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Energy estimates for a class of semilinear elliptic
equations on half Euclidean balls

Ying Guo and Lei Zhang

Abstract. For a class of semi-linear elliptic equations with critical Sobolev
exponents and boundary conditions, we prove pointwise estimates for
blowup solutions and energy estimates. A special case of this class of
equations is a locally defined prescribing scalar curvature and mean cur-
vature type equation.

1. Introduction

In this article we consider the problem

~Au = g(u), in By,
(L.1) ou = h(u), ondBjN ORY,

oxy,
where u > 0 is a positive continuous solution, B;“ is the upper half ball centered
at the origin with radius 3, ¢ is a continuous function on (0,00) and h is locally
Hoélder continuous on (0, c0).

If g(s) = s"+t2/("=2) and h(s) = c¢s™/("=2), the equation (1.1) is a typical
curvature equation. If we use § to represent the Euclidean metric, then u®/("=2) § is
conformal to . Equation (1.1) in this special case means that the scalar curvature
under the new metric is 4(n — 1)/(n — 2), and that the boundary mean curvature
under the new metric is —% c. Equation (1.1) is very closely related to the well-
known Yamabe problem and to the boundary Yamabe problem. For g and h we
assume:

GH)y : g is a continuous function on (0, 00), h is Holder continuous on (0, o0), and
o {g(s) s~/ (n=2) g non-increasing, limy_, o0 g(s) s~ "2/ (72 € (0, 00),
*

57/ ("=2) b(s) is non-decreasing and lim,_,o s~ ("2 h(s) < cc.
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Let
(1.2) cp o= lim s~/ p(s).
5—00
Then if ¢, > 0 we assume
h
GH, : sup @ < oo, and sup ﬂ < o0
0<s<1 S 0<s<1 S

If ¢, < 0 our assumption on g, h is

GHs: sup g(s) <oo, and sup |h(s)] < oc.
0<s<1 0<s<1

The main result of this article is concerned with the case ¢, > 0:

Theorem 1.1. Let u > 0 be a solution of (1.1) where g and h satisfy GHy
and GHy. Suppose ¢, > 0 and GHs also holds. Then,

(1.3) / [Vul? +u? (=2 < O,
Bt

1

for some C > 0 that depends only on g, h and n.

Obviously, if
(1.4) g(s) = ¢ s/ =2) e 50 and  h(s) =cp sV e >0,

then g and h satisfy the assumptions in Theorem 1.1. The energy estimate (1.3)
for this special case has been proved by Li—Zhang [9]. It is easy to see that the
assumptions on g and h in Theorem 1.1 include a much larger class of functions.
For example, for any non-increasing function ¢;(s) satisfying lims oo ¢1(s) > 0
and lims_o4 c1(s) 5772 < oo, g(s) = c1(s) s("F2/("=2) satisfies the assump-
tions of g. Similarly h(s) = ca(s) 8™/ ("=2) for a nondecreasing function cy(s) with
limg_s 00 c2(8) = ¢ and limg_ 04 |ca(s)] s2/(n=2) < o0, satisfies the requirement of h
in Theorem 1.1.
For the case ¢;, < 0 we have:

Theorem 1.2. Let u > 0 be a solution of (1.1) where g and h satisfy GHy
and GHy. Suppose ¢, < 0 and g and h satisfy GHs. Then the energy estimate (1.3)
holds for C' depending only on g, h and n.

If we allow lim, o, s~ ("T2)/(=2) g(5) = 0, then the energy estimate (1.3) may
not hold. For example, let g(s) = %(s +1)73; then g satisfies the assumption in

Theorem 1.2 except that limy_,, s~("+2/("=2) g(5) = 0. Let u;(z) = &1 +J — 1.
It is easy to verify that u; satisfies
—Auj = g(u;) in By,
ou; "
ﬁ:O, on OBf NORY.

Note that & = 0 in this case. Then clearly (1.3) does not hold for u;.
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The energy estimate (1.3) is closely related to the following Harnack type in-
equality:
(1.5) (Irl;?rxu) (Iggrnu) <C,
which was proved by Li-Zhang [9] for the special case (1.4). Li-Zhang [9] also
proved (1.3) for equation (1.4) using (1.5) in their argument in a nontrivial way.
In the past two decades Harnack type inequalities similar to (1.5) have played
an important role in blowup analysis for semilinear elliptic equations with critical
Sobolev exponents. Pioneer works in this respect can be found in Schoen [13],
Schoen—Zhang [14], Chen-Lin [3] and Li [8], etc. Further results can be found in
2], [4], 5], [7], [9], [10], [12], [14], [16] and the references therein. Usually for a
semi-linear equation without boundary condition, for example the conformal scalar
curvature equation

Au+ K(z)u"t?/(=2) =0 in Bs,
a Harnack inequality of the type

(I%aixu)(r%gnu) <C

immediately leads to the energy estimate
/ Vul? + w22 < ¢
B:

by Green’s representation theorem and integration by parts (see [3] for a proof).
However, when a boundary condition as in (1.1) intervenes, using the Harnack
inequality (1.5) to derive (1.3) is much more involved. In order to derive energy
estimate (1.3) and pointwise estimates for blow up solutions, Li and Zhang prove
the following results in [9]:

Theorem A (Li-Zhang, [9]). Let u > 0 be a solution of (1.1), where g and h
satisfy GHo, GHy and GHs. Then

maxwu) (minwu) < C.
<E )<E)

Here we note that in Theorem A no sign of ¢y, is specified. One would expect the
energy estimate (1.3) to follow directly from Li-Zhang’s theorem. This is indeed
the case if ¢, < 0. However for ¢, > 0 substantially more estimates are needed in
order to establish a precise pointwise estimate for blowup solutions. As a matter
of fact we need to assume (GHz) instead of (GH3) in order to obtain (1.3).

The organization of this article is as follows. In Section 2 we prove Theorem 1.1.
The idea of the proof is as follows. First we use a selection process to locate re-
gions in which the bubbling solutions look like global solutions. Then we consider
the interaction of the bubbling regions. Using delicate blowup analysis and Po-
hozaev identity we prove that bubbling regions must be a positive distance apart.
In Section 3 we prove Theorem 1.2 using Theorem A and integration by parts.
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The following notations will be used throughout the paper:
B(z,0) is the ball centered at x with radius o,
Bt (z,0) = B(x,0) NRY, B, = B(0,0), B::BUORz
B (z,0) := B(x,0) N {y, > T}, B} = BT(0,R),
BT (z,0) := 0B (z,0) N {y, =T}, "B (x,0)=0B"(z,0)N{y, >T}.

