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Towards Oka–Cartan theory for algebras of

holomorphic functions on coverings of Stein
manifolds. II

Alexander Brudnyi and Damir Kinzebulatov

Abstract. We establish basic results of complex function theory within
certain algebras of holomorphic functions on coverings of Stein manifolds
(such as algebras of Bohr’s holomorphic almost periodic functions on tube
domains or algebras of all fibrewise bounded holomorphic functions aris-
ing, e.g., in the corona problem for H∞). In particular, in this context
we obtain results on holomorphic extension from complex submanifolds,
properties of divisors, corona-type theorems, holomorphic analogues of the
Peter–Weyl approximation theorem, Hartogs-type theorems, characteriza-
tions of uniqueness sets, etc. Our proofs are based on analogues of Cartan
theorems A and B for coherent-type sheaves on maximal ideal spaces of
these algebras proved in Part I.

1. Introduction

In 1930–1950, methods of sheaf theory radically transformed the theory of holomor-
phic functions of several variables which led to solution of a number of fundamen-
tal and long standing problems including problems of holomorphic interpolation,
Cousin problems, the Levi problem on characterization of domains of holomor-
phy, etc. Since then the theory started to play a foundational and unifying role in
modern mathematics, with implications for analytic geometry, automorphic forms,
Banach algebras, etc. Further development of the theory was motivated, in part,
by the problems requiring to study properties of holomorphic functions satisfying
additional restrictions (such as uniform boundedness along certain subsets of their
domains or certain growth ‘at infinity’). In particular, the principal question arose
whether the fundamental problems of the function theory of several complex vari-
ables can be solved within a proper subclass of the algebra O(X) of holomorphic
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functions on a Stein manifold X . In the present paper we address this question
for subalgebras of O(X) subject to the following definition.

Definition 1.1. A holomorphic function f defined on a regular covering p : X→X0

of a connected complex manifold X0 with a deck transformation group G is called
a holomorphic a-function if

(1) f is bounded on subsets p−1(U0), U0 � X0, and

(2) for each x ∈ X the function G � g �→ f(g · x) belongs to a fixed closed
unital subalgebra a := a(G) of the algebra �∞(G) of bounded complex functions
on G (with pointwise multiplication and sup-norm) that is invariant with respect
to the action of G on a by right translations:

u ∈ a, g ∈ G =⇒ Rgu ∈ a,

where Rg(u)(h) := u(hg), h ∈ G.
We endow the subalgebra Oa(X) ⊂ O(X) of holomorphic a-functions with the

Fréchet topology of uniform convergence on subsets p−1(U0), U0 � X0.

The model examples of algebras Oa(X) are:

(1) Bohr’s holomorphic almost periodic functions on a tube domain T ⊂ Cn,
see Example 1.2 below;

(2) all fibrewise bounded holomorphic functions on X , see Example 1.4 (1)
below. (If X0 is a compact complex manifold, then this algebra coincides with
algebra H∞(X) of bounded holomorphic functions on X).

See Section 3 for other examples.

In [15] we derived analogues of Cartan’s theorems A and B for coherent-type
sheaves on the fibrewise compactification caX of the covering X of a Stein ma-
nifold X0, a topological space having certain features of a complex manifold (see
Section 2 for details). This allows us to transfer in a systematic manner most
of the significant results of the classical theory of holomorphic functions on Stein
manifolds to holomorphic functions in algebrasOa(X). In particular, in the present
paper we establish:

• results on holomorphic interpolation within algebra Oa(X) over complex
a-submanifolds (i.e., complex submanifolds of X determined by holomor-
phic a-functions) (Subsection 2.2),

• tubular neighbourhood theorem for complex a-submanifolds (Subsection 2.2),

• properties of holomorphic line a-bundles and their divisors (Subsection 2.3),

• characterization of uniqueness sets for functions in Oa(X) (Subsection 2.4),

• Leray integral representation formulas and Hartogs theorems for functions
in Oa(X) (Subsection 2.5),

• holomorphic Peter–Weyl theorems for Oa(X) (Subsection 2.5),

• Cartan’s theorems A and B for coherent-type sheaves on complex a-subma-
nifolds (Subsection 5.4),
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• Dolbeault isomorphisms on complex a-submanifolds (Subsection 5.5),

• corona theorems for algebras Oa(X) (Subsection 5.6).

Note that the classical proof of Cartan theorems A and B on complex manifolds
does not work in our case, in particular, because of absence of the Oka coherence
lemma, and since the fibre Ĝa of the covering caX → X0 being an arbitrary com-
pact Hausdorff space does not admit open covers by contractible sets as required
for the proof of the classical Cartan lemma. Instead, we develop a new approach
to the proof of Cartan theorems A and B, where we use some results from [42]
and [41].

Example 1.2 (Holomorphic almost periodic functions). The theory of almost
periodic functions was created in the 1920s by H. Bohr and nowadays is widely
used in various areas of mathematics including number theory, harmonic analysis,
differential equations (e.g., KdV equation), etc.

Let us recall the S. Bochner (equivalent) definition of almost periodicity: a
function f ∈ O(T ) on a tube domain T = Rn + iΩ ⊂ Cn, Ω ⊂ Rn is open
and convex, is called holomorphic almost periodic if the family of its translates
{z �→ f(z + s), z ∈ T }s∈Rn is relatively compact in the topology of uniform
convergence on tube subdomains T ′ = Rn + iΩ′, Ω′ � Ω. The principal result
of Bohr’s theory (see [2]) is the approximation theorem which states that every
holomorphic almost periodic function is the uniform limit (on tube subdomains T ′

of T ) of exponential polynomials

(1.1) z �→
m∑
k=1

cke
i〈z,λk〉, z ∈ T, ck ∈ C, λk ∈ Rn,

where 〈·, λk〉 is the Hermitian inner product on Cn.
The classical approach to study of holomorphic almost periodic functions ex-

ploits the fact that T is the trivial bundle with base Ω and fibre Rn (e.g., as in
the characterization of almost periodic functions in terms of their Jessen functions
defined on Ω, see [51], [43], [38], [48], [20], [52] and references therein). In our
approach, we consider T as a regular covering p : T → T0 (:= p (T ) ⊂ Cn) with the
deck transformation group Zn, where p (z) :=

(
eiz1 , . . . , eizn

)
, z = (z1, . . . , zn) ∈ T

(if n = 1, then this is a complex strip covering an annulus in C), and obtain:

Theorem 1.3. A function f ∈ O(T ) is almost periodic if and only if f ∈ OAP (T ).

(Here AP = AP (Zn) is the algebra of von Neumann’s almost periodic functions
on group Zn, see definition in Example 3.1 (2) below.) This result enables us to
regard holomorphic almost periodic functions on T as:

(a) holomorphic sections of a certain holomorphic Banach vector bundle on T0;

(b) holomorphic-like functions on the fibrewise Bohr compactification cAPT of
the covering p : T → T0.

As a result, we can apply the methods of multidimensional complex function
theory (in particular, analytic sheaf theory and Banach-valued complex analysis)
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to study holomorphic almost periodic functions. In particular, even in this classical
setting, we obtain new results on holomorphic almost periodic interpolation, recov-
ery of almost periodicity of a holomorphic function from that for its trace to a real
periodic hypersurface, etc. We also show that some results known for holomorphic
almost periodic functions are, in fact, valid for a general algebra Oa(X).

It is interesting to note that already in his monograph [2], H. Bohr uses equally
often the aforementioned “trivial fibre bundle” and “regular covering” points of
view on a complex strip. We mention also that the Bohr compactification of a tube
domain Rn + iΩ in the form bRn + iΩ, where bRn is the Bohr compactification of
group Rn, was used earlier in [18], [19], [31].

Example 1.4. (1) By definition, every Oa(X) ⊂ O�∞(G)(X); here G is the deck
transformation group of covering p : X → X0.

Algebra O�∞(G)(X) arises, e.g., in study of holomorphic L2-functions on cov-
erings of pseudoconvex manifolds [32], [6], [9], [40], Caratheodory hyperbolicity
(the Liouville property) of X [45], [44], corona-type problems for bounded holo-
morphic functions on X [5]. Earlier, some methods similar to those developed in
the present paper were elaborated for algebra O�∞(G)(X) in [5]–[8], [10] in con-
nection with corona-type problems for some subalgebras of bounded holomorphic
functions on coverings of bordered Riemann surfaces, Hartogs-type theorems, inte-
gral representation of holomorphic functions of slow growth on coverings of Stein
manifolds, etc.

A confirmation of potential productivity of the sheaf-theoretic approach to
corona problem for H∞ comes from the recent papers [11], [12] on Banach-valued
holomorphic functions on the unit disk D ⊂ C having relatively compact images.

(2) Let a := c(G) ⊂ �∞(G) (with card G = ∞) be the subalgebra of bounded
complex functions on G that admit continuous extensions to the one-point com-
pactification of G. Then Oc(X) consists of holomorphic functions that have fibre-
wise limits at ‘infinity’.

For other examples of algebras a and Oa(X) see Subsections 3.1 and 3.2.

In the formulation of our main results we use the following definitions.
Assume that d is a path metric onX defined by the pullback to X of a (smooth)

hermitian metric on X0.
A function f ∈ C(X) is called a continuous a-function if it is bounded and

uniformly continuous with respect to metric d on subsets p−1(U0), U0 � X0, and
is such that for each x ∈ X the function G � g �→ f(g · x) belongs to a.

We denote by Ca(X) the algebra of continuous a-functions on X . It is easily
seen that Ca(X) does not depend on the choice of the hermitian metric on X0 and
Ca(X) ∩ O(X) = Oa(X).

If D0 � X0 is a subdomain, we set D := p−1(D0) ⊂ X and define Ca(D̄) to be
the subalgebra of complex functions f on D̄ (the closure of D) that are bounded
and uniformly continuous with respect to path metric d and such that for each
x ∈ D̄0 functions G � g �→ f(g · x) belong to a.

Let L(B1, B2) denote the space of bounded linear operators B1 → B2 between
complex Banach spaces B1 and B2.
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2. Main results

2.1. Analogues of Cartan theorems A and B

Our approach is based on analogues of the Cartan theorems A and B for coherent-
type sheaves on the fibrewise compactification caX of covering p : X → X0. We
briefly describe its construction postponing details till Section 5 (see also [15]).

Let Ma denote the maximal ideal space of algebra a, i.e., the space of all
characters a → C endowed with weak* topology (of a∗). The space Ma is compact

Hausdorff and every element f of a determines a function f̂ ∈ C(Ma) by the
formula

f̂(η) := η(f), η ∈Ma.

Since algebra a is uniform (i.e., ‖f2‖ = ‖f‖2) and hence is semi-simple, the homo-
morphismˆ: a → C(Ma) (called the Gelfand transform) is an isometric embedding
(see, e.g., [27]). We have a continuous map j = ja : G → Ma defined by associat-
ing to each point in G its point evaluation homomorphism in Ma. This map is an
injection if and only if algebra a separates points of G.

Let Ĝa denote the closure of j(G) in Ma (also a compact Hausdorff space).
If algebra a is self-adjoint with respect to complex conjugation, then a ∼= C(Ma)
and hence Ĝa = Ma. In a standard way the action of group G on itself by right
multiplication determines the right action of G onMa, so that Ĝa is invariant with
respect to this action.

Definition 2.1. The fibrewise compactification p̄ : caX → X0 is defined to be the
fibre bundle with fibre Ĝa associated to the regular covering p : X → X0 (regarded
as a principal bundle with fibre G).

There exists a continuous map

(2.1) ι = ιa : X −→ caX

induced by the equivariant map j. Clearly, ι(X) is dense in caX . If a separates
points of G, then ι is an injection.

Definition 2.2. A function f ∈ C(caX) is called holomorphic if its pullback ι∗f
is holomorphic on X . The algebra of functions holomorphic on caX is denoted
by O(caX).

For a subalgebra a ⊂ �∞(G) we have a monomorphism Oa(X) ↪→ O(caX) (see
Proposition 5.1 below) which is an isomorphism if a is self-adjoint (in this case we
can work with algebra O(caX) instead of Oa(X)). See [15] for the description of
the complex-analytic structure on caX .
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Analogously to Definition 2.2, we define holomorphic functions on open subsets
of caX and thus obtain the structure sheaf O := OcaX of germs of holomorphic
functions on caX . Now, a coherent sheaf A on caX is a sheaf of modules over O
such that every point in caX has a neighbourhood U over which, for every N ≥ 1,
there is a free resolution of A of length N , i.e., an exact sequence of sheaves of
modules of the form

(2.2) OmN |U
ϕN−1�� · · ·

ϕ2 ��Om2 |U
ϕ1 ��Om1 |U

ϕ0 ��A|U �� 0

(here ϕi, 0 ≤ i ≤ N − 1, are homomorphisms of sheaves of modules). If X = X0

and p = Id, then this definition gives the classical definition of a coherent sheaf on
a complex manifold X0.

Let X0 be a Stein manifold, A a coherent sheaf on caX .

Theorem 2.3 ([15]). Each stalk xA (x ∈ caX) is generated by global sections of A
over caX as an xO-module (“Cartan-type Theorem A”).

Theorem 2.4 ([15]). Čech cohomology groups Hi(caX,A) = 0 for all i ≥ 1
(“Cartan-type Theorem B”).

The collection of open subsets of X of the form V = ι−1(U), where U ⊂ caX
is open, determines a topology on X , denoted by Ta, which is Hausdorff if and
only if a separates points of G. (A basis of Ta consists of interiors of sublevel sets
of functions in Ca(X).) If algebra a is self-adjoint, we define spaces of continuous
and holomorphic a-functions on V = ι−1(U) ∈ Ta by

(2.3) Ca(V ) := ι∗C(U), Oa(V ) := ι∗O(U).

Thus, if V = X , U = caX , we obtain algebrasCa(X), Oa(X) as defined in Section 1
and Definition 1.1 (for holomorphic functions this is proved in Proposition 2.3 (2)
of [15]; for continuous functions the argument is similar to the one in the proof of
the latter proposition).

For subsets V,W ∈ Ta we denote

Oa(V,W ) :=
{
f ∈ C(V,W ) : f∗h ∈ Oa(V ) for all h ∈ Oa(W )

}
.

In Subsections 2.2, 2.3 and 2.4 we assume that algebra a is self-adjoint.

2.2. Complex a-submanifolds and their properties

We now formulate the results on complex submanifolds determined by holomorphic
a-functions, the corresponding tubular neighbourhood theorem, and the result on
interpolation within Oa(X). We will need:

Definition 2.5. An open cover V of X is said to be of class (Ta) if it is the pullback
by ι of an open cover of caX (e.g., V = p−1(V0), where V0 is an open cover of X0

is of class (Ta)).
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It is easy to see that any open cover of X by sets in Ta is a subcover of an open
cover of X of class (Ta).

Definition 2.6. A closed subset Z ⊂ X is called a complex a-submanifold of
codimension k ≤ n := dimCX0 if there exists an open cover V of X of class (Ta)
such that for each V ∈ V the closure of p (V ) is compact and contained in a
coordinate chart on X0 and either V ∩ Z = ∅ or there are functions h1, . . . , hk ∈
Oa(V ) that satisfy:

(1) Z ∩ V =
{
x ∈ V : h1(x) = · · · = hk(x) = 0

}
;

(2) the maximum of moduli of determinants of all k × k submatrices of the
Jacobian matrix of the map x �→

(
h1(x), . . . , hk(x)

)
with respect to local

coordinates on V pulled back from a coordinate chart on X0 containing the
closure of p (V ) is uniformly bounded away from zero on Z ∩ V .

Some examples of complex a-submanifolds are given in Subsection 3.4 below.
We have analogues of Cartan-type theorems 2.3 and 2.4 on complex a-subma-

nifolds, see Subsection 5.3 and Theorems 5.11, 5.12 below.

Theorem 2.7 (Characterization of complex a-submanifolds). Suppose that X0

is a Stein manifold. Then a closed subset Z ⊂ X is a complex a-submanifold
of codimension k ≤ n if and only if there exist an at most countable collection
of globally defined functions fi ∈ Oa(X), i ∈ I, and an open cover V of X of
class (Ta) such that

(i) Z = {x ∈ X : fi(x) = 0 for all i ∈ I},

(ii) for each V ∈ V the closure p (V ) is compact and contained in a coordinate
chart on X0, and either V ∩ Z = ∅ or there are functions fi1 , . . . fik such
that Z ∩ V = {x ∈ V : fi1 = · · · = fik = 0} and the maximum of moduli
of determinants of all k × k submatrices of the Jacobian matrix of the map
x �→

(
fi1(x), . . . , fik(x)

)
with respect to local coordinates on V pulled back

from a coordinate chart on X0 containing the closure of p (V ) is uniformly
bounded away from zero on Z ∩ V .

We prove Theorem 2.7 in Section 9.

Definition 2.8. A function f ∈ O(Z) on a complex a-submanifold Z ⊂ X is
called a holomorphic a-function if it admits an extension to a function in Ca(X).

The subalgebra of holomorphic a-functions on Z is denoted by Oa(Z).
Alternatively, subalgebra Oa(Z) can be defined in terms of a-currents, see Sub-

section 4.1.

We have the following analogue of the classical tubular neighbourhood theorem:

Theorem 2.9. Let X0 be a Stein manifold, Z ⊂ X be a complex a-submanifold.
Then there exist an open in topology Ta neighbourhood Ω ⊂ X of Z and a family
of maps ht ∈ Oa(Ω,Ω) continuously depending on t ∈ [0, 1] such that

ht|Z = IdZ for all t ∈ [0, 1], h0 = IdΩ and h1(Ω) = Z.
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Theorem 2.9 gives a linear extension operator h∗1 : Oa(Z) → Oa(Ω), f �→ h∗1f .
Using Theorem 2.4 we prove the following interpolation result.

Theorem 2.10. Suppose X0 is a Stein manifold, Z ⊂ X is a complex a-subma-
nifold, and f ∈ Oa(Z). Then there is F ∈ Oa(X) such that F |Z = f .

We prove Theorems 2.9 and 2.10 in Section 9.

Example 2.11. Suppose that Z1, Z2 ⊂ T := Rn + iΩ ⊂ Cn (where Ω ⊂ Rn

is open and convex) are non-intersecting smooth complex hypersurfaces that are
periodic, possibly with different periods, with respect to the usual action of Rn

on T by translations. Suppose also that the Euclidean distance dist(Z1, Z2) > 0.
Let f1 ∈ O(Z1), f2 ∈ O(Z2) be holomorphic functions periodic with respect to
these periods. The union Z1 ∪ Z2 is a complex almost periodic submanifold of T
in the sense of Definition 2.6 (cf. Example 1.2), and so by Theorem 2.10 there is a
holomorphic almost periodic function F ∈ OAP (T ) such that F |Zi = fi, i = 1, 2.

2.3. Holomorphic line a-bundles and their divisors

This subsection describes our results on a-divisors.

Let Z ⊂ X be a complex submanifold. Recall that a continuous line bundle L
on Z is given by an open cover {Uα} of Z and nowhere zero functions dαβ ∈
C(Uα ∩ Uβ) (where dαβ := 1 if Uα ∩ Uβ = ∅) satisfying the 1-cocycle conditions:

∀α, β dαβ = d−1
βα on Uα ∩ Uβ ,(2.4)

∀α, β, γ dαβ dβγ dγα = 1 on Uα ∩ Uβ ∩ Uγ �= ∅.(2.5)

If all dαβ ∈ O(Uα ∩ Uβ), then L is called a holomorphic line bundle.
In a standard way one defines continuous and holomorphic line bundles mor-

phisms (see, e.g., [37]). The categories of continuous and holomorphic line bundles
on Z are denoted by Lc(Z) and L(Z), respectively.

An effective (Cartier) divisor E on Z is given by an open cover {Uα} of Z and
not identically zero on open subsets of Uα functions fα ∈ O(Uα) such that

(2.6) ∀α, β fα = dαβfβ on Uα ∩ Uβ for some dαβ ∈ O(Uα ∩ Uβ ,C \ {0}).

Clearly, holomorphic 1-cocycle {dαβ} determines a holomorphic line bundle de-
noted by LE .

The collection of effective divisors on Z is denoted by Div(Z).
DivisorsE = {(Uα, fα)} and E′ = {(Vβ , gβ)} in Div(Z) are said to be equivalent

(in Div(Z)) if there exists a refinement {Wγ} of both covers {Uα} and {Vβ} and
nowhere zero functions pγ ∈ O(Wγ) such that

(2.7) fα|Wγ = pγ · gβ |Wγ for Wγ ⊂ Uα ∩ Vβ .

If divisors E, E′ are equivalent, then their line bundles LE, LE′ are isomorphic.

Now, let Z ⊂ X be either a complex a-submanifold or X itself.
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Definition 2.12. An open cover of Z is said to be of class (Ta) if it is the pullback
by ι of an open cover of the closure of ι(Z) in caX (cf. Definition 2.5).

Definition 2.13. A continuous line bundle L on Z is called an a-bundle if, in its
definition (see (2.4) and (2.5)),

(1) {Uα} is of class (Ta),
(2) ∀α, β dαβ ∈ Ca(Uα ∩ Uβ).

If all dαβ ∈ Oa(Uα ∩ Uβ), then L is called a holomorphic line a-bundle.

The categories of continuous and holomorphic line a-bundles on Z are denoted
by Lca(Z) and La(Z), respectively.

Definition 2.14. A divisor E ∈ Div(Z) is called an effective a-divisor if, in its
definition (see (2.6)),

(1) {Uα} is of class (Ta),
(2) ∀α fα ∈ Oa(Uα),

(3) ∀α, β fα = dαβfβ on Uα ∩ Uβ for some dαβ ∈ Oa(Uα ∩ Uβ).

The collection of a-divisors is denoted by Diva(Z).
By the definition the line bundle LE of an a-divisor E is a holomorphic line

a-bundle.

Definition 2.15. a-divisors E = {(Uα, fα)} and E′ = {(Vβ , gβ)} are said to be
a-equivalent if, in the above definition of equivalence in Div(Z) (see (2.7)),

(1) {Wγ} is of class (Ta),
(2) ∀γ pγ , p−1

γ ∈ Oa(Wγ).

If divisors E and E′ are a-equivalent, then their line bundles LE and LE′ are
isomorphic in La(Z).

For some algebras a (e.g., algebras of holomorphic almost periodic functions,
see Example 1.2 and Subsection 3.2) a-divisors can be equivalently defined in terms
of their currents of integration, see Subsection 4.3.

The basic example of an a-divisor is divisor Ef of a function f ∈ Oa(Z), called
an a-principal divisor. There are, however, divisors in Diva(Z) that are not a-
principal (see Subsection 3.4 (4)); because the Čech cohomology groupH2(ι(Z),Z),
where ι(Z) is the closure of ι(Z) in caX , whose elements measure deviations of
a-divisors on X from being a-principal is in general non-trivial (see the proof of
Theorem 2.20 for details). This naturally leads to the following question, first
considered in [21] in the case of holomorphic almost periodic functions:

Suppose that X0 is Stein and H2(Z,Z) = 0. Does there exist a class of functions
Ca ⊂ O�∞(Z), �∞ := �∞(G), such that for each function from Ca its divisor is
equivalent (in Div�∞(Z)) to a divisor in Diva(Z), and conversely, every divisor in
Diva(Z) is equivalent to a principal divisor determined by a function in Ca?
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If Z = X = {z ∈ C : a < Im(z) < b} and a = AP (Z) (see Example 1.2), then
it was established in [21] that the class

CAP =
{
f ∈ O(Z) : |f | ∈ CAP (Z)

}
satisfies this property. (The proof in [21] uses some properties of almost periodic
currents.) In Proposition 2.19 we extend this result to a-divisors defined on certain
one-dimensional complex manifolds Z. In turn, the results in [19] show that for
the algebra of holomorphic almost periodic functions OAP (Z) on a tube domain
Z ⊂ Cn with n > 1 (see Example 1.2) the functions in CAP determine only a
proper subclass of almost periodic (i.e., AP -) divisors and provide a complete
description of this subclass. Using our sheaf-theoretic approach we extend this
result in Theorem 2.18 and Proposition 2.19 below.

