be found easily. Let hk = M̃kũk, and
∂′Ωk = ∂Ωk ∩ {yn = −Tk}. We divide ∂′Ωk into two parts:

E1 =
{
z ∈ ∂′Ωk; ũk(z)σ

−(n−2)/2
k ≥ 1

}
, E2 = ∂′Ωk \ E1.

Then, by the assumptions on h,

∂nh̃k ≤
{

c0 σk hk, x ∈ E2,

ch M̃
−2/(n−2)
k h

n/(n−2)
k , x ∈ E1,



Energy estimates for a class of semilinear elliptic equations 1161

With the choice of bk and Rk it is easy to verify that

∂nwk ≥ max
{
c0 σk wk, chM̃

−2/(n−2)
k w

n/(n−2)
k

}
on ∂′Ωk ∩BRk

.

Thus standard maximum principle can be applied to prove hk ≥ wk on Ωk ∩BRk
.

Letting k → ∞ first and ε → 0 next we have b(y) ≥ 0 in B1 ∩ {yn ≥ −T }. Then
by Proposition 2.9 we see that b(y) > 0 when y is close to e, the limit of ek. The
fact ∂nb = 0 at 0 implies b(0) > 0. Claim (2.44) is proved in both cases. �

Finally to finish the proof of Theorem 2.3 we derive a contradiction from each
of the following two cases:

Case one: limk→∞ M̃
2/(n−2)
k qk1n > 0.

We use the following Pohozaev identity on Bσ for σ < limk→∞ M̃
2/(n−2)
k qk1n :∫

Bσ

(
nGk(ũk)− n− 2

2
ũk gk(ũk)

)
(2.45)

=

∫
∂Bσ

(
σ
(
Gk(ũk)− 1

2
|∇ũk|2 + |∂ν ũk|2

)
+

n− 2

2
ũk ∂ν ũk

)
,

where

gk(s) = σ
(n+2)/2
k g

(
σ
−(n−2)/2
k s

)
, G(t) =

∫ t

0

g(s) ds, Gk(s) = σn
kG

(
σ
−(n−2)/2
k s

)
.

First we claim that for s > 0,

(2.46) Gk(s) ≥ n− 2

2n
s gk(s).

Indeed, writing g(t) = c(t) t(n+2)/(n−2), we see from GH1 that c(t) is a non-
increasing function, thus

Gk(s) = σn
k G

(
σ
−(n−2)/2
k s

)
= σn

k

∫ σ
−(n−2)/2
k s

0

c(t) t(n+2)/(n−2) dt

≥ σn
k c

(
σ
−(n−2)/2
k s

) ∫ σ
−(n−2)/2
k s

0

t(n+2)/(n−2) dt

=
n− 2

2n
c
(
σ
−(n−2)/2
k s

)
s2n/(n−2) =

n− 2

2n
s gk(s).

Replacing s by ũk we see that the left hand side of (2.45) is non-negative. Next
we prove that

(2.47) lim
k→∞

M̃2
k

∫
∂Bσ

(
σ
(
Gk(ũk)− 1

2
|∇ũk|2 + |∂ν ũk|2

)
+

n− 2

2
ũk ∂ν ũk

)
< 0

for σ > 0 small. Clearly after (2.47) is established we obtain a contradiction
to (2.45). To this end first we prove that

(2.48) M̃2
k Gk(ũk) = o(1).
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Indeed, by GH1 and GH3,

Gk(ũk) = σn
k

∫ σ
−(n−2)/2
k ũk

0

g(t) dt

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σn
k

∫ σ
−(n−2)/2
k ũk

0

c t dt, if σ
−(n−2)/2
k M̃−1

k ≤ 1,

σn
k

(∫ 1

0

c t dt+

∫ σ
−(n−2)/2
k ũk

1

c t(n+2)/(n−2) dt
)
, if σ

−(n−2)/2
k M̃−1

k > 1.

Therefore,

Gk(ũk) ≤
{
C σ2

k M̃
−2
k , if σ

−(n−2)/2
k M̃−1

k ≤ 1,

C σn
k + C M̃

−2n/(n−2)
k , if σ

−(n−2)/2
k M̃−1

k > 1.

Clearly (2.48) holds in either case. Consequently we write the left hand side
of (2.47) as ∫

∂Bσ

(
− 1

2
σ|∇h|2 + σ|∂νh|2 + n− 2

2
h∂νh

)
+ o(1),

where
h(y) = a|y|2−n + b(y), b(0) > 0, a > 0.

By direct computation we have∫
∂Bσ

(
− 1

2
σ|∇h|2 + σ|∂νh|2 + n− 2

2
h ∂νh

)
=

∫
∂Bσ

(
− (n− 2)2

a
· b(0) · σ1−n + O(σ2−n)

)
dS.