Acknowledgement. The authors are grateful to the anonymous referee who
reviewed the paper and gave many excellent suggestions to improve its writing.

2. Proof of Theorem 1.1

First we recall that Theorem 1.1 deals with the ¢; > 0 case, which is substantially
harder than the other case. The proof of Theorem 1.1 is by contradiction. Suppose
there is no energy bound; then there exists a sequence uy such that

(21) / |Vuk|2 +uin/(n—2) s 0.
B1

We claim that max g+ wug — oo. Indeed, if this is not the case, which means
3/2

+

that there is a uniform bound for ug on B, we just take a cut-off function n € C*°

3/2°
such that n = 1 on By and 7 =0 on B;r/z \ B;r/4 and |Vn| < C. Multiplying the

equation (1.1) by uzn?, using integration by parts and Cauchy’s inequality we
obtain a uniform bound of fBl |Vug|?, a contradiction to (2.1).

Since the remaining part of the proof is technical in nature, it may be helpful to
explain the outline of the approach. First we use a selection process to determine a
bubbling area which consists of disjoint balls. Each ball is shrinking to a point as k
tends to infinity and the profile of bubbling solutions in each ball is very similar to
that of a globally defined solution. In the second step we focus on the interaction
of the bubbling balls, which is the most essential part of the proof. We shall
employ the standard moving sphere method to obtain an upper bound of solutions
not only within each bubbling ball, but also on the region outside the bubbling
balls. Then by comparing the lower and upper bound of solutions we prove that
all the bubbles are of comparable magnitude. Then we use the Pohozaev identity,
a balancing condition, around a bubbling ball to prove that all bubbling balls have
to be a positive distance apart and the distance is independent of k. Finally in
step three the conclusion of Theorem 1.1 follows from standard elliptic estimates.

2.1. Step one: locating bubbling balls

Proposition 2.1. Let u be a solution of (1.1). Then, for any € € (0,1) and
R > 1, there exist positive constants Co(n, €, R, g, h) and Ci(n, €, R, g, h) such that
if max g u > Co, there ezists a set Z = {q1,...,q.} C By of local mazimum
points of u such that

HU((Jj)flu(u(%)*z/("fz)y+qj) - <1+ 4

n(n —2)

|y|2> —(n—2)/2 H

<€
TJ- i

C2(Br )
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where Tj = u(q;)*/ =2 qin, qjn is the last t of q;, and
= u(g; Qjn, Qjn is the last component of q;, an

(2.2) A= lim g(s) s~ 2/ (n=2),

5§—00

Moreover, letting r; = u(q;)~%/("=? R, we have

B(ri,qi) N B(rj,q;) =0, for i # 3,
lgi — 4;1™ 2 2u(q;) < Co, for j > 1,
u(q) < Crdist (¢, 2)~ "2/ for all g € BY.

The proof of Proposition 2.1 requires the following lemma.

Lemma 2.2. Given any R > 1, € € (0,1), there exists Ca(n, R,e,g,h) > 1 such
that for any compact K C B and any u of (1.1) with

max dist (q,K)Q/("J) u(q) > Ca,
q€BI\K

there exists gy € B;'/Q \ K, which is a local mazimum of u, and

<€,

(n—2)/2
) H c2(BR")

(2.3) Hu*l(qo)u(u(qo)”/‘"*z)y+qo) (1+ n—2) ¥

where T = u(qo)z/("’z) qon -

Proof of Lemma 2.2. We prove it by contradiction. Suppose no such Cy exists
for some ¢ and R. Then there exist compact subsets K, C B} and a sequence of
solutions uy such that max g dist(x, K3)* ("= uy(x) > k and no o as in (2.3)
exists. Let xj satisfy

uk(xk)dist (:L'k,Kk)(niz)/z >k, dj = dist (xk,Kk),

and (ne2)/2
n_
Sk(y) = uk(y) (dk - |y - l‘k|) y vy € B5/2

Suppose that Sy reaches its maximum in B (xy,dy) at &. Then

(2.4) (@) = Sklan) = un(ar) d" % > k.
Let o1, = % (di, — |z — Ti|). Then clearly (2.4) can be written as

(2.5) ug(Zy,) 20272 U,i"_Q)/Q > up(ap) diy"Y? — 0 as k — .
For all z € B (&, o), since

n—2)/2 —~ n—2)/2
un(@) (dr — o = 2e)) """ < wn@) (de — fon — 7)) "7,
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we have

di, — |xg — ./Z‘\k|)("*2)/2

uk(l‘) < Uk(/m\k)( dy, — |x — xk|

Using |z — &| < oy, and
dp — |z — x| > di, — |2k — 3| — |2 — Tk| > 0%,

we obtain
(2.6) up(z) < 272/, (33,), for all x € BT (T, on).

Let My, = uy(Z)) and

ve(y) = My up (M= y - 3), M7y 4y € B

Direct computation shows
27)  Avy) + (Myo(y) "7 g (Mo () - op () =0,

By (2.6) we have
(2.8) 0 <wp(y) <2272 vy e B(0, My "D op) N {yn > — M7 "D T, )

We consider two cases.

n—2) ~

Case one in Lemma 2.2: along a subsequence limy_, o, Mkz/( Tpn = 00.

Throughout this article we do not distinguish sequences and their subsequences.
Since we always consider subsequence instead of the whole sequence with no differ-
ence on their notation, this process will not be repeatedly stated in the remaining
part of the article.