To formulate the results we require:

Definition 2.16. A line bundle L ∈ La(Z) is called a-semi-trivial if there exists an
isomorphism ψ in category L�∞(Z) of L onto the trivial line bundle L0 ∈ L�∞(Z)
such that |ψ|2 := ψ⊗ ψ̄ is an isomorphism in category Lca(Z) of L⊗ L̄ onto L0⊗ L̄0.

(Here L̄ is the bundle defined by complex conjugation of fibres of L.)

This definition is related to the question raised above via the following result
(where we do not assume that X0 is Stein).

Theorem 2.17. If the line bundle LE of an a-divisor E is a-semi-trivial, then E
is �∞-equivalent to divisor Ef ∈ Div(Z) of a function f ∈ O(Z) with |f | ∈ Ca(Z).

Suppose that a is such that Ĝa is a compact topological group and j(G) ⊂ Ĝa

is a dense subgroup. Then for Z = X the converse holds:

If E ∈ Diva(X) is �∞-equivalent to Ef ∈ Div(X) with |f | ∈ Ca(X), then LE
is a-semi-trivial.

The second statement of the theorem is valid, e.g., for a = AP (G), the algebra
of von Neumann almost periodic functions on the deck transformation group G,
see Example 3.1 (2) below. In this case Ĝa := bG, the Bohr compactification of G.

Now, we characterize the class of a-semi-trivial holomorphic line a-bundles.

Theorem 2.18. Suppose X0 is a Stein manifold. A line bundle L ∈ La(Z) is
a-semi-trivial if and only if

(1) L is isomorphic in category La(Z) to a discrete line a-bundle L′ (i.e., a
bundle determined by a locally constant cocycle), and

(2) L′ is trivial in the category of discrete line bundles on Z.

The argument in the proof of Theorem 2.18 implies that if the line bundle LE of
an a-divisorE satisfies condition (1) only, then the current of integration associated
with E (see Subsection 4.3) coincides with i

π ∂∂̄ log h, where h is a nonnegative
continuous plurisubharmonic a-function on Z.



Algebras of holomorphic functions 1177

Proposition 2.19. Suppose X0 is a Stein manifold and Z ⊂ X is one-dimensio-
nal. Then for a line bundle L∈La(Z) condition (1) of Theorem 2.18 is satisfied.
If also H1(Z,C) = 0, then condition (2) is satisfied as well.

In particular, conditions (1) and (2) of Theorem 2.18 are satisfied if Z = X is
the universal covering of a non-compact Riemann surface X0 and a ⊂ �∞

(
π1(X0)

)
is a self-adjoint closed subalgebra.

The second Cousin problem for algebra Oa(X) asks about conditions for a
divisor in Diva(X) to be a-principal. Our next result provides some sufficient
conditions for its solvability.

Theorem 2.20. Let X0 be a Stein manifold and E ∈ Diva(X). If X0 is homotopy
equivalent to an open subset Y0 ⊂ X0 such that the restriction of E to Y := p−1(Y0)
is a-equivalent to an a-principal divisor, then E is a-equivalent to an a-principal
divisor as well.

In particular, the above conditions are satisfied if a is such that Ĝa is a compact
topological group and j(G) ⊂ Ĝa is a dense subgroup, and supp(E) ∩ Y = ∅; here
supp(E) is the union of zero loci of holomorphic functions determining E.

For the algebra of Bohr’s holomorphic almost periodic functions with X and Y
being tube domains and a = AP (Zn) (see Example 1.2) this theorem is due to [21]
(n = 1) and [18] (n ≥ 1). The proof in [21] uses Arakelyan’s theorem and gives
an explicit construction of a holomorphic almost periodic function that determines
the principal divisor. Similarly to [18] our proof of Theorem 2.20 is sheaf-theoretic.

The proofs of Theorems 2.17, 2.18, 2.20 and Proposition 2.19 are given in
Section 10.

2.4. Uniqueness sets for holomorphic a-functions

A classical result by H. Bohr states that if a holomorphic function f on a complex
strip T := {z ∈ C : Im(z) ∈ (a, b)}, bounded on closed substrips, is continuous
almost periodic on a horizontal line R+ ic, c ∈ (a, b), then f is holomorphic almost
periodic on T . In this subsection we extend this result to algebras Oa(X).

The regular covering p : X → X0 is a principal fibre bundle over X0 with
structure group G, hence, for a cover {U0,γ} of X0 by open simply connected
subsets there exists a locally constant cocycle {cδγ : U0,γ ∩ U0,δ → G} such that
the covering p : X → X0 is obtained from the disjoint union �γU0,γ × G by the
identification

(2.8) U0,δ ×G � (x, g) ∼ (x, g · cδγ(x)) ∈ U0,γ ×G for all x ∈ U0,γ ∩ U0,δ,

where projection p is induced by the projections U0,γ ×G→ U0,γ (see, e.g., [37]).
Local inverses ψγ : p−1(U0,γ) → U0,γ ×G to the identification map form a system
of biholomorphic trivializations of the covering. For a given subset S ⊂ G denote

Πγ(U0,γ , S) := ψ−1
γ (U0,γ × S).



1178 A. Brudnyi and D. Kinzebulatov

Now, let U0 ⊂ X0 be an open simply connected set contained in some U0,γ∗ ,
Z0 ⊂ U0 be a uniqueness set for holomorphic functions in O(X0), and subsets
L ⊂ K ⊂ G be such that the closure of j(L) in Ĝa is contained in the interior of
the closure of j(K) in Ĝa (see Subsection 2.1 for notation) and ∪mi=1 L · gi = G for
some g1, . . . , gm ∈ G.

Consider Z ⊂ X such that

p−1(Z0) ∩ Πγ∗(U0,K) ⊂ Z.

(In particular, we can take L = K := G and Z := p−1(Z0).)
We define Ca(Z) := Ca(X)|Z .

Theorem 2.21. If f ∈ O�∞(G)(X) and f |Z ∈ Ca(Z), then f ∈ Oa(X).

We prove Theorem 2.21 in Section 11.

Remark 2.22. (1) As an example of the uniqueness set Z0 in Theorem 2.21
we can take any real hypersurface in X0 or, more generally, a set of the form
{x ∈ X0 : ρ1(x) = · · · = ρd(x) = 0}, where ρ1, . . . , ρd are real-valued differentiable
functions on X0 and ∂ρ1(x0) ∧ · · · ∧ ∂ρd(x0) �= 0 for some x0 ∈ Z0 (see, e.g., [3]).

(2) In the settings of the classical Bohr theorem the choice of the objects in
Theorem 2.21 can be specified (recall that if a = AP (G), then Ĝa is a compact
topological group, cf. Example 3.3(2) in [15]):

Proposition 2.23. Suppose that a is such that Ĝa is a compact topological group
and j(G) ⊂ Ĝa is a dense subgroup. Given K ⊂ G the following conditions are
equivalent:

(a) There exist g1, . . . , gm ∈ G such that
⋃m
i=1 K · gi = G;

(b) The closure of j(K) in Ĝa has a nonempty interior;

(c) There exists a subset L ⊂ K satisfying conditions of Theorem 2.21.

The proof of Proposition 2.23 is given in Section 11.
Thus, for such algebras a one can take as the set K in Theorem 2.21, e.g., any

nonempty subset of the form {g ∈ G : |f(g)| < 1, f ∈ a}. For instance, in Bohr’s
result the line R+ ic can be replaced with a set S +K, where S � T is an infinite
set (hence, it is a uniqueness set for O(T )) and K := {n ∈ Z : |E(n)| < 1} �= ∅,
where E is a univariate exponential polynomial of form (1.1).

2.5. Leray, Hartogs and Peter–Weil-type theorems for algebras Oa(X)

In this subsection we do not assume that algebra a is self-adjoint.

1. The following discussion suggests an alternative approach to study ofOa(X).
Namely, we have an equivalent presentation of functions in Oa(X) as holomorphic
sections of a holomorphic Banach vector bundle p̃ : CaX0 → X0 associated to the
principal fibre bundle p : X → X0 and having fibre a defined as follows.
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The regular covering p : X → X0 is a principal fibre bundle with structure
group G (see Subsection 2.4). Then p̃ : CaX0 → X0 is a holomorphic Banach
vector bundle associated to p : X → X0 and having fibre a obtained from the
disjoint union �γU0,γ × a by the identification

(2.9) U0,δ × a � (x, f) ∼ (x,Rcδγ (x)(f)) ∈ U0,γ × a for all x ∈ U0,γ ∩ U0,δ.

The projection p̃ is induced by projections U0,γ × a → U0,γ .
Let O(CaX0) be the space of holomorphic sections of CaX0. This is a Fréchet

algebra with respect to the usual pointwise operations and the topology of uniform
convergence on compact subsets of X0.

Proposition 2.24. Oa(X) ∼= O(CaX0).

We give proof of Proposition 2.24 in Section 12.
Using Proposition 2.24 we obtain the following result on extension within the

class of holomorphic a-functions.

Proposition 2.25. Let M0 be a closed complex submanifold of a Stein manifold
X0, M := p−1(M0) ⊂ X, D0 � X0 is Levi strictly pseudoconvex (see, e.g., [34]),
D := p−1(D0), and f ∈ Oa(M ∩ D) is bounded. Then there exists a bounded
function F ∈ Oa(D) such that F |M∩D = f |M∩D.

Indeed, subalgebraOa(M) is isomorphic to the algebraO(CaX)|M0 of holomor-
phic sections of bundle CaX over M0. Since X0 is Stein, there exist holomorphic
Banach vector bundles p1 : E1 → X0 and p2 : E2 → X0 having complex Banach
spaces B1 and B2 as their fibres, respectively, such that E2 = E1⊕CaX0 (the Whit-
ney sum) and E2 is holomorphically trivial, i.e., E2

∼= X0 × B2 (see, e.g., [55]).
Thus, any holomorphic section of E2 can be naturally identified with a B2-valued
holomorphic function on X0. By q : E2 → CaX0 and i : CaX0 → E2 we denote
the corresponding quotient and embedding homomorphisms of the bundles so that
q ◦ i = Id. (Similar identifications hold for the bundle CaD0.) Given a function
f ∈ O(CaX0)|M0 consider its image f̃ := i(f), a B2-valued holomorphic function
on M0, and apply to it the integral representation formula from [35] asserting the
existence of a bounded function F̃ ∈ O(D0, B2) such that F̃ |M0∩D0 = f̃ |M0∩D0 .
Finally, we define F := q(F̃ ).

In fact, this method allows to obtain similar extension results for holomorphic
functions on X whose restrictions to each fibre belong to some Banach space, and
are possibly unbounded, see [8].

In view of Proposition 2.25, it is natural to ask to what extent Theorems 2.3,
2.4 and 2.10 depend on the assumption that the subalgebra a is self-adjoint.

2. Next, we show that the classical Leray integral representation formula can
be extended to work within subalgebra Oa(X).

For a given z ∈ X0 by az we denote the subalgebra of functions h : p−1(z) → C

such that for all x ∈ p−1(z) functions G � g �→ h(g · x) are in a, endowed with
sup-norm. Clearly, az is isometrically isomorphic to a.
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Let
D0 � X0 be a subdomain and D := p−1(D0).

We denote
Aa(D) := Ca(D̄) ∩ Oa(D)

(see Section 1 for definitions). This is a Banach space with respect to sup-norm.

Theorem 2.26. Let X0 be a Stein manifold and D0, D be as above. There is a
family of bounded linear operators Lz : az → Aa(D), z ∈ D0, holomorphic in z and
such that

(1) Lz(h)(x) = h(x) for all h ∈ az, x ∈ p−1(z);

(2) supz∈D0
‖Lz‖ <∞.

We prove Theorem 2.26 in Section 12.

Now, let us recall the classical Leray integral representation formula. For ξ, η ∈
Cn we define 〈η, ξ〉 :=

∑n
k=1 ηjξj and

ω(ξ) := dξ1 ∧ · · · ∧ dξn,

ω′(η) :=
n∑
k=1

(−1)k−1ηkdη1 ∧ · · · ∧ dηk−1 ∧ dηk+1 ∧ · · · ∧ dηn.

For a domain D0 � Cn we set Q := D0 × Cn. Fix z ∈ D0 and define a
hypersurface Pz ⊂ Q by

Pz :=
{
(η, ξ) ∈ Q : 〈η, ξ − z〉 = 0

}
.

Let hz be a 2n − 1-dimensional cycle in Q \ Pz whose projection to D0 is
homologous to ∂D0.

Leray integral representation formula (see, e.g., [35]). For any function f ∈
O(D0),

(2.10) f(z) =
(n− 1)!

(2πi)n

∫
hz

f(ξ)
ω′(η) ∧ ω(ξ)
〈η, ξ − z〉n .

Interpreting z �→ Lz
(
f |p−1(z)

)
, z ∈ D0, f ∈ Oa(D), in Theorem 2.26 as an

Aa(D)-valued holomorphic function on D0 and using the fact that representa-
tion (2.10) is valid for Banach-valued holomorphic functions (because the integral
kernel in this formula is continuous and bounded on hz) we obtain:

Theorem 2.27 (Leray-type integral representation formula). Let X0 ⊂ Cn be a
Stein domain and D0 � X0 be a subdomain. Then for any function f ∈ Oa(D),

(2.11) f(x) =
(n− 1)!

(2πi)n

∫
hz

Lξ
(
f |p−1(ξ)

)
(x)

ω′(η) ∧ ω(ξ)
〈η, ξ − z〉n , for all x ∈ p−1(z).

A similar formula for functions in O�∞(D) was first established in [8].
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3. Similarly to [7], we obtain the following Hartogs-type theorem.

Theorem 2.28. Suppose n := dimCX0 ≥ 2. Let D0 � X0 be a subdomain with a
connected piecewise C1 boundary ∂D0 contained in a Stein open submanifold of X0

and D := p−1(D0). Assume that f ∈ Ca(∂D) satisfies the tangential Cauchy–
Riemann equations on ∂D, i.e., for any smooth (n, n − 2)-form ω on X having
compact support, ∫

∂D

f ∂̄ω = 0.

Then there exists a function F ∈ Oa(D) ∩ C(D̄) such that F |∂D = f .

The proof of Theorem 2.28 is given in Section 12.

In particular, Theorem 2.28 implies that if n ≥ 2, then each continuous almost
periodic function on the boundary ∂T = Rn+i∂Ω of a tube domain T := Rn+iΩ ⊂
Cn, where Ω � Rn is a domain with piecewise-smooth boundary ∂Ω, satisfying the
tangential Cauchy–Riemann equations on ∂T , admits a continuous extension to a
holomorphic almost periodic function in OAP (T ) ∩ C(T̄ ).

4. Now, we extend Bohr’s approximation theorem for holomorphic almost
periodic functions (see Section 1) to an arbitrary subalgebra Oa(X).

Let aι (ι ∈ I) be a collection of closed subspaces of a such that

(1) aι are invariant with respect to the action of G on a by right translates (i.e.,
if f ∈ aι, then Rg(f) ∈ aι for all g ∈ G),

(2) the family {aι : ι ∈ I} forms a direct system ordered by inclusion, and

(3) the linear space a0 :=
⋃
ι∈I aι is dense in a.

The model examples of subspaces aι are given in Subsection 3.5 below.

Let Oι(X) be the space of holomorphic functions f ∈ Oa(X) such that for
every x ∈ X functions

g �→ f(g · x), g ∈ G,

belong to aι. Let O0(X) be C-linear hull of spaces Oι(X) with ι varying over I.

Theorem 2.29. If X0 is a Stein manifold, then O0(X) is dense in Oa(X).

We prove Theorem 2.29 in Section 12.
If a = AP (G) (see Subsections 3.1 (2) and 3.2), then this theorem may be

viewed as a holomorphic analogue of the Peter–Weyl approximation theorem.

3. Examples

3.1. Examples of subalgebras a

In addition to �∞(G), c(G) and AP (Zn) (cf. Section 1), we list the following
examples of self-adjoint subalgebras of �∞(G) separating points of G and invariant
with respect to the action of G by right translations.
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(1) If group G is residually finite (respectively, residually nilpotent), i.e., for
any element t ∈ G, t �= e, there exists a normal subgroup Gt �� t such that G/Gt
is finite (respectively, nilpotent), we consider the closed algebra �̂∞(G) ⊂ �∞(G)
generated by pullbacks to G of algebras �∞(G/Gt) for all Gt as above.

(2) Recall that a (continuous) bounded function f on a (topological) group G
is called almost periodic if the families of its left and right translates

{ t �→ f(st)}s∈G, { t �→ f(ts)}s∈G

are relatively compact in �∞(G) (J. von Neumann [47]). (It was proved in [46] that
the relative compactness of either the left or the right family of translates already
gives the almost periodicity on G.) The algebra of almost periodic functions on G
is denoted by AP (G).

The basic examples of almost periodic functions on G are given by the matrix
elements of the finite-dimensional irreducible unitary representations of G.

Recall that group G is called maximally almost periodic if its finite-dimensional
irreducible unitary representations separate points. Equivalently, G is maximally
almost periodic iff it admits a monomorphism into a compact topological group.

Any residually finite group belongs to this class. In particular, Zn, finite groups,
free groups, finitely generated nilpotent groups, pure braid groups, fundamental
groups of three dimensional manifolds are maximally almost periodic.

We denote by AP0(G) ⊂ AP (G) the space of functions

(3.1) t �→
m∑
k=1

ckσ
k
ij(t), t ∈ G, ck ∈ C, σk = (σkij),

where σk (1 ≤ k ≤ m) are finite-dimensional irreducible unitary representations
of G. The von Neumann approximation theorem [47] states that AP0(G) is dense
in AP (G).

In particular, the algebra AP (Zn) of almost periodic functions on Zn contains
as a dense subset the subalgebra of exponential polynomials t �→

∑m
k=1 cke

i〈λk,t〉,
t ∈ Zn, λk ∈ Rn, m ∈ N. Here 〈λk, ·〉 denotes the linear functional defined by λk.

(3) The algebra APQ(Z
n) of almost periodic functions on Zn with rational

spectra. This is the subalgebra of AP (Zn) generated over C by functions t �→ ei〈λ,t〉

with λ ∈ Qn.

(4) If group G is finitely generated then, in addition to the subalgebra c(G) ⊂
�∞(G) of functions having limits at ‘infinity’, we can define a subalgebra cE(G) ⊂
�∞(G) of functions having limits at ‘infinity’ along each ‘path’.

To make this definition precise, we will need the notion of the end compacti-
fication of a connected and locally connected topological space T that admits an
exhaustion by compact subsets Ki, i ∈ N, whose interiors cover T . Recall that
the set of ends E = ET of space T is the inverse limit of an inverse system of
discrete spaces {π0(T \ Ki)}, where π0(T \ Ki) is the set of connected compo-
nents of T \ Ki, and each inclusion T \ Kj ⊂ T \ Ki, i ≤ j, induces projection
π0(T \Kj) → π0(T \Ki). The end compactification T̄E of T is a compact space
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defined as the disjoint union T �ET endowed with the weakest topology containing
all open subsets of T and all open neighbourhoods of the ends: an open neighbour-
hood of an end e = {ei ∈ π0(T \ Ki) , i ∈ N} is a subset V ⊂ T � ET such that
V ∩ ET and V ∩ T are open in the corresponding topologies and ei ⊂ V ∩ T for
some i ∈ N, see [23].

Now, suppose that group G is finitely generated. By ḠE we denote the end
compactification of the Cayley graph CG of G. Identifying naturally G with the
vertex set of CG we define the subalgebra cE(G) ⊂ �∞(G) of functions admitting
continuous extensions to ḠE . For example, if G = Z, then E = {±∞}, and cE(Z)
consists of functions Z → C having limits at ±∞.

(5) For a finitely generated group G, let SAP (G) ⊂ �∞(G) denote the min-
imal subalgebra containing AP (G) and cE(G). Elements of SAP (G) are called
semi-almost periodic functions (this is a variant of definition in [49] for G = R),
see Example 3.3 below.

(6) Let N be an infinite subgroup of G and N\G be the set of (right) conjugacy
classes. For a given class Nx ∈ N\G endowed with the discrete topology by c(Nx)
we denote the subalgebra of bounded functions Nx→ C that admit extensions to
the one-point compactification of Nx. Let cN (G) ⊂ �∞(G) denote the subalgebra
consisting of functions h such that

h|Nx ∈ c(Nx) for each Nx ∈ N\G.

(Thus, h has limits ‘at infinity’ along each conjugacy class.)
Every function h ∈ cN (G) can be viewed as a bounded function on N\G with

values in Banach algebra c(N), i.e.,

h ∈ �∞(N\G, c(N)).

Instead of �∞(N\G, c(N)) we may consider other Banach algebras of c(N)-valued
functions on N\G, e.g., c(N\G, c(N)), thus obtaining other subalgebras of �∞(G)
satisfying assumptions of Section 1.

3.2. Holomorphic almost periodic functions on coverings of complex
manifolds

In [15] we defined holomorphic almost periodic functions on a regular covering
X → X0 as elements of algebra OAP (X) (see Subsection 3.1 (2) for the defi-
nition of algebra AP = AP (G)). Equivalently, a function f ∈ O(X) is called
holomorphic almost periodic if each G-orbit in X has a neighbourhood U that is
invariant with respect to the (left) action of G, such that the family of translates
{z �→ f(g · z), z ∈ U}g∈G is relatively compact in the topology of uniform conver-
gence on U (see [13] for the proof of the equivalence).

This is a variant of definition in [54], where G is taken to be the group of all
biholomorphic automorphisms of a complex manifold X (see also [53]).

For instance, if X0 is a non-compact Riemann surface and p : X → X0 is a
regular covering with a maximally almost periodic deck transformation group G,
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then functions in OAP (X) arise, e.g., as linear combinations over C of matrix
entries of fundamental solutions of certain linear differential equations on X (see
Subsection 4.4 (2) for details).

We say that the covering p : X → X0 has the Oa-Liouville property if Oa(X)
does not contain non-constant bounded functions.

Recall that a complex manifold X0 is called ultraliouville if there are no non-
constant bounded continuous plurisubharmonic functions on X0 (e.g., connected
compact complex manifolds and their Zariski open subsets are ultraliouville).

According to [44], if X0 is ultraliouville and G is virtually nilpotent (i.e., con-
tains a nilpotent subgroup of finite index), then X has the O�∞-Liouville property.
For holomorphic almost periodic functions on X this result can be strengthened,
see Theorem 2.3 in [13]:

Let p : X → X0 be a regular covering of an ultraliouville complex manifold X0.
Then:

(1) X has the OAP -Liouville property.

(2) Let n ≥ 2, D0 � X0 be a subdomain with a connected piecewise smooth bound-
ary ∂D0 contained in a Stein open submanifold of X0, and D := p−1(D0).
Then X \D has OAP -Liouville property.