Thus (2.47) is verified when σ > 0 is small.

Case two: limk→∞ M̃
2/(n−2)
k qk1n = 0.

In this case we use the following Pohozaev identity on B+
σ : let

hk(s) = σ
n/2
k h

(
σ
−(n−2)/2
k s

)
.

Then we have∫
∂B+

σ ∩∂Rn
+

hk(ũk)
( n−1∑

i=1

xi∂iũk +
n− 2

2
ũk

)
+

∫
B+

σ

(
nGk(ũk)− n− 2

2
gk(ũk) ũk

)
=

∫
∂B+

σ ∩R
n
+

(
σ
(
Gk(ũk)− 1

2
|∇ũk|2 + (∂ν ũk)

2
)
+

n− 2

2
ũk ∂ν ũk

)
.(2.49)

Multiplying M̃2
k on both sides and letting k → ∞ we see by the same estimate as

in Case one that the second term on the left hand side is non-negative, the right
hand side is strictly negative.
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The only term we need to consider is

lim
k→∞

M̃2
k

∫
∂B+

σ ∩∂Rn
+

hk(ũk)
( n−1∑

i=1

xi ∂iũk +
n− 2

2
ũk

)
.

Let H(s) =
∫ s

0 h(t) dt, then from integration by parts we have∫
∂B+

σ ∩∂Rn
+

hk(ũk)
( n−1∑

i=1

xi ∂iũk +
n− 2

2
ũk

)
(2.50)

=

∫
∂Bσ∩∂Rn

+

σn−1
k H

(
σ
−(n−2)/2
k ũk

)
σ

+

∫
∂B+

σ ∩∂Rn
+

(
− (n− 1)σn−1

k H
(
σ
−(n−2)/2
k ũk

)
+

n− 2

2
ũk hk(ũk)

)
dx′.

For the first term on the right hand side of (2.50) we claim that

(2.51) M̃2
k σn−1

k H
(
σ
−(n−2)/2
k ũk

)
= o(1) on ∂Bσ.

Indeed, by GH1 and GH2,

∣∣H(
σ
−(n−2)/2
k ũk

)∣∣ ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ σ
−(n−2)/2
k

ũk

0

c t dt, if σ
−(n−2)/2
k ũk ≤ 1,∫ 1

0

c t dt+

∫ σ
−(n−2)/2
k ũk

1

c t
n

n−2 dt, if σ
−(n−2)/2
k ũk > 1,

Using ũk = O(1/M̃k) on ∂Bσ we then have

M̃2
k σ

n−1
k

∣∣H(
σ
−(n−2)/2
k ũk

)∣∣ ≤ {
O(σk), if σ

−(n−2)/2
k ũk ≤ 1,

O(σk) +O
(
M̃

−2/(n−2)
k

)
, if σ

−(n−2)/2
k ũk > 1.

Thus (2.51) is verified and the first term on the right hand side of (2.50) is o(1).
Therefore we only need to estimate the last term of (2.50), which we claim

is non-negative. Indeed, for t > 0, we write h(t) = b(t) tn/(n−2) for some non-
decreasing function b. Then we have

σn−1
k H

(
σ
−(n−2)/2
k s

)
= σn−1

k

∫ σ
−(n−2)/2
k s

0

h(t) dt = σn−1
k

∫ σ
−(n−2)/2
k s

0

b(t) tn/(n−2) dt

≤ σn−1
k b

(
σ
−(n−2)/2
k s

) ∫ σ
−(n−2)/2
k s

0

tn/(n−2) dt

=
n− 2

2n− 2
b
(
σ
−(n−2)/2
k s

)
s(2n−2)/(n−2) =

n− 2

2n− 2
hk(s) s.

Replacing s by ũk in the above we see that the last term of (2.50) is non-negative.
Thus there is a contradiction in (2.49) in Case two as well. Theorem 2.3 is
established. �
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2.3. Step three: the completion of the proof of Theorem 1.1

Let uk be a sequence of blowup solutions of (1.1) that satisfies maxB+
2
uk → ∞

and (2.1) (See the beginning part of the proof before Proposition 2.1). By Propo-

sition 2.3 there are finite local maximum points qki ∈ B+
1 for i = 1, . . . , L, where L

is independent of k and min{qki , qkj } ≥ 2δ0 for all qki �= qkj and some δ0 > 0 inde-

pendent of k. In each B+(qki , δ0) if we define

vki (y) = uk(q
k
i )

−1uk

(
u
−2/(n−2)
k (qki ) y + qki

)
by the proof of Theorem 2.3 we have

vki (y) ≤ C(1 + |y|)2−n, for |y| ≤ δ0 uk(q
k
i )

2/(n−2).