Since M,f/("_z)ak and M,f/("_z)i“nk both tend to infinity, (2.7) is defined on
ly| < li for some I, — co. By (2.8) vy is bounded above in B;,. We claim that
along a subsequence vy — V uniformly over all compact subsets of R™, where V'
satisfies

(2.9) AV + AV H2/(n=2) — g RV >0 in R".

with A = lim,_, s’(””)/("’z)g(s). To prove the claim we shall show that for
any R > 1,

(2.10) ve(y) 2 C(R) >0, |yl <R
Once (2.10) is established, we have Mjv, — oo over all By, thus

Mk—(n+2)/(n_2) g(Myvy,) = (Myvy) =2/ 0=2) g(Mywy) ”zin+2)/(n_2)
L Ay n2)/(n=2)

over all compact subsets of R”. Then it is easy to see that V solves (2.9).
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Therefore we only need to establish (2.10) for fixed R > 1. Let

QRJ€ = {y € Bp : Uk(y) < 3M]:1}

and
ai(y) = My "0 g(Moy) o,

It follows from (GH;) that in Br \ Qr

For y € Qg we use (GHz) to obtain

ak(y) < CMk_4/(n_2), Yy e QR,k~
In either case ax(y) is a bounded function. From

Avi(y) +ar(y)ve(y) =0 in Br
and the standard Harnack inequality we have

1 =v,(0) < maxv, < C(R) min vy.
Br/2 Br/2

Thus (2.10) is established.

By the classification theorem of Caffarelli-Gidas—Spruck [1], V' is comparable
to O(|y|>~™) at infinity and there is only one maximum point, ¢, in R™. Corre-
spondingly there exists a sequence of local maximum points of wug, denoted Ty,
that tends to g after scaling. Thus if the scaling is centered at Ty, in the first place,
the limit function would be a solution to (2.9) with V(0) = 1 = maxg» V. By the
classification theorem of Caffarelli-Gidas—Spruck,

(2.11) v = (1+ ﬁw)(“)“.

Thus (2.3) holds for all large k. Consequently this case is ruled out and we only
need to consider:

("*Q)L%

Case two in Lemma 2.2: limy_, M,f/ en < OO.
It is easy to verify that vy satisfies
n n+2 9/ (n— R
Avy, + (Mkvk)_niig g(Myv)vi =2 =0, in {y; M, 2/( 2)y + 3 € B;},
81) —n/(n— n— n—2)
# = (M) /(n=2) h(Myvy) vi/( r—2) v, on {yn = fM;/( ! Q)m;m}.
n

We claim that for any R > 1, there exists C'(R) > 0 such that

(2.12) wk(y) > C(R)  in Bpn {y, > —M"" gy, ).



1148 Y. Guo AND L. ZHANG

The proof of (2.12) is similar to the interior case. Let Ty = ME/("_Q):E;W and
pr = (0/, =T)). On B(pg, R) N {yn > —T)} we write the equation for vj as

{ Avg +apv =0, in B(pg, R) N {yn > T4},

2.13
( ) Onvr +bgvp =0, on B(pg, R) N {yn, = =Tk}

where it is easy to use GHj to prove that |a| + |bi| < C for some C' independent
of k and R. By a classical Harnack inequality with boundary terms (see, for
example, Lemma 6.2 of [15], or Han-Li [6]), we have

1=u,(0) < vr < C(R)

< max

B(pr,R/2)"{yn>—Tk}
Therefore vy is bounded below by positive constants over all compact subsets.
Thus the limit function V7 solves

min Ve
B(pr,R/2) {yn>—Tk}

AV + AV 7D g0 iy RPN {y, > —T}, Vi >0,
(214) % _ Chvn/(n—2)
OYn ! )

where T' = limy_.o T%. Note that T' > 0 because ¢, > 0. By Li-Zhu’s classification
theorem, V; is just the restriction of a solution to (2.9) to {y,, > —T'}. Thus there
is a global maximum of V; in the interior of {y, > —T'}. Correspondingly there is
a sequence of local maximum points x of uj tending to that point after scaling.
If the scaling is centered at xj in the first place, the limit function V; is just V
as in (2.11), and (2.3) holds for all large k in this case as well. Lemma 2.2 is
established. O

on {yn = —T},

Proof of Proposition 2.1. First we apply Lemma 2.2 by letting K = () (which im-
plies d(q, K) = 1). From Lemma 2.2 we obtain ¢;. Then we let K = B*(¢q1,71),
where 71 = Ru=2/("=2)(qy). If
max dist (¢, K)2/ "2 u(q) < Cy,

g€BI\K
we stop. Otherwise, there is gqo that satisfies B(g2,72) N B(q1,71) = 0, where
ry = u(g2)"?/("=2)R. We continue this process by adding B+ (g2,72) to K. This
process stops in a finite number of steps, since each selection process implies
fB+(qi7ri) |[Vu|? > C(n) because of the profile of the standard bubbles. Then it
is easy to conclude that Proposition 2.1 holds. O

2.2. Step two: all bubbles are far apart

The following theorem plays an important role in the proof of our main theorem,
Theorem 1.1.

Theorem 2.3. Let u be a solution to (1.1) and Z be the set of mazimum points de-
termined in Proposition 2.1. Then for suitably large R (that only depends onn, g, h)
and € € (0,e~F), there evists do(R, €) > 0 such that if maxp+ u > Co(n, R,¢,g,h),

min {dist(g:, ¢;), Vai,q; € ZNBY, ¢; # ¢;} = do.
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Proof of Theorem 2.3. By the way of contradiction, we assume that there exists a
sequence of solutions {uy} such that maxpg up — 00 and

min{dist (¢F,qf); 1< a,b< Ny, a;éb} — 0 ask — oo,

where ¢f, ..., qka are the points determined by Proposition 2.1 for u = uy.

Let Z; be the set of local maximum points of uy determined in Proposition 2.1.
Let g € Zi, and suppose o, = dist (qx, Zx \ {qx}) and we let

ax(y) = 01(6%2)/2%(% +ory),  inQ

where Q== {y : qx + ory € Bi }. By the selection process we have

(2.15) an(y) < Cly|~ "2 |y <3/4,y € U
and
(2.16) ax(0) — .

We prove in the following proposition that @y decays like a harmonic function.