For instance, consider the universal covering p : D → C \ {0, 1} of doubly punc-
tured complex plane (here the deck transformation group is free group with two
generators). Although there are plenty of non-constant bounded holomorphic func-
tions on D, all bounded holomorphic almost periodic functions on D corresponding
to this covering are constant because C \ {0, 1} is ultraliouville.

For other properties of algebra OAP (X) see Subsection 4.3 below.

3.3. Holomorphic semi-almost periodic functions

Suppose that group G is finitely generated. Elements of algebra OSAP (X) (see Ex-
ample 3.1 (5)) are called holomorphic semi-almost periodic functions. By Theo-
rem 2.29, the algebra OSAP (X) is generated by subalgebras OAP (X) (see Exam-
ple 3.2) and OcE (X) (see Example 3.1 (4)). In the case T → T0 is a complex strip
covering an annulus T0 (see Example 1.2), algebra OSAP (T ) is related to the sub-
algebra of Hardy algebra H∞(D) of bounded holomorphic functions on the unit
disk D ⊂ C generated by functions whose moduli have only the first-kind boundary
discontinuities (see [14]).

3.4. Examples of complex a-submanifolds

We assume that the subalgebra a is self-adjoint.

(1) If Z0 ⊂ X0 is a complex submanifold of codimension k, then Z := p−1(Z0) ⊂
X is a complex a-submanifold of codimension k.

(2) The disjoint union of a finite collection of complex a-submanifolds Zi of X
separated by functions in Ca(X) (i.e., for each i there is f ∈ Ca(X) such that
f = 1 on Zi and f = 0 on Zj for j �= i) is a complex a-submanifold.
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(3) Let Z0 = {x ∈ X0 : f1(x) = · · · = fk(x) = 0} for some fi ∈ O(X0)
(1 ≤ i ≤ k) be a complex submanifold of X0 of codimension k. Set Z := p−1(Z0).
Further, for an open subset X ′

0 � X0 and functions h1, . . . , hk ∈ Oa(X) we define
X ′ := p−1(X ′

0), δ := supx∈X′ max1≤i≤k |hi(x)|, and

Zh :=
{
x ∈ X : p∗f1(x) + h1(x) = · · · = p∗fk(x) + hk(x) = 0

}
.

Using the inverse function theorem with continuous dependence on parameter
(Theorem 6.2), it is not difficult to see that Zh is a complex a-submanifold of X ′

provided that δ > 0 is sufficiently small.

(4) A complex a-submanifold ofX is called cylindrical if each open set V in Def-
inition 2.6 has form V = p−1(V0) for some open V0 ⊂ X0 (i.e., it is determined by
holomorphic a-functions on preimages by p of open subsets of X0). If all complex
a-submanifolds of X were cylindrical, a much weaker version of Theorem 2.3 would
have sufficed for the proof of the interpolation theorem for Oa(X) (Theorem 2.10).
However, non-cylindrical a-submanifolds do exist: in [13] we constructed a non-
cylindrical a-hypersurface in X in the case a = AP (Z) (see Subsection 3.2) and
p : X → X0 is a regular covering of a Riemann surfaceX0 with deck transformation
group Z. We assumed that X0 has finite type and is a relatively compact subdo-
main of a larger (non-compact) Riemann surface X̃0 whose fundamental group
satisfies π1(X̃0) ∼= π1(X0) (e.g., the covering of Example 1.2 with n = 1, i.e., a
complex strip covering an annulus, is a regular covering of this form).

Let us briefly describe this construction.
The covering X of X0 admits an injective holomorphic map into a holomorphic

fibre bundle over X0 having fibre (C∗)2, C∗ := C \ {0}, defined as follows. First,
note that the regular covering p : X → X0 admits presentation as a principal fibre
bundle with fibre Z, see (2.8). We choose two characters χ1, χ2 : Z → S1 ∼= R/(2πZ)
such that the homomorphism (χ1, χ2) : Z → T2 = S1 × S1 is an embedding with
dense image. Consider the fibre bundle bT2X over X0 with fibre T2 associated
with the principal fibre bundle p : X → X0 via the homomorphism (χ1, χ2). The
bundle bT2X is embedded into a holomorphic fibre bundle b(C∗)2X with fibre (C∗)2

associated with the composite of the embedding homomorphism T2 ↪→ (C∗)2 and
(χ1, χ2). Now, the covering X of X0 admits an injective C∞ map into bT2X
with dense image and the composite of this map with the embedding of bT2X
into b(C∗)2X is an injective holomorphic map X → b(C∗)2X . Further, the bundle
b(C∗)2X admits a holomorphic trivialization η : b(C∗)2X → X0 × (C∗)2. We choose
χ1(1) and χ2(1) so close to 1 ∈ S1 that the image η(bT2X) ⊂ X0 × (C∗)2 is
sufficiently close toX0×T2. Thus identifyingX (by means of holomorphic injection

X ↪→ b(C∗)2X
η→ X0 × (C∗)2) with a subset of X0 × (C∗)2, we obtain that X is

sufficiently close to X0×T2. Next, we construct a smooth complex hypersurface in
X0× (C∗)2 such that in each cylindrical coordinate chart U0× (C∗)2 on X0× (C∗)2

for U0 � X0 simply connected it cannot be determined as the set of zeros of a
holomorphic function on U0 × (C∗)2. Intersecting this hypersurface with X we
obtain a non-cylindrical almost periodic hypersurface in X . (To construct such a
hypersurface in X0×(C∗)2, we determine a smooth divisor in (C∗)2 that has a non-
zero Chern class – i.e., it cannot be given by a holomorphic function on (C∗)2) –,
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and whose support intersects the real torus T2 ⊂ (C∗)2 transversely. Then we take
the pullback of this divisor with respect to the projection X0 × (C∗)2 → (C∗)2 to
get the desired hypersurface.)

3.5. Examples of spaces aι in Theorem 2.29

(1) Let a = �∞(G), I be the collection of all subsets of G ordered by inclusion.
It is easy to verify that given ι ∈ I we can define aι to be the closed linear subspace
spanned by translates {Rg(χι) : g ∈ G} of the characteristic function χι of subset ι.

(2) Let a = AP (Zn) (see Subsection 3.1 (2)). We can take I to be the collection
of all finite subsets of Rn ordered by inclusion and aι(Z

n) := spanC{t �→ ei〈λ,t〉, λ ∈
ι, ι ∈ I, t ∈ Zn}.

We can also consider a = APQ(Z
n), the algebra of almost periodic functions

on Zn having rational spectra (see Subsection 3.1 (3)). Here we take I to be the
collection of all finite subsets of Qn ordered by inclusion and define spaces aι(Z

n)
similarly to the above.

(3) Let a = AP (G) (see Subsection 3.1 (2)) and I consist of finite collections
of finite-dimensional irreducible unitary representations of group G. We define
aι(G), where ι = {σ1, . . . , σm} ∈ I, to be the linear C-hull of matrix elements
σijk ∈ AP (G) of representations σk = (σijk ), 1 ≤ k ≤ m.

4. Comments

4.1. Equivalent definition of holomorphic a-functions

Let Λt,sc (X) denote the space of smooth (t, s)-forms on X with compact supports
endowed with the standard topology (see, e.g., [17]). Recall that continuous linear
functionals on Λt,sc (X) are called (n− t, n− s)-currents.

There is an equivalent definition of holomorphic a-functions on a complex a-
submanifold Z (see Definition 2.8) in terms of currents. Namely, let a be self-
adjoint, then a function f ∈ O(Z) on a complex a-submanifold Z ⊂ X is a holo-
morphic a-function if and only if it is bounded on subsets Z ∩ p−1(U0), U0 � X0,
and the corresponding current cf ,

(4.1) (cf , ϕ) :=

∫
Z

fϕ, ϕ ∈ Λm,mc (X), m := dimC Z,

is an a-current meaning that for each ϕ the function G � g �→
(
cf , ϕg

)
belongs

to algebra a; here ϕg(x) := ϕ(g · x) (x ∈ X). (The proof follows an argument in
Proposition 2.4 of [19].)

In the setting of Example 1.2 (holomorphic almost periodic functions on tube
domains) almost periodic currents were studied, e.g., in [22] (see further references
therein).
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4.2. Cylindrical a-divisors

The class of a-principal divisors is contained in a larger class of cylindrical a-
divisors, i.e., a-divisors determined by functions fα ∈ Oa(Uα) with Uα = p−1(U0,α)
for some open U0,α ⊂ X0 (see Definition 2.14).

If covering dimension of the maximal ideal space Ma of a is zero, then ev-
ery a-divisor is a-equivalent to a cylindrical a-divisor (the latter follows from an
equivalent definition of a-divisors as divisors on fibrewise compactification caX ,
see [13]). In particular, all �∞-, �̂∞(G)- (for a residually finite group G), APQ-

divisors (see (1) and (3) in Subsection 3.1) are �∞-, �̂∞(G)-, APQ-equivalent to
cylindrical divisors (see Examples 3.3 (3) and 3.3 (4) in [15]). There are, however,
non-cylindrical AP -divisors, see Subsection 4.4 in [13].

For an a-divisor E on X , Theorem 2.20 implies the following:

(a) If there exists a function f ∈ Oa(U), where U = p−1(U0), U0 ⊂ X0 is open,
such that E|U is determined by f , then E is a-equivalent to a cylindrical
divisor (see the argument in the proof of Theorem 2.20).

(b) If a = AP (G) and E is not a-equivalent to a cylindrical a-divisor, then the
projection of supp(E) to X0 is dense (the converse is not true, see Subsec-
tion 3.4 (4)).

4.3. Almost periodic divisors

We use notation introduced in Subsection 4.1. Let TE be the current of integration
of a divisor E ∈ Div(X), i.e.,

(TE , ϕ) :=

∫
E

ϕ, ϕ ∈ Λn−1,n−1
c (X)

(see, e.g., [17]). One can prove that if E ∈ DivAP (X), then current TE is almost
periodic. Conversely, if the current of integration TE of a divisor E ∈ Div(X) is
almost periodic, then E is equivalent to an AP -divisor.

4.4. Approximation of holomorphic almost periodic functions

(1) Let O0(T ) ⊂ OAP (Zn)(T ) be a subspace determined by the choice of spaces
aι = aι(Z

n) (ι ∈ I) as in Subsection 3.5 (2). We show that exponential polynomials,
see (1.1), are dense in O0(T ).

We denote eλ(t) := ei〈λ,t〉 (λ ∈ Rn, t ∈ Zn). Clearly, eλ ∈ O{λ}(T ). Now,
let ι = {λ1, . . . , λm}. Since functions eλk

(1 ≤ k ≤ m) are linearly indepen-
dent in aι, there exist linear projections pι,λk

: aι → a{λk}. Since projections pι,λk
,

1 ≤ k ≤ m, are invariant with respect to the action ofG on itself by right translates,
they determine projections Pι,λk

: Oι(T ) → O{λk}(T ). (The latter follows, e.g.,
from the presentation of functions in OAP (T ) as sections of holomorphic Banach
vector bundle CAPX0, see (2.9), where projections Pι,λk

become bundle homo-
morphisms CaιX0 → Ca{λk}X0.) Therefore, there exist functions fλk

∈ O{λk}(T ),
fλk

:= Pι,λk
(f), 1 ≤ k ≤ m, such that f(z) =

∑m
k=1 fλk

(z), z ∈ T . It is easy to see
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that for each fλk
there exists a function hλk

∈ O(T0) such that fλk
/eλk

= p∗hλk
;

hence,

(4.2) f(z) =
m∑
k=1

(p∗hλk
)(z)ei〈λk,z〉, z ∈ T.

Since the base T0 of the covering is a relatively compact Reinhardt domain, func-
tions hλk

admit expansions into Laurent series (see, e.g., [50]):

hk(z) =

∞∑
|α|=−∞

bαz
α, z ∈ T0, bt ∈ C,

where α = (α1, . . . , αn) is a multiindex, |α| := α1 + · · · + αn. Since p (z) =(
eiz1 , . . . , eizn

)
, z = (z1, . . . , zn) ∈ T (see Example 1.2), each p∗hλk

admits an
approximation by finite sums

(4.3)
M∑

|α|=−M
bαe

i〈α,z〉, z ∈ T,

converging uniformly on subsets p−1(W0) ⊂ T , W0 � T0. Together with (4.2) this
implies that exponential polynomials (1.1) are dense in O0(T ).

A similar argument shows that the algebra of holomorphic almost periodic func-
tions with rational spectra (whose elements admit approximations by exponential
polynomials (1.1) with λk ∈ Qn) coincides with algebra OAPQ

(T ) (see Subsec-
tion 3.1 (3)).

(2) LetX0 be a non-compact Riemann surface, p : X → X0 be a regular covering
with a maximally almost periodic deck transformation group G (for instance, X0

is hyperbolic, X = D is its universal covering and G = π1(X0) is a free (not
necessarily finitely generated) group). Functions in OAP (X) (see Subsection 3.2)
arise, e.g., as linear combinations over C of matrix entries of fundamental solutions
of certain linear differential equations on X .

Indeed, let UG be the set of finite dimensional irreducible unitary representa-
tions σ : G → Um (m ≥ 1), I be the collection of finite subsets of UG directed
by inclusion, and for each ι ∈ I let APι(G) be the (finite-dimensional) subspace
generated by matrix elements of the unitary representations σ ∈ ι. Then by The-
orem 2.29 the C-linear hull O0(X) of spaces Oι(X) is dense in Oa(X) (note that
for each σ ∈ UG the space O{σ}(X) is the C-linear hull of coordinates of vector-
valued functions f in O(X,Cm) having the property that f(g · x) = σ(g)f(x) for
all g ∈ G, x ∈ X). Now, a unitary representation σ : G → Um, m ≥ 1, can be ob-
tained as the monodromy of the system dF = ωF on X0, where ω is a holomorphic
1-form on X0 with values in the space of m ×m complex matrices Mm(C) (see,
e.g., [24]). In particular, the system dF = (p∗ω)F on X admits a global solution
F ∈ O

(
X,GLm(C)

)
such that F ◦ g−1 = Fσ(g) (g ∈ G). By definition, a linear

combination of matrix entries of F is an element of OAP (X).
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4.5. Approximation property

Recall that a (complex) Banach space B is said to have the approximation property
if for every compact set K ⊂ B and every ε > 0 there is a bounded operator
T = Tε,K ∈ L(B,B) of finite rank so that

‖Tx− x‖B < ε for every x ∈ K.

For example, space AP (G) of almost periodic functions on a group G (see Subsec-
tion 3.1 (2)) has the approximation property with (approximation) operators T in
L(AP (G), AP0(G)) (see, e.g., an argument in [51]).

In Subsection 2.5 suppose additionally to conditions (1)–(3) that

(4) the spaces aι, ι ∈ I, are finite-dimensional, and

(5) the space a has the approximation property with approximation operators
S ∈ L(a, a0) equivariant with respect to the action of G on a by right trans-
lations, i.e., S

(
Rg(f)

)
= Rg

(
S(f)

)
for all f ∈ a, g ∈ G.

One can show that if X0 is a Stein manifold and D0�X0 is a strictly pseudo-
convex domain, then the Banach space Aa(D) := Oa(D) ∩ Ca(D̄), D :=p−1(D0),
has the approximation property with approximation operators in L

(
Aa(D),A0(D)

)
(here A0(D) is defined similarly to O0(D) in Theorem 2.29).

5. Structure of fibrewise compactification caX

In the present section we show that if algebra a is self-adjoint, then there is an iso-
morphism between Fréchet algebras O(caX) (cf. Section 2) and Oa(X); therefore,
complex function theories within Oa(X) and O(caX) are equivalent.

We refer to Sections 8 and 13 for the proofs of the results formulated in the
present section.

5.1. Complex structure

A function f ∈ C(U) on an open subset U ⊂ caX is called holomorphic, i.e.,
belongs to the space O(U), if ι∗f is holomorphic on V := ι−1(U) ⊂ X in the usual
sense (see Subsection 2.1 for notation).

Proposition 5.1. If a is self-adjoint, then Ca(V ) ∼= C(U) and Oa(V ) ∼= O(U).

Let U0 ⊂ X0 be open. A function f ∈ C(U) on an open subset U ⊂ U0 × Ĝa

is called holomorphic if the function j̃∗f , where j̃ := Id × j : U0 ×G → U0 × Ĝa,
is holomorphic on the open subset j̃−1(U) of the complex manifold U0 × G (see
Subsection 2.1 for the definition of the map j).

For sets U as above, by O(U) we denote the algebra of holomorphic functions
on U endowed with the topology of uniform convergence on compact subsets of U .
Clearly, f ∈ C(caX) belongs to O(caX) if and only if each point in caX has an
open neighbourhood U such that f |U ∈ O(U).

By OU we denote the sheaf of germs of holomorphic functions on U .
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The categoryM of ringed spaces of the form (U,OU ), where U is either an open
subset of caX and X is a regular covering of a complex manifold X0 or an open
subset of U0 × Ĝa with U0 ⊂ X0 open, contains in particular complex manifolds.

Definition 5.2. A morphism of two objects in M, that is, a map F ∈ C(U1, U2),
where (Ui,OUi) ∈ M, i = 1, 2, such that F ∗OU2 ⊂ OU1 , is called a holomorphic
map.

The collection of holomorphic maps F : U1 → U2, (Ui,OUi) ∈ M, i = 1, 2, is
denoted by O(U1, U2). If F ∈ O(U1, U2) has inverse F−1 ∈ O(U2, U1), then F is
called a biholomorphism.

Further, over each simply connected open subset U0 ⊂ X0 there exists a bi-
holomorphic trivialization ψ = ψU0 : p

−1(U0) → U0 × G of covering p : X → X0

which is a morphism of fibre bundles with fibre G (see Subsection 2.4). Then there
exists a biholomorphic trivialization ψ̄ = ψ̄U0 : p̄−1(U0) → U0 × Ĝa of bundle caX
over U0 which is a morphism of fibre bundles with fibre Ĝa such that the following
diagram:

p−1(U0)

U0 ×G

ψ

��

p−1(U0) p̄−1(U0)
ι �� p̄−1(U0)

U0 × Ĝa

ψ̄

��
U0 ×G U0 × Ĝa

Id×j ��

is commutative.
For a given subset S ⊂ G we denote

(5.1) Π(U0, S) := ψ−1(U0 × S)

and identify Π(U0, S) with U0 × S where appropriate (here Π(U0, G) = p−1(U0)).
For a subset K ⊂ Ĝa we denote

(5.2) Π̂(U0,K)
(
= Π̂a(U0,K)

)
:= ψ̄−1(U0 ×K).

A pair of the form (Π̂(U0,K), ψ̄) will be called a coordinate chart for caX . Simi-
larly, sometimes we identify Π̂(U0,K) with U0 ×K. If K ⊂ Ĝa is open, then, by
our definitions, ψ̄∗ : O(U0×K) → O(Π̂(U0,K)) is an isomorphism of (topological)
algebras.

5.2. Basis of topology on caX

By Q we denote the basis of topology of Ĝa consisting of sets of the form

(5.3)
{
η ∈ Ĝa : max

1≤i≤m
|hi(η)− hi(η0)| < ε

}

for all η0 ∈ Ĝa, h1, . . . , hm ∈ C(Ĝa), and ε > 0.
The fibrewise compactification caX is a paracompact Hausdorff space (as a

fibre bundle with a paracompact base and a compact fibre); thus, caX is a normal
space.
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It is easy to see that the family

(5.4) B :=
{
Π̂(V0, L) ⊂ caX : V0 is open simply connected in X0 and L ∈ Q

}
forms a basis of topology of caX .

5.3. Complex submanifolds

To formulate the required definition note that for every f ∈ O(U0 × K), where
U0 ⊂ X0, K ⊂ Ĝa are open, functions f(·, ω), ω ∈ K, are in O(U0). Indeed, since
f ∈ O(U0 × K), functions U0 � z �→ f(z, j(g)) (g ∈ j−1(K)) are holomorphic.
Then, since j(j−1(K)) is dense in K (see Section 2) and f is bounded on each
S � U0 ×K, by the Montel theorem f(·, ω) ∈ O(U0) for all ω ∈ K.

Definition 5.3. A closed subset Y ⊂ caX is called a complex submanifold of
codimension k if for every y ∈ Y there exist its neighbourhood of the form U =
Π̂(U0,K) ⊂ caX , where U0 ⊂ X0 is open and simply connected, K ⊂ Ĝa is open,
and functions h1, . . . , hk ∈ O(U) such that

(1) Y ∩ U = {x ∈ U : h1(x) = · · · = hk(x) = 0};
(2) the rank of the map z �→

(
h1(z, ω), . . . , hk(z, ω)

)
is k at each point x =

(z, ω) ∈ Y ∩ U .

The next result describes the local structure of complex submanifolds of caX .

Proposition 5.4. Let Y ⊂ caX be a complex submanifold. For every y ∈ Y there
exist an open neighbourhood V ⊂ caX of y, open subsets V0 ⊂ X0 and K ⊂ Ĝa,
a (closed) complex submanifold Z0 of V0 (of the same codimension as Y ), and a
biholomorphic map Φ ∈ O(V0 ×K,V ) such that Φ

(
V0 × (K ∩ j(G))

)
= V ∩ ι(X)

and Φ−1(V ∩ Y ) = Z0 ×K.

The proof of Proposition 5.4, given in Subsection 6.3, is based on the inverse
function theorem with continuous dependence on parameter (Theorem 6.2).

We use Proposition 5.4 to establish the following important fact (see Subsec-
tion 2.1 for the definition of a coherent sheaf on caX).

Proposition 5.5. The ideal sheaf IY of germs of holomorphic functions vanishing
on a complex submanifold Y ⊂ caX is coherent.

Now, we list other properties of complex submanifolds of caX .

Proposition 5.6. Any complex submanifold Y of caX has the following properties:

(i) ι−1
(
Y
)
⊂ X is a complex submanifold of X of codimension k.

(ii) Y ∩ ι(X) is dense in Y .

Assertion (i) is immediate from the definition, while assertion (ii) follows from
the fact that ι(X) is dense in X combined with Proposition 5.4.
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Proposition 5.7. If Z ⊂ X is a complex a-submanifold (see Definition 2.6), then
the closure of ι(Z) in caX is a complex submanifold of caX.

Suppose that a is self-adjoint. If Y is a complex submanifold of caX, then
ι−1(Y ) ⊂ X is a complex a-submanifold.

Definition 5.8. A function f ∈ C(Y ) is called holomorphic if ι∗f ∈ O
(
ι−1(Y )

)
.

The algebra of holomorphic functions on Y is denoted by O(Y ).

Similarly, we define holomorphic functions O(U) on an open subset U ⊂ Y as
those continuous functions whose pullbacks by ι are holomorphic in the usual sense.

Proposition 5.9. Suppose that a is self-adjoint, Y is a complex submanifold
of caX. We set Z := ι−1(Y ). Then Oa(Z) ∼= ι∗O(Y ) (so every function in

f ∈ Oa(Z), see Definition 2.8, admits a unique extension to a function f̂ ∈ O(Y )

such that f = ι∗f̂).

5.4. Cartan theorems A and B on complex submanifolds

The notion of a coherent sheaf on caX (see Subsection 2.1) extends to analytic
sheaves on a complex submanifold of caX . It turns out that if X0 is a Stein
manifold, then for such coherent sheaves we have analogues of Cartan theorems A
and B (Theorems 5.11 and 5.12 below).

