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Division fields of elliptic curves

with minimal ramification

Álvaro Lozano-Robledo

Abstract. Let E be an elliptic curve defined over Q, let p be a prime
number, and let n ≥ 1. It is well-known that the pn-th division field
Q(E[pn]) of the elliptic curve E contains all the pn-th roots of unity. It
follows that the Galois extension Q(E[pn])/Q is ramified above p, and
the ramification index e(p,Q(E[pn])/Q) of any prime ℘ of Q(E[pn]) lying
above p is divisible by ϕ(pn). The goal of this article is to construct elliptic
curves E/Q such that e(p,Q(E[pn])/Q) is precisely ϕ(pn), and such that
the Galois group of Q(E[pn])/Q is as large as possible, i.e., isomorphic to
GL(2,Z/pnZ).

1. Introduction

Let E be an elliptic curve defined over Q, let p be a prime number, and let n ≥ 1.
The central object of study of this article is the number field Q(E[pn]) that re-
sults by adjoining to Q the coordinates of all pn-torsion points on E(Q), where Q

is a fixed algebraic closure of Q. The existence of the Weil pairing ([24], III,
Corollary 8.1.1) implies that Q(E[pn]) contains all the pn-th roots of unity of Q,
i.e., we have an inclusion Q(ζpn) ⊆ Q(E[pn]), where ζpn is a primitive pn-th root
of unity. It follows that the Galois extension Q(E[pn])/Q is ramified above p,
and the ramification index of any prime ℘ of Q(E[pn]) lying above p, denoted by
e(p,Q(E[pn])/Q), is divisible by ϕ(pn) = e(p,Q(ζpn)/Q). The goal of this article is
to construct elliptic curves E/Q such that e(p,Q(E[pn])/Q) is precisely ϕ(pn). In
other words, we are interested in finding elliptic curves such that the ramification
index of the primes above p in Q(E[pn])/Q is minimal (and equal to ϕ(pn)). One
such example is the curve E/Q with Cremona label “11a1” and Weierstrass model

E/Q : y2 + y = x3 − x2 − 10x− 20.

In this case Q(E[5])/Q is rather small; in fact, Q(E[5]) = Q(ζ5) and the rami-
fication at 5 is indeed minimal as defined above (we will discuss this example
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further in Question 4.7 and Example 8.4). Moreover, we know that in general
Gal(Q(E[pn])/Q) is isomorphic to a subgroup of GL(2,Z/pnZ), so we are inter-
ested in constructing elliptic curves such that the extension Q(E[pn])/Q has min-
imal ramification above p, and it is as large as possible, i.e., Gal(Q(E[pn])/Q) ∼=
GL(2,Z/pnZ). When this occurs, we have Gal(Q(E[pn])/Q(ζpn)) ∼= SL(2,Z/pnZ),
and the extension Q(E[pn])/Q(ζpn) is unramified at all primes above the rational
prime p. For instance, this is the case for p = 5, n = 5, and the curve

E/Q : y2 + y = x3 − 11x+ 14.

Moreover, the extension Q(E[55])/Q(ζ55) is only ramified at primes above 2539.
The main theorem of this article is as follows.

Theorem 1.1. For every prime p and every integer n ≥ 1, and for every or-
dinary j-invariant λ ∈ Fp, with λ �≡ 0, 1728 mod p, there are infinitely many
non-isomorphic, non-CM, elliptic curves E, defined over Q, such that

(a) j(E) ≡ λ mod p and E/Q has ordinary good reduction at p,

(b) the ramification index of p in the extension Q(E[pn])/Q is exactly ϕ(pn), and

(c) E[p] an irreducible Gal(Q/Q)-module.

Moreover, if p ≥ 17 and E is such an elliptic curve, the representation ρE,pn :
Gal(Q/Q) → Aut(E[pn]) ∼= GL(2,Z/pnZ) given by the action of Gal(Q/Q) on
E[pn] is surjective. In particular, Q(E[pn])/Q(ζpn) is a SL(2,Z/pnZ) extension,
unramified at primes above p.

For example, let p = 37 and n = 2. Then, for each integer k ≥ 1, the elliptic
curve

E2,k : y2 + βkxy = x3 − 36β3
kx− β5

k,

with βk = 9490 + 50653k and j(E2,k) = 11218 + 50653k, satisfies that the exten-
sion Q(E2,k[37

2])/Q(ζ372) has Galois group SL(2,Z/372Z), and it is unramified at
primes above 37 (see Examples 6.4 and 7.5 for similar infinite families of elliptic
curves, for any n ≥ 1).

The proof of Theorem 1.1 is as follows. The existence of infinitely many elliptic
curves with minimal ramification is a consequence of Gross’ work on companion
forms ([6]; see Section 4), the classification of non-cuspidal rational points on the
modular curvesX0(N) (see for instance Section 9 of [14]), and Hilbert’s irreducibil-
ity theorem (Section 5). The existence of infinitely many SL(2,Z/pnZ) extensions
unramified above p is shown in Section 7 as an application of Serre’s classification
of maximal subgroups of GL(2,Z/pZ) as in Theorem 7.2, and recent work of Bilu,
Parent, and Rebolledo ([1], [2]) on the split case of Serre’s uniformity question.

The first two sections discuss background material on Borel subgroups, and
elliptic curves with ordinary good reduction, respectively. In order to apply Gross’
criterion we need to calculate certain canonical lifts of j-invariants mod p. We
explain how to do this in Section 4, and offer several examples (see Example 4.6).
In Section 6 we provide examples of curves with minimal ramification for small
primes p. In Section 8, we use the level 1 case of Serre’s modularity conjecture [21]
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(now a theorem of Khare [9], and shown independently by Dieulefait [5]) to show
the following theorem (the usual p-adic valuation of Q will be denoted by νp).

Theorem 1.2. Let p be a prime, let n ≥ 1, and let E/Q be an elliptic curve
such that the Galois representation on the p-torsion ρE : Gal(Q/Q) → GL(E[p])
is absolutely irreducible, and with either good reduction at p, or with multiplicative
reduction at p and νp(j(E)) divisible by p. Then, the extension Q(E[pn])/Q(ζpn) is
always ramified at least at one prime ideal above a rational prime q distinct from p.

