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A geometric criterion for the finite generation of

the Cox rings of projective surfaces
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Mustapha Lahyane, Israel Moreno Mej́ıa and Osvaldo Osuna Castro

Abstract. The aim of this paper is to give a geometric characterization
of the finite generation of the Cox rings of anticanonical rational surfaces.
This characterization is encoded in the finite generation of the effective
monoid. Furthermore, we prove that in the case of a smooth projective
rational surface having a negative multiple of its canonical divisor with
only two linearly independent global sections (e.g., an elliptic rational sur-
face), the finite generation is equivalent to the fact that there are only a
finite number of smooth projective rational curves of self-intersection −1.
The ground field is assumed to be algebraically closed of arbitrary charac-
teristic.

1. Introduction

In [15], Galindo and Monserrat characterize the smooth projective surfaces Z de-
fined over an algebraically closed field k with finitely generated Cox rings (see the
next paragraph for the definition) by means of the finiteness of the set of integral
curves on Z of negative self-intersection, and the existence of a finitely generated
k-algebra containing two k-algebras associated naturally to Z, see Theorem 1,
page 94, in [15]. The aim of this work is to give an equivalent characterization of
the finite generation of the Cox ring totally based on the geometry of the surface,
and to apply the criterion to some classes of smooth projective rational surfaces,
e.g., the anticanonical ones (i.e., those rational surfaces holding an effective anti-
canonical divisor) and the surfaces constructed in [7], [8], [13], and [14]; establish-
ing thus the geometric nature of our characterization. For some purely algebraic
features of the Cox ring of a variety, see [5], and [12].

Following Hu and Keel [20], the Cox (or the total coordinate) ring of a smooth
projective variety V defined over an algebraically closed field k is the k-algebra
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1132 B. L. De La Rosa, J. B. Fŕıas, M. Lahyane, I. Moreno and O. Osuna

defined as follows:

Cox(V ) =
⊕

(n1,...,nr)∈Zr

H0
(
V,O(Ln1

1 ⊗ · · · ⊗ Lnr
r )

)
.

Here (L1, . . . , Lr) is a basis of the Z-module Pic(V ) of classes of invertible
sheaves on V modulo isomorphisms under the tensor product, and we have assumed
that the linear and numerical equivalences on the group of Cartier divisors on V are
the same, such assumption is satisfied for example for smooth projective rational
surfaces V .

From the birational geometry classification of projective varieties, it is desir-
able to run the minimal model program (in short, Mori’s program) for at least
a canonical divisor. To this end, one needs to know the finite generation of the
Cox rings of projective varieties; indeed, given a projective variety X , under some
reasonable hypotheses, the Mori’s program can be carried out for any divisor on X
if and only if the Cox ring of X is finitely generated (see Prop. 3.2, p. 342, in [20]).

Henceforth, an interesting (but still) open problem is to classify theoretically
and/or effectively and constructively all smooth projective rational surfaces S for
which the k-algebra Cox(S) is finitely generated. Masayoshi Nagata (see Theo-
rem 4a, page 283, in [28]) showed that the surface Z obtained by blowing up of
the projective plane P

2 at nine or more points in general position has an infinite
number of (−1)-curves (see also [24], [21], [22], [25], [29], [27], [26] and [23] for cases
when the points need not be in general position), consequently its Cox ring Cox(Z)
is not finitely generated. Here a (−1)-curve on Z means a smooth projective curve
on Z of self-intersection equal to −1. Note that in this example, the effective
monoid M(Z) of Z is also not finitely generated, where M(Z) stands for the set of
elements of the Picard group Pic(Z) of Z having at least a nonzero global section.

In this paper we mainly look for those smooth projective rational surfaces S for
which the finite generation of Cox(S) is equivalent to the finite generation of M(S).
Our two main results, Theorems 1 and 8 below which are derived from Theorem 21,
give a partial answer. By the way, we have been informed by a referee that in the
characteristic zero case, Theorem 21 was obtained in [1] using a different approach.