More precisely, we have the structure sheaf OY of germs of holomorphic func-
tions on a complex submanifold Y ⊂ caX (see Definition 5.8). A coherent sheaf A
on Y is a sheaf of modules overOY such that every point in Y has a neighbourhood
V ⊂ Y over which, for every N ≥ 1, there is a free resolution of A of length N ,
i.e., an exact sequence of sheaves of modules of the form

OmN

Y |V
ϕN−1�� · · ·

ϕ2 ��Om2

Y |V
ϕ1 ��Om1

Y |V
ϕ0 ��A|V �� 0

(here ϕi, 0 ≤ i ≤ N − 1, are homomorphisms of sheaves of modules).

Given a sheaf of modules A over OY , we define a sheaf Ã on caX (called the
trivial extension of A) by the formulas

Ã|caX\Y := 0, Ã|Y := A.
Using the results in [15], we establish the following.

Theorem 5.10. If A is a coherent sheaf on a complex submanifold Y ⊂ caX,
then Ã is a coherent sheaf on caX.

It is immediate that Hk(Y,A) ∼= Hk(caX, Ã). Therefore, Theorems 2.3, 2.4
and Theorem 5.10 imply the following analogues of Cartan theorems A and B:

Let A be a coherent sheaf on a complex submanifold Y ⊂ caX with X0 Stein.

Theorem 5.11. Each stalk xA (x ∈ Y ) is generated by global sections of A over Y
as an xOY -module (“Cartan-type theorem A”).

Theorem 5.12. Čech cohomology groups Hi(Y,A) = 0 for all i ≥ 1 (“Cartan-type
theorem B”).
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Let Y be either caX or a complex submanifold of caX . The definition of coher-
ence on Y extends directly to open subsets of Y . It is natural to call such subset
W ⊂ Y a Stein manifold if all higher cohomology groups of coherent sheaves onW
vanish (i.e., Cartan-type theorem B holds on W ). One can ask about characteri-
zation of Stein open submanifolds W ⊂ Y (e.g., in terms of appropriately defined
plurisubharmonic exhaustion a-functions on W ).

5.5. Dolbeault-type complex

In this part we describe a Dolbeault-type complex and analogues of Dolbeault
isomorphisms used in the proof of Proposition 2.19.

Let Y ⊂ caX be a complex submanifold. We define the holomorphic tangent
bundle TY of Y as a holomorphic bundle on Y whose pullback by ι to ι−1(Y ) coin-
cides with the holomorphic tangent bundle of the complex submanifold ι−1(Y ) ⊂ X
(see the proof of Theorem 2.9 in Section 9 for existence and uniqueness of TY ).

The definition of the antiholomorphic tangent bundle TY of Y is analogous.
We define the complexified tangent bundle of Y as the Whitney sum

(5.5) TCY := TY ⊕ TY .

By Λmc (Y ) := Γ(Y,∧m(TCY )∗) we denote the space of continuous sections of
the vector bundle ∧m(TCY )∗ (0 ≤ m ≤ n := dimCX0), where (TCY )∗ is the dual
bundle of TCY . Elements of Λmc (Y ) will be called continuous m-forms.

By Proposition 5.4, for every point x ∈ Y there exist a neighbourhoodU ⊂ caX ,
a biholomorphism ϕ : U → U0 ×K, where U0 ⊂ Cn, K ⊂ Ĝa, K ∈ Q (see (5.3))
are open, and a complex submanifold Y0 ⊂ U0 such that ϕ(Y ∩ U) = Y0 ×K and
ϕ(Y ∩ U ∩ ι(X)) = Y0 × (K ∩ j(G)). By ∧m TC(Y0 ×K)∗ we denote the pullback
to Y0 × K of the bundle ∧m(TCY0)

∗ under the natural projection Y0 ×K → Y0.
Since ϕ−1|Y0×(K∩j(G)) : Y0 × (K ∩ j(G)) → Y ∩ U ∩ ι(X) is a biholomorphism of
usual complex manifolds,(

ϕ−1|Y0×(K∩j(G))

)∗(∧m(TCY )∗
)
= ∧m TC(Y0 ×K)∗|Y0×(K∩j(G)).

Since Y0 × (K ∩ j(G)) is dense in Y0 ×K, the latter bundle is dense in the bundle
∧mTC(Y0 × K)∗. Thus the above identity and the continuity of ϕ−1 imply that
(ϕ−1)∗

(
∧m(TCY )∗

)
= ∧mTC(Y0 ×K)∗. In particular, (ϕ−1)∗ maps Λmc (Y ∩U) to

Λmc (Y0 ×K), the space of continuous sections of ∧mTC(Y0 ×K)∗. Clearly,

(5.6) Λmc (Y0 ×K) = C(Y0 ×K)⊗ Λmc (Y0),

where Λmc (Y0) is the space of continuousm-forms on Y0 and C(Y0×K) is the space
of continuous functions on Y0 ×K endowed with the Fréchet topology of uniform
convergence on compact subsets of Y0 ×K.

By Λm(Y ) ⊂ Λmc (Y ) we denote the subspace of C∞ m-forms, that is, forms ω
such that for each “coordinate map” ϕ : U → U0 ×K,

(5.7) (ϕ−1)∗ω|Y ∩U ∈ Λm(Y0 ×K) := C∞(Y0 ×K)⊗ Λm(Y0),
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where Λm(Y0) is the space of C∞ m-forms on Y0 and C∞(Y0 ×K) ⊂ C(Y0 ×K) is
the subspace of continuous functions that are C∞ when viewed as functions on Y0
taking values in the Fréchet space C(K).

We denote C∞(Y ) := Λ0(Y ).

Lemma 5.13. Λm(Y ) is correctly defined by (local ) conditions (5.7).

Let a ∈ C∞(Y0 × K). We define the differential da ∈ Λ1(Y0 ×K) as follows.
(To simplify notation, we may assume without loss of generality that Y0 is an open
subset of Cn−k.)

Define da :=
∑n−k

i=1
∂a
∂zi
dzi, where ∂a/∂zi ∈ C∞(Y0 × K) is the derivative of

the Fréchet-valued map z �→ a(z, ·) ∈ C(K), z = (z1, . . . , zn−k) ∈ Y0, with respect
to zi.

We have the operator of differentiation d : Λm(Y0×K) → Λm+1(Y0×K) defined
by the formula

(5.8) d
( l∑
i=1

aiωi

)
:=

l∑
i=1

aidωi+

l∑
i=1

dai ∧ωi, ai ∈ C∞(Y0×K), ωi ∈ Λm(Y0).

Now, we define the operator of differentiation d : Λm(Y ) → Λm+1(Y ):
For each coordinate map ϕ : U → U0 × K and ω ∈ Λm(Y ) the form dω ∈

Λm+1(Y ) satisfies

(5.9) (ϕ−1)∗dω = d
(
(ϕ−1)∗ω

)
,

where the right-hand side is defined by (5.8).
Existence of dω satisfying local conditions (5.9) follows from the facts that

due to these conditions ι∗ ◦ d|Λm(Y )|U = d ◦ ι∗|Λm(Y )|U , where the d on the right
denotes the standard differentiation on the space of differential forms defined on
the complex submanifold ι−1(Y ) ⊂ X , and that ι(ι−1(Y )) is dense in Y (see
Proposition 5.4). By the same reason we have d ◦ d = 0.

Further, (5.5) induces decomposition (TCY )∗ = TY ∗ ⊕ TY
∗
and, hence,

(5.10) Λm(Y ) = ⊕p+k=m Λp,k(Y ),

where
Λp,k(Y ) := Γ(Y,∧pTY ∗ ⊗ ∧qTY ∗

) ∩ Λm(Y ).

Since the pullback by ι of TY ∗ coincides with the holomorphic cotangent bundle
of complex submanifold ι−1(Y ) ⊂ X , the pullback by ι of decomposition (5.10)
agrees with the usual type decomposition of differential forms on ι−1(Y ).

Using the natural projections πp,k : Λm(Y ) → Λp,k(Y ) (m = p+ k), we define

∂ := πp+1,k ◦ d, ∂̄ := πp,k+1 ◦ d.

Since pullbacks by ι of these operators coincide with their usual counterparts on
the complex submanifold ι−1(Y ) ⊂ X and the image by ι of the latter is dense
in Y , we have ∂ ◦ ∂ = 0, ∂̄ ◦ ∂̄ = 0 and d = ∂ + ∂̄.

The above definitions and notation transfer naturally to open subsets of Y . In
particular, we can define the sheaf Λp,k of germs of C∞ (p, q)-forms on Y.
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Lemma 5.14. For any open cover U of Y there is a subordinate C∞ partition of
unity.

This lemma implies that Λp,k is a fine sheaf, and therefore cohomology groups
Hr(Y,Λp,k) = 0 for all r ≥ 1 (see, e.g., [34]).

Let Zp,k ⊂ Λp,k denote the subsheaf of germs of ∂̄-closed forms. We have the
following analogue of ∂̄-Poincaré lemma for sections of Zp,k.

Proposition 5.15. Let Y ⊂ caX be a complex submanifold. For every point x ∈ Y
there are neighbourhoods W,V ⊂ Y , W � V , of x such that restriction to W of
any ∂̄-closed form in Λp,k+1(V ) is ∂̄-exact.

Let Zp,k(Y ) ⊂ Λp,k(Y ) denote the subspace of ∂̄-closed forms. We define the
Dolbeault cohomology groups of Y as

Hp,k(Y ) := Zp,k(Y )/∂̄Λp,k−1(Y ), p ≥ 0, k ≥ 1,

Hp,0(Y ) := Zp,0(Y ).

We set Ωp := Zp,0. Then Ωp is the sheaf of germs of holomorphic p-forms on Y ,
i.e., holomorphic sections of the bundle ∧pTY ∗. (Note that ι∗Ωp is the sheaf of
germs of usual holomorphic p-forms on the complex submanifold ι−1(Y ) ⊂ X .)

Since Λp,k is a fine sheaf, from Proposition 5.15 and a standard result in Chap-
ter B, §1.3 of [29], we obtain:

Corollary 5.16 (Dolbeault-type isomorphism). ∀p, k ≥ 0, Hp,k(Y ) ∼= Hk(Y,Ωp).

Since Ωp is the sheaf of germs of sections of a holomorphic vector bundle on Y ,
it is coherent (see Subsection 5.4). Then the previous corollary and Theorem 5.12
imply

Corollary 5.17. Suppose that X0 is a Stein manifold, Y ⊂ caX is a complex
submanifold. Then

Hp,k(Y ) = 0 for all p ≥ 0, k ≥ 1

(i.e., any ∂̄-closed form in Λp,k(Y ) is ∂̄-exact).

Similarly one can define the de Rham cohomology groups of Y and obtain an
analogue of the classical de Rham isomorphism (see the proof of Proposition 2.19).

5.6. Characterization of caX as the maximal ideal space of Oa(X)

Now we relate the fibrewise compactification caX of covering p : X → X0 to the
maximal ideal space MX of algebra Oa(X), i.e., the space of non-zero characters
Oa(X) → C endowed with weak* topology (of Oa(X)∗).

Theorem 5.18. Suppose that algebra a is self-adjoint, and X0 is a Stein manifold.
Then MX is homeomorphic to caX.
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Since ι(X) is dense in caX , and the natural mapping of X into MX , sending
each point of X to its point evaluation homomorphism, coincides with ι under the
homeomorphism of Theorem 5.18, we obtain the following corona-type theorem.

Corollary 5.19. Let a be self-adjoint, X0 be a Stein manifold. Then ι(X) is dense
in MX .

6. Proofs: Preliminaries

6.1. Čech cohomology

For a topological space X and a sheaf of abelian groups S on X by Γ(X,S) we
denote the abelian group of continuous sections of S over X .

Let U be an open cover of X . By Ci(U ,S) we denote the space of Čech i-
cochains with values in S, by δ : Ci(U ,S) → Ci+1(U ,R) the Čech coboundary
operator, by Zi(U ,S) := {σ ∈ Ci(U ,S) : δσ = 0} the space of i-cocycles, and by
Bi(U ,S) := {σ ∈ Zi(U ,S) : σ = δ(η), η ∈ Ci−1(U ,S)} the space of i-coboundaries
(see, e.g., [34] for details). The Čech cohomology groups Hi(U , S), i ≥ 0, are
defined by

Hi(U , S) := Zi(U ,S)/Bi(U ,S), i ≥ 1,

and H0(U ,S) := Γ(U ,S).

6.2. ∂̄-equation

Let B be a complex Banach space, D0 ⊂ X0 be a strictly pseudoconvex domain.
We fix a system of local coordinates on D0. Let {W0,i}i≥1 be the cover of D0 by

the coordinate patches. By Λ
(0,q)
b (D0, B), q ≥ 0, we denote the space of bounded

continuous B-valued (0, q)-forms on D0 endowed with norm

(6.1) ‖ω‖D0 = ‖ω‖(0,q)D0,B
:= sup

x∈W0,i,i≥1,α
‖ωα,i(x)‖B,

where ωα,i (α is a multiindex) are coefficients of forms ω|W0,i ∈ Λ
(0,q)
b (W0,i, B) in

local coordinates on W0,i.

The next lemma follows easily from results in [35] (proved for B = C) because
all integral representations and estimates are preserved when passing to the case
of Banach-valued forms.

Lemma 6.1. There exists a bounded linear operator

RD0,B ∈ L
(
Λ
(0,q)
b (D0, B),Λ

(0,q−1)
b (D0, B)

)
, q ≥ 1,

such that if ω ∈ Λ
(0,q)
b (D0, B) is C∞ and ∂̄-closed on D0, then ∂̄RD0,B(ω) = ω.
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6.3. Inverse function theorem with continuous dependence on the pa-
rameter

Theorem 6.2. Let K be a topological space, B1, B2 � Cn be open balls centered
at the origin. Fix a point (x0, η0) ∈ B1 × K. Suppose that a continuous map
G : B1 ×K → B2 satisfies

(1) G(·, η) : B1 → B2 is holomorphic for every η ∈ K,

(2) the Jacobian matrix DxG(x0, η0) is non-degenerate.

Then there exist an open subset W ⊂ B2 ×K and a continuous map H :W → B1

such that

(a)
(
G(x0, η0), η0

)
∈W ,

(b) H(·, η) is holomorphic on W ∩
(
B2 × {η}

)
for all η for which this set is

non-empty,

(c) G
(
H(z, η), η

)
= z for all (z, η) ∈W .

Theorem 6.2 follows easily from the contraction principle with continuous de-
pendence on parameter, see e.g., Chapter XVI of [39].

As an application of Theorem 6.2 we prove Proposition 5.4 on the local structure
of complex submanifolds of caX .

Proof of Proposition 5.4. Let Y ⊂ caX be a complex submanifold and y0 ∈ Y . In
notation of Definition 5.3, there exists a neighbourhood U := Π̂(U0, L) ⊂ caX of
y0, where U0 ⊂ X0 is a simply connected coordinate chart and L ⊂ Ĝa is open,
such that Y ∩ U = {y ∈ U : h1(y) = · · · = hk(y) = 0} with hi ∈ O(U) (1 ≤ i ≤ k)
satisfying non-degeneracy condition (2) of the definition.

Since sets U and U0×L are biholomorphic (see Subsection 5.1), in what follows
we identify them. Next, since functions hi satisfy the non-degeneracy condition of
Definition 5.3, we may choose coordinates x1, . . . , xn on U0 so that the Jacobian
matrix DxG(x0, η0), y := (x0, η0), of the map

G(x, η) :=
(
h1(x, η), . . . , hk(x, η), xk+1, . . . , xn

)
, x :=(x1, . . . , xn), (x, η) ∈ U0 ×L,

is non-degenerate. Also, we may assume without loss of generality that U0 = B1

and G(B1, η) ⊂ B2 for all η ∈ L, where Bi � Cn, i = 1, 2, are open balls centered
at the origin. Hence, we can apply Theorem 6.2. In its notation, shrinking W , if
necessary, we may assume that W = V0×K for some open V0 ⊂ B2, K ⊂ L which
we take as the required sets in the formulation of Proposition 5.4. We also take
Φ(z, η) :=

(
H(z, η), η

)
, (z, η) ∈ V0 ×K, and V := Φ(V0 ×K) ⊂ U . By definition,

Φ ∈ O(V0 ×K,V ) (see Subsection 5.1). Further, since
(
G ◦Φ(z), η

)
= (z, η) for all

(z, η) ∈ V0 ×K,

(hi ◦Φ)(z1, . . . , zn, η) = zi, (z, η) ∈ V0 ×K, z = (z1, . . . , zn), 1 ≤ i ≤ k.

Therefore, Φ−1(V ∩ Y ) = Z0 × K, where Z0 := {(0, . . . , 0, zk+1, . . . , zn) ∈ V0 :
(z1, . . . , zn) ∈ V0} is a complex submanifold of codimension k.

By our construction we also have Φ
(
V0 × (K ∩ j(G))

)
= V ∩ ι(X).

The proof of the proposition is complete. �
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7. Proof of Theorem 1.3

Fix some Ω′ � Ω and denote T ′ := Rn + iΩ̄′ ⊂ Cn. We endow T ′ with the
Euclidean metric induced from Cn.

We will need the following definition.

Definition 7.1. A function f ∈ C(T ′) is called continuous almost periodic if the
family of its translates {T ′ � z �→ f(z + t)}t∈Rn is relatively compact in Cb(T

′)
(the space of bounded continuous functions on T ′ endowed with sup-norm).

Proposition 7.2 (see, e.g., [1]). Any continuous almost periodic function on T ′

is bounded and uniformly continuous.

By APC(T ′) we denote the Banach algebra of continuous almost periodic func-
tions on T ′ endowed with sup-norm.

We set

p (z) :=
(
eiz1 , . . . , eizn

)
, z = (z1, . . . , zn) ∈ T ′, and T ′

0 := p (T ′).

Then Banach algebra CAP (T
′), AP := AP (Zn), Zn ∼= p−1(x0) (x0 ∈ X0), associ-

ated to covering p : T ′ → T ′
0 and endowed with sup-norm, is well defined (see Sec-

tion 1).
To prove the theorem it suffices to show that APC(T ′) = CAP (T

′). (Because
the space of holomorphic almost periodic functions on T consists of all functions
in O(T ) whose restrictions to each tube subdomain T ′ ⊂ T are in APC(T ′), and
OAP (T ) := O(T ) ∩ {f ∈ C(T ) : f |T ′ ∈ CAP (T

′) for each T ′ ⊂ T }.)
First, let f ∈ APC(T ′), i.e., for any sequence {tk} ⊂ Rn there exists a subse-

quence of {T ′ � z �→ f(z + tkl)} that converges uniformly on T ′. In particular,
it follows that for each fixed z0 ∈ T ′ and a sequence {dk} ⊂ Zn the family of
translates {Zn � g �→ f(z0 + g + dk)} has a convergent subsequence which implies
(since CAP (T

′) is a metric space) that it is relatively compact in the topology of
uniform convergence on Zn. This means that the function Zn � g �→ f(z0 + g)
belongs to AP (Zn). Also, by Proposition 7.2 function f is bounded and uniformly
continuous on T ′. Hence, by definition, f ∈ CAP (T

′).
Now, let f ∈ CAP (T

′). We must show that f ∈ APC(T ′). To this end we
fix some sequence {tk} ⊂ Rn. Let μ : Rn → Rn/Zn be the natural projection.
Since Rn/Zn is compact, {μ(tk)} has a convergent subsequence. We may assume
without loss of generality that {μ(tk)} itself converges and has limit 0. Hence,
there exists a sequence {dk} ⊂ Zn such that |tk − dk| → 0 as k → ∞. Since f is
uniformly continuous on T ′, functions

hk(z) :=
∣∣ f(z + tk)− f(z + dk)

∣∣ → 0 uniformly on T ′ as k → ∞.

Hence, it suffices to show that sequence {T ′ � z �→ f(z + dk)} has a convergent
subsequence.

Let C := {z = (z1, . . . , zn) ∈ T ′ : 0 ≤ Re(zi) ≤ 1, 1 ≤ i ≤ n}. Since f ∈
CAP (T

′), for each fixed w ∈ C the family of translates {Zn � g �→ f(w + g + dk)}
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is relatively compact in the topology of uniform convergence on Zn. Let S ⊂ C be a
countable dense subset. Using Cantor’s diagonal argument we find a subsequence
{dkl} of {dk} such that for each w ∈ S the family of translates {Zn � g �→
f(w + g + dkl)} converges in the topology of uniform convergence on Zn.

Now, since f is uniformly continuous on T ′, for every ε > 0 there exists δ > 0
such that for all w1, w2 ∈ C satisfying |w1 − w2| < δ and all h ∈ Zn,∣∣ f(w1 + h)− f(w2 + h)

∣∣ < ε

3
.

Since C is compact, it can be covered by finitely many δ-neighbourhoods of points,
say, w1, . . . , wp, in S. Then we can find N ∈ N so that for all l,m > N , wj ,
1 ≤ j ≤ p, and g ∈ Zn,∣∣ f(wj + g + dkl)− f(wj + g + dkm)

∣∣ < ε

3
.

The last two inequalities together with the triangle inequality imply that for all
l,m > N , z ∈ C and g ∈ Zn,∣∣ f(z + g + dkl)− f(z + g + dkm)

∣∣ < ε.

Since {z + g : z ∈ C, g ∈ Zn} = T ′, the latter implies that for all l,m > N and
z ∈ T ′, ∣∣ f(z + dkl)− f(z + dkm)

∣∣ < ε.

Thus {T ′ � z �→ f(z + dkl)} is a Cauchy sequence in the topology of uniform
convergence on T ′, i.e., it converges uniformly on T ′.

The proof is complete. �

8. Proofs of Propositions 5.1, 5.5, 5.7, 5.9 and 5.15

8.1. Proof of Proposition 5.1

The proof follows straightforwardly from (2.3) and the fact that V is dense in U
(because ι(X) is dense in caX , cf. Section 2).

8.2. Proof of Proposition 5.5

According to Proposition 5.4, it suffices to prove coherence of the ideal sheaf IZ
(⊂ OV0×K) of the complex submanifold Z := Z0 ×K of V0 ×K, where V0 ⊂ X0

and K ⊂ Ĝa are open, K ∈ Q is an element of the basis of topology Q of Ĝa

(see Subsection 5.2) and Z0 ⊂ V0 is a complex submanifold. Here OV0×K denotes
the structure sheaf of V0 × K (see Subsection 5.1); also, by OV0 we denote the
structure sheaf of V0 and by IZ0 ⊂ OV0 the ideal sheaf of Z0 ⊂ V0.

By Cartan’s theorem (see, e.g., [33]) every point in V0 has a neighbourhood over
which IZ0 has a free resolution. Replacing V0 by a smaller subset, if necessary, we
may assume without loss of generality that such resolution is defined over V0:

(8.1) 0 → OmN

V0

ϕN−1�� · · · ��Om1

V0

ϕ0 �� IZ0 → 0.
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Further, by the classical Cartan theorem B (see, e.g., [33]), every point in V0 has
a neighbourhood U0 ⊂ V0 biholomorphic to an open polydisk in Cn such that the
sequence of sections induced by (8.1)

(8.2) 0 → Γ(U0,OmN

V0
)
ϕ̄N−1�� · · · �� Γ(U0,Om1

V0
)
ϕ̄0 �� Γ(U0, IZ0) → 0

is exact.