As a corollary of Theorem 1.2, we see that any elliptic curve E/Q with good re-
duction at p, and such that the extension Q(E[pn])/Q has Galois group isomorphic
to GL(2,Z/pnZ) and is minimally ramified at primes above p (i.e., elliptic curves
whose existence we prove in Theorem 1.1), must also satisfy that Q(E[pn])/Q(ζpn)
ramifies at least at one prime not above p.

Finally, at the end of Section 8 we calculate several examples of elliptic curves
with Galois group Gal(Q(E[pn])/Q(ζpn)) isomorphic to SL(2,Z/pZ), and such that
Q(E[pn])/Q(ζpn) is ramified above exactly one prime q �= p.

Acknowledgements. I would like to thank Kevin Buzzard, Fred Diamond, Bene-
dict Gross, and Felipe Voloch for their help, and suggestions. I would like to give
special thanks to Robert Pollack for pointing out that one can use Serre’s conjec-
ture to prove Theorem 1.2. Finally, I’d like to thank the two referees for their very
helpful comments and suggestions.

2. Borel subgroups

In this section we discuss generalities on Borel subgroups.

Definition 2.1. Let p be a prime, and n ≥ 1. We say that a subgroup B of
GL(2,Z/pnZ) is Borel if every matrix in B is upper triangular, i.e.,

B ≤
{(

a b
0 c

)
: a, b, c ∈ Z/pnZ, a, c ∈ (Z/pnZ)×

}
.

We say that B is a non-diagonal Borel subgroup if none of the conjugates of B in
GL(2,Z/pnZ) is formed solely by diagonal matrices. If B is a Borel subgroup, we
denote by B1 the subgroup of B formed by those matrices in B whose diagonal
coordinates are 1 mod pn, and we denote by Bd the subgroup of B formed by
diagonal matrices, i.e.,

B1 = B ∩
{( 1 b

0 1

)
: b ∈ Z/pnZ

}
, Bd = B ∩

{( a 0
0 c

)
: a, c ∈ (Z/pnZ)×

}
.

Lemma 2.2. Let p > 2 be a prime, n ≥ 1 and let B ≤ GL(2,Z/pnZ) be a
Borel subgroup, such that B contains a matrix g =

(
a b
0 c

)
with a �≡ c mod p. Let

B′ = h−1Bh with h =
(
1 b/(c−a)
0 1

)
. Then, B′ ≤ GL(2,Z/pnZ) is a Borel subgroup

conjugated to B satisfying the following properties:
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(1) B′ = B′
dB

′
1, i.e., for every M ∈ B′ there is U ∈ B′

d and V ∈ B′
1 such that

M = UV ; and

(2) B/[B,B] ∼= B′/[B′, B′] and [B′, B′] = B′
1.

If follows that [B,B] = B1, and that B1 is a cyclic subgroup of order ps for
some 0 ≤ s ≤ n.

Proof. Notice that h−1gh =
(
a 0
0 c

) ∈ B′. If B′ only contains diagonal matrices,
thenB′ = B′

d and the statement is trivial. Otherwise, let v(B′) be the smallest non-
negative among all the top-right coordinates of matrices in B′, and let

(
e f
0 l

) ∈ B′

such that f �≡ 0 mod pn and the valuation of f is precisely v(B′). Then, the
following commutator belongs to B′:

k =
( a 0

0 c

)( e f
0 l

)( a 0
0 c

)−1( e f
0 l

)−1

=
(

1 f
l

(
a
c − 1

)
0 1

)
.

Since e, l are units and a �≡ c mod p, we conclude that f(a/c−1)/l also has valuation
v(B′). Let m ∈ Z be an integer such that (f(a/c−1)/l)·m ≡ pv(B

′) mod pn. Then,

km =
(
1 pv(B′)
0 1

) ∈ B′. Now, if β ≡ 0 mod pv(B
′), then there is some β′ such that

β ≡ β′pv(B) mod pn. Thus, if M =
(
α β
0 γ

)
is an arbitrary non-diagonal element

of B′, we have

M =
(

α β
0 γ

)
=

(
α β
0 γ

)
(km)−β′/α(km)β

′/α

=
( α β

0 γ

)(
1 −β′pν(B′)

α
0 1

)
(km)β

′/α =
( α 0

0 γ

)
(km)β

′/α.

Thus, we have shown that with U = M(km)−β′/α ∈ B′
d, V = (km)β

′/α ∈ B′
1

we have M = UV ∈ B′
dB

′
1. This shows (1). Moreover, it is clear that any

commutator in [B′, B′] has diagonal coordinates congruent to 1 modulo pn and,
therefore, [B′, B′] ≤ B′

1. Notice that if M ∈ B′
1, i.e., α ≡ γ ≡ 1 mod pn, and

m ∈ Z as above, then U is the identity and M = V = (km)β
′ ∈ B′

1. Since k is
a commutator, this shows that B′

1 ≤ [B′, B′]. Thus, [B′, B′] = B′
1. Notice that

B1 = hB′
1h

−1. Hence, [B,B] = h[B′, B′]h−1 = hB′
1h

−1 = B1, as claimed in (2).
Finally, B ∼= B′, so

B/[B,B] ∼= B′/[B′, B′] ∼= (B′
dB

′
1)/B

′
1
∼= B′

d ≤ (Z/pnZ)× × (Z/pnZ)×.

This shows (2) and concludes the proof of the lemma. �

Remark 2.3. The result of the previous lemma is simply false for p = 2, i.e., the
assumption p > 2 is not just technical (the requirement p > 2 is needed for the
existence of a matrix g as in the statement of the lemma). For instance, the Borel
group

B =
{( a b

0 c

)
: a, c ∈ (Z/4Z)×, b ≡ 0 mod 2

}
≤ GL(2,Z/4Z)

is abelian, so the commutator of B is trivial. The results of the lemma are also not
necessarily true if the diagonal entries of each element in the Borel subgroup B are
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congruent modulo p (i.e., if there is no such element g as in the statement of the
lemma). For instance, let B be the subgroup