Proposition 2.4. There exists C > 0 independent of k such that along a subse-
quence

(2.17) @ (0)an(y) |yl"* < C,  fory € Byys N
Proof of Proposition 2.4. Direct computation shows that uy satisfies

218) Adg(y) + o2 g(o, TV Pa) =0, i,
anﬂk(y) = 0}2/2 h(alz(n_Q)/zﬂk)v on an N {yn = 70];1qkn}7

Let My = iz (0). By (2.16) M — oo. Set

vp(z) = M,;lﬂk(M,;2/("_2)z), for z € Qy,

where R ~ R
Qui={z 0 [o| <272, M0z € 0,

Note that vy is defined on a bigger set, but for the proof of Proposition 2.4 we only
need to consider the part in .
Direct computation gives

Avk(z) -+ l;(n+2)/(n—2) g(lkvk) = 0, z € Qk,
(2.19) v

5= 1" B (L), {zp = —Ti} N 0.

where [ = a,:("_2)/21\~4k and T}, = li/(”_Q) qrn- We consider two cases.
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Case one in Proposition 2.4: T, — oc.

As in the proof of Proposition 2.1, there exist R; — oo such that

A

——— Il
n(n — 2)

>—(n—2)/2H < CR;l.

o~ o+

Cl,a(BRk)

Clearly (2.17) holds for |z| < M,;z/("_mRk, so we just need to prove (2.17) for the
case |z| > M,C_2/("_2)Rk.

Lemma 2.5. There exists kg > 1 such that for all k > ko and r € (Rk, M,f/("_Q)),

(n(n - 2))(n*2)/2 2

(2.20) min v, <2 I r

OB,NQy,
Proof of Lemma 2.5. Suppose (2.20) does not hold. Then there exist r; such that

n(n — 2))("—2)/2 o

(2.21) vk(z)ZQ( — P2z =y, 2 €

Clearly r, > Ry. Let
A\n—2 A2z
R = (5) w2 =
One checks that v,;\ satisfies

(2.22) Avg(z)+(%)””z,;("”)/(”—” g(zk(%)mug(z)):o, in %,

where ~
Yy = {ZGQk; |/\| <|Z|<7“k}.

Clearly v} — V> in Cl’a(R”) for fixed A > 0. By direct computation,

loc

V() > VA, for de (o, (W)l/z), FES

n(nA— 2))1/2)

(2.23)
V(z) < VX2), for A > ( |z] > A

We shall apply the method of moving spheres for \ € (%(%%2))1/2, 2(@)1/2).

First we prove that, for

(n(n - 2))1/2

(2.24) Ao = A

1
2
we have

(2.25) vp(2) > 020(2), 2z €%y,
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To prove (2.25) we first observe that v, > v;‘o in B \ By for any fixed R large.
Indeed, v, = v,i‘o on 0B),. On 0B,, we have 0,V > 9,V* . Thus the C1®
convergence of vy to V gives that vp > v,?” near 0B),. Then by the uniform
convergence we further know that (2.25) holds on Bg \ By,. On dBg, we have

(2.26) oe(2) > ((%)(HW —e) 2P el =R
and
(2.27) oo @) < ()" ad) e, 2 R

for some € > 0 independent of k. Next we shall use the maximum principle to
prove that

(2.28) v(z) > ((¥>(n72)/2 — 26) |z|27” > v,?o(z), z € 3y, \ Br.

The proof of (2.28) is by contradiction. We shall compare vy and

o= (M2 g e,

Clearly v, — fi is super harmonic in Xy, — Bg and, by (2.26), (2.27) and (2.21),
v — fr > 0 on OBg and 90X, N (R’ \ Bg). If there exists zg € 03, N{z, = =Tk}
and

0 > vi(20) — fr(20) = Em{% vk — [k
2o \Br

we would have

(2.29) 0 < On(vi — fi)(20) = 1™ ™2 h(lpor(20)) — On fr(20).

It is easy to verify that Oy, fx(z0) > Nkfk(zo)”/("’z) for some N — oo. However,
by GHl,

5 h(lvr(20)) < Cog(z0)™ 2.

Thus it is impossible to have v, (z0) < fr(20) and (2.29). Therefore, (2.28) is
established.

Before we employ the method of moving spheres, we set

Oy = {z € Xy & vg(2) < min ((%)nizﬂ) v,;\(z)}

Clearly Oy contains a neighborhood of dB) in X). Later we shall consider the
equation of vy — v,i‘ in O, only, since outside this region vy is already much greater
than v}, there is no need to apply maximum principles.
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In order to apply the maximum principle in Oy we first estimate the second
term in (2.22): by GHy,

( % )"*%;(nw)/(n—z) g(lk(%)"”vg)

((%)n_Qlka (n+2)/(n—2) ( |z|>h QIkUk> (u)(+2)/(1=2)
2y

< (lkvk)i(n+2)/( (lkvk) ( +2)/ ) in Oy.

Therefore, we have

(2.30) Avk + (lkvk) (n+2)/(n=2) (lkvk) (U;;\)(n+2)/(n72) >0, in Oj.

Then we write (2.19) as

(2-31) Ay, + (lk’l}k)_("—"_Q)/(n_Q) g(lkvk) ,Ul(cn+2)/(n—2) —0.

Let wy x = vx — v;. We have, from (2.30) and (2.31),

2.32 Awy i + n(n — 2) lkvk)_("+2)/(7L_2) g(lpvg 54/(7172)11},\ <0, in Oy,
; k ,

where £, is obtained from the mean value theorem.
Now we apply the method of moving spheres to wy . Let

A =sup {X € Ao, Mi]; v > vf in B, Vi€ (0,N)}

where \g is defined in (2.24), A; is given by

b (DY

€0 > 0 is chosen to be independent of k, and
(2.33) vp(2) > vMz), on AB(0,7:) N Q, YA€ [Ao, A1l

Here we recall that rj is defined in (2.21). From (2.21) we see that ¢y can be
chosen easily. By (2.25), A, > Ag. We claim that A\ = \;. Suppose that this is
not the case and that we have A, < A1. By continuity, wy_, > 0, and by (2.21),
wy, > 0 on the outside boundary: 0%y, \ (0B5, U{z, = —Tk}). By (2.32), if
minixk wy, r = 0, the minimum has to appear on 9%, . From (2.33) we see that
the minimum does not appear on 035, \ (0Bx, U{zn = —T}}). If there exists a
minimum xg € %5, N{z, = T}, we have

0z, wy, (o) > 0.