Theorem 1. Let S be a smooth projective rational surface defined over an al-
gebraically closed field k of arbitrary characteristic such that the invertible sheaf
associated to the divisor −KS has a nonzero global section. The following asser-
tions are equivalent:

1) Cox(S) is finitely generated.

2) M(S) is finitely generated.

3) S has only a finite number of (−1)-curves and only a finite number of (−2)-
curves.

Here KS denotes a canonical divisor on S.

Proof. It follows from Lemma 12 and Theorem 21 below. �

It is well known that in the case of a rational surface, there are some criteria
for the finite generation of its effective monoid that depend on the behavior of the
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self-intersection of a canonical divisor on the surface, and in some cases one need
also the finiteness of the set of all (−1) and (−2)-curves. The following theorem
presents two of these criteria; its proof can be found in Prop. 4.3, p. 109, in [25]:

Theorem 2. Let X be a smooth projective rational surface.

(a) If K2
X > 0, then M(X) is finitely generated.

(b) If K2
X = 0, then M(X) is finitely generated if and only if X has only finitely

many (−1)-curves.

Here, KX denotes a canonical divisor on X.

As consequences, the following two results hold:

Corollary 3. The Cox ring of a smooth projective rational surface having a canon-
ical divisor of self-intersection larger than or equal to zero is finitely generated if
and only if the set of (−1)-curves is finite.

Proof. Let S be a smooth projective rational surface having a canonical divisorKS

such that K2
S is nonnegative. It follows from Lemma 2.2, page 103, in [25] that

the invertible sheaf associated to −KS has at least one nonzero global section.
Henceforth, by Theorems 1 and 2 the result holds. �

Corollary 4. The Cox ring of a smooth projective rational surface having a canon-
ical divisor of self-intersection larger than zero is finitely generated.

Proof. Let S be a smooth projective rational surface having a canonical divisorKS

such that K2
S is positive. Then, there exists at least one nonzero global section

of the invertible sheaf associated to −KS (see Lemma 2.2, page 103, in [25]).
Applying Theorem 1, and item (a) of Theorem 2 we are done. �

In particular, since a Del Pezzo surface is nothing but a blow-up of the projec-
tive plane at r points with r ≤ 8, we recover the following well-known result, see
Theorem 3.2, page 6, in [3]:

Corollary 5. The Cox ring of a Del Pezzo surface is finitely generated.

Here, we remind the reader of the fact that the Picard number of a smooth
projective rational surface is the rank of its Picard group. In the case of smooth
projective rational surface having Picard number greater than nine, we have the
following characterization of the finite generation of its Cox ring using the set of
(−2)-curves.

Corollary 6. The Cox ring of a smooth projective rational surface whose Picard
number is at least 10, and having an integral curve linearly equivalent to an anti-
canonical divisor, is finitely generated if and only if the set of (−2)-curves is finite
and spans a linear subspace in the Picard group of codimension one.

Proof. The result follows from Theorem 3.1, page 142, in [16] and Theorem 1. �

Remark 7. In Corollary 6, the condition on the Picard number is essential; oth-
erwise, the set of (−2)-curves may not span a linear subspace in the Picard group
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of codimension one. For example, the blow-up of the projective plane at four
points in general position does not hold any (−2)-curves. However, the Cox ring of
a smooth projective rational surface having Picard number less than ten is always
finitely generated (see Corollary 4).

Here is our second result:

Theorem 8. Let Z be a smooth projective rational surface defined over an al-
gebraically closed field k of arbitrary characteristic such that the invertible sheaf
associated to the divisor −rKZ has at least two linearly independent global sections
for some positive integer r. The following assertions are equivalent:

1) Cox(Z) is finitely generated.

2) The set of smooth projective rational curves of self-intersection −1 on Z is
finite.

Here KZ denotes a canonical divisor on Z.

Proof. Apply Theorem 21 below and the fact that the set of (−2)-curves on Z is
finite. �

2. Preliminaries

2.1. General notions

Let S be a smooth projective surface defined over an algebraically closed field of
arbitrary characteristic. From now on, we assume that the linear and numerical
equivalences on the group of Cartier divisors on S are the same. A canonical divisor
on S, and the Picard group of S will be denoted by KS and Pic(S) respectively.
There is an intersection form on Pic(S) induced by the intersection of divisors on S;
it will be denoted by a dot, that is, for x and y in Pic(S), x.y is the intersection
number of x and y (see [19] and [2]).