B =
{( (1 + pn−1)t t(1 + pn−1)t−1pn−1

0 (1 + pn−1)t

)
: t = 1, . . . , p

}

of GL(2,Z/pnZ). Suppose there is a subgroup B′, which is a conjugate of B,
such that B′ = B′

dB
′
1. Since B has order p, it follows that either B ∼= B′

d or
B ∼= B′

1. However, the matrices in B are not diagonalizable, and 1 is not a
common eigenvalue so neither isomorphism can hold.

3. Ordinary good reduction

Let E be an elliptic curve defined over Q, and let p be a prime such that E/Q has
good reduction at p. Let us fix an embedding ι : Q ↪→ Qp. Via ι, we may regard E
as defined over Qp. We fix a minimal model of E over Zp with good reduction,
given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with ai ∈ Z ⊆ Zp. In particular, the discriminant Δ is a unit in Zp. Moreover,
since E/Zp has good reduction, we have an exact sequence

0→ Xpn → E(Qp)[p
n]→ Ẽ(Fp)[p

n]→ 0,

where πn : E(Qp)[p
n] → Ẽ(Fp)[p

n] is the homomorphism given by reduction mo-

dulo the maximal ideal of the ring of integers of Qp, and Xpn is the kernel of πn

(see [24], Ch. VII, Prop. 2.1).
From now on we assume that E has ordinary good reduction at a fixed prime p,

i.e., the reduction of E mod p, denoted by Ẽ/Fp, is an elliptic curve and its

Hasse invariant is non-zero. It follows that Xpn and Ẽ(Fp)[p
n] are groups with pn

elements ([24], Ch. V, Thm. 3.1). The Galois group Gp = Gal(Qp/Qp) fixes Xpn .

If we fix a Z/pnZ-basis {Pn, Qn} of E(Qp)[p
n], such that Xpn = 〈Pn〉, then Dn =

Dp,n, the image of Gp in Aut(E[pn]) = GL(2,Z/pnZ), is a Borel subgroup, i.e.,

Dn ≤
{( ∗ ∗

0 ∗
)}

.

Let I ≤ Gp be the inertia subgroup and let In = Ip,n be the image of I in

Aut(E[pn]) ∼= GL(2,Z/pnZ). Then, I acts on Ẽ(F)[pn] trivially (because I acts
trivially on the residue field; see [24], Ch. VII, §4, or [18], Prop. 11, for details
in the case when n = 1), and therefore I acts on Xpn via χn : Gp → (Z/pnZ)×,
the cyclotomic character modulo pn, because the determinant of ρE,pn : Gp →
Aut(E[pn]) ∼= GL(2,Z/pnZ) is precisely χn. Thus,

In ≤
{(

χn ∗
0 1

)}
.

In what follows, we fix a prime Ω of Q over p, and let ι : Q ↪→ Qp be the embedding

associated to Ω. Via ι, we may consider an elliptic curve E/Q as an elliptic curve
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defined overQp. Let Ω be a prime of Q(E[pn]) lying under Ω, and let DΩ,n and IΩ,n

be respectively the decomposition and inertia subgroups of Gal(Q(E[pn])/Q) as-
sociated to Ω. In this setting Dn, as above, can be identified with DΩ,n, and In is
identified with IΩ,n.

Lemma 3.1. If the decomposition group Dn is diagonalizable, then inertia In is
diagonalizable. If p > 2, the converse is also true.

Proof. One direction is trivial: if Dn is diagonalizable, then In ≤ Dn must be
diagonalizable as well. Let us now suppose now that p > 2. By our remarks
above, the decomposition group Dn is a Borel. Let us assume that In is diagonal,
i.e., In =

{(
χn 0
0 1

)}
, with respect to a Z/pnZ-basis {Pn, Qn} of E[pn]. Let Dn,1

and Dn,d be the subgroups of Dn defined as in Definition 2.1. Since p > 2 and
since the cyclotomic character χn : In → (Z/pnZ)× is surjective (the base field
here is Qp), there is a diagonal matrix M =

(
a 0
0 1

)
in In ≤ Dn with a �≡ 1 mod p.

Hence, we can apply Lemma 2.2 with B = Dn, g = M , and h = Id, and so
B = B′ = Dn = Dn,dDn,1. Let L be the subfield of Qp(E[pn]) fixed by Dn,1. It
follows that Gal(Qp(E[pn])/L) ∼= Dn,1, so the extension is cyclic, of degree ps, for
some 0 ≤ s ≤ n, and it is unramified because In∩Dn,1 = {Id}. Then, Qp(E[pn])/L
is a finite unramified extension and, therefore, it is generated by a root of unity ζ of
prime-to-p order ([8], p. 37). But, in this case, Qp(E[p]) = L(ζ) would be abelian
over Qp. Since Gal(Qp(E[p])/Qp) ∼= Dn and Dn,1 is the commutator subgroup
of Dn, this is only possible if Dn,1 is trivial and Dn = Dn,d is diagonalizable. �

Remark 3.2. The converse part of Lemma 3.1 (i.e., if p > 2 and In is diagonal-
izable, then Dn is diagonalizable) is not used in the proof of our results, but we
have included it here as it is interesting in itself.

Remark 3.3. The converse of the previous lemma is false for p = 2. For instance,
let E be the curve with Cremona label “15a2”, given by the model y2 + xy + y =
x3 + x2 − 135x − 660. The curve E has ordinary good reduction at p = 2. The
2-torsion of E is rational, so Q(E[2])/Q is trivial and, therefore, Q2(E[2])/Q2 is
trivial as well. Thus, D1

∼= Gal(Q2(E[2])/Q2) and I1 are trivially diagonalizable.
However, even though D2 is not, I2 is diagonalizable.

The extension Q(E[4])/Q is of degree 4, isomorphic to a subgroup of the linear
group GL(2,Z/4Z) of the form

B =
{( a b

0 1

)
: a ∈ (Z/4Z)×, b ≡ 0 mod 2

} ∼= Z/2Z× Z/2Z.

Thus, K = Q(E[4]) is abelian over Q (see Remark 2.3) and, in fact, K = Q(i,
√
5).

Let O be the maximal order in K = Q(E[4]). Since 2 remains prime in Q(
√
5) and

it ramifies in Q(i), it follows that 2O = ℘2 is the square of a prime ideal ℘ of K
above 2. Hence, Q2(E[4])/Q2 is also an extension of degree 4 (a ramified extension
of degree 2 followed by an unramified extension also of degree 2), with Galois
group D2

∼= B which is not diagonalizable. However, I2 ∼=
{(

a 0
0 1

)
: a ∈ (Z/4Z)×

}
is diagonalizable.
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Results of Serre ([22], A.2.4) and Lemma 3.1 show that, for p > 2, the inertia
subgroup In is not diagonalizable for all n ≥ 1 if and only if E is not a CM curve.
We obtain:

Theorem 3.4. Let p > 2. The following statements are equivalent:

(1) The elliptic curve E has CM (over an extension of Qp).