For an open subset L ⊂ K, L ∈ Q, by C(L) we denote the Fréchet space of
complex continuous functions on L endowed with the topology of uniform con-
vergence on compact subsets Nk ⊂ L, k ∈ N, that form an exhaustion of L, i.e.,
Nk ⊂ Nk+1 for all k and ∪k∈NNk = L (such sets exist by Lemma 7.4 (1) in [15]).
We endow the space O(U0×L) defined in Subsection 5.1 with the topology of uni-
form convergence on subsets W0,k ×Nk, where {W0,k}k∈N is an exhaustion of U0

by compact subsets, which makes it a Fréchet space. Then we have

(8.3) Γ(U0 × L,OV0×K) =: O(U0 × L) ∼= C(L)⊗O(U0) := C(L)⊗ Γ(U0,OV0),

where ⊗ stands for the completion of the symmetric tensor product in the corre-
sponding Fréchet space.

Next, we may assume without loss of generality that V0 is an open polydisk
in Cn and Z0 is the intersection of a complex subspace of Cn with V0. Then using
the Taylor series expansion of a holomorphic function on U0 × L vanishing on
Z0 ×K (i.e., an element of Γ(U0 × L, IZ0×K)), we easily obtain that

(8.4) Γ(U0 × L, IZ0×K) ∼= C(L)⊗ Γ(U0, IV0).

By Theorem B in [16] the operation ⊗ is an exact functor. Thus, from (8.2), (8.3)
and (8.4) we obtain that every point in V0 ×K has a neighbourhood of the form
U0 × L over which the sequence of sections
(8.5)

0 → Γ(U0 × L,OmN

V0×K)
ϕ̂N−1�� · · · �� Γ(U0 × L,Om1

V0×K)
ϕ̂0 �� Γ(U0 × L, IZ0×K) → 0

is exact, where morphisms ϕ̂i are defined on the corresponding symmetric tensor
products by the formula

ϕ̂i

( l∑
i=1

fi ⊗ gi

)
=

l∑
i=1

fi ⊗ ϕ̄i(gi), fi ∈ C(L), gi ∈ Γ(U0,Omi+1

V0
),

and then extended to C(L) ⊗ Γ(U0,Omi+1

V0
) by continuity. Hence, the sequence of

sheaves generated by (8.4)

0 → OmN

V0×K → · · · → Om1

V0×K → IZ0×K → 0

is exact. This shows that the sheaf IZ is coherent. �
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8.3. Proof of Proposition 5.7

Let us prove the first assertion.

Let Y ⊂ caX be the closure of ι(Z), where Z ⊂ X is a complex a-submanifold,
in caX . We fix a point y ∈ Y and use notation of Definition 2.6. Since the open
cover V in the definition of Z is of class (Ta) (and, hence, is the pullback by ι
of an open cover of caX , see Definition 2.5), there exist an open subset V ∈ V ,
V = ι−1(U) for an open neighbourhood U ⊂ caX of y, and functions hi ∈ Oa(V ),
1 ≤ i ≤ k, determining Z ∩ V , i.e., satisfying conditions (1), (2) of Definition 2.6.

By Proposition 5.1 there exist (uniquely determined) functions ĥi ∈ O(U) such

that hi = ι∗ĥi for all i. It follows from condition (2) of Definition 2.6 and the fact

that ι(V ) is dense in U that functions ĥi satisfy condition (2) of Definition 5.3
at points of U ∩ Y . Therefore, since y ∈ Y is arbitrary, to complete the proof it
suffices to show that U ∩ Y = ŶU , where ŶU ⊂ U denotes the common zero locus
of functions ĥi|U , 1 ≤ i ≤ k.

Indeed, using the argument of the proof of Proposition 5.4 and shrinking U ,
if necessary, we obtain that there exists a biholomorphism Φ ∈ O(U0 × K,U),
where U0 ⊂ X0, K ⊂ Ĝa are open, and a closed submanifold Z0 ⊂ U0 such
that Φ−1(ŶU ) = Z0 × K and Φ(U0 × (K ∩ j(G))) = U ∩ ι(X). In particular,

since hi = ι∗ĥi for all i, we have Φ(Z0 × (K ∩ j(G))) = U ∩ ι(Z). Hence, since
Z0 × (K ∩ j(G)) is dense in Z0 ×K (see subsection 2.1), U ∩ ι(Z) is dense in ŶU ,
i.e., U ∩ Y = ŶU , as required. The proof of the first assertion is complete.

The second assertion follows easily from Definitions 2.6, 5.3, and (2.3). �

8.4. Proof of Proposition 5.9

First, let f be a holomorphic a-function on Z := ι−1(Y ) in the sense of Defini-
tion 2.8, i.e., there is a function F ∈ Ca(X) such that F |Z = f . By Proposition 5.1

there exists a function F̂ ∈ C(caX) such that ι∗F̂ = F . We set f̂ := F̂ |Y . Since

ι∗f̂ = f , we obtain f̂ ∈ O(Y ) (see Definition 5.8), as required.

Now, let f̂ ∈ O(Y ). Since caX is a normal space, by the Tietze–Urysohn

extension theorem there exists a function F̂ ∈ C(caX) such that F̂ |Y = f̂ . By
definition (cf. (2.3)) F := ι∗F̂ belongs to Ca(X). Since F |Z = f , function f

(= ι∗f̂) is a holomorphic a-function on Z in the sense of Definition 2.8. �

8.5. Proof of Proposition 5.15

For a point x ∈ Y , consider its open neighbourhood V for which there exists a
biholomorphic map ϕ : V → Z0 ×K, where Z0 ⊂ Cp is an open ball and K ⊂ Ĝa

is open (see Proposition 5.4). We choose an open neighbourhood W � V of x so
that ϕ(W ) = Z ′

0×K ′, where Z ′
0 � Z0 is an open ball of the same center as Z0 and

K ′ � K is an open subset. Then under the identification of V with Z0 ×K by ϕ
the restriction to W of the space of C∞ ∂̄-closed (p, k+1)-forms on V is identified
with a subspace of the space of C∞ ∂̄-closed (p, k + 1)-forms on Z ′

0 with values
in the Banach space Cb(K

′) of bounded continuous functions on K endowed with
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sup-norm (see Subsection 5.5 for the corresponding definitions). According to
Lemma 6.1, such Banach-valued forms on Z ′

0 are ∂̄-exact. This completes the
proof of the proposition. �

9. Proofs of Theorems 2.7, 2.9 and 2.10

9.1. Proof of Theorem 2.7

Our proof is based on Theorem 2.3 and the equivalence of notions of a complex
a-submanifold of X and a complex submanifold of caX (see Subsection 5.3 for the
corresponding definitions and results).

Thus, it suffices to prove that given a complex submanifold Y ⊂ caX of codi-
mension k there exists an at most countable collection of functions fi ∈ O(caX),
i ∈ I, such that

(i) Y = {y ∈ caX : fi(y) = 0 for all i ∈ I}, and
(ii) for each y0 ∈ Y there exist a neighbourhoodW = Π̂(W0, L) (see (5.2) for no-

tation) and functions fi1 , . . . , fik such that Y ∩W = {y ∈ U : fi1(y) = · · · =
fik(y) = 0} and the rank of map z �→

(
f1(z, ω), . . . , fk(z, ω)

)
, (z, ω) ∈ W , is

maximal at each point of Y ∩W .

By Proposition 5.5 the ideal sheaf IY of Y is coherent, hence by Theorem 2.3,
there exists an at most countable collection of sections fi ∈ Γ(caX, IY ) (⊂ OcaX),
i ∈ I, that generate IY at each point of caX . (This collection is at most countable
because any open cover of caX admits an at most countable refinement as fibres of
the bundle p̄ : caX → X0 are compact and any open cover of complex manifold X0

admits an at most countable refinement.) Therefore condition (i) is valid for this
collection of functions. In addition, for every point y0 ∈ Y there exist a neigh-
bourhood U = Π̂(U0,K) of y0, sections fi1 , . . . , fim and functions ujl ∈ O(caX),
1 ≤ j ≤ k, 1 ≤ l ≤ m, such that

(9.1) hj = uj1fi1 + · · ·+ ujmfim , 1 ≤ j ≤ k,

where hj are generators of IY |U from Definition 5.3 (modulo a biholomorphic
transformation of Proposition 5.4 we may identify hj with zj, the j-th coordinate
of z ∈ Cn).

Equation (9.1) implies that Y ∩ U =
{
y ∈ U : fi1(y) = · · · = fim(y) = 0

}
.

Next, let ∇hj , ∇fil denote the vector-valued functions ∇zhj(z, ω), ∇zfil(z, ω),
(z, ω) ∈ U . Then

∇hj = uj1∇fi1 + · · ·+ ujm∇fim on Y ∩ U, 1 ≤ j ≤ k.

Since (∇hj)kj=1 has rank k on U , we obtain that k ≤ m, and (ujl)1≤j≤k,1≤l≤m,
(∇fil)ml=1 have rank k at each point of U . Thus there exist two subfamilies of

vector-valued functions (ujl1)
k
j=1, . . . , (ujlk)

k
j=1 and ∇f̃l1 , . . . ,∇f̃lk , f̃l := fil , that

are linearly independent at y0. Now, we apply the holomorphic inverse function
theorem (see Theorem 6.2) to the matrix identity (9.1) to find a neighbourhood
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W = Π̂(W0, L) � U of y0 such that functions f̃l|W , l �= li, 1 ≤ i ≤ k, belong
to the ideal in O(W ) generated by f̃l1 |W , . . . , f̃lk |W , and the rank of map z �→(
f̃l1(z, ω), . . . , f̃lk(z, ω)

)
, (z, ω) ∈ W , is maximal at each point of Y ∩W . Clearly,

Y ∩W = {y ∈ U : f̃l1(y) = · · · = f̃lk(y) = 0}.
This completes the proof of the theorem. �

9.2. Proof of Theorem 2.9

The proof follows the lines of the proof of the classical tubular neighbourhood
theorem (see, e.g., [26]).

We use notation and results of Section 5. Clearly, Theorem 2.9 is a corollary of:

Theorem 9.1. Let X0 be a Stein manifold, and Y ⊂ caX a complex submanifold
(see Subsection 5.3). Then there exists an open neighbourhood Ω ⊂ caX of Y and
maps ht ∈ O(Ω,Ω) continuously depending on t ∈ [0, 1], such that ht|Y = IdY for
all t ∈ [0, 1], h0 = IdΩ and h1(Ω) = Y .

Proof. In the proof of Theorem 9.1 we use the following notation and definitions.
Let U be an open subset of caX or of a complex submanifold Y ⊂ caX . In the

category of ringed spaces (U,OU ) (see Subsections 5.1, 5.3) we define in a standard
way holomorphic vector bundles on U , their subbundles, the Whitney sum of
bundles, holomorphic bundle morphisms, etc (see [37] for similar definitions).

Now, we define the (holomorphic) tangent bundle TcaX on caX as the pull-
back p̄∗TX0 of the (holomorphic) tangent bundle TX0 of X0. We denote by TxcaX
the fibre of TcaX at x ∈ caX .

Next, we define a Hermitian metric on TcaX as the pullback by p̄ of a (com-
plete) Hermitian metric on TX0.

Let Y ⊂ caX be a complex submanifold. Every point x ∈ Y has a neigh-
bourhood U = Π̂(U0,K) ⊂ caX , where U0 ⊂ X0, K ⊂ Ĝa are open, so that
Y ∩ U is the set of common zeros of functions h1, . . . , hk ∈ O(U) such that the
maximum of moduli of determinants of square submatrices of the Jacobian ma-
trix of the map z �→ (h1(z, ω), . . . , hk(z, ω)), (z, ω) ∈ U , is uniformly bounded
away from zero (see Definition 5.3). We define the tangent bundle TY of Y as
the subbundle of TcaX |Y whose fibres are orthogonal to the local vector fields
(z, ω) �→ Dzh1(z, ω), . . . , Dzhk(z, ω), (z, ω) ∈ Y ∩ U . Namely, in local coordinates
(z, ω) ∈ U the metric has a form

ds2(z, ω) =
∑
l,j

glj(z) dzl ⊗ dz̄j , glj(z) :=
( ∂

∂zl
,
∂

∂zj

)
(z,ω)

;

hence, if vector fields Dzhi (1 ≤ i ≤ k) are given by

Dzhi(z, ω) =
∑
l

ali(z, ω)
∂

∂zl
,

then T(z,ω)Y consists of vectors
∑

l bl
∂
∂zl

such that
∑
l,j ali(z, ω) b̄j glj(z) = 0 for

all 1 ≤ i ≤ k.
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It is easily seen that ι∗TY coincides with the holomorphic tangent bundle of the
complex submanifold ι−1(Y ) ⊂ X . Since ι(ι−1(Y )) is dense in Y , the bundle TY
is uniquely defined by the latter condition (see Subsection 5.5).

Consequently, we obtain the notion of the (holomorphic) normal bundle NY ⊂
TcaX |Y of Y .

The tangent bundle TX0 is generated by finitely many holomorphic vector
fields V0,k, 1 ≤ k ≤ m, which determine holomorphic local flows ϕk : Ok → X0,
where Ok is an open neighbourhood of {0}×X0 in C×X0 such that the differential
of the map

F0(t, ·) := (ϕm(sm, ·) ◦ · · · ◦ ϕ1(s1, ·)) : X0 → X0, t = (s1, . . . , sm),

at t = 0 is non-degenerate. The map F0 is defined and holomorphic in a neigh-
bourhood W0 of {0} ×X0 in Cm ×X0.

We will need notation and results of Section 4 in [15]. There, we have estab-
lished that caX (as a set) is the disjoint union of connected complex manifolds XH

(H ∈ Υ) each is a covering of X0. Using the lifting property, for every H ∈ Υ we
can lift F0 to a unique map F̃H(t, ·) : WH → XH that is defined and holomorphic
on the neighbourhoodWH := (IdCm ×pH)−1(W0) of {0}×XH in Cm×XH , where
pH : XH → X0 is the covering projection. It is not difficult to show that these
maps constitute a holomorphic map

F̃ :W → caX,

where W := (IdCm × p̄)−1(W0) is a neighbourhood of {0} × caX in Cm × caX .
(Alternatively, one can define the map F̃ using the covering homotopy theorem
and the local structure of caX , see Subsection 5.1. Note that in local coordinates
lifted from X0 the map F̃ looks exactly the same as F0.)

Next, for a fixed x ∈ caX we consider a linear map

θx = ∂t|t=0F̃ (t, x) : C
m → TxcaX.

We denote by θ the corresponding holomorphic bundle morphism Cm × caX →
TcaX .

Since vector fields p̄∗V0,j span TcaX , the maps θx are surjective, for every
x ∈ caX . Since TY ⊂ TcaX |Y , we can define a holomorphic vector bundle over Y ,

E′ := θ∗(TY ) ⊂ Y × Cm.

Lemma 9.2. There exists a holomorphic vector bundle E over Y such that

E′ ⊕ E = Y × Cm.

Proof. We have an exact sequence of holomorphic vector bundles over Y

(9.2) 0 → E′ → Y × Cm
q→ E′′ → 0
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(here E′′ is the quotient bundle) which induces an exact sequence of Čech coho-
mology groups with values in the sheaves of germs of holomorphic sections of the
corresponding holomorphic vector bundles

0 → Γ(Y,HomO(E′′, E′)) → Γ(Y,HomO(E′′, Y × Cm)) → Γ(Y,HomO(E′′, E′′))
δ→ H1(Y,HomO(E′′, E′)) → · · · .

Recall that sequence (9.2) splits if and only if δ(I) = 0, where I : E′′ → E′′

is the identity homomorphism (see, e.g., Ch. 1, 4.1d-f in [37]). Since the sheaf
HomO(E′′, E′) is locally free, Theorem 5.12 implies thatH1(Y,HomO(E′′, E′)) = 0.
Hence there is a holomorphic homomorphism u : E′′ → Y ×Cm such that q◦u = Id,
i.e., Y × Cm = E′ ⊕ E with E := u(E′′). �

It follows from this lemma that the restriction θ : E → TcaX |E is an injec-
tive holomorphic bundle morphism such that TcaX |Y = TY ⊕ θ(E). Therefore,
we have:

Lemma 9.3. θ|E determines a holomorphic isomorphism between the bundles E
and NY .

Further, we define

F := F̃ ◦ (θ|E)−1 : NY → caX

and show that there exists a neighbourhood V of the zero section of NY that is
mapped by F biholomorphically to a neighbourhood of Y in caX . Using this and
replacing V by a smaller neighbourhood of the zero section of NY with convex
fibres over Y , we can define the required maps ht by dilations along images of the
fibres of this smaller neighbourhood under F . This would complete the proof of
the theorem.

We prove that F is a biholomorphism near the zero section of NY in two steps.

(1) First, we show that F is a local biholomorphism, i.e., every point of the zero
section of NY has a neighbourhood V such that the restriction F |V determines a
biholomorphism between V and F (V ) ⊂ caX .

Indeed, by Proposition 5.4 for every x ∈ Y one can find its neighbourhood
Ux ⊂ caX biholomorphic to U0 × K, where U0 ⊂ X0, K ⊂ Ĝa are open, such
that (a) Y ∩ U is biholomorphic to Y0 × K for Y0 ⊂ U0 a complex submanifold
of U0; (b) NY |Y ∩U ∼= NY0 ×K; (c) F : NY0 ×K → U0 ×K is determined by a
collection of maps NY0 → U0 continuously depending on variable in K such that
the maximum of moduli of determinants of square submatrices of their Jacobian
matrices are uniformly bounded away from zero.

The required result now follows from the inverse function theorem with contin-
uous dependence on parameter (Theorem 6.2).

(2) Now, we show that there is a neighbourhood V of the zero section of NY
such that F |V is an injection; since F is holomorphic, this would imply the required.

We have defined F in such a way that it maps the fibres of E that lie over the
points of Y ∩XH into XH , for every H ∈ Υ (see the definition of F̃ above).
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Let ρH be the path metric determined by the pullback to XH of the (complete)
Hermitian metric on X0 (that we fixed previously). We define a pseudo-metric ρ
on caX by

ρ(x1, x2) := ρH(x1, x2) <∞ if x1, x2 ∈ XH , ρ(x1, x2) := ∞ otherwise.

Let ‖·‖x denote the norm on the fibres of bundle NY determined by the restriction
to NY of the Hermitian metric on TcaX , defined above. For y ∈ Y by vy we denote
an element of NyY . For x ∈ Y we set

Vδ(x) :=
{
vy ∈ NY : ρ(x, y) < δ, ‖vy‖y < δ

}
.

Using the construction of part (1) based on the inverse function theorem with
continuous dependence on parameter, one can easily show that there is a positive
function b ∈ C(Y ) such that

(9.3) ρ(x, F (vx)) ≤ b(x)‖vx‖x

for all vx in a neighbourhood of the zero section of NY . Also, using the assertion
of part (1), one can show that there is a positive function r ∈ C(Y ) such that
F |Vr(x)(x) is a biholomorphism for all x ∈ Y . Now, we set

V :=
{
vy ∈ NY : ‖vy‖y <

r(y)

2max{1, b(y)}

}
.

This is an open neighbourhood of the zero section of NY . Let us show that F |V
is injective. Indeed, assume that vx, vy ∈ V and F (vx) = F (vy). Without loss of
generality we may assume that r(y) ≤ r(x). Thus, using the triangle inequality
and (9.3) we obtain:

ρ(x, y) ≤ ρ(x, F (vx)) + ρ(F (vx), F (vy)) + ρ(y, F (vy))

= ρ(x, F (vx)) + ρ(y, F (vy)) ≤
1

2
r(x) +

1

2
r(y) ≤ r(x).

It follows that vx, vy ∈ Vr(x)(x). Since F |Vr(x)(x) is a biholomorphism, we arrive to
a contradiction with the assumption F (vx) = F (vy). Therefore, F |V is injective.

The proof of the theorem is complete. �

Remark 9.4. In the classical tubular neighbourhood theorem the neighbourhood
of a closed submanifold is chosen to be a Stein open submanifold (see, e.g. [26]).
The following question naturally arises: is it possible to choose Ω in Theorem 9.1
to be a Stein open submanifold of caX (see the definition in Subsection 5.4)?

9.3. Proof of Theorem 2.10

In view of Propositions 5.7 and 5.9, and (2.3), Theorem 2.10 follows from:

Theorem 9.5. Let X0 be a Stein manifold, Y ⊂ caX be a complex submanifold,
f ∈ O(Y ). Then there exists a function F ∈ O(caX) such that F |Y = f .
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Proof. We will need:

Lemma 9.6. Let f ∈ O(Y ). For every point y0 ∈ Y , there exist a neighbourhood
V ⊂ caX of y0 and a function FV ∈ O(V ) such that FV |V ∩Y = f |V ∩Y .

Proof of Lemma 9.6. By Proposition 5.4, there exist an open neighbourhood V ⊂
caX of y0, open subsets V0 ⊂ Cn, K ⊂ Ĝa, and a biholomorphic map Φ ∈ O(V0 ×
K,V ) such that

Φ−1(V ∩ Y ) = Z0 ×K, where Z0 = {(0, . . . , 0, zk+1, . . . , zn) : (z1, . . . , zn) ∈ V0}.

Let f̃ := Φ∗f ∈ O(Z0 ×K). We define

F̃V (z1, . . . , zn, ω) := f̃(zk+1, . . . , zn, ω), (z1, . . . , zn, ω) ∈ V0 ×K,

and FV := (Φ−1)∗F̃V . �

Now, by Lemma 9.6 there exist an open cover U = {Uj} of caX and functions
fj ∈ O(Uj) such that fj |Y ∩Uj = f |Y ∩Uj if Y ∩ Uj �= ∅; if Y ∩ Uj = ∅, we
define fj := 0. Then {gij := fi − fj on Ui ∩ Uj �= ∅} is a 1-cocycle with values in
sheaf IY of ideals of Y . By Proposition 5.5 sheaf IY is coherent, so by Theorem 2.4
H1(caX, IY ) = 0. Thus, {gij}|V represents 0 in H1(V , IY ) for a refinement V of U .
To avoid abuse of notation we may assume without loss of generality that V = U .
Therefore, we can find holomorphic functions hj ∈ Γ(Uj , IY ) such that gij = hi−hj
on Ui ∩ Uj �= ∅. Now, we define F |Uj := fj − hj for all j. �

10. Proofs of Theorems 2.17, 2.18, 2.20 and Proposition 2.19

In the proofs we use the following results.

(1) Let {Uα} be an open cover of Z ⊂ X and L and L′ be line bundles on Z in
one of the categories introduced in Subsection 2.3 defined on {Uα} by cocycles dαβ
and d′αβ , respectively. Recall that an isomorphism between L and L′ is given by
nowhere zero functions hα on Uα (of the same category as dαβ , d

′
αβ) such that

d′αβ = hαdαβh
−1
β on Uα ∩ Uβ for all α, β.

(2) In the proofs below we work with the Čech cohomology groups of sheaves
on X or complex a-submanifolds of X associated to presheaves of functions defined
on subsets of X open in topology Ta or their intersections with the submanifolds.
By definition (see, e.g., [33]), these groups are inverse limits of the Čech cohomology
groups defined on open covers of class (Ta) of X or of its complex a-submanifolds
(see Definitions 2.5 and 2.12).