Note that we have strict inequality because of Hopf’s lemma. On the other hand,
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using T) — oo we have

_ n—1 _
yn— Ty b\ A\ "2 by )\22'Zn
= (n—2)A7 2|Z|n () =2 ()73 95 ue(=™) i

o) &

AR\"™ 5o AZ 2|2 — 22222

+ (—) Op v (27F) ————— 2
|| |2|*

_9 _

X

T _ —
R (@) > N ()P, in 05, N { s = T,

>
|2[™

for some N — oo.
For v, GHy implies

Oovop < cnvp! P in O3, N {20 = —Ti}

where ¢;, = limg_, o s_”/("_Q)h(s). It is easy to see that wy, > 0 on {z, = —Tj}.
Finally, an application of Hopf’s lemma on 0By, gives that d,wy, > 0 on 0Bj, .
Then it is easy to see that one can move the spheres a little further than A,
a contradiction of the definition of A;. Thus we have proved A; = ;. However
by (2.23) it is impossible to have limy,_,o A > (n(n — 2)/A)"/2. This contradiction
proves (2.20) under Case one. Lemma 2.5 is established. O

From Lemma 2.5 we further prove the spherical Harnack inequality for vg. For
fixed k, consider 2R;, < r < %M;/(nfz) and let

o (2) = r"=D 2y (r2).

By (2.15), 9x(z) < C. Direct computation yields

Abp(z) + r(+2)/2 l,;<n+2)/("_2)g(lk 225,y — ), % <lol<2 rse
Oy = 12 l,;n/(nfz) h(?“_(”_2)/2 Uk Dk, 'Y
Let
ay, = r(nt2)/2 l,:(”+2)/("_2) g(lk P (n=2)/2 ﬁk)/ﬁk
by = 2T (rm (22 ) [y

By the definition of I, and r, we see that r = 0(1)[,26/(”72) (recall that I, =

a,:("72)/21\~4k). Using the assumptions on g, h we have

an(s) < g o/ < ¢, if 1er= (D25, (2) >
k >
Cr? 1;4/("_2) =o(1), if Lr "D 25,(2) <
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and 2/(n-2) (n—2)/
Ch U e < C, if lpr™ n=2)/2 ﬁk(z) >
bk (2)] < { g

Criy? " —o(1), if Lr "2 5(2) <

Hence a; and by are both bounded functions.
Consequently, the equation for vy can be written as

1 -
A@k(2)+ak’£~)k:0, 5 < |Z|<2,7”Z€Qk,
anﬁk:bk:'aky, 8ka{2n:7Tk/T}

We apply the classical Harnack inequality for two cases: either Tj/r > 1 or
Ty /r < 1. In the first case we have

max Ug(z) < C min Ty.

|z|=3/4 |z|=3/4
In the second case we have
max (z) < C min Vg
|z|=1,2n>=T /7 |2|=1,2n>=Tk/r

Now (2.17) follows from (2.20) and the spherical Harnack inequality above. Propo-
sition 2.4 is established for Case one.

Case two in Proposition 2.4: limg_.oo T = T.

Recall that vy, satisfies (2.19). As in Case one there exists R — oo such that

A

ve(y) = (1 4+ ———= ly[®
nin —2)

>—(n—2)/2H < CR,;I.

Cl,a(B;:k)

Clearly (2.17) holds for |y| < M,;Q/("_Q)Rk N {yn > —Tx}, so we just need to
prove (2.17) for {|y| > M,;2/("_2)Rk} N{yn > Tk}

Lemma 2.6. There exists kg > 1 such that, for allk > ko and r € (Ry, M,f/(nfz)),
the estimate (2.20) still holds.

Remark 2.7. Even though (2.20) also holds for case two, the domain for case two
is different.

Proof of Lemma 2.6. Just like in the interior case, suppose there exist r, > Ry
such that

—9)\ (n-2)/2
(2.34) min_ v, > 2 (%) p2on

8B7‘k N

Let

A

wle) = e~ Tuew, 26 = ()" ()
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and ~
Dy, = {z; M};2/(n72)(z — Tken) € Qrn Bm}

be the domain of 0. Then Dj C R. Set
Yy = {Z € Dk; |Z| > )\}
Let V be the limit of @ in C2_ (R} ):

- A —(n—2)/2
V(Z) = (1 + m |Z - T€n|2) .

Then there exist A2 and A3 (A2 < A3), depending only on n, A and T, such that
V>V* in R"\ B,

and

(2.35) V< V*» in R\ By,.

We shall employ the method of moving spheres to compare v and 17,2‘ on Yy
for A € [Ag, A3 }
We use the uniform convergence of v to V to assert that, for any fixed R > 1,

(2.36) o (y) > 022 (y), y € Xy, N Br.
For R large we have, with a; = (n(n — 2)/A)("=2)/2,
Oe(y) > (a1 —€/5) [y|>™™ on OBRNRY

and
52 (y) < (a1 —2¢/5) [yl>™™, |yl > Ao

To prove vy > 622 in ¥y, \ Br, we compare ¥j with
w = (a1 — 3¢/10) |y — Alen|2*"

2/(n—2
where A; = ﬁ ch al/(" )

. For R chosen sufficiently large we have
w > 6,’:2 in ¥y, \Br, and 0 >w on 9BrNX,,.

To compare 7, and w over Xy, \ B, it is easy to see that ¥, > w on 0BRNX,,
and 0Xy, \ (Br U {z, > 0}). Since 0y — w is super-harmonic, the only thing we
need to prove is, on JR" \ By,,

(2.37) On (0 —w) < &(0), —w), on {z, =0}\ Bg.

for some positive function ;. Then standard maximum principle can be used to
conclude that o, > wy, on Xy, \ Bg.
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To obtain (2.37) first for 05, we use GHj to have
Ontr < enty’ " {z, =0},
On the other hand, by the choice of A; we verify easily that
Opw > cpw™ ™2 on {zn, = 0}.

Thus (2.37) holds from mean value theorem. We have proved that the moving
sphere process can start at A = Ao:

By > 032 in Xy,.
Let A be the critical moving sphere position:
A=sup{A € [Ag,A3] : O >0} in B, Vue (0N}

As in Case one we shall prove that A = A3, thus getting a contradiction to (2.35).