(2) The exact sequence

0→ X → Vp(E)→ Vp(Ẽ)→ 0

is split, where X = (lim←−Xpn)⊗Qp, and Vp(E) = Tp(E) ⊗Qp.

(3) The decomposition subgroups Dn
∼= Gal(Qp(E[pn])/Qp) are diagonalizable

for all n ≥ 1.

(4) The inertia subgroups In are diagonalizable for all n ≥ 1.

Proof. The equivalence of (1), (2), and (3) is due to Serre. The equivalence be-
tween (3) and (4) follows from Lemma 3.1. �

Lemma 3.5. Let p > 2 be a prime. Let E/Q be an elliptic curve with ordinary
good reduction at p. With notation as above, suppose that Im is diagonalizable
but Im+1 is not, for some m ≥ 1 (or m = ∞ if E has CM ). Then there is a
Zp-basis B of Tp(E) such that the image of inertia, I, has the following structure:

I =
{(

χ b
0 1

)
: b ≡ 0 mod pm

}
≤ GL(2,Zp),

where χ : Gal(Qp/Qp)→ Z×
p is the cyclotomic character.

Proof. By the remarks at the beginning of this section, we know that each In and
I = lim←− In are Borel subgroups of the form

{( χm ∗
0 1

)}
, with respect to some basis

{Pn, Qn} of E[pn], respectively, where χm is the reduction of χ modulo pm. Since
p > 2 and χm is surjective, Lemma 2.2 implies the existence of a basis {Pn, Q

′
n}

of E[pn] such that In = (In)d · (In)1, where

(In)d =
{( χm 0

0 1

)}
, and (In)1 = In ∩

{( 1 ∗
0 1

)}
.

Hence, if we put P = (Pn)
∞
n=1 and Q′ = (Q′

n)
∞
n=1 ∈ Tp(E), then {P,Q′} is a

Zp-basis of Tp(E) such that I = (I)d · (I)1, where

(I)d =
{(

χ 0
0 1

)}
, and (I)1 = I ∩

{(
1 ∗
0 1

)}
.

Since (I)1 is an abelian subgroup of I, the top right coordinates of the matrices
in (I)1 form an additive subgroup H of Zp, say H = ptZp for some t ≥ 0. Thus,

(I)1 =
{(

1 b
0 1

)
: b ∈ ptZp

}
.
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First, suppose that m is finite. Since Im ≡ I mod pm is diagonalizable, we must
have t ≥ m, and since Im+1 is not diagonalizable, it follows t = m. This shows
that

I =
{( χ b

0 1

)
: b ≡ 0 mod pm

}
≤ GL(2,Zp),

as desired. If m =∞, then t must be arbitrarily large, and so b ∈ (0). �

The structure of the inertia subgroup described in the previous lemma has the
following corollary on ramification indices.

Theorem 3.6. Let E/Q be an elliptic curve without CM, and with ordinary good
reduction at a prime p. If Im is diagonalizable for some integer m ≥ 1, then so
is In for all integers 1 ≤ n ≤ m. Moreover, if p > 2 and m is the largest integer
such that Im is diagonalizable, then the ramification index of p in the extension
Q(E[pn])/Q is given by ϕ(pn) if 1 ≤ n ≤ m, and by ϕ(pn) · pn−m if n > m.

Proof. Let Ω be a fixed prime of Q(E[pn]) above p. Suppose that there exists an
integer n such that In = In(Ω|p) is diagonalizable, and let m be the largest such
integer (a largest m exists by Theorem 3.4 because E does not have CM). Then,
for every 1 ≤ n ≤ m, there is a basis of E[pn] such that

In(Ω|p) ∼=
{(

χ 0
0 1

)} ∼= {(
a 0
0 1

)
: a ∈ (Z/pnZ)×

}
≤ GL(2,Z/pnZ),

where χ : Gal(Q/Q)→ (Z/pnZ)× is the cyclotomic character (which is surjective).
Since Q(E[pn])/Q is Galois, the ramification index of any prime of Q(E[pn]) over p
is the same, and it follows that the ramification index of p in Q(E[pn])/Q is ϕ(pn)
if 1 ≤ n ≤ m, as claimed.

If p > 2, then Lemma 3.5 implies that the image of the inertia subgroup,
In(Ω|p), is of the form

In(Ω|p) =
{( a b

0 1

)
: a ∈ (Z/pnZ)×, b ≡ 0 mod pm

}
≤ GL(2,Z/pnZ).

Therefore, the ramification index of p in Q(E[pn])/Q is ϕ(pn) · pn−m if n ≥ m, as
desired. �

4. Gross’ criterion and canonical liftings

We now turn our attention to finding m such that Im is diagonalizable, but Im+1

is not. A deep theorem of Gross provides the criterion we seek.

Theorem 4.1 (Gross; see [6], p. 514; see also §14-15). Let p be a prime, and let
E/Q be an elliptic curve with ordinary good reduction at p, with j �= 0, 1728, and as-
sume that E[p] is an irreducible Gal(Q/Q)-module. Let Dn ≤ Gal(Q(E[pn])/Q) ≤
GL(2,Z/pnZ) be a decomposition group at p. Let jE = j(E) be the j-invariant



Minimal ramification 1319

of E and let j0 be the j-invariant of the “canonical lifting” of the reduction of j(E)
modulo p, i.e., j0 is the j-invariant of the unique elliptic curve E0/Qp which sat-
isfies E0 ≡ E mod p and EndQp(E0) ≡ EndFp(E). Then Dn is diagonalizable if
and only if jE ≡ j0 mod pn+1 if p is odd, and jE ≡ j0 mod 2n+2 if p = 2.

In order to use Gross’ criterion (Theorem 4.1) we need to be able to calculate
canonical liftings. In the rest of this section, we explain how to do so, and calculate
a canonical lifting in several examples.