The following result, known as the Riemann–Roch theorem for smooth projec-
tive surfaces, is stated using Serre duality.

Lemma 9. Let D be a divisor on a smooth projective surface S having an alge-
braically closed field of arbitrary characteristic as a ground field. Then the following
equality holds:

h0(S,OS(D))−h1(S,OS(D))+h0(S,OS(KS −D)) = 1+ pa(S)+
1

2
(D2−D.KS),

where OS(D) (respectively, pa(S)) is an invertible sheaf associated canonically to
the divisor D (respectively, the arithmetic genus of S, that is χ(OS)− 1, where χ
is the Euler characteristic function).

Here we recall some standard results, see [17], [19] and [2]. The Néron–Severi
group NS(S) of S is the quotient group of the group of Cartier divisors on S mod-
ulo numerical equivalence, and it is well known that it is a free finitely generated
Z-module. An element x of NS(S) is effective, respectively numerically effective
(nef in short), if an element of x is an effective, respectively numerically effective,
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divisor on S. Here a divisor D on S is nef if D.C ≥ 0 for every integral curve C
on S. The set of effective elements of NS(S) is denoted by M(S), it is obviously
that it has an algebraic structure of a monoid, and is called the effective monoid
of S. Now, we start with some properties which follow from a successive iterations
of blowing up closed points of a smooth projective rational surface.

Lemma 10. Let π∗ : NS(X) → NS(Y ) be the natural group homomorphism on
Néron–Severi groups induced by a given birational morphism π : Y → X of smooth
projective rational surfaces. Then π∗ is an injective intersection-form preserving
map of free abelian groups of finite rank. Furthermore, it preserves the dimensions
of cohomology groups, the effective divisor classes and the numerically effective
divisor classes.

Proof. See Lemma II.1 in [18]. �

Lemma 11. Let x be an element of the Néron–Severi group NS(X) of a smooth
projective rational surface X. The effectiveness or the nefness of x implies the
noneffectiveness of KX − x, where KX denotes the element of Pic(X) which con-
tains a canonical divisor on X. Moreover, the nefness of x implies also that the
self-intersection of x is greater than or equal to zero.

Proof. See Lemma II.2 in [18]. �

The following result is also needed. We recall that a (−1)-curve, respectively a
(−2)-curve, is a smooth rational curve of self-intersection −1, respectively −2.

Lemma 12. The monoid of effective divisor classes modulo linear equivalence on
a smooth projective rational surface X having an effective anticanonical divisor is
finitely generated if and only if X has only a finite number of (−1)-curves and only
a finite number of (−2)-curves.

Proof. See Corollary 4.2 in [25]. �

2.2. Extremal surfaces

The set of nef elements Nef(S) in the Néron–Severi group NS(S) of a smooth
projective surface S, it has obviously an algebraic structure of a monoid, and
is called the nef monoid of S. We define two more submonoids, Char(S) and
[Char(S) : Nef(S)] of NS(S) (see [6] and [15]), as follows:

Definition 13. With notation as above.

1) The characteristic monoid Char(S) of S is the set of elements x in NS(S)
such that there exists an effective divisor on S whose associated complete
linear system is base point free and whose class in NS(S) is equal to x.

2) The monoid of fractional base point free effective classes [Char(S) : Nef(S)]
of S is the set of elements y in NS(S) such that there exists a positive integer n
with ny ∈ Char(S).
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The main properties that we are interested in regarding monoids Char(S) and
[Char(S) : Nef(S)] are those in the following lemma.

Lemma 14. With notation as above, the following hold:

1) Char(S) and [Char(S) : Nef(S)] are submonoids of Nef(S).

2) Char(S) is a subset of [Char(S) : Nef(S)].