(3) Recall (cf. (2.3)) that Oa(V ) = ι∗O(U), where V = ι−1(U) ∈ Ta, U ⊂ caX
are open. In particular, Oa = ι∗O, where O is the structure sheaf of caX , and
ι : X → caX is the canonical map (see Section 2). Since ι(X) is dense in caX ,
spaces Oa(V ) and O(U) are isomorphic. It follows from the definition of coho-
mology groups that Hp(X,Oa) = Hp(caX,O), p ∈ N. A similar argument yields
Hp(Z,Oa) = Hp(Y,O), p ∈ N, where Y ⊂ caX is a complex submanifold and
Z := ι−1(Y ) ⊂ X .
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10.1. Proof of Theorem 2.17

Let us prove the first assertion.
Let E = {fα ∈ Oa(Uα)} so that LE is determined by the cocycle {dαβ :=

fαf
−1
β ∈ Oa(Uα ∩ Uβ)}. By Definition 2.16 there exist nowhere zero functions

hα ∈ O�∞(Uα) with |hα| ∈ Ca(Uα) such that dαβ = h−1
α hβ for all α, β, see (1)

in the beginning of Section 10. We define f := fαhα on Uα. This is a function
in O(Z) such that |f |Uα | = |fα||hα| ∈ Ca(Uα) for each α. One can easily show using
a partition of unity on the complex submanifold Y ⊂ caX such that Z = ι−1(Y )
(see Subsection 5.3) that the latter implies |f | ∈ Ca(Z). By our construction,
divisor Ef ∈ Div(X) is �∞-equivalent to E.

Conversely, suppose that a is such that Ĝa is a compact topological group and
j(G) ⊂ Ĝa is a dense subgroup, and let E = {fα ∈ Oa(Uα)} ∈ Diva(X). By
our assumption there exist nowhere zero functions hα ∈ O�∞(Uα) with h−1

α ∈
O�∞(Uα) such that f |Uα = hαfα for all α (see Definition 2.15). It is clear that
the family {hα} determines an �∞-isomorphism of the line a-bundle LE := {(Uα ∩
Uβ , dαβ := fαf

−1
β )} of E onto the trivial bundle {(Uα ∩ Uβ, 1)} (see (1) in the

beginning of Section 10); to conclude that LE is a-semi-trivial it remains to show
that |hα|, |hα|−1 ∈ Ca(Uα) for all α (see Definition 2.16).

By Proposition 5.1 there exist open subsets Vα ⊂ caX and functions f̂α ∈ O(Vα)

such that Uα = ι−1(Vα) and fα = ι∗f̂α for all α; also, there exists a function
F ∈ C(caX) such that |f | = ι∗F . We will show that there exist positive functions
gα ∈ C(Vα) such that ι∗gα = |hα|. Then by (2.3) |hα|, |hα|−1 ∈ Ca(Uα).

Let us fix α. First, note that since the required inclusion is a local property,
we may assume without loss of generality that Vα is biholomorphic to V0 × K,
where V0 ⊂ X0 is an open coordinate chart and K ⊂ Ĝa is open, K ∈ Q (see
Subsection 5.1). In particular, we can identify Vα with V0 ×K.

The proof of the required inclusion consists of three parts.

(1) Let us show that f̂α(·, η) �≡ 0 for every η ∈ K.

By definition, the family of functions f̂ := {f̂α} determines a not identically
zero holomorphic section of a holomorphic line bundle L̂E on caX (see Subsec-
tion 2.3). Based on results in [15] we have:

caX = �H∈Υ ιH(XH), where XH = X , ιH : XH → caX is holomorphic
(see Subsection 5.1) and ιH(XH) is dense in caX for every H ∈ Υ (cf. Subsec-
tion 4.1 and Example 4.2 in [15]).

In particular, since ιH(XH) is dense in caX , assuming that section f̂ ≡ 0 on

ιH(XH) for some H ∈ Υ we obtain f̂ ≡ 0 on caX , a contradiction.

Suppose, on the contrary, that f̂α(·, η) ≡ 0 for some η ∈ K. Then there exists

a unique H ∈ Υ such that V0 × {η} (∼= Π̂(V0, {η})) ⊂ ιH(XH). We set f̂η := ι∗H f̂ .
This is a holomorphic section of holomorphic line bundle ι∗H L̂E on XH . By our

assumption f̂η is zero on an open subset of XH (= X). Since f̂η is holomorphic

andXH is connected, f̂η ≡ 0; hence f̂ |ιH(XH ) ≡ 0, a contradiction, i.e., f̂α(·, η) �≡ 0.

(2) Next, we show that F |Vα(·, η) �≡ 0 for every η ∈ K.

Assume on the contrary that there exists η0 ∈ K such that F |Vα(·, η) ≡ 0.
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By part (1), f̂α(·, η0) �≡ 0, so we can choose an open V ′
0 � V0 such that |f̂α(·, η0)| ≥

c > 0 on V ′
0 . Now, under the identification Vα with V0 ×K the set Uα = ι−1(Vα)

is identified with Uα = V0 ×L, where L := j−1(K) ⊂ G, and so ι|Uα = IdV0 × j|L.
Since F |Vα is continuous and j(L) is dense in K (see Subsection 2.1), there exists
a net {gγ} ⊂ L such that the net {j(gγ)} ⊂ K converges to η0. By continuity

f̂α(·, j(gγ)) converges to f̂α(·, η0) uniformly on V ′
0 (so we may assume without loss

of generality that |f̂α(·, j(gγ))| ≥ c/2 > 0 for all γ), while F |Vα(·, j(gγ)) converges
to 0 uniformly on V ′

0 . Since
∣∣f |Uα

∣∣ = |hα||fα|, where |f | = ι∗F , fα = ι∗f̂ , the
latter implies that |hα(·, gγ)| → 0 uniformly over V ′

0 . We will show that this leads
to a contradiction with our assumption.

Indeed, due to results of Subsection 4.1 of [15] there exists an equivariant
with respect to right actions of G continuous proper map κ : Ĝ�∞ → Ĝa. Set
K ′ := κ−1(K). Passing to the corresponding subnets, if necessary, we may assume
without loss of generality that there exists a net {ξγ} ⊂ K ′ having limit ξ0 ∈ K ′

such that κ(ξ0) = η0 and κ(ξγ) = j(gγ) for all γ. Further, since by our assump-

tion hα ∈ O�∞(Uα), by Proposition 5.1 there exists a function h̃α ∈ O(V0 × K ′)
such that (IdV0 × j�∞)∗h̃α = hα (see Subsection 2.1 for notation). Now, since
|hα(·, gγ)| → 0 uniformly on V ′

0 , we obtain that |h̃α(·, ξγ)| → 0 uniformly on V ′
0 ;

so by continuity h̃α(·, ξ0) ≡ 0 on V ′
0 . However, by (2.3) function h−1

α ∈ O�∞(Uα)
admits a continuous extension to V0 ×K ′ such that its product with h̃α is identi-
cally 1 (because hαh

−1
α ≡ 1 on Uα and (IdV0 × j�∞)(Uα) is dense in V0 ×K ′). This

contradicts the identity h̃α(·, ξ0) ≡ 0 on V ′
0 and completes the proof of step (2).

(3) Finally, we show that there exists a positive function gα ∈ C(Vα), Vα =
V0 ×K, such that ι∗gα = |hα|.

Let Z ⊂ Vα be the union of zero loci of functions F |Vα and |f̂α|. By parts (1)
and (2), we obtain that the open set Zc := Vα \ Z is dense in Vα and, moreover,

F |Vα/|f̂α| and |f̂α|/F |Vα are continuous on Zc. We set κ̃ := (IdV0×κ) : V0×Ĝ�∞ →
V0 × Ĝa. By the definition pullbacks by κ̃ of

(
F/|f̂α|

)
|Zc and

(
|f̂α|/F

)
|Zc to

κ̃−1(Zc) ⊂ V0 ×K ′ coincide with |h̃α| and |h̃α|−1 there (see part (2)). This, the
fact that the open set κ̃−1(Zc) is dense in V0 ×K ′ and the definition of κ̃ imply
that |h̃α| is constant on fibres of κ̃. Since κ̃ is a proper continuous map and V0×K,
V0 ×K ′ are locally compact Hausdorff spaces, the latter implies that there exists
a positive function gα ∈ C(V0 × K) such that κ̃∗gα = |h̃α|. By the definition

gα = F |Vα/|f̂α| on Zc. This yields ι∗gα = |hα|, as required. �

10.2. Proof of Theorem 2.18

Suppose that conditions (1) and (2) are satisfied. Let us show that the holomorphic
line a-bundle L is a-semi-trivial.

Suppose that L is defined by a holomorphic 1-cocycle {cαβ} on an open cover
{Uα} of Z of class (Ta). In what follows, we may need to pass several times
to refinements of class (Ta) of the cover {Uα}. To avoid abuse of notation we
may assume without loss of generality that {Uα} is acyclic with respect to the
corresponding sheaves so that according to the classical Leray lemma we can work
only with cover {Uα}.
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By (1) we can find functions cα ∈ Oa(Uα) such that c−1
α ∈ Oa(Uα) and

c−1
α cαβcβ = dαβ is locally constant on Uα∩Uβ for all α, β; hence, {dαβ} determines
an equivalent discrete a-bundle L′ on Z. Now, we have polar representation

dαβ = |dαβ |eilαβ for all α, β.

Then {|dαβ |} ∈ Z1({Uα},R+), {eilαβ} ∈ Z1({Uα},U1), where U1 is the 1-dimen-
sional unitary group, are multiplicative locally constant cocycles.

Since |dαβ | �= 0 are locally constant and belong to Oa(Uα ∩ Uβ), functions
log |dαβ | ∈ Oa(Uα∩Uβ) as well and form an additive holomorphic 1-cocyle on {Uα}.
We can resolve this cocycle by Theorem 5.12 (see definitions in the beginning of
Section 10), i.e., there exist functions gα ∈ Oa(Uα) such that egα · e−gβ = |dαβ | for
all α, β.

Further, by condition (2) bundle L′ is trivial in the category of discrete line
bundles on Z. This implies existence of functions eilα ∈ O(Uα), where lα are
real-valued locally constant, such that

eilαβ = eilα · e−ilβ on Uα ∩ Uβ.

Now, we define
ψα := e−gα · e−ilα · cα ∈ O�∞(Uα).

Then dαβ = ψαψ
−1
β , so the family of functions {ψα} determines an isomorphism

in category L�∞(Z) of L onto the trivial line bundle (see (1) in the beginning of
Section 10). Moreover, |ψα| = e−Re gα |cα|, |ψα|−1 = eRe gα |c−1

α | ∈ Ca(Uα) for all α,
as required.

Conversely, suppose that the holomorphic line a-bundle L is a-semi-trivial. Let
us show that conditions (1) and (2) are satisfied. As before, we assume that L is de-
termined by a cocycle {cαβ ∈ Oa(Uα∩Uβ)} on cover {Uα} of Z. By Definition 2.16
there exist nowhere zero functions ψα ∈ O(Uα) with |ψα|, |ψα|−1 ∈ Ca(Uα) such
that ψαcαβψ

−1
β ≡ 1 on Uα ∩ Uβ �= ∅ (see (1) in the beginning of Section 10).

We will use notation and results of Subsection 5.5. Denote

Λp,ka (Uα) := ι∗Λp,k(Vα), Zp,ka (Uα) := ι∗Zp,k(Vα),

where Vα ⊂ Y is open and such that Uα = ι−1(Vα), Y ⊂ caX is the closure
of ι(Z) (a complex submanifold of caX , see Proposition 5.7), Λp,k(Y ) is the space
of (p, k)-forms on Y and Zp,k(Y ) is the space of ∂̄-closed form on Y . Also, denote
C∞

a (Uα) := ι∗C∞(Vα).
Let us show that |ψα|, |ψα|−1 ∈ C∞

a (Uα). We may assume without loss of gen-
erality that Uα = U0 × j−1(K), Vα = U0 × K, where U0 ⊂ Cm, m := dimCZ,
is an open ball and K ⊂ Ĝa, K ∈ Q, see (5.3), is open (see Proposition 5.4 and
Subsection 5.1). Then there exist ψ̃α, ψ̃

−1
α ∈ O(U0 ×K ′), K ′ := κ−1(K) ⊂ Ĝ�∞ ,

such that (IdU0 ×j�∞)∗(ψ̃α)±1 = (ψα)
±1 (see part (2) in the proof of Theorem 2.17

and Subsection 5.1) which can be viewed as holomorphic functions on U0 taking
values in the Fréchet space C(K ′). In particular, these are C(K ′)-valued C∞ func-

tions. Further, since |ψα|, |ψα|−1 ∈ Ca(Uα), there exist nowhere zero functions ψ̂α,
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ψ̂−1
α ∈ C(U0 × K) whose pullbacks by IdU0 × κ to U0 × K ′ coincide with ψ̃α

and ψ̃−1
α , respectively. The last two facts imply easily that ψ̂α, ψ̂

−1
α ∈ C∞(U0×K)

(see Subsection 5.5 for the definition). Pullbacks of ψ̂α, ψ̂
−1
α by ι := IdU0 × j are

functions |ψα|, |ψα|−1. Thus these functions are in C∞
a (Uα).

Now, since ψ̂α, ψ̂
−1
α are nowhere zero, log|ψα|∈C∞

a (Uα);hence, forms ∂
(
log |ψα|

)
belong to Λ1,0

a (Uα) and satisfy ∂̄∂
(
log |ψα|

)
= 0, that is, ∂

(
log |ψα|

)
∈ Z1,0

a (Uα).
Identifying Uα with U0 × j−1(K) by a biholomorphism (see Proposition 5.4) we
obtain that ∂

(
log |ψα|

)
is the pullback by ι of the d-closed holomorphic 1-form

∂
(
log ψ̂α

)
on U0 with values in the Fréchet space C(K) (see Subsection 5.5 for

notation). Integrating the latter form along rays in U0 emanating from the center
and taking the pullback of the obtained function by ι we obtain a function uα ∈
Oa(Uα) such that ∂uα = ∂

(
log |ψα|

)
. Hence, log |ψα| − uα = v̄α for some vα ∈

Oa(Uα). We define bα := uα + vα ∈ Oa(Uα). Then log |ψα| = Re bα. Now, set

dαβ := ebαcαβe
−bβ ∈ Oa(Uα ∩ Uβ) for all α, β.

Then |dαβ | = |ψαcαβψ−1
β | ≡ 1, i.e., {dαβ} is a locally constant 1-cocycle on the

cover {Uα} of Z with values in the unitary group U1. Therefore condition (1) is
satisfied.

Further, ψαe
−bαdαβψ−1

β ebβ ≡ 1 for all α, β and |ψαe−bα | ≡ 1 on Uα, that is,

functions ψαe
−bα are locally constant for all α. Hence the discrete line a-bundle

L′ := {(Uα ∩Uβ, dαβ)} is trivial in the category of discrete line bundles on Z, i.e.,
condition (2) is satisfied as well.

The proof of the theorem is complete. �

10.3. Proof of Proposition 2.19

We use notation and results of Subsection 5.5. Suppose that algebra a is self-
adjoint. Then Z = ι−1(Y ) for a complex submanifold Y of ⊂ caX (see Defini-

tion 2.6 and Subsection 5.3). We set Λp,ka (Z) := ι∗Λp,k(Y ), Zp,ka (Z) := ι∗Zp,k(Y ),
and define

Hp,k
a (Z) := Zp,ka (Z)/∂̄Λp,k−1

a (Z), p ≥ 0, k ≥ 1, Hp,0
a (Z) := Zp,0a (Z).

These spaces of forms and cohomology groups are isomorphic to their counterparts
on Y , so we have analogues of Proposition 5.15 and Corollaries 5.16, 5.17 on Z
(see (2) and (3) in the beginning of Section 10).

We will also need an analogue of the de Rham complex on Y .
Let Zm(Y ) ⊂ Λm(Y ) denote the subspace of d-closed forms. Define

Hm(Y ) := Zm(Y )/dΛm−1(Y ), p ≥ 0, m ≥ 1,

H0(Y ) := Z0(Y ).

(“de Rham cohomology groups of Y ”). Now, set Λma (Z) := ι∗Λm(Y ), Zma (Z) :=
ι∗Zm(Y ),

Hm
a (Z) := Zm−1

a (Y )/dΛma (Z), p ≥ 0, m ≥ 1, H0
a(Z) := Z0

a(Z).

Then Hm
a (Z) and Hm(Y ) are isomorphic.
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Let us denote by Oa the sheaf associated to the presheaf of functions Oa(U),
U ⊂ Z, U ∈ Ta (see Definition 2.12). Let Za, Ra ⊂ Oa denote subsheaves of
locally constant functions with values in groups Z, R, respectively. Using an argu-
ment similar to that of the proof of Proposition 5.15, where instead of Lemma 6.1
we use the Poincaré d-lemma for Banach-valued d-closed forms on a ball (see
Subsection 8.5), one obtains an analogue of the d-Poincaré lemma on Y (i.e., a
d-closed C∞ m-form, m ≥ 1, on an open subset of Y is locally d-exact). Then
since sheaves Λm of germs of C∞ m-forms on Y are fine, see Lemma 5.14, by a
standard result about cohomology groups of sheaves admitting acyclic resolutions
(see, e.g., Ch. B, §1.3, of [34]), we obtain

(10.1) Hm
a (Z) ∼= Hm(Z,Ra), m ≥ 0.

Finally, by O∗
a ⊂ Oa we denote a multiplicative subsheaf associated to the

presheaf of functions f ∈ Oa(U), U ⊂ Z, U ∈ Ta, such that f−1 ∈ Oa(U) as well.

Proof of Proposition 2.19. First, we show that condition (1) of Theorem 2.18 is
satisfied.

We have an exact sequence of sheaves

0 → Za → Oa
e2πi·
→ O∗

a → 0

which induces an exact sequence of cohomology groups

· · · → H1(Z,Za) → H1(Z,Oa) → H1(Z,O∗
a)

δ→ H2(Z,Za) → · · · .

By definition the class of holomorphic a-bundles isomorphic to the line a-bundle
L := LE of a divisor E ∈ Diva(Z) determines an element of group H1(Z,O∗

a);
its image under δ in H2(Z,Za) is denoted by δ(L) and is called the Chern class
of L. On a suitable open cover {Uα} of Z of class (Ta) element δ(L) is defined
by a locally constant 2-cocycle {mL

αβγ} ∈ Z2({Uα},Za) given by the formula (see,
e.g., [30])

mL
αβγ =

1

2πi

(
log cαβ + log cβγ + log cγα

)
on Uα ∩ Uβ ∩ Uγ ,

where L is determined on {Uα} by 1-cocycle {cαβ ∈ O∗
a(Uα ∩ Uβ)}.

Let c(L) denote the image of δ(L) in H2(Z,Ra) under the natural homomor-
phism H2(Z,Za) → H2(Z,Ra). We identify the last group with H2

a(Z), see (10.1).
Since dimCZ = 1, element c(L) is determined by a d-closed (1, 1)-form η ∈ Z2

a(Z).

Lemma 10.1. η = dλ for some λ ∈ Λ1
a(Z).

Proof. Since Z is 1-dimensional, ∂̄η = 0. Hence, by the analogue of Corollary 5.17
on Z we have η = ∂̄λ for some λ ∈ Λ1,0

a (Z). We have ∂λ = 0, as Λ2,0
a (Z) = 0, so

dλ = (∂̄ + ∂)λ = ∂̄λ = η, as required. �
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The lemma implies that c(L) = 0. Replacing cover {Uα} by its refinement
of class (Ta), if necessary, we may assume without loss of generality that there
exists a locally constant 1-cochain {sαβ ∈ Ca(Uα ∩ Uβ,Ra)} on {Uα} such that,
for all α, β, γ,

mL
αβγ = sαβ + sβγ + sγα on Uα ∩ Uβ ∩ Uγ .

Then {log cαβ − 2πi · sαβ} ∈ Z1({Uα},Oa). According to Theorem 2.4 this cocycle
represents 0 in H1(Z,Oa) (as H

1(Z,Oa) = H1(Y,O), see discussion in the begin-
ning of Section 10). Again, passing to a refinement of cover {Uα} of class (Ta),
if necessary, we may assume without loss of generality that this cocycle can be
resolved on {Uα}, that is, there exist hα ∈ Oa(Uα) such that

log cαβ − 2πi · sαβ = hα − hβ on Uα ∩ Uβ.
We set dαβ := e−hαcαβe

hβ on Uα ∩ Uβ. Then cocycle {dαβ} determines a dis-
crete line a-bundle L′ isomorphic to L. Therefore, condition (1) of Theorem 2.18
is satisfied.

Now, we show that under the additional hypothesis H1(Z,C) = 0 condition (2)
of Theorem 2.18 is satisfied as well.

First, note that H2(Z,Z) = 0. Indeed, Z is a complex submanifold of a Stein
manifold X , and hence itself is a Stein manifold. Therefore, since dimC Z = 1,
Z is homotopically equivalent to a 1-dimensional CW-complex, which implies the
required.

A discrete line bundle on Z is determined (up to an isomorphism in the cor-
responding category) by an element of group H1(Z,C∗), where C∗ := C \ {0}.
Therefore, to show that the discrete line a-bundle L′ is trivial in the category of
discrete bundles on Z, it suffices to show that H1(Z,C∗) = 0. In turn, the exact

sequence of locally constant sheaves 0 → Z → C
exp→ C∗ → 0 on Z induces an exact

sequence of cohomology groups

· · · → H1(Z,Z) → H1(Z,C) → H1(Z,C∗) → H2(Z,Z) → · · · .
Since H1(Z,C) = H2(Z,Z) = 0, group H1(Z,C∗) = 0, as required. �

10.4. Proof of Theorem 2.20

Since X0 is homotopy equivalent to open subset Y0 ⊂ X0, π1(X0) = π1(Y0) and the
space caX is homotopy equivalent to open subset caY ⊂ caX , Y := p−1(Y0) ⊂ X
(for a = �∞ the proof is given in Proposition 4.2 of [10]; the proof in the general
case repeats it word by word).

We retain notation of Subsection 10.3. For the exact sequence of locally con-
stant sheaves on X

0 → Za → Oa
e2πi·
→ O∗

a → 0

consider the induced exact sequences of cohomology groups

· · · → H1(X,Za) → H1(X,Oa) → H1
(
X,O∗

a)
δ→ H2(X,Za) → · · · .

We have similar exact sequences over Y = p−1(Y0) so that the embedding Y ↪→ X
induces a commutative diagram of these sequences.
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Since X0 is a Stein manifold, H1(X,Oa) = H1(caX,O) = 0 by Theorem 2.4.
Thus, δ is an injection. Also, since caX is homotopy equivalent to caY , by the
homotopy invariance for cohomology of locally constant sheaves (see, e.g., Chap-
ter II.11 of [4]),

Hk(Y,Za) = Hk(caY,Z) ∼= Hk(caX,Z) = Hk(X,Za), k ≥ 0

(see definitions of the corresponding cohomology groups in the beginning of Sec-
tion 10).

Let cL ∈ H1(X,O∗
a) be the cohomology class determined by the line a-bundle

L = LE of the a-divisor E. We show that δ(cL) = 0; since δ is an injection,
this would imply that L is isomorphic to the trivial line a-bundle, and hence E is
a-equivalent to an a-principal divisor.

Indeed, the restriction δ(cL)|Y ∈ H2(Y,Za) of δ(cL) to Y is, by definition, the
Chern class of the restriction L|Y . Since E|Y is a-equivalent to an a-principal divi-
sor on Y , the line a-bundle L|Y is isomorphic to the trivial line a-bundle in La(Y ),
so we have δ(cL)|Y = 0. Since the restriction homomorphism H2(X,Za) →
H2(Y,Za) is an isomorphism (see above), δ(cL) = 0, as required.