The corresponding estimate for uk is

(2.52) uk(x) ≤ C uk(q
k
i )
(
1 + uk(q

k
i )

2/(n−2) |x− qki |
)2−n

, in B+(qki , δ0).

Then direct computation shows that∫
B+(qki ,δ0)

u
2n/(n−2)
k ≤ C

for some C > 0 independent of k. By Proposition 2.1 we also see that uk ≤ C in
B+

2 \ (∪iB(qki , δ0)). Thus we have

(2.53)

∫
B+

3/2

u
2n/(n−2)
k ≤ C.

Let φ be a radial and smooth function such that φ ≡ 1 in B1 and φ ≡ 0 near
∂B3/2. Moreover, φ ≥ 0. Multiplying ukφ

2 to both sides of (1.1), we have∫
∂′B+

3/2

h(uk)uk φ
2 +

∫
B+

3/2

∇uk∇(uk φ
2) =

∫
B+

3/2

g(uk)uk φ
2.

Using Cauchy’s inequality we obtain

1

2

∫
B+

3/2

|∇uk|2φ2 ≤ 2

∫
B+

3/2

u2
k|∇φ|2 +

∫
B+

3/2

g(uk)uk φ
2 −

∫
∂′B+

3/2

h(uk)uk φ
2.

By (2.52) and the assumptions on g, h it is easy to see that the right hand side of
the above is bounded by C independent of k. Therefore

∫
B+

1
|∇uk|2 ≤ C for some

C > 0 independent of k. A contradiction to (2.1). Theorem 1.1 is established. �

Remark 2.12. Finally we summarize some technical points in the proof of The-
orem 1.1. In the proof of Proposition 2.1 the assumptions on g, h play a central
role. The proof of Proposition 2.4 relies on the classification theorems of Caffarelli–
Gidas–Spruck [1] and Li–Zhu [11] in an essential way. The main reason is equa-
tion (1.1) is not scaling invariant so we have to prove the decay rate of bubbling
solutions in each blowup disk (Lemma 2.5 and Lemma 2.6). At the first glance the
reader may feel that the proof of Theorem 2.3 is similar to corresponding theorems
in [8] or [6]. Actually this is not the case. The main difference lies on the fact
that (1.1) is a locally defined equation, while the equations in [8] or [6] are globally
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defined. This difference is particularly subtle when the interaction of bubbles
is concerned. In [8] and [6] it is possible to find two bubbles closest to each
other because the equations are globally defined. This is not possible for the local
equation (1.1) and the approach in this article is significantly different. We mainly
follow the line of proof in [9] for this part.

3. Proof of Theorem 1.2

If h is non-positive, the energy estimate follows from the Harnack inequality in
a straight forward way. Indeed, let G(x, y) be a Green’s function on B+

3 such
that G(x, y) = 0 if x ∈ B+

3 , y ∈ ∂B+
3 ∩ R

n
+ and ∂ynG(x, y) = 0 for x ∈ B+

3 , y ∈
∂B+

3 ∩ ∂Rn
+. It is easy to see that G can be constructed by adding the standard

Green’s function on B3 its reflection over ∂Rn
+. It is also immediate to observe

that
G(x, y) ≥ Cn|x− y|2−n, x ∈ B+

3 , y ∈ B+
2 .

Multiplying G on both sides of (1.1) and integrating by parts, we have

u(x) +

∫
∂B+

3 ∩∂Rn
+

h(u(y))G(x, y) dSy +

∫
∂B+

3 ∩R
n
+

u(y)
∂G(x, y)

∂ν
dSy

=

∫
B+

3

g(u(y))G(x, y) dy.

Here ν represents the outer normal vector of the domain. Using h ≤ 0 and ∂νG ≤ 0,
we have

u(x) ≥
∫
B+

3

g(u(y))G(x, y) dy, x ∈ B+
3 .

In particular, let u(x0) = min∂B+
2
u. Then |x0| = 2, thus

C ≥ max
B+

1

u ·min
B+

2

u ≥
∫
B+

3/2

g(u(y))u(y)G(x0, y) dy ≥ C

∫
B+

3/2

g(u)u dy.

Therefore we have obtained the bound on
∫
B+

3/2

g(u)u dy. To obtain the bound on∫
B+

1
|∇u|2, we use a cut-off function η which is 1 on B+

1 and is 0 on B+
2 \B+

3/2 and

|∇η| ≤ C. Multiplying uη2 to both sides of (1.1) and using integration by parts
and Cauchy inequality we obtain the desired bound on

∫
B+

1
|∇u|2. Theorem 1.2 is

established. �
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