To this end we let

~ ~
WXk = Vg — V-

To derive the equation for wy i, we first recall from (2.19) and the definition of oy,
that
Af)k(z) + l;<n+2)/(n_2) g(lk’f}k) = 0, z € Qk,
(2.38) 9% o ~ -
5'—zi = 1. (i), {2, = 0} N O,
where [}, = U;(n&)/sz. Correspondingly f),i‘ satisfies

AB) + (%)nﬁlk(”*”/("” g(lk(%)%zﬁg(z)) — 0, in 5y,

B e ) ot
0zn, 2|/ F R ) /\ n |

Let Oy be defined as before. Then in Oy we have, by GHq,

AN2 _(n42)/(n—2) |z[\"=2
(7)) o(u(y) )
< (vklk)’(””)/("’Q) g(lyor) (,U]i\)(nJrQ)/(an))

and on 0Oy N {z, = 0},
AN\ _ Zl\n—2_ L o
(m> I n/(n—2) h(lk (%) v,?(z)) > (Igvr)” 72 h(lgvk) (,lec\)n727

The inequalities above yield

Awygp +E&pwae <0, in Oy,
Onwx k < &2,k WA ks on 90\ N{z, = 0},
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where &1, > 0 and &, are continuous functions obtained from mean value theo-
rem. It is easy to see that the moving sphere argument can be employed to prove
that A = A3, which leads to a contradiction from the limiting function V. Thus
Lemma 2.6 is established. O

Lemma 2.6 guarantees that on each radius Ry < r < %Mk the minimum of
vy, is always comparable to |z|>~™. Re-scaling vy as r("~2/2y;(rz) we see the
spherical Harnack inequality holds by the GHy and GHs. Thus Proposition 2.4 is
established in Case Two as well. O

Lemma 2.8. Let {uy} be a sequence of solutions of (1.1) and g — q € B_f be
a sequence of points in Zy. Then there exist C' > 0, ro > 0 independent of k and
Ry, — oo such that

we(ge)ur(@) > Clo — qi* ™" in we(qe) "D Ry < |z —qu| <2, 7€ By
Proof. We consider two cases:

Case one: ug(qp)? "2 g, — co.
Let My = ug(qx) and

(2.40) vi(y) = My~ tur (M3, Py + ),
fory € Qp:={y: Mk_2/("_2)y +qx € By }. In this case, vj, converges uniformly to

(241) v = (14 )

over all compact subsets of R"”. For € > 0 small we let

nin — 2 (n—2)/2 o _ _
(7 Y I MRS Yl

on |y| > R, where R > 1 is chosen so that v;, > ¢ on 0Bg. By direct computation
we have
¢

Oyn

> N, o™/ (=2 on {yn = —qrn My}

for some N, — co. It is easy to see that vy > ¢ on 9 \ {yn = fMZ/("_Q)q;m}.
On {y, = fMZ/(”_Q)q;m} we have

Oy, (v — @) < enlvk — ¢).

Thus standard maximum principle implies vi > ¢ on €. Lemma 2.8 is established
in this case.

Case two: M,f/(”ﬂ)q;m < C.

Let vi, be defined as in (2.40). In this case the boundary condition is written as
Oy, Uk = (Mk_Q/(n_Q)Uk) —n/(n—2) h(Mk_2/(n_2)'Ulc)UZ/(n_2),

on {yn = =M/ "V gy}
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The function vy converges to V of (2.41) over all compact subsets of {y,, > —T'},
where

T = lim MY " g,

k—o0
For R large and € > 0 small, both independent of k, we have

n(n —2) >(n*2)/2

wly) = (B - =R

ly

In BI;T we have the uniform convergence of vy to V4. Our goal is to prove that vy
is bounded below by O(1) |y|>~" outside Bg. To this end let

n(n —2 (n=2)/2
( ) ) |y_Alen|2—n

w(y) = (T — 2

where

Al = Ch(#) - T.

Then it is easy to check that

ow _ n—
% > Chw(y)n/(n 2)> on {yn = —le/( 2)an}-
By choosing R larger if needed we have
nin — 2 (n—2)/2
wly) > (M2 )

Then it is easy to apply maximum principle to prove vy, > w in Q\ Bg. Lemma 2.8
is established. O

> " >w(y), |yl=R, yeRL.

Let ¢¥ € Z; and ¢§ be its nearest or almost nearest sequence in Zj:

a5 —arl = (1+0(1)) d(aF, Zk \ {a}})-
Lemma 2.9. There exists C > 0 independent of k such that

1
o ur(qt) < ui(gs) < Curlql).

Proof. Let o = d(qf, Zi \ {q}'}) and

ik (y) = 0" Puk (g + ony).

We use ey, to denote the image of g5 after scaling (so |ex| — 1). Then in By,
() ~ k(0)~Yz|>~™ for |x| ~ 1/2. On one hand, for |z| = 1/2 we have, by
Lemma 2.8 applied to ey,

which is just ur(¢f) < Cug(qh).
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On the other hand, the same moving sphere argument can be applied to wug
near ¢5 with no difference. The Harnack type inequality gives

max U min u < C.
B(gk,1/4)NBf  B(gs.1/2)nBS

Using

max ug > ug(qh), and min up > min  ug,
B(q},1/4)NB; B(gk,1/2)nBf B(q}¥,o1)NBY

we have

(2.42) ik (ex) 1, (0)H < C.

Thus (2.42) gives ux(¢5) < Cux(q¥). Lemma 2.9 is established. O
Remark 2.10. Proposition 2.4 is not needed in the proof of Lemma 2.9.

The following lemma is concerned with Pohozaev identity that can be verified
by direct computation.

Lemma 2.11. Let u solve
Au+g(u)=0, in B,
0
ﬁ = h(u) on 9'B}.

Then

(2.43) /m+ h(u)(rimi&u +Z S 2 u) + /B+ (n Glu) — = > 2 g(u)u)

_ / (o(Gw) - % Vul? + (B,u)?) + =
8" B

2 u 5‘Uu>
where G(s) = [, g(t)dt, v stands for the outer normal vector of the domain.

Now we finish the proof of Theorem 2.3.