Theorem 4.2 (Deuring; see [15], §8). Let F be a perfect field of characteristic
p > 0, and let E be an elliptic curve with j(E) ∈ F and with Hasse invariant
�= 0 (i.e., having the maximum number of points of order p). Let Tp(x, y) be the
classical modular polynomial relating the j-invariants of elliptic curves that have
isogenies of degree p between themselves. Let W (F) be the ring of Witt vectors with
coefficients in F and let s : W (F) → W (F) be the Frobenius automorphism given
by (x0, x1, . . .)→ (xp

0, x
p
1, . . .) ∈W (F) in Witt vector coordinates. Then, there is a

canonical lifting of E/F to W (F), with j-invariant j0 ∈W (F). Moreover,

(1) one has Tp(j0, s(j0)) = 0 and j0 ≡ j(E) mod p; and

(2) if j(E) �∈ Fp2 , then there is a unique solution j0 ∈ W (F) with Tp(j0, s(j0))
= 0 and j0 ≡ j(E) mod p.

Corollary 4.3. Let p be a prime and let E/Q be an elliptic curve with ordinary
good reduction at p. Then, there is a canonical lifting of E/Fp to Qp, with j-
invariant j0 ∈ Qp. Moreover, j0 satisfies Tp(j0, j0) = 0 and j0 ≡ j(E) mod p.

The proof of the corollary is clear, since W (Fp) = Qp and the Frobenius auto-
morphism of Witt coordinates is the identity, as x �→ xp fixes Fp.

Example 4.4. The classical modular polynomials Tp(x, y) for p = 2 and 3 are
given by

T2(x, y) = x3 − x2y2 + 1488x2y − 162000x2 + 1488xy2 + 40773375xy

+ 8748000000x+ y3 − 162000y2 + 8748000000y− 157464000000000,

T3(x, y) = x4 − x3y3 + 2232x3y2 − 1069956x3y

+ 36864000x3 + 2232x2y3 + 2587918086x2y2 + 8900222976000x2y

+ 452984832000000x2− 1069956xy3 + 8900222976000xy2

− 770845966336000000xy

+ 1855425871872000000000x+ y4 + 36864000y3

+ 452984832000000y2+ 1855425871872000000000y,
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and T2(x, x), T3(x, x) factor as

T2(x, x) = −x4 + 2978x3 + 40449375x2 + 17496000000x− 157464000000000

= −(x− 8000)(x− 1728)(x+ 3375)2.

T3(x, x) = −x6 + 4464x5 + 2585778176x4 + 17800519680000x3

− 769939996672000000x2+ 3710851743744000000000x

= −x(x− 54000)(x− 8000)2(x+ 32768)2.

Similarly, the polynomial T5(x, x) factors as

T5(x, x) = (x− 287496)2 · (x− 1728)2 · (x+ 32768)2 · (x+ 884736)2

· (x2 − 1264000x− 681472000).

Hence, if E/Q is an elliptic curve with ordinary good reduction at p = 2, 3, or 5,
then the canonical lift of the reduction of E modulo p is the following:

• If p = 2 and j(E) ≡ 1 mod 2, then j0 = −3375 = −33 · 53.
• If p = 3, and j(E) ≡ 1 or 2 mod 3, then j0 = −32768 = −215 or j0 = 8000 =

26 · 53, respectively.
• If p = 5, and j(E) ≡ 1, 2 or 4 mod 5, then j0 = 287496 = 2333113, j0 =
−32768 = −215, or j0 = −884736 = −215 · 33, respectively.

Example 4.5. Let p = 37. Let T37(x, y) be the classical modular polynomial,
and put f(x) = T37(x, x) ∈ Z[x]. The degree of the polynomial f(x) is 74 and it

factors, over Q[x], as a product of 20 polynomials f(x) =
∏20

i=1 pi(x)
mi of degree di

and multiplicity mi, as follows:

1 2 3 4 5 6 7 8 9 10 11,. . . ,16 17 18 19 20

di 1 1 1 1 1 1 1 1 1 2 2 3 4 4 4

mi 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2

Notice that f(x) ≡ −(x37 − x)2 mod 37. By the chart above, p10 is the only
polynomial divisor of f(x) whose multiplicity is not 2 over Q[x]; however, p10 ≡
(x − 8)2 is a square over (Z/37Z)[x]. It follows that there is a unique polynomial
pi(x), for some 1 ≤ i ≤ 20, such that one of the roots j0 ∈ Q37 of pi(x) is congruent
to 7 mod 37 (and j0 is the unique root of f(x) with this property). Indeed, direct
computation reveals that the only polynomial pi(x) with 7 mod 37 as a root is
p20(x). The polynomial p20(x) is given by

p20(x) = x4 − 3196800946944x3− 5663679223085309952x2

+ 88821246589810089394176x− 5133201653210986057826304

≡ (x− 2)(x− 3)(x− 7)(x− 28) mod 37Z[x],

and its root j0 ∈ Q37 has the following 37-adic expansion:

j0 =
(
7, 266, 11218, 1632114 mod 374, 12877080 mod 375, . . .

) ∈ Q37.
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Example 4.6. In the table below, we list the first few primes (p ≤ 20), together
with those canonical lifts j0 that are in Zp (and not in some extension of Zp). If
j0 ∈ Z, then we list the actual value of j0 in the first line. If j0 ∈ Zp, then we list
a second (and third) line of values modulo p5.

p Canonical lifts

2 −3375, 1728, 8000

3 −32768, 0, 8000, 54000

5 −884736, −32768, 1728, 287496

7 −12288000, −884736, −3375, 0, 54000, 16581375,
−7598, 2126 + O(75)

11 −884736000, −884736, −32768, −3375, 8000, 16581375,
7665, 24243, 27342, 35982, 61340 + O(115)

13 −884736000, −12288000, 0, 1728, 54000, 287496,
−159805, −102235, −71051, 10643, 33871, 64521 + O(135)

17 −147197952000, −884736000, −884736, 1728, 8000, 287496,
−675116, −672317, −362937, −158485, −126224 + O(175),

−110190, 74802, 128731, 229973 + O(175)

19 −147197952000, −12288000, −884736, 0, 8000, 54000
−752904, −695235, −605629, −570609, −515098 + O(195),

−118930, 318870, 414604, 526924, 710891, 1034963 + O(195),
1149479, 1187960 +O(195).

Question 4.7. In Gross’ criterion (Theorem 4.1), it is assumed that E[p] is an
irreducible Galois module. Is this hypothesis necessary? I.e., suppose E/Q is or-
dinary good at p > 2, but E[p] is reducible. Does Gross’ criterion still work in this
case? Indeed, we have verified that the criterion holds in many examples where
E[p] is reducible.