Proof. The statement 2) follows immediately by the definitions of Char(S) and
[Char(S) : Nef(S)], so only remains to prove 1). First, we prove that Char(S)
is contained in Nef(S). Let z be an element of Char(S). Then there exists an
effective divisor Γ on S such that z = [Γ] and Bs(|Γ|) = ∅. By hypothesis we
may assume that |Γ| has no fixed components, and we can write Γ =

∑r
i=1 αiΓi

where r is a positive integer, αi is a nonnegative integer and Γi is a prime divisor
for each i ∈ {1, . . . , r}. We consider an integral curve H on S, and note that we
may suppose that H is different to Γi for every i ∈ {1, . . . , r}. Therefore, we have
that Γ.H ≥ 0 and this implies that z belongs to Nef(S). Now, we prove that
Char(S) is a submonoid of Nef(S). It is obvious that [0Div(S)] is an element of
Char(S). Moreover, if we have elements x and y of Char(S), then x+ y ∈ Char(S)
because x + y = [Γx + Γy] where x = [Γx], y = [Γy], Bs(|Γx|) = ∅, Bs(|Γy|) = ∅,
and we have that Γx + Γy is an effective divisor and Bs(|Γx + Γy|) = ∅.

Second, we prove that [Char(S) : Nef(S)] is a submonoid of Nef(S). Let D be
an element of [Char(S) : Nef(S)]. Then there exists a nonnegative integer m such
that mD ∈ Char(S). If E is an effective divisor on S, we have that mD.E ≥ 0,
where D is a representative of D. This implies that D.E ≥ 0 and so D ∈ Nef(S).
Now, in an obvious way, we have that [0Div(S)] is an element of [Char(S) : Nef(S)].
Furthermore, let D1 and D2 be elements of [Char(S) : Nef(S)], and let m1 and m2

be positive integers such that m1D1 and m2D2 belong to Char(S). It follows
that D1 + D2 ∈ [Char(S) : Nef(S)], because m1m2(D1 + D2) is an element of
Char(S). �

Here we define the ingredient needed for our criterion:

Definition 15. With notation as above, S is extremal if the set of effective el-
ements of the monoid of fractional base point free effective classes is equal to
the set of effective elements of the nef monoid, that is, if we have the equality
[Char(S) : Nef(S)] ∩M(S) = Nef(S) ∩M(S).

Now, we present some examples of extremal surfaces:

Example 16. The projective plane P
2 is an extremal surface. Indeed, it is well

known that if E0 is the class of a line L in the Néron–Severi group of P2, then
Nef(P2) = Z+E0. Using the facts Nef(P2) = M(P2), Bs(|L|) = ∅, and Lemma 14,
one may obtain Char(P2) = Z+E0, and this implies the equality between Nef(P2)
and [Char(P2) : Nef(P2)].

Example 17. Let X be the blow-up of the projective plane P
2 at r ordinary

collinear points p1, . . . , pr, where r is a positive integer. Let E0 be the class of the
strict transform of a line L on P

2 in the Néron–Severi group of X such that L does
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not contain any of the r points, and let Ei be the class of the exceptional divisor
corresponding to pi in the Néron–Severi group of X for each i ∈ {1, . . . , r}. Recall
that the intersection form on NS(X) is given by the equalities E2

0 = 1, E0.Ei = 0
and Ei.Ej = −δij for each i, j ∈ {1, . . . , r}. Here E0 − Ei is the class of the strict
transform of any line Ci on P

2 that contains pi, and does not contain the other ones,
for each i ∈ {1, . . . , r}. Lemma 10 implies that the classes E0 and E0 − Ei are nef
for every i ∈ {1, . . . , r}. It follows that Nef(X) is equal to Z+E0+

∑r
i=1 Z+(E0−Ei)

(see Example 4.2.24, page 42, in [10]). Moreover, from the facts that Bs(|L|) is
empty and Bs(|Ci|) = {pi} for every i ∈ {1, . . . , r}, we obtain that E0 and E0 − Ei
are elements of Char(X) for each i ∈ {1, . . . , r}. Finally, using Lemma 14 we
conclude that [Char(X) : Nef(X)] = Nef(X), and so X is extremal.