Recall that o = (14 o(1))|¢f — ¢5|. We prove by contradiction. Suppose
o — 0. Let M, = u(0). We claim that

(2.44) Myt (y) — aly|> " +b(y) in CP.(Bs/aN\{0}), with a >0, b(0) >0
where Qy = {y; oxy + ¢F € B }.
Proof of (2.44). As usual we consider the following two cases:

Case one in (2.44): limy_,o ¢F, M2/ 5 o0,
Let Yy )
Ty = M2 gk

Recall the equation for @y is (2.18). Multiplying Z\Zk~ on both sides and letting
k — oo we see from the assumptions of g and h that Myiy, — h in C2_(B \ {0})
where h is a harmonic function defined in By \ {0}.
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Thus,
h(y) = aly[*~" + b(y)

for some harmonic function b(y) in By. From the pointwise estimate in Lemma 2.8
we see that a > 0. Given any e > 0, we compare uj and

wi = (a—¢) (y* " — BZ)

on |y| < Ry. Here Ry — oo is less than Tj. Observe that 4y > wy on 0Bpg, and
ly| = €1 for €; sufficiently small. Thus 4y > wy by the maximum principle. Letting
k — oo, we have, in By,

aly’ 7" +b(y) > (a—e)y* ™™, Bi\ B.

Then let € — 0, which implies 5 — 0 we have b(y) > 0 in B;. Next we claim that
b(0) > 0 because by Lemma 2.8 and Lemma 2.9 we have

aly|* ™ +b(y) > aily —e* ™ in By

for some a; > 0, where e = limy_, o €x. Thus b(y) > 0 when y is close to e, which
leads to b(0) > 0. (2.44) is established in Case one.

Case two in (2.44): limy_, o ¢¥, M,f/(”fz) — T < oo.

Again we first have Myiiy, — hin C2_(By T \ {0}) and h is of the form

loc
h(y) = aly~" +bly), yn>-T.
To prove b(y) > 0 we compare, for fixed € > 0, My, with
wi(y) = (a =€) (ly = brea* ™™ = (R = 1)>7")
where by — 0 and Ry — oo are chosen to satisfy

(n—2)by R,? > coor, co= sup s|h(s)|
0<s<1

and .
(n—2)bg > cp Mk_2/("_2)a2/(”*2).

It is easy to see that such by and Ry can be found easily. Let hy = Mk, and
Q. = 00 N {yn = =Tk }. We divide 9y, into two parts:

El = {Z (S 8'Qk; ﬂ/k(Z) O'];(H_Q)/2 Z 1}, EQ = 8'Qk\E1.

Then, by the assumptions on h,

o0 coorhy, x€ By,
nhk: S ~ _ _
o MR =2 e By
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With the choice of b, and Ry it is easy to verify that
Onwy, > max {co Ok W, cth_Q/("_Q)wZ/("J)} on 9'Qy, N Bg,.

Thus standard maximum principle can be applied to prove hy > wy on Q N Bg, .
Letting k — oo first and € — 0 next we have b(y) > 0 in By N {y, > —T'}. Then
by Proposition 2.9 we see that b(y) > 0 when y is close to e, the limit of e;. The
fact 0,0 = 0 at 0 implies b(0) > 0. Claim (2.44) is proved in both cases. O

Finally to finish the proof of Theorem 2.3 we derive a contradiction from each
of the following two cases:

Case one: limy_, o M,f/(nﬁ)qlfn > 0.

We use the following Pohozaev identity on B, for o < limg_ M,f/("d)q’fn :

(2.45) /B(nGk(ak),n ﬁkgk(ﬂk)>

-2

1
= / (0’ (Gk(’fbk) — 5 |V’L~Lk|2 + |8,,ﬂk|2) + n U (9l,’l~l,k>,
OB,

where
t

a(s) = ol (o O 8) 60 = [ ats)ds, Guls) =i Gor "),
0

First we claim that for s > 0,

n—2
2n

(2.46) Gr(s) > s gk(s).

Indeed, writing g(t) = c(t)tt2/("=2) we see from GH; that c(t) is a non-
increasing function, thus

0_;('”.72)/28

Gils) = o G(o, " 7P%s) = 02/ c(t) tn+2/(n=2) gy
0
o_k—(n—Q)/Qs
> oy C<Uk_(n_2)/23) / 2/ (n=2) gy
0
—9 (i —2
_n-2 (o (n 2)/28) 2n/(n-2) _ "~ 2 sgr(s).

2n

Replacing s by @, we see that the left hand side of (2.45) is non-negative. Next
we prove that

2n

n —

. 1 2
(2.47)  lim M,f/ (U(Gk(ﬂk) ~ 5 IV + 10,3 f?) + i ayak) <0
OB,

k—o0

for o > 0 small. Clearly after (2.47) is established we obtain a contradiction
to (2.45). To this end first we prove that

(2.48) M? Gy (x) = o(1).
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Indeed, by GH; and GHs,

or (D 2,

Gilan) = [ o(t) dt
0
or D2y, o
U/ZL/ ctdt, if U};(”* )/ Mlgl <1,
< 0
> 1 O_k—(n—Q)/Zﬂk ~
0;’5(/ ctdt+/ ct(n+2)/(n=2) dt), it o "IN > 1.
0 1
Therefore,
Gh(iig) < C ol My, it o TP < 1,
ClCop o i o TR S

Clearly (2.48) holds in either case. Consequently we write the left hand side
of (2.47) as

n

1 -2
/ (— = o|Vh|? + 0|0 h[? + h&,h) +o(1),
op, \ 2 2

where
h(y) = aly> "™ +b(y), b(0)>0,a>0.

By direct computation we have

1 -2
/ (f = o|Vh2 + ol h + 1= hc‘)l,h>
OB, 2 2

- /é)B <_ (n-27 b(0) - o ¢ ()(g%n))ds,

a
Thus (2.47) is verified when o > 0 is small.

Case two: limg_, Mg/("*z)q’fn =0.

In this case we use the following Pohozaev identity on B : let
hi(s) = 02/2 h(a,:(nfz)/zs).