For instance, let E/Q be the curve with j-invariant j(E) = −122023936/161051
and Cremona label 11a1, given by a Weierstrass model

E : y2 + y = x3 − x2 − 10x− 20.

The curve E has ordinary good reduction at p = 5, however, there is a 5-torsion
point defined over Q, namely P = (16, 60). Hence, ρE,p is reducible. Nonetheless,

j(E) = −122023936/161051≡ 14 ≡ −884736 mod 25,

where j0 = −884736 is the canonical lift of 4 ∈ F5. In particular, (if E[5] was
irreducible, then) Gross’ criterion would imply that Q(E[5])/Q(ζ5) is unramified
at the prime above 5. This conclusion is indeed true because the extension is trivial,
i.e., Q(E[5]) = Q(ζ5) where E[5] is generated by the 5-torsion points P = (16, 60)
and Q = (4ζ35 + 2ζ25 + 3ζ5 + 2, 3ζ35 − 4ζ25 + 5ζ5).

5. Curves with minimal ramification at p

We begin with a summary of the definitions and the precise statement of Hilbert’s
irreducibility theorem (see [13], Chapter 9) that we will use in the proof of Theo-
rem 5.4 (see [23], Chapter 3, for another flavor of Hilbert’s irreducibility).
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Definition 5.1 ([13], Ch. 9). Let K be a field of characteristic 0, and suppose that
f(t1, . . . , tr, X1, . . . , Xs) = f(t,X) ∈ K(t)[X] is a polynomial in X1, . . . , Xs with
coefficients in K(t) which is irreducible as a polynomial in X variables. A basic
Hilbert set is a subset Uf,K of the affine space Ar(K) consisting of those points
t′ = (t′1, . . . , t

′
r) ∈ Kr at which the coefficients of f are defined, and such that

f(t′,X) is irreducible in K[X] over K. A Hilbert subset of Ar(K) is a set defined
as the intersection of a finite number of basic Hilbert sets with a finite number
of non-empty Zariski open subsets of Ar(K). A field K is called hilbertian if the
Hilbert subsets of Ar(K) are not empty (and thus are infinite).

Theorem 5.2 ([13], Ch. 9). A number field is hilbertian.

Theorem 5.3 ([13], Ch. 9, Corollary 2.5). A Hilbert subset of Q is dense for the
ordinary topology and every p-adic topology on Q.

We are now ready to prove the first part of Theorem 1.1.

Theorem 5.4. For every prime p and every n ≥ 1, and for every ordinary j-
invariant λ ∈ Fp, with λ �≡ 0, 1728 mod p, there are infinitely many non isomor-
phic, non-CM, elliptic curves E, defined over Q, with j(E) ≡ λ mod p (and with
ordinary good reduction at p) such that the ramification index of p in the exten-
sion Q(E[pn])/Q is exactly ϕ(pn), and E[p] is an irreducible Gal(Q/Q)-module.
In particular, Q(E[pn])/Q(ζpn) is unramified at p.

Proof. Let p be a fixed prime, and let U be the subset of Q formed by those j-
invariants ι0 ∈ Q such that if E/Q is an elliptic curve with j(E) = ι0, then E[p] is
an irreducible Gal(Q/Q)-module. We claim that U contains a Hilbert set V ⊆ U .
Indeed, if E[p] is reducible, then j(E) gives rise to a non-cuspidal rational point
on the modular curve X0(p). We distinguish two cases:

• If X0(p) is a curve of genus ≥ 1 and X0(p)(Q) is non-empty, then Mazur’s
theorem on isogenies of prime degree ([16]) says that p is a prime in the
list 11, 17, 19, 37, 43, 67, 163, but in all these cases X0(p)(Q) has only finitely
many points (see for example Section 9 and Table 4 of [14]). Hence, there are
at most finitely many exceptions in ι0 ∈ Q such that E[p] is reducible. Hence
V = U is a non-empty Zariski open set of Q, and therefore a Hilbert set.

• If X0(p) is a curve of genus 0, then the set of j-invariants of elliptic curves
over Q with E[p] reducible is given by a one parameter family

Sred,p =
{
φp(h) : h ∈ Q

}
where φp(h) is a rational function of degree ≥ 3 (see [14], Section 9, for the
explicit rational function φp). Let φp(h) = up(h)/vp(h), where up and vp are
relatively prime polynomials in Q[h]. Then, ι0 ∈ Q is in U if and only if
φp(h) = ι0 has no root h0 ∈ Q or, equivalently, if up(h) − ι0 · vp(h) = 0 has
no root h0 ∈ Q. If we put fp(j, x) = up(x) − jvp(x), then the basic Hilbert
set V = Ufp,Q is contained in U , since ι0 ∈ Ufp,Q implies that fp(ι0, x) is
irreducible over Q, and therefore has no rational roots x0 ∈ Q.

Therefore, in all cases U contains a Hilbert set.
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Let λ ∈ Fp be a fixed ordinary j-invariant, with λ �≡ 0 or 1728 mod p. Notice
that there is always at least one such ordinary j-invariant λ in Fp: if p = 2, then λ =
1; if p = 3, we may pick λ ≡ 1 or 2 mod 3; if p = 5, we may pick λ ≡ 1, 2 or 4 mod 5;
if p > 5, there are at least p−([p/12]+εp) ≥ 11p/12−2 ≥ 11·7/12−2≥ 4 ordinary j-
invariants in Fp, where εp = 0, 1, 1, 2 if p ≡ 1, 5, 7, 11 mod 12, respectively (see [24],
Ch. V, Theorem 4.1.(c)), so at least one of them is �≡ 0 or 1728 mod p.

Let E0/Qp be the unique canonical lift to Qp with j-invariant j0 = j(E0) ≡ λ
modulo p, and define

Cλ,n =
{
j ∈ Q ∩ Zp : j ≡ j0 mod pn+1

}
for p > 2, and Cλ,n = {j ∈ Q∩Z2 : j ≡ j0 mod 2n+2} when p = 2. By Theorem 5.2,
the field Q is hilbertian and, by Theorem 5.3, the Hilbert set V ⊆ U is dense for
the p-adic topology. Since Cλ,n is an open set p-adically, it follows that Cλ,n ∩ V is
infinite and contained in U . Moreover, there are only 13 rational CM j-invariants
(see [25], Appendix A, §3). Hence, the set Hλ,n of j-invariants with j ≡ j0 mod
pn+1 (with j ≡ j0 mod 2n+2 when p = 2), such that E[p] is irreducible, and such
that j has no complex multiplication, is infinite.