Let us prove the second assertion of the theorem. Assume that a is such
that Ĝa is a compact topological group and j(G) ⊂ Ĝa is a dense subgroup,
and supp(E) ∩ Y = ∅. We retain notation and results of parts (1) and (2) of
the proof of Theorem 2.17. By definition divisor E determines a holomorphic line
bundle L̂E on caX and a holomorphic section s of L̂E such that s is not identically
zero on each ‘slice‘ ιH(XH) ⊂ caX and ι∗L̂E = LE. If supp(s) ⊂ caX is zero loci
of s, then ι−1(supp(s)) = supp(E). Let us show that supp(s) ∩ caY = ∅. Indeed,
assuming the contrary we find a point x ∈ ιH(XH)∩caY for some H ∈ Υ such that
s(x) = 0. Since caY ⊂ caX is open, there exists an open neighbourhood of x which
is contained in caY . Without loss of generality we may identify this neighbourhood
with V0 × K, where V0 ⊂ Y0 is an open coordinate chart and K ⊂ Ĝa is open,
K ∈ Q (see Subsection 5.1). Then s(z, η) = 0 for some (z, η) ∈ V0×K. Let S ⊂ K
be a dense subset such that j−1(S) ⊂ G, the deck transformation group of X (see
Subsection 2.1 for notation). By definition, ι−1(V0×S) ⊂ Y . Also, s(·, ξ) ∈ O(V0)
for all ξ ∈ K and s(·, η) is not identically zero. Since s ∈ C(V0×K), by the Montel
theorem there exists a sequence {s(·, ξj)}j∈N, {ξj}j∈N ⊂ S, converging to s(·, η)
uniformly on compact subsets of V0. Then according to the Hurwitz theorem (on
zeros of a sequence of univariate holomorphic functions uniformly converging to a
nonidentically zero holomorphic function), there exists (w, ξi) ∈ V0 × S such that
s(w, ξi) = 0. This implies that ι−1((w, ξi)) ∈ supp(E)∩Y , a contradiction proving
the required claim.

Thus we obtain that s|caY is nowhere zero, i.e., L̂E |caY is holomorphically
trivial. In turn, ι∗

(
L̂E|caY

)
:=

(
LE

)
|Y = LE|Y is the trivial a-bundle on Y .

Hence, the restriction of E to Y is a-equivalent to an a-principal divisor. The first
part of the theorem then implies that E is a-equivalent to an a-principal divisor
on X .

The proof of the theorem is complete. �
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11. Proofs of Theorem 2.21 and Proposition 2.23

Proof of Theorem 2.21. We will use notation and results of Subsection 5.1 and
Example 4.4 in [15].

Using the axiom of choice we construct a (not necessarily continuous) right
inverse λ : Ĝa → Ĝ�∞ to κ, i.e., κ ◦ λ = Id. Given a subset K ⊂ G, by K̂a ⊂ Ĝa

and K̂�∞ ⊂ Ĝ�∞ we denote the closures of sets ja(K) and j�∞(K) in Ĝa and Ĝ�∞ ,
respectively.

For Π(U0,K) := Πγ∗(U0,K) we have a commutative diagram

(11.1)

Π(U0,K)

Π(U0,K)

=

��

Π(U0,K) Π̂�∞(U0, K̂�∞)
Id×j	∞ �� Π̂�∞(U0, K̂�∞)

Π̂a(U0, K̂a)

κ

��
Π(U0,K) Π̂a(U0, K̂a)

Id×ja �� Π̂a(U0, K̂a) Π̂�∞(U0, K̂�∞)
λ ��

All maps, except possibly for λ, are continuous.

We will need the following results.

Lemma 11.1. Under the hypotheses of the theorem, there exists a unique function
f̂ ∈ O

(
Π̂a(U0, K̂a)

)
such that

(11.2) f |Π(U0,K) = (Id× ja)
∗f̂ .

Proof. Since f ∈ O�∞(X), there exists a function f̃ ∈ O
(
Π̂�∞(U0, K̂a)

)
such that

f |Π(U0,K) = (Id× j�∞)∗f̃ . We set f̂ := (Id×λ)∗f̃ : Π̂a(U0, K̂a) → C. Clearly, (11.2)

is satisfied. Identifying Π̂a(U0, K̂a) with U0 × K̂a (see (5.2)), we obtain that

f̂(·, ω) ∈ O(U0) for all ω ∈ K̂a. It remains to show that f̂ is continuous. Since
f ∈ Ca(Z), there exists a function F ∈ C(Π̂a(Z0, K̂a)) such that f |Π(Z0,K) =

(Id × ja)
∗F . Also, since (Id × ja)

(
Π(Z0,K)

)
is dense in Π̂a(Z0, K̂a) and dia-

gram (11.1) is commutative,

(11.3) f̂ |Π̂a(Z0,K̂a)
= F.

We identify Π̂a(U0, K̂a) with U0×K̂a, and Π̂a(Z0, K̂a) with Z0×K̂a. Suppose that f̂
is discontinuous, i.e., there exists a net {(zα, ωα)} ⊂ U0 × K̂a, (zα, ωα) → (z, ω) ∈
U0× K̂a, such that limα f̂(zα, ωα) exists but does not coincide with f̂(z, ω). Using

the Montel theorem we find a subnet {f̂(·, ωαβ
)} of the net {f̂(·, ωα)} ⊂ O(U0)

which converges to a function g. Since f̂ |Z0×K̂a
is continuous and Z0 is a uniqueness

set for functions in O(U0), g = f̂(·, ω). But g(z) = limα f̂(zα, ωα), a contradiction

showing that f̂ ∈ C(Π̂a(Z0, K̂a)). Hence, f̂ ∈ O(Π̂a(Z0, K̂a)). �

Lemma 11.2. We have ∪mi=1L̂a · ja(gi) = Ĝa.

(Recall that L̂a is the closure of ja(L) in Ĝa.)
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Proof. Indeed, ∪mi=1L̂a · ja(gi) is a closed subset of Ĝa containing ja(G), as by the

assumption of the theorem ∪mi=1L · gi = G. Since set ja(G) is dense in Ĝa, we

obtain that ∪mi=1L̂a · ja(gi) = Ĝa. �

We now complete the proof of Theorem 2.21 by means of an analytic continua-
tion-type argument.

Let us consider the open cover U = {U0,γ} of X0 and the corresponding sys-
tem of trivializations ψγ : p

−1(U0,γ × G) → U0,γ × G of the covering p : X0 → X
introduced in Subsection 2.4. (Recall that Πγ(U0,γ , S) := ψ−1

γ (U0 × S), S ⊂ G.)

This system determines a system of trivializations ψ̄γ : Π̂a,γ(U0,γ , L) → U0,γ × L,

L ⊂ Ĝa, of the fibrewise compactification p̄ : caX → X0, see Subsection 5.1. Pass-
ing to a refinement of U , if necessary, we may and will assume without loss of
generality that all nonempty sets U0,γ ∩U0,δ are connected and simply connected,
and that U0 = U0,γ∗ for γ∗ from the statement of the theorem.

First, we will prove that

(*) there exists a function f̂U0 ∈ O(p̄−1(U0)) such that ι∗f̂U0 = f |p−1(U0).

Let us fix 1 ≤ i ≤ m.

Lemma 11.3. There exist families {U0,γl}
s(i)
l=1 ⊂ U and {Kl}s(i)l=1 ⊂ G such that

(1) γ1 = γs(i) = γ∗, K1 := K and Ks(i) = K · gi,
(2) U0,γl ∩ U0,γl+1

�= ∅ for all 1 ≤ l ≤ s(i)− 1, and

(3) Πγl(U0,γl ∩U0,γl+1
,Kl) = Πγl+1

(U0,γl ∩U0,γl+1
,Kl+1) for all 1 ≤ l ≤ s(i)− 1.

Proof. Take x0 ∈ U0 and define y0 := ψ−1
γ∗ (x0, 1). Since covering p : X → X0

is regular, there exists a continuous path joining y0 and gi · y0 obtained as the
lift of a loop γ0 : [0, 1] → X0 with basepoint x0. Then there exist a partition

0 = t0 < t1 < · · · < ts(i) = 1 of [0, 1] and a family {U0,γl}
s(i)
l=1 ⊂ U such that

γ0([0, 1]) ⊂
s(i)⋃
i=1

U0,γi; U0,γ1 = U0,γs(i) := U0 (= U0,γ∗);

γ0([ti, ti+1]) ⊂ U0,γi+1 ∀i ≥ 0.

Now, we define K1 = K and Kl+1 := Kl · cγlγl+1
for all 1 ≤ l ≤ s(i) − 1 (note

that U0,γl ∩ U0,γl+1
�= ∅ by our construction), where {cδγ} is the 1-cocycle on U

determining covering p : X → X0 (see Subsection 2.4). Clearly, conditions (1)–(3)
are satisfied. �

Further, using Lemma 11.1 we can find a function f̂1 ∈ O
(
Π̂a,γ1(U0,γ1 , K̂1a)

)
such that ι∗f̂1 = f on Πγ1(U0,γ1 ,K1). Since the open set U0,γ1 ∩ U0,γ2 (�= ∅) is a
uniqueness set for functions inO(U0,γ2), we can apply Lemma 11.1 to f |Πγ2(U0,γ2 ,K2)

to find a function f̂2 ∈ O
(
Π̂a,γ2(U0,γ2 , K̂2a)

)
such that ι∗f̂2 = f on Πγ2(U0,γ2 ,K2).

(Indeed, as the set Z in the lemma we can take Πγ2(V,K2), where V is a compact

subset of U0,γ1 ∩ U0,γ2 with nonempty interior. Then f = ι∗f̂1 on Z and the

continuous function f̂1 defined on compact subset Π̂a,γ1(U0,γ1 , K̂1a) of caX admits
a continuous extension to caX by the Tietze–Urysohn theorem. Thus, f ∈ Ca(Z),
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as required in the lemma.) We repeat this construction for 3 ≤ l ≤ s(i) to obtain

functions f̂l ∈ O
(
Π̂a,γl(U0,γl , K̂la)

)
such that ι∗f̂l = f on Πγl(U0,γl ,Kl). Using

these arguments for all 1 ≤ i ≤ m we obtain functions f̂s(i) ∈ O
(
Π̂a,γ∗(U0,γ∗ , K̂a ·

ja(gi))
)
such that ι∗f̂s(i) = f |Πγ∗ (Uγ∗ ,K·gi).

Let K◦
a denote the interior of K̂a. Then K

◦
a · ja(gi) is the interior of K̂a · ja(gi)

for all i ≥ 1. We have f̂s(i) = f̂s(j) on Π̂a,γ∗(U0,γ∗ ,K
◦
a · ja(gi)) ∩ Π̂a,γ∗(U0,γ∗ ,K

◦
a ·

ja(gj)) �= ∅ since by our construction these functions are continuous and coin-
cide on dense subset ι

(
Πγ∗(U0,γ∗ ,K · gi) ∩ Πγ∗(U0,γ∗ ,K · gj)

)
of the latter set.

Finally, by Lemma 11.2, ∪mi=1L̂a · ja(gi) = Ĝa, and since L̂a ⊂ K◦
a by the assump-

tion of the theorem, we have ∪mi=1K
◦
a · ja(gi) = Ĝa. This shows that p̄−1(U0) =

∪mi=1Π̂a,γ∗(U0,γ∗ ,K
◦
a · ja(gi)). Therefore f̂U0 |Π̂a,γ∗ (U0,γ∗ ,K◦

a ·ja(gi)) := f̂s(i), 1 ≤ i ≤
m, is a function in O(p̄−1(U0)) satisfying (*) as required. By definition (cf. (2.3)),
f |p−1(U0) ∈ Oa(p

−1(U0)).
LetW0 ⊂ X0 be the maximal connected open subset which consists of unions of

elements of the cover U and such that f |p−1(W0) ∈ Oa(p
−1(W0)). (Existence of W0

follows from Zorn’s lemma; also, U0 ⊂W0.) Let us show thatW0 = X0. Assuming
the contrary, we find (because of connectedness of X0) a subset U ′

0 ∈ U such that
W0 ∩ U ′

0 �= ∅ and W0 is a proper subset of the open connected set W0 ∪ U ′
0. Now

in conditions of Theorem 2.21 we replace U0, Z and K by sets U ′
0, Z

′ := p−1(Z ′
0),

where Z ′
0 � U ′

0 ∩ U0 is compact with nonempty interior (hence, a uniqueness set
for functions in O(U ′

0)), and K
′ := G, respectively. Since f |p−1(U0) ∈ Oa(p

−1(U0)),

we have f |Z′ ∈ Ca(Z
′). Therefore claim (*) in this setting gives a function f̂U ′

0
∈

O(p̄−1(U ′
0)) such that ι∗f̂U ′

0
= f |p−1(U ′

0)
, i.e., f |p−1(U ′

0)
∈ Oa(p

−1(U ′
0)). Since

f |p−1(W0) ∈ Oa(p
−1(W0)), this implies that f |p−1(W0∪U ′

0)
∈ Oa(p

−1(W0 ∪ U ′
0))

contradicting the maximality of W0. Thus, W0 = X0 and f ∈ Oa(X).
The proof of the theorem is complete. �

Proof of Proposition 2.23. (a)⇒ (b). Suppose that there exist g1, . . . , gm ∈ G such
that ∪mi=1K · gi = G. Let us show that the closure K̂a of j(K), j := ja, in Ĝa has

a nonempty interior K̂◦
a . Indeed, by Lemma 11.2, ∪mi=1 K̂a · j(gi) = Ĝa. Assuming

that K̂a �= Ĝa (in this case the statement is trivial) we may choose 1 ≤ k ≤ m− 1
such that K ′ = ∪ki=1 K̂a · j(gi) does not cover Ĝa but ∪k+1

i=1 K̂a · j(gi) = Ĝa. Thus

the complement of K ′ is a nonempty open subset of K̂a · j(gk+1). This implies
that K̂◦

a �= ∅.
(b)⇒ (c). Let U ⊂ Ĝa be open. Since j(G) is a dense subgroup of the compact

topological group Ĝa, the set ∪g∈G U ·j(g) coincides with Ĝa. (For otherwise, there

exists v ∈ Ĝa such that the closure in Ĝa of the set {v · j(g)}g∈G is a proper subset

of Ĝa which contradicts the density of j(G) in Ĝa.) Thus there exist g1, . . . , gm ∈ G
such that ∪mi=1 U · j(gi) = Ĝa. This implies that ∪mi=1 j

−1(U) · gi = G.

Now, suppose that K ⊂ G is such that K̂◦
a �= ∅. Choose an open set U � K̂◦

a

and define L := j−1(U) ⊂ G. The previous argument shows that the pair L ⊂ K
satisfies conditions of Theorem 2.21.

(c)⇒ (a). Follows from the definitions. �
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12. Proofs of Proposition 2.24 and Theorems 2.26, 2.28
and 2.29

12.1. Proof of Proposition 2.24

It is easy to see that any function f ∈ Oa(X) is locally Lipschitz with respect to
metric d (see Section 1), i.e.,

(12.1)
∣∣ f(x1, g)− f(x2, g)

∣∣ ≤ Cd
(
(x1, g), (x2, g)

)
= Cd0(x1, x2)

for all (x1, g), (x2, g) ∈W0 ×G ∼= p−1(W0), where W0 � X0 is a simply connected
coordinate chart. (Here C depends on d0 and W0 only.) We set fx0 := f |p−1(x0) ∈
a, x0 ∈ X0, and define

f̃(x0) := fx0 , x0 ∈ X0.

Then f̃ is a section of bundle CaX0. Using (12.1) for any linear functional ϕ ∈ a∗

we have ϕ(f̃(x)(g)) := ϕ(f(x, g)) ∈ O(W0), g ∈ G, x ∈ W0 � X0, a simply
connected coordinate chart, see [44] or [8] for similar arguments. Thus f̃ is a
holomorphic section of CaX0. Reversing these arguments we obtain that any
holomorphic section of CaX0 determines a holomorphic a-function on X . �

12.2. Proof of Theorem 2.26

Let B be a (complex) Banach space. We define

A(D0, B) := C(D̄0, B) ∩O(D0, B).

Consider a family of bounded linear operators LBz : B → A(D0, B), z ∈ D0,
holomorphic in z such that LBz (b) = b for every b ∈ B and supz∈D0

‖LBz ‖ = 1
defined by the formula

LBz (b)(x) := b for all x ∈ D0.

We use notation and results of Subsection 2.5.1. Namely, we identify functions in
algebra az, z ∈ D0, with sections over z of the holomorphic Banach vector bundle
p̃ : CaX0 → X0 associated to the principal fibre bundle p : X → X0 and having
fibre a, and functions in Oa(D) with holomorphic sections of O(CaX0)|D0 . Recall
that there is a holomorphic Banach vector bundle E such that CaX0⊕E = X0×B
for some Banach spaceB. By q : X0×B → CaX0 and i : CaX0 → X0×B, q◦i = Id,
we denote the corresponding bundle morphisms. Now, for every h ∈ az we define

Lz(h) := (q ◦ LBz ◦ i)(h) ∈ Aa(D).

Clearly, the family {Lz}z∈D0 satisfies conditions (1), (2) of Theorem 2.26. �

12.3. Proof of Theorem 2.28

The arguments below are analogous to those in [7].
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Using the construction of Subsection 2.5.1 we identify functions in Ca(X)
and Oa(X) with continuous and holomorphic sections of the holomorphic Banach
vector bundle p̃ : CaX0 → X0 associated to the principal fibre bundle p : X → X0

and having fibre a. Further, there exist holomorphic Banach vector bundles
p1 : E1 → X0 and p2 : E2 → X0 with fibres B1 and B2 such that E2 = E1 ⊕CaX0

and E2 is holomorphically trivial, i.e., E2
∼= X0×B2 (see, e.g., [55]); so continuous

and holomorphic sections of E2 can be identified with B2-valued continuous and
holomorphic functions on X0. By q : E2 → CaX0 and i : CaX0 → E2 we denote
the corresponding quotient and embedding homomorphisms of the bundles so that
q ◦ i = Id.

As before we identify function f satisfying the hypothesis of Theorem 2.28
with a continuous section of CaX0 over ∂D0. Then h := i(f) ∈ C(∂D0, B2). Since
f ∈ Ca(∂D) satisfies the tangential Cauchy–Riemann equations, h satisfies the
weak tangential Cauchy–Riemann equations on ∂D0:∫

∂D0

(ϕ ◦ h) ∂̄ω = 0,

for any smooth form ω ∈ Λn,n−2(X0) having compact support and any ϕ ∈ B∗
2 .

Hence, applying the Hartogs-type theorem of [36] to functions ϕ◦h we obtain that
there exists a function H ∈ O(D0, B

∗∗
2 ) ∩ C(D̄0, B

∗∗
2 ), where the second dual B∗∗

2

of B2 is considered with weak* topology, such that H |∂D0 = h (here B2 is naturally
identified with its isometric copy in B∗∗

2 ).
Now, we use the integral representation result of Corollary 5.4 in [28], asserting

that there exist a compact subset S ⊂ D̄0 \D0, a positive Radon measure μ on S
and a function Q on D0 × S such that (a) Q(·, y) is holomorphic for all y ∈ S; (b)
Q(x, ·) is μ-integrable for all x ∈ D0; (c) x �→

∫
S |Q(x, y)| dμ(y) is continuous; (d)

for any function w ∈ O(D0) ∩C(D̄0)

w(x) =

∫
S

Q(x, y)f(y) dμ(y) for all x ∈ D0.

Using the Bochner integration we define

(12.2) H ′(x) :=
∫
M

Q(x, y)h(y) dμ(y), x ∈ D0.

Then H ′ ∈ C(D0, B2). Since the Bochner integral commutes with the action of
bounded linear functionals, ϕ ◦H ′ = ϕ ◦H on D0 for all ϕ ∈ B∗

2 . Thus, H ′ = H
on D0 and so H ∈ O(D0, (B2, w)) ∩C(D̄0, (B2, w)), where (B2, w) is B2 equipped
with weak topology, and H ∈ O(D0, B2).

Now, the required holomorphic extension of f is given by F := q(H ′). Indeed,
by our construction F |D0 ∈ O(D0, CaX0). By Proposition 2.24, F |D0 can be
viewed as a function in Oa(D). Further, since map q is continuous also if we equip
fibres of the corresponding bundles with weak topologies, F is a continuous section
of (CaX0, w) over D̄0, i.e., of CaX0 with fibres endowed with weak topology. Using
presentation (2.9) of CaX0 and evaluation functionals at points of G, we easily
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obtain from the weak continuity of F that considered as a function on X it is
continuous up to the boundary. Hence, F ∈ Oa(D) ∩ C(D̄) and F |∂D = f , as
required. �

12.4. Proof of Theorem 2.29

Let D0 be a relatively compact subdomain of X0, D := p−1(D0). We set Aa(D) :=
Oa(D) ∩ Ca(D̄). By Aι(D) we denote the space of holomorphic functions f ∈
Aa(D) such that for every x0 ∈ D̄0 the function g �→ f(g · x) (g ∈ G, x ∈ p−1(x0))
is in aι, and by A0(D) the C-linear hull of spaces Aι(D), ι ∈ I.

Theorem 2.29 is a corollary of the following result.

Theorem 12.1. If X0 is a Stein manifold and D0 ⊂ X0 is a strictly pseudoconvex
domain, then A0(D) is dense in Aa(D).

First, we deduce Theorem 2.29 from Theorem 12.1 and then prove the latter.
By CaιX0 (ι ∈ I) we denote the holomorphic Banach vector bundle associated

to the principal fibre bundle p : X → X0 and having fibre aι (see (2.9)). For a given
open subsetD0 ⊂ X0 byO(D0, CaιX0) we denote the space of holomorphic sections
of bundle CaιX0 over D0 endowed with the topology of uniform convergence on
compact subsets of D0 which makes it a Fréchet space. We have an isomorphism
of Fréchet spaces

(12.3) Oaι(D)
∼=→ O(D0, CaιX0)

(the proof repeats literally that of Proposition 2.24).
Let X0 be a Stein manifold, Y0 � X0 be open such that Ȳ0 is holomorphically

convex, and D0 ⊂ X0 be an open neighbourhood of Ȳ0. We set Y := p−1(Y0).

Proposition 12.2. Let f ∈ Oaι(D). For every ε > 0 there exists h ∈ Oaι(X)
such that supz∈Y |f(z)− h(z)| < ε.

Proof. We need the following approximation result established in Theorem C
of [16].

Let B be a complex Banach space and O(X0, B) the space of B-valued holo-
morphic functions on X0.

(�) Let f̂ ∈ O(D0, B). For every ε > 0 there exists ĥ ∈ O(X0, B) such that

supz∈Y0
‖f̂(z)− ĥ(z)‖B < ε.