Then we have

n—1
i Soon—2 - n—2 ..
/83imaR1 hk(uk)(;l'iaiuk + 5 Uk) + /Bi (nGk(uk) -3 gk(uk)uk)
1 —2
(2.49) = / (U (Grliy) — = |V + (0vin)?) + B2 G ayﬁk).
OB NR? 2

Multiplying M. Z on both sides and letting k — co we see by the same estimate as
in Case one that the second term on the left hand side is non-negative, the right
hand side is strictly negative.
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The only term we need to consider is

n—1
~ n—2
lim M2 hk(ﬂk)<§ 2 Oyl + ak>.
k—o0 oBFNoR? p 2

Let H(s) = fos h(t) dt, then from integration by parts we have

n—1
- - n—2._
(2.50) / hy (uk) ( Z x; Oty + uk)
0B NOR? = 2

= / szlH(a,:(n&)/zﬂk) o
9B, NOR™

n—2

+ / (= (0= 1) o 1 (o " 2a) + " ) )
OB NOR™

For the first term on the right hand side of (2.50) we claim that
(2.51) Mo H(op "2 0) = o(1)  on 0B,.
Indeed, by GH; and GHa,
—(n—-2)/2 ~
Uk Uk

/ ctdt, if o " %0, <1,
| H (o " )| < 4

> k_(n—z)mﬂk

1 o
/ ctdt+/ ctazdt, it o "0, > 1,
0 1

Using iy, = O(1/M}) on OB, we then have
O(aw), if o "0, <1,

M2 Unfl H 0—(n—2)/2ﬂ < )
kY% | ( k k)! O(U}g)JrO(Mk_Q/(n_Q))v if Uk_(n_2)/2ﬁk <1

Thus (2.51) is verified and the first term on the right hand side of (2.50) is o(1).

Therefore we only need to estimate the last term of (2.50), which we claim
is non-negative. Indeed, for ¢t > 0, we write h(t) = b(t)t"/ (=2 for some non-
decreasing function b. Then we have

os(m=D/2, os(m=D/2,
o H (o, ") = ol /0 h(t)dt = o7" /0 b(t) £/ "2 4t
]:('n.72)/28
< 02_111(0,:("_2)/23) /0 /(=2 gt
n—2 —(n—2)/2 _ _ n—2
— 5 3 b(a,C S) s(2n=2)/(n=2) _ 573 k(s) s.

Replacing s by @y, in the above we see that the last term of (2.50) is non-negative.
Thus there is a contradiction in (2.49) in Case two as well. Theorem 2.3 is
established. O
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2.3. Step three: the completion of the proof of Theorem 1.1

Let uy be a sequence of blowup solutions of (1.1) that satisfies max g up — 00
and (2.1) (See the beginning part of the proof before Proposition 2.1). By Propo-
sition 2.3 there are finite local maximum points qf € B_{" fori=1,...,L, where L
is independent of k and min{q* ,q;“} > 24 for all ¢F # q;-“ and some &g > 0 inde-
pendent of k. In each BT (¢¥, dy) if we define

of () = wila) Mk (a7 () y + f)
by the proof of Theorem 2.3 we have
vi(y) SCA+ )", for |yl < doun(af)™/ 2.
The corresponding estimate for uy is
(252) k(@) < Cun(@) (Lt un(@)? > e = qf)*™", in B (gf,00).

Then direct computation shows that

/ W20 <
Bt(q¥,60)

for some C' > 0 independent of k. By Proposition 2.1 we also see that u; < C' in
B3\ (U;B(qF,80)). Thus we have

(2.53) / M < e

By
Let ¢ be a radial and smooth function such that ¢ = 1 in By and ¢ = 0 near
0Bs /5. Moreover, ¢ > 0. Multiplying up@? to both sides of (1.1), we have

/ () i & +/ VeV (ug, ¢%) = / o) we 8.
d/B;/z B;r/2 B;/Q
Using Cauchy’s inequality we obtain

1
S LCUGELY I I Sy S AP

3/2 33/2 33/2 3/2
By (2.52) and the assumptions on g, h it is easy to see that the right hand side of
the above is bounded by C independent of k. Therefore [+ [Vug|* < C for some
1

C > 0 independent of k. A contradiction to (2.1). Theorem 1.1 is established. O

Remark 2.12. Finally we summarize some technical points in the proof of The-
orem 1.1. In the proof of Proposition 2.1 the assumptions on g, h play a central
role. The proof of Proposition 2.4 relies on the classification theorems of Caffarelli—
Gidas—Spruck [1] and Li-Zhu [11] in an essential way. The main reason is equa-
tion (1.1) is not scaling invariant so we have to prove the decay rate of bubbling
solutions in each blowup disk (Lemma 2.5 and Lemma 2.6). At the first glance the
reader may feel that the proof of Theorem 2.3 is similar to corresponding theorems
in [8] or [6]. Actually this is not the case. The main difference lies on the fact
that (1.1) is a locally defined equation, while the equations in [8] or [6] are globally
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defined. This difference is particularly subtle when the interaction of bubbles
is concerned. In [8] and [6] it is possible to find two bubbles closest to each
other because the equations are globally defined. This is not possible for the local
equation (1.1) and the approach in this article is significantly different. We mainly
follow the line of proof in [9] for this part.

3. Proof of Theorem 1.2

If h is non-positive, the energy estimate follows from the Harnack inequality in
a straight forward way. Indeed, let G(x,y) be a Green’s function on B;‘ such
that G(z,y) = 0 if * € B,y € 0B NRY and 9, G(z,y) = 0 for x € Bi,y €
OB3 N OR". It is easy to see that G can be constructed by adding the standard
Green’s function on Bz its reflection over R’ . It is also immediate to observe
that

G(z,y) > Cplr —y* ", z€Bf, yecBif.

Multiplying G on both sides of (1.1) and integrating by parts, we have

9G(z,y)
u(x) + /é)B;'ﬂé}Rj_ Mu(y)) G(z,y) dS, + /8 u(y) £y dsy

Bf NR™
- / g(u(y)) Gz, y) dy.
By

Here v represents the outer normal vector of the domain. Using h < 0 and 0,G < 0,
we have

u(z) > /B 9@) Gl dy, w e By

In particular, let u(zg) = min, -+ u. Then |xo| = 2, thus

szax’wminuz/
B

+ +
By 2 ;/2

o(u() u(s) Glao.9)dy > C [ gluudy
3/2

Therefore we have obtained the bound on || g+ g(u)udy. To obtain the bound on
3/2

S+ |Vul?, we use a cut-off function 1 which is 1 on Bf and is 0 on B \ B;r/z and

|Vn| < C. Multiplying un? to both sides of (1.1) and using integration by parts

and Cauchy inequality we obtain the desired bound on | B+ |Vu|?. Theorem 1.2 is
1

established. O
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