For each j ∈ Hλ,n let E be the curve given by the Weierstrass equation

E : y2 + (j − 1728)xy = x3 − 36(j − 1728)3x− (j − 1728)5

with j-invariant j(E) = j and discriminant Δn = j2(j − 1728)9. Since j ≡ j0 ≡
λ mod p, and λ was chosen so that λ �≡ 0, 1728 mod p, it follows that Δ ∈ F×

p and,
in particular, Δ �= 0. Thus, E/Q is an elliptic curve with good reduction at p. Since
j(E) = j ≡ λ mod p, and λ ∈ Fp is an ordinary j-invariant, we conclude that E
has ordinary good reduction at p. Since j ∈ Hλ,n, the curve E is not a CM curve.
Finally, j(E) = j ≡ j0 mod pn+1 if p > 2, and j(E) ≡ j0 mod 2n+2 if p = 2. Since
E[p] is an irreducible Gal(Q/Q)-module, then by Theorem 4.1 the decomposition
group Dn is diagonalizable, hence In is diagonalizable by Lemma 3.1. Therefore,
we have m ≥ n in Theorem 3.6, and the ramification index in Q(E[pn])/Q is
exactly ϕ(pn), as claimed.

Hence, we have shown the existence of infinitely many non-isomorphic, non-
CM curves, as in the statement of the theorem, one for each j in the infinite
set Hλ,n. �

6. Examples

In the following examples we follow the recipe in the proof of Theorem 5.4 to find
elliptic curves such that the ramification of p in Q(E[pn])/Q is precisely ϕ(pn).

Example 6.1. Let p = 2, and let λ = 1. In Example 4.4 we have calculated
the canonical lifting of λ, and it is j0 = −3375. Now we can take jn,k =
−3375 + 2n+2 · k, for each n ≥ 1 and k ≥ 1, and let En,k be a curve with
j(En,k) = jn,k given by a Weierstrass model as in the proof of 5.4, with discrim-
inant Δn,k = j2n,k(jn,k − 1728)9. The curve X0(2) is of genus 0, and the function
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φ2(h) = (h+ 16)3/h (see [14], Section 9). Let us define

f2(j, x) = (x + 16)3 − j · x = x3 + 28x2 + (768− j)x+ 4096.

It follows that if f2(jn,k, x) ∈ Q[x] has no rational roots x ∈ Q, then En,k[2] is irre-
ducible, and therefore the ramification of any prime ideal above 2 in Q(En,k[2

n])/Q
will be precisely ϕ(2n). Using the software Magma, we have verified that, indeed,
f2(jn,k, x) is irreducible over Q[x] for all 1 ≤ n ≤ 100 and all 1 ≤ k ≤ 100, and
none of the j-invariants jn,k in this range has CM.

Example 6.2. Let p = 3, and let λ = 2. In Example 4.4 we have calculated that
the canonical lifting of λ is j0 = 8000. Now we can take jn,k = 8000 + 3n+1 · k,
for each n ≥ 1 and k ≥ 1, and let En,k be a curve with j(En,k) = jn,k, and
discriminant Δn,k = j2n,k(jn,k − 1728)9. The curve X0(3) is of genus 0, and the

function φ3(h) = (h+ 27)(h+ 3)3/h. Let us define

f3(j, x) = (x+ 27)(x+ 3)3 − j · x.
It follows that if f3(jn,k, x) ∈ Q[x] has no rational roots x ∈ Q, then En,k[3] is irre-
ducible, and therefore the ramification of any prime ideal above 3 in Q(En,k[3

n])/Q
will be precisely ϕ(3n). Using the software Magma, we have verified that, indeed,
f3(jn,k, x) is irreducible over Q[x] for all 1 ≤ n ≤ 100 and all 1 ≤ k ≤ 100, and
none of the j-invariants in this range has CM.

Example 6.3. Let p = 5, and let λ = 2. In Example 4.4 we have calculated that
the canonical lifting of λ is j0 = −32768. Now we can take jn,k = −32768+5n+1·k,
for each n ≥ 1 and k ≥ 1, and let En,k be a curve with j(En,k) = jn,k, and
discriminant Δn,k = j2n,k(jn,k − 1728)9. The curve X0(5) is of genus 0, and the

function φ5(h) = (h2 + 10h+ 5)3/h. Let us define

f5(j, x) = (x2 + 10x+ 5)3 − j · x.
It follows that if f5(jn,k, x) ∈ Q[x] has no rational roots x ∈ Q, then En,k[5] is irre-
ducible, and therefore the ramification of any prime ideal above 5 in Q(En,k[5

n])/Q
will be precisely ϕ(5n). Using the software Magma, we have verified that, indeed,
f5(jn,k, x) is irreducible over Q[x] for all 1 ≤ n ≤ 100 and all 1 ≤ k ≤ 100, and
none of the j-invariants in this range has CM.

Example 6.4. Let p = 37, and let λ = 7. In Example 4.5 we have calculated that
the canonical lifting of λ is j0 ∈ Q37, with the following 37-adic expansion:

j0 =
(
7, 266, 11218, 1632114 mod 374, 12877080 mod 375, . . .

) ∈ Q37.

Let αn be a positive integer congruent to j0 mod 37n+1, e.g., α1 = 266, α2 = 11218,
α3 = 1632114, etc. Now we take jn,k = αn+37n+1k, for each n ≥ 1 and k ≥ 1, and
let En,k be a curve with j(En,k) = jn,k, and discriminant Δn,k = j2n,k(jn,k − 1728)9.
The curve X0(37) is of genus 2, and it has only two rational non-cuspidal points,
which correspond to the j-invariants j1 = −7 · 113 and j2 = −7 · 1373 · 20833.
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It follows that if jn,k �= j1 or j2, then En,k[37] is irreducible, and therefore
the ramification of any prime ideal above 37 in Q(En,k[37

n])/Q will be precisely
ϕ(37n). Since jn,k is always positive, and j1, j2 < 0, it follows that jn,k �= j1
or j2, for all k ≥ 0, and all n ≥ 1, and the ramification properties we seek ac-
tually hold for all curves En,k. Moreover, the only positive CM j-invariants are
≡ 0, 6, 8, 10, 26, 33 mod 37. Since none of them is ≡ 7 mod 37, we conclude that
none of the jn,k have complex multiplication.