Further, since X0 is a Stein manifold, there exist holomorphic Banach vec-
tor bundles p1 : E1 → X0 and p2 : E2 → X0 with fibres B1 and B2 such that
E2 = E1 ⊕ CaιX0 and E2 is holomorphically trivial, i.e., E2

∼= X0 × B2 (cf.
the proof of Theorem 2.28). Thus, any holomorphic section of E2 can be nat-
urally identified with a B2-valued holomorphic function on X0. By q : E2 →
CaιX0 and i : CaιX0 → E2 we denote the corresponding quotient and embed-
ding homomorphisms of these bundles so that q ◦ i = Id. Given a function
f ∈ Oaι(D) by f̂ ∈ O(D0, CaιX0) we denote its image under isomorphism (12.3).
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Set f̃ := i(f̂) ∈ O(D0, B2). By (�), for every ε̃ > 0 there exists a function

h̃ ∈ O(X0, B2) such that supz∈Y0
‖f̃(z) − h̃(z)‖B2 < ε̃. We define ĥ := q(h̃) ∈

O(X0, CaιX0) and by h ∈ Oaι(X) denote the image of ĥ under the inverse isomor-
phism in (12.3). The continuity of i and q and the compactness of Ȳ0 now imply

that supz∈Y |f(z)− h(z)| < Cε̃ for some C > 0 independent of f̂ and ε̃. �

Using this proposition we complete the proof of Theorem 2.29 as follows.

Let f ∈ Oa(X). It suffices to show that for a sequence Y0,1 � · · · � Y0,k � · · ·
of open subsets of X0 such that ∪kY0,k = X0 and for any ε > 0 there exist func-
tions hk ∈ O0(X) such that supx∈Yk

|f(x)− hk(x)| < ε/k, where Yk := p−1(Y0,k).
Since X0 is a Stein manifold, we may assume without loss of generality that
each Ȳ0,k is holomorphically convex. Then there is a strictly pseudoconvex open
neighbourhood D0,k � X0 of Ȳ0,k, k ≥ 1 (see, e.g., [35]). Since restriction f |D̄k

∈
Aa(Dk), Dk := p−1(D0,k), by Theorem 12.1 there exist functions h′k ∈ A0(Dk)
such that supx∈Dk

|f(x) − h′k(x)| < ε/(2k), k ≥ 1. By the definition of space
A0(Dk), there exists ιk ∈ I such that h′k ∈ Aιk(Dk). Now, by Proposition 12.2,
there exists hk ∈ Oaιk

(X) such that supx∈Yk
|h′k(x) − hk(x)| < ε/(2k). Thus,

supx∈Yk
|f(x) − hk(x)| < ε/k. Since Oaιk

(X) ⊂ O0(X), this implies the required
result modulo Theorem 12.1. �

Proof of Theorem 12.1. By A(D0, CaX0) and A(D0, CaιX0) we denote spaces of
sections of bundles CaX0|D̄0

and CaιX0|D̄0
continuous over D̄0 and holomorphic

on D0. We equip A(D0, CaX0) with norm ‖f‖ := supx∈D̄0
‖f(x)‖a which makes it

a Banach space. Then A(D0, CaιX0) is a closed subspace of A(D0, CaX0). Also,
we define linear space

A0(D0, CaX0) :=
⋃
ι∈I

A(D0, CaιX0).

We have natural isomorphisms of vector spaces defined similarly to that of Propo-
sition 2.24:

(12.4) Aaι(D)
∼=→ A(D0, CaιX0), A0(D)

∼=→ A0(D0, CaX0)

(the proof is analogous to the proof of Proposition 2.24). In view of (12.4), Theo-
rem 12.1 can be restated as follows:

(∗) Suppose that X0 is a Stein manifold and D0 � X0 is a strictly pseudoconvex
subdomain. Then A0(D0, CaX0) is dense in A(D0, CaX0).

For the proof of this claim we need the following results.
As before, we define

A(D0, B) := O(D0, B) ∩ C(D̄0, B)

and endow this space with norm ‖f‖D̄0
:= supx∈D̄0

‖f(x)‖B. The next result
follows easily from a similar result in [35] (in case B = C) since all integral formulas
and estimates used in its proof are preserved when passing to Banach-valued forms.
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Lemma 12.3. Let K ⊂ A(D0, B) be compact. For every ε > 0 there exist an open
neighbourhood D′

0 � X0 of D̄0 and a bounded linear operator AK,ε = AD0,K,ε ∈
L
(
A(D0, B),A(D′

0, B)
)
such that ‖f −Af |D̄0

‖D̄0
< ε for each f ∈ K.

We prove assertion (∗) in three steps.

(1) Let f ∈ A(D0, CaX0). Using the construction of Subsection 2.5.1 (cf. the
proof of Theorem 2.28) and Lemma 12.3, we may assume without loss of generality
that f = f ′|D̄0

, where f ′ ∈ O(D′
0, CaX0) and D

′
0 � X0 is an open neighbourhood

of D̄0.
We have to show that for every ε > 0 there exists a section F ∈ A0(D0, CaX0)

such that supx∈D̄0
‖f(x)− F (x)‖a < ε.

(2) Let U = {Uk}Mk=1, where each Uk � D′
0 is open biholomorphic to a polydisk

in Cn, and D0 � ∪Mk=1Uk.

Lemma 12.4. For every ε > 0 there exist a subspace aιε ⊂ a (ιε ∈ I) and sections
Fε,k ∈ A

(
Uk, Caιε

X0

)
such that

(12.5) ‖f ′(x)− Fε,k(x)‖a < ε for all x ∈ Uk, 1 ≤ k ≤M.

Proof. Since eachUk, 1 ≤k≤M , is simply connected, the bundles CaX0 and CaιX0

(ι ∈ I) admit holomorphic trivializations over Uk. Using these trivializations we
identify sections of these bundles over Uk with a-valued and aι-valued functions
on Uk.

By our assumption, for every 1 ≤ k ≤ M there exists a biholomorphism be-
tween Uk and an open polydisk Δ ⊂ Cn centered at 0. Without loss of generality
we may assume that f ′

k := f ′|Uk
is defined over an open neighbourhood of Δ̄.

Then f ′
k can be identified by means of the corresponding holomorphic trivializa-

tion of bundle CaX0 with a holomorphic a-valued function defined on an open
neighbourhood of Δ̄.

For a given function h ∈ O
(
Δ, a

)
by TN0 h we denote its Taylor polynomial of

degree N at x = 0. Choose N so large that∥∥ f ′
k(x) − TN0 f

′
k(x)

∥∥
a
<
ε

2
for all x ∈ Δ, 1 ≤ k ≤M,

where TN0 f
′
k(x) :=

∑
|α|≤N ak,αx

α, ak,α ∈ a, and α is a multi-index. Since a0 is

dense in a, for every δ > 0 and all 1 ≤ k ≤M , |α| ≤ N , there exist aεk,α ∈ a0 such
that ‖ak,α − aεk,α‖a < δ. We choose δ > 0 to be sufficiently small so that

sup
x∈Δ

∥∥∥ ∑
|α|≤N

ak,αx
α − Fε,k(x)

∥∥∥
a
<
ε

2
,

where Fε,k(x) :=
∑

|α|≤N a
ε
k,αx

α. Therefore,

‖f ′
k(x) − Fε,k(x)‖a < ε for all x ∈ Δ, 1 ≤ k ≤M.

By definition, there exists ιε ∈ I such that aιε contains all aεk,α (1 ≤ k ≤ M ,

|α| ≤ N); hence Fε,k ∈ A
(
Δ, aιε

)
. �
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(3) We also need the following result.

Lemma 12.5. In notation of Lemma 12.4, for every ε > 0 there exists a section
F ∈ A(D0, Caιε

X0) ⊂ A0(D0, CaX0) such that

‖F (x)− Fε,k(x)‖a < Cε for all x ∈ Uk ∩ D̄0, 1 ≤ k ≤M,

for some C > 0 independent of section f ′ ∈ A0(D
′
0, CaX0) and ε > 0.

Proof. There exists an open neighbourhood D′′
0 � D′

0 of D̄0 such that D′′
0 �

∪Mk=1Uk. We may assume without loss of generality that D′′
0 is strictly pseudocon-

vex. Let B be a complex space. By Λ
(0,q)
b (D′′

0 , B), q ≥ 0, we denote the space

of bounded continuous B-valued (0, q)-forms on D′′
0 endowed with norm ‖ · ‖(0,q)D′′

0 ,B

defined by formula (6.1) with respect to local coordinates on the cover {Uk}Mk=1

of D′′
0 .
Next, we define a holomorphic 1-cocycle as follows. If Uk ∩ Ul �= ∅, then

gkl := Fε,k|Uk∩Ul∩D′′
0
− Fε,l|Uk∩Ul∩D′′

0
∈ A(Uk ∩ Ul ∩D′′

0 , Caιε
X0),

and gkl := 0 if Uk ∩ Ul ∩D′′
0 = ∅.

Let {ρk}Mk=1 ⊂ C∞(X0) be a collection of nonnegative functions such that
supp(ρk) � Uk, 1 ≤ k ≤M , and

∑m
k=1 ρk ≡ 1 on D̄′′

0 .

We set g̃l :=
∑M

k=1 ρkgkl ∈ C∞(Ul ∩D′′
0 ) so that gkl = g̃k − g̃l on Uk ∩Ul ∩D′′

0 .
Then the family {∂̄g̃l} determines a ∂̄-closed (0, 1)-form ω on D′′

0 , ω := ∂̄g̃l on
Ul ∩D′′

0 , taking values in bundle Caιε
X0.

Recall (Subsection 2.5) that since X0 is a Stein manifold, there exists a holo-
morphic Banach vector bundle E such that Caιε

X0⊕E = X0×B for some Banach
space B. By q : X0 ×B → Caιε

X0 and i : CaX0 → X0 ×B, q ◦ i = Id, we denote
the corresponding bundle morphisms.

Let ω̃ := i(ω) ∈ Λ
(0,1)
b (D′′

0 , B). Since q is a holomorphic bundle morphism, ω̃
is ∂̄-closed. Moreover, according to Lemma 12.4,

sup
x∈Uk∩Ul∩D′′

0

‖gkl(x)‖a < 2 ε for all k, l.

Therefore by the construction of ω and by continuity of i and the fact thatD′′
0 � X0

we obtain that for some c > 0 independent of ω,

‖ω̃‖(0,1)D′′
0 ,B

≤ c ε.

Then by Lemma 6.1 there exists a function η̃ ∈ Λ0,0
b (D′′

0 , B) such that ∂̄η̃ = ω̃ and

‖η̃‖(0,0)D′′
0 ,B

≤ C1 ‖ω̃‖(0,1)D′′
0 ,B

≤ C1 c ε

for some C1 > 0 independent of ω. We set η := q(η̃) ∈ C1(D′′
0 , Caιε

X0). Since q is
a holomorphic bundle morphism and D′′

0 � X0,

∂̄η = ω and sup
x∈D′′

0

‖η(x)‖a ≤ C2 C1 c ε

for some C2 > 0 independent of ω.
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Since D0 � D′′
0 , the restriction η|D̄0

is continuous on D̄0. We define

F |Uk∩D̄0
:= Fε,k|Uk∩D̄0

− g̃k|Uk∩D̄0
+ η|Uk∩D̄0

, 1 ≤ k ≤M.

It follows that F ∈ A(D0, Caιε
X0) and

sup
x∈D̄0

‖F − Fε,k‖a ≤ 2Mε+ C2C1c ε =: C ε,

as required. This completes the proof of the lemma. �

Assertion (∗) now follows from Lemmas 12.4 and 12.5. The proof of Theo-
rem 12.1 is complete. �

13. Proofs of Theorems 5.10, 5.18 and Lemmas 5.13, 5.14

13.1. Proof of Theorem 5.10

We will use notation and results of Subsection 5.1.
By definition, every point in Y has a neighbourhood V ⊂ Y over which, for

every N ≥ 1, there exists a free resolution

(13.1) Om4N

Y |V
ϕ4N−1�� · · ·

ϕ2 ��Om2

Y |V
ϕ1 ��Om1

Y |V
ϕ0 ��A|V �� 0.

We need to show that sheaf Ã is coherent on caX , i.e., that every point x ∈ caX
has a neighbourhood U ⊂ caX over which sheaf Ã|U has free resolutions of any
finite length. If x ∈ caX \ Y , then we can choose U such that U ∩ Y = ∅;
hence, Ã|U = 0 trivially has free resolutions of any finite length. Now, let x ∈ Y .
Shrinking V , if necessary, and applying Proposition 5.4 we can choose U � x such
that V = Y ∩ U and there exists a biholomorphism that maps U onto U0 × K,
where U0 ⊂ X0 is biholomorphic to an open polydisk in Cn, K ⊂ Ĝa is open,
and V is mapped onto V0 ×K, where V0 ⊂ U0 is a complex submanifold. Thus,
applying this biholomorphism we may assume that

U = U0 ×K, V = V0 ×K.

We will need the following.

Lemma 13.1. The trivial extension ÕY of OY has free resolutions of any finite
length over U .

Proof. By definition, ÕY |U is isomorphic to the quotient sheaf OU/IV , where
OU := O|U is the sheaf of germs of holomorphic functions on U , IV ⊂ OU is the
ideal sheaf of V ⊂ U , i.e., we have an exact sequence

(13.2) 0 → IV → OU → ÕY |U → 0.

Following the argument of the proof of Proposition 5.5, we obtain that sheaf IV
has free resolutions of any finite length over U . Then using a free resolution of IV
over U of length N , we extend (13.2) to a free resolution of ÕY |U of length N +1.
Since N was chosen arbitrarily, this completes the proof. �
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Now we finish the proof of Theorem 5.10. Since sequence (13.1) is exact, the
corresponding sequence of trivial extensions

(13.3) Õm4N

Y |U
ϕ̃4N−1�� · · ·

ϕ̃2 �� Õm2

Y |U
ϕ̃1 �� Õm1

Y |U
ϕ̃0 �� Ã|U �� 0

is also exact; here ϕ̃i := e ◦ϕi ◦ rU,V , where rU,V : ÕY |U → OY |V is the restriction

homomorphism, and e : B → B̃ is the canonical homomorphism that maps an
analytic sheaf B on V to its trivial extension B̃ on U .

By Lemmas 7.15 and 7.17 in [15] sequence (13.1) truncated to the N -th term
is completely exact over V (i.e., the corresponding sequence of sections is exact,
see Definition 7.22 in [15]), therefore sequence (13.3) truncated to the N -th term

is completely exact as well. Since by Lemma 13.1 each sheaf Õmi

Y in (13.3) has

free resolutions over U of any finite length, Lemma 9.3 in [15] implies that Ã|U
has free resolutions over U of any finite length as well. This implies that sheaf Ã
is coherent on caX . �

13.2. Proof of Lemma 5.13

We use the following consequence of Theorem 4.6 in [15]:

Lemma 13.2. Let V0,1, V0,2 ⊂ Cn be open and connected and K1, K2 ⊂ Ĝa be
open. A map F ∈ O(V0,1 ×K1, V0,2 ×K2) admits presentation

F (z, ω) =
(
fω(z), h(ω)

)
, (z, ω) ∈ V0,1 ×K1,

where fω ∈ O(V0,1, V0,2) depend continuously on ω ∈ K1 and h ∈ C(K1,K2).

Proof. Let π1 : V0,2 ×K2 → V0,2, π
2 : V0,2 ×K2 → K2 be the natural projections.

By Theorem 4.6 in [15], (π2 ◦ F )(·, ω) ≡ const for all ω ∈ K1. Thus, we define
h ∈ C(K1,K2) as h(ω) := (π2 ◦ F )(·, ω), ω ∈ K1, and fω(z) := (π1 ◦ F )(z, ω),
(z, ω) ∈ V0,1 ×K1. �

Now, suppose ϕi ∈ O(V, Vi × Ki), where Vi ⊂ Cn are open and connected,
Ki ⊂ Ĝa are open (i = 1, 2), are coordinate maps of an open subset V ⊂ Y . Let
F := ϕ2 ◦ ϕ−1

1 . By the above lemma, F (z, ω) =
(
fω(z), h(ω)

)
((z, ω) ∈ V1 ×K1),

where fω ∈ O(V1, V2) depend continuously on ω and h ∈ C(K1,K2). Since F
is a biholomorphism, h : K1 → K2 is a homeomorphism. Then replacing F , if
necessary, by the holomorphic map G ◦ F , where G(z, ω) :=

(
z, h−1(w)

)
, (z, ω) ∈

V2 ×K2, we may assume without loss of generality that K2 = K1 =: K and that
h = Id.

In order to prove the lemma it suffices to show that for each p ∈ C∞(V0,2 ×K)
its pullback F ∗p ∈ C∞(V0,1 × K). Indeed, we have (F ∗p)(z, ω) = p (fω(z), ω).
Since V1 � z �→ f·(z) = F (z, ·) is a holomorphic and, hence, a C∞ function taking
values in the Fréchet space C(K), the required result follows by the chain rule. �
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13.3. Proof of Lemma 5.14

(For similar arguments, see [11].)

Lemma 13.3. For an open cover U = {Uγ} of Y there exists an open cover

V = {Π̂(V0,α,Kα,β) : V0,α ⊂ X0, Kα,β ⊂ Ĝa are open} of caX such that {V0,α} is
a locally finite open cover of X0, for each α the number of distinct sets Kα,β is

finite and ∪β Π̂(V0,α,Kα,β) = p̄−1(V0,α), and {Y ∩ Π̂(V0,α,Kα,β)} is a refinement
of U .

Proof. By the definition of the relative topology of Y , there exists a collection
Ũ = {Ũγ} of open subsets of caX such that Uγ = Ũγ ∩ Y for all γ. Further, since

Y ⊂ caX is closed, Ũ ∪ {caX \ Y } is an open cover of caX . By the definition of
topology on caX the latter cover admits a refinement by sets of the form Π̂(V0,K),
where V0 ⊂ X0, K ⊂ Ĝa are open. Since caX has compact fibres, we may choose
this refinement {Π̂(V0,α,Kα,β)} so that {V0,α} is a locally finite open cover of X0

and for each α the number of distinct sets Kα,β is finite and ∪β Π̂(V0,α,Kα,β) =

p̄−1(V0,α). By our construction, {Y ∩ Π̂(V0,α,Kα,β)} is a refinement of U . �

The open cover V introduced in the lemma admits a subordinate partition
of unity {να,β}, να,β := p̄∗ρα · π∗

αμα,β, where {ρα} ⊂ C∞(V0,α) is a partition
of unity subordinate to cover {V0,α} of X0, {μα,β} ⊂ C(p̄−1(xα)), xα ∈ V0,α is

fixed, is a partition of unity subordinate to cover {Π̂(V0,α,Kα,β) ∩ p̄−1(xα)}β of
p̄−1(xα) and πα : p̄−1(V0,α) → p̄−1(xα) is the continuous projection defined in local

coordinates (x, ω) on p̄−1(V0,α) (∼= V0,α× Ĝa) as πα(x, ω) := (xα, ω). By definition

να,β ∈ C∞(Π̂(V0,α,Kα,β)); hence, the restriction of {να,β} to Y is a C∞ partition
of unity subordinate to U (see Subsection 5.5). �

13.4. Proof of Theorem 5.18

Lemma 13.4. Let U0 ⊂ X0, K ⊂ Ĝa be open, f ∈ O(U0 × K) be such that
∇zf(z, η) �= 0 for all (z, η) ∈ Zf := {(z, η) ∈ U0 ×K : f(z, η) = 0}.

If g ∈ O(U0 ×K) vanishes on Zf , then h := g/f ∈ O(U0 ×K).

(The proof follows straightforwardly from Proposition 5.4.)

Proof of Theorem 5.18. By Proposition 5.1, MX is homeomorphic to the maximal
ideal space ofO(caX). It follows from Theorem 2.10 that algebraO(caX) separates
points of caX , therefore we have a continuous injection caX ↪→ MX defined via
point evaluation homomorphisms. Let us show that this map is surjective.

The transpose to the pullback homomorphism p̄∗ : O(X0) → O(caX) is a map
p̄∗ : MX → MX0 , where the latter is the maximal ideal space of algebra O(X0).
Since X0 is Stein, MX0 can be naturally identified with X0 (see, e.g., [34]) so that
p̄∗|caX = p̄. Hence, for ϕ ∈MX there exists a point x0 ∈ X0 such that p̄∗(ϕ) = δx0 ,
the evaluation homomorphism at point x0.

Next, there exists a function h ∈ O(X0) such thatXn−1
0 := {x ∈ X0 : h(x) = 0},

n := dimCX , is a non-singular complex hypersurface, dh(z) �= 0 for each z ∈ Xn−1
0 ,
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and x0 ∈ Xn−1
0 , see [25]. We set Xn−1 := p−1(Xn−1

0 ) and caX
n−1 := p̄−1(Xn−1

0 ).
Now, if f ∈ O(caX) is identically zero on caX

n−1, then ϕ(f) = 0. Indeed, by
Lemma 13.4, the function f̃ := f/p̄∗h ∈ O(caX), hence,

ϕ(f) = ϕ(f̃)ϕ(p̄∗h) = ϕ(f̃)δx0(h) = 0.

Thus, there exists a homomorphism ϕ1 of the quotient algebra O(caX)/IcaXn−1 ,
where IcaXn−1 is the ideal of holomorphic functions inO(caX) vanishing on caX

n−1,
such that ϕ = ϕ1 ◦ q1, where q1 : O(caX) → O(caX)/IcaXn−1 is the quotient
homomorphism. According to Theorem 2.10, we have a natural isomorphism

O(caX)/IcaXn−1
∼= O(caX

n−1)

defined by restrictions of functions inO(caX) to caX
n−1; hence ϕ1 can be identified

with an element of the maximal ideal space of algebra O(caX
n−1).

Starting with caX
n−1 instead of caX we proceed similarly to define flags of

complex submanifolds Xk
0 ⊂ X0, X

k ⊂ X , caX
k ⊂ caX of codimension n− k and

homomorphisms ϕn−k : O(caX
k) → C such that ϕn−k−1 = ϕn−k ◦ qn−k (0 ≤ k ≤

n− 1), where qn−k : O(caX
k+1) → O(caX

k+1)/IcaXk = O(caX
k) are the quotient

homomorphisms.

By the definition, ϕn is an element of the maximal ideal space of algebra
O(caX

0), where X0
0 = {x0, x1, . . . } is a discrete set. Clearly, O(caX

0) ∼= �i≥0

C(p̄−1(xi)). Moreover, if f ∈ Ix0 ⊂ O(caX
0), the ideal of functions vanishing on

p̄−1(x0), then f = f · p̄∗gx0 , where gx0 ∈ O(X0
0 ), gx0(xi) = 1 − δ0i (Kronecker

delta), so that

ϕn(f) = ϕn(f)ϕn(p̄
∗gx0) = ϕn(f)ϕ(p̄

∗g) = ϕn(f)gx0(x0) = 0;

here g ∈ O(X0) is such that g|X0
0
= gx0 .

Thus, there exists a homomorphism

ϕn+1 : O(caX
0)/Ix0 = C(p̄−1(x0)) → C

such that ϕn = ϕn+1 ◦ qn+1, where qn+1 : O(caX
0) → C(p̄−1(x0)) is the quotient

homomorphism. Since p̄−1(x0) is compact Hausdorff, the maximal ideal space
of C(p̄−1(x0)) is homeomorphic to p̄−1(x0). In particular, ϕn+1 = δω for some
ω ∈ p̄−1(x0).

Finally, we have

ϕ(f) = ϕn+1(f |p̄−1(x0)) = f(ω) = δω(f), f ∈ O(caX),

as required. This shows that the natural map caX →MX is a continuous bijection.
It is easily seen that this map is a homeomorphism since caX is locally compact
and X0 →MX0 is a homeomorphism.

The proof of the theorem is complete. �
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