Example 18. Let Σn be the Hirzebruch surface associated to a nonnegative in-
teger n. Let Cn be the class of a section Cn of Σn (unique if n is positive) and
let F be the class of a fibre f of Σn. Recall that Cn and F satisfy the equalities
C2
n = −n, F2 = 0, and Cn.F = 1 (see Section 2 of Chapter V in [19]). We know that

Nef(Σn) = Z+(Cn + nF) + Z+F (see item 2 of Lemma 3.1 in [9]). Since Cn + nF
and F are the classes of the effective divisors Cn + nf and f respectively, and
Bs(|Cn+nf |) and Bs(|f |) are empty, we infer that Cn+nF and F are elements of
Char(Σn), and henceforth, it follows that Σn is an extremal surface by Lemma 14.

The following example provides a smooth projective rational surface that is not
extremal:

Example 19. Let X be the blow-up of the projective plane P
2 at twenty generic

points lying on a smooth integral curve Q of degree four. Let F be equal to C̃+ Q̃,
where C̃ and Q̃ are the strict transforms of a generic conic C and Q respectively.
Let F be the class of F in the Néron–Severi group of X . The equalities F .C̃ = 12
and F .Q̃ = 4 ensure the nefness of F . Furthermore, Bs(|nF |) is not empty because

the fix part of |nF | is equal to {Q̃} for every positive integer n (see page 562 in [30]).
Therefore, X is not an extremal surface.

Remark 20. In the case of anticanonical rational surfaces, it occurs that every
nef element of the Néron–Severi group of such surfaces is an effective one; indeed,
this is a consequence of Lemmas 9 and 11. Therefore, an anticanonical rational
surface S is extremal if and only if [Char(S) : Nef(S)] is equal to Nef(S).

3. The criterion

Now we are able to state our geometric criterion:

Theorem 21. Let S be a smooth projective surface defined over an algebraically
closed field k of arbitrary characteristic. The following assertions are equivalent:

1) The Cox ring Cox(S) is finitely generated.

2) S satisfies the following two properties:

i. S is extremal, and

ii. the effective monoid M(S) of S is finitely generated.
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3) S satisfies the following two properties:

i. S is extremal, and

ii. the nef monoid Nef(S) of S is finitely generated.

Proof. First, we prove that 1) implies 2). Since the Cox ring of S is finitely
generated, there exist a finite number of curves of negative self-intersection on S,
if not, let I be an infinite set of curves of negative self-intersection on S, the
k-algebra k ⊕ (⊕

C∈I H
0(S, C)) is not finitely generated. Furthermore, we may

assume that the effective monoid of S is generated by the curves of negative self-
intersection, and consequently, the effective monoid of S is finitely generated. On
the other hand, the finiteness of the Cox ring of S implies that the nef monoid of S
is equal to the characteristic monoid of S (see Corollary 7.4, page 1233, in [4]).
Therefore, S is extremal (see Lemma 14).

Second, the nef monoid of S is equal to the dual effective monoid of S. Hence,
the nef monoid of S is finitely generated (see Proposition 3, page 250, in [11]).
This proves that 2) implies 3).

Finally, we prove that 3) implies 1). Using Lemma 2.8 of [20], the k-algebra⊕
D∈Nef(S) H

0(S,D) is finitely generated because of the nef monoid of S is finitely

generated, and S is extremal. Moreover, this k-algebra contains both k-algebras1

Δ(S) and Sbp(S), and therefore, applying Theorem 1 of [15], the result holds. �

4. Open problems

We conclude this paper with the following questions:

1) Is it possible to determine explicitly all the extremal smooth projective
surfaces? Note that if we could be able to classify the smooth projective surfaces
that are extremal, then we may have excellent candidates of surfaces whose Cox
rings are finitely generated.

2) As a consequence of item 2) of Lemma 14, for a smooth projective surface S,
Char(S) is a subset of [Char(S) : Nef(S)]. What kind of surfaces for which the
equality holds between Char(S) and [Char(S) : Nef(S)]?
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