7. SL2 extensions of cyclotomic fields

In this section we are interested to construct examples of SL(2,Z/pnZ) extensions
of Q(ζpn), that are unramified at primes above p.

Example 7.1. Let p = 37, as in the previous example, and consider the curve

E : y2 = x3 + x2 + 17317393168x− 2056380789861728,

with j-invariant j(E) = 266 and ordinary good reduction at p = 37. Since 266
is not one of 13 rational CM j-invariants (see [25], Appendix A, §3), it follows
that E is not a CM curve. Since j(E) = 266 is not one of two rational non-
cuspidal points of X0(37), it follows that E[37] is irreducible as a Galois module.
Hence, Theorem 4.1 and Theorem 3.6 show that the ramification of any prime
ideal above 37 in Q(E[37])/Q is precisely ϕ(37) = 36. Since Q(ζ37) ⊂ Q(E[37]), it
follows that Q(E[37])/Q(ζ37) is unramified at all the prime ideals above 37.

Let ρE,37 : Gal(Q/Q) → GL(2,Z/37Z) be the Galois representation associ-
ated to the natural action of Galois on E[37]. Using Proposition 19 of [18], one
can verify that, in fact, ρE,37 is surjective (Serre’s criterion is also implemented
in the software package Sage). Hence, Gal(Q(E[37])/Q) ∼= GL(2,Z/37Z), and
Gal(Q(E[37])/Q(ζ37)) ∼= SL(2,Z/37Z), because the determinant of ρE,37 is χ, the
cyclotomic character. Hence, Q(E[37]) is a Galois extension of Q(ζ37), with Galois
group SL(2,Z/37Z), and unramified at the prime ideal above 37.

Notice, however, that the conductor of E is NE = 23 · 72 · 172 · 192 · 432. By
the criterion of Néron, Ogg, and Shafarevich, the extension Q(E[37])/Q(ζ37) may
be ramified at primes above 2, 7, 17, 19, and 43.

Theorem 7.2 (Serre, [18], §2; [20], Lemme 18; Mazur, [16]). Let E/Q be an elliptic
curve. Let G be the image of ρE,p, and suppose G �= GL(E[p]). Then one of the
following possibilities holds:

(1) G is contained in the normalizer of a split Cartan subgroup of GL(E[p]); or

(2) G is contained in the normalizer of a non-split Cartan subgroup of GL(E[p]);
or

(3) the projective image of G in PGL(E[p]) is isomorphic to A4, S4 or A5, where
Sn is the symmetric group and An the alternating group; or

(4) G is contained in a Borel subgroup of GL(E[p]).

Moreover, option (3) can only happen for p ≤ 13, and option (4) can only happen
for p ≤ 163.
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Mazur [16] has shown that option (4) can only happen if p ≤ 163, and p ≤ 37
if E does not have CM. Building on [1] and some recent work of Gaudron and
Rémond [7], the collaborators Bilu, Parent and Rebolledo [2] have shown the fol-
lowing result on curves whose image is of split Cartan type.

Theorem 7.3 (Bilu, Parent, Rebolledo, [2]). Let p ≥ 11, with p �= 13, be a prime
number. If E/Q is an elliptic curve such that the image of ρE,p is contained in a
normalizer of a split Cartan subgroup, then the curve E/Q has CM by a quadratic
imaginary field K and p splits in K/Q.

As a corollary of the two previous theorems, and our Theorem 5.4, we obtain
infinitely many examples of the SL2 extensions we want.

Theorem 7.4. For every prime p ≥ 17 and every n ≥ 1, and for every ordi-
nary j-invariant λ ∈ Fp, with λ �≡ 0, 1728 mod p, there are infinitely many non-
isomorphic, non-CM, elliptic curves E, defined over Q, with j(E) ≡ λ mod p (and
with ordinary good reduction at p) such that the ramification index of p in the ex-
tension Q(E[pn])/Q is exactly ϕ(pn), and Gal(Q(E[pn])/Q(ζpn)) ∼= SL(2,Z/pnZ).
In particular, Q(E[pn])/Q(ζpn) is a SL(2,Z/pnZ) extension, unramified at primes
above p.

Proof. Let p ≥ 17 be a prime, let n ≥ 1 be fixed, and let λ ∈ Fp be an ordinary
j-invariant with j �≡ 0, 1728 mod p. Let E be one of the infinitely many non-
isomorphic, non-CM elliptic curves whose existence is proven by Theorem 5.4, and
let G be the image of the representation ρE,p : Gal(Q/Q) → GL(2,Z/pZ). If
G �= GL(2,Z/pZ), then G falls in one of the four possibilities of Theorem 7.2:

(1) If G is contained in the normalizer of a split Cartan subgroup of GL(E[p]),
and p ≥ 17, then Theorem 7.3 implies that E is CM. However, E as in
Theorem 5.4 is not CM.

(2) Suppose G is contained in the normalizer of a non-split Cartan subgroup
of GL(E[p]). This case is impossible, because with respect to a certain ba-
sis, G contains the image of I1(Ω|p), the inertia sugroup of Ω over p in
Gal(Q(E[p])/Q), which is a semi-split Cartan subgroup of the form

{(
a 0
0 1

)
: a ∈ (Z/pZ)×

}
.

However, a normalizer of a non-split Cartan subgroup cannot contain a semi-
split Cartan.

(3) If the projective image of G in PGL(E[p]) is isomorphic to A4, S4 or A5,
then p ≤ 13, but we have assumed that p ≥ 17.

(4) IfG is contained in a Borel subgroup of GL(E[p]), then E[p] is not irreducible,
but the curves E were chosen so that the p-torsion was an irreducible Galois
module, so that we could apply Gross’ criterion.
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Hence, the only possibility is that G = GL(2,Z/pZ). Since p ≥ 17 ≥ 5, and
our curves are defined over Q, we can use [22], IV-23, Lemma 3, to conclude
that ρE,p : Gal(Q/Q) → GL(2,Z/pnZ) is also surjective (in fact, the representa-
tion is surjective p-adically). Therefore, Gal(Q(E[pn])/Q) ∼= GL(2,Z/pnZ), and
Gal(Q(E[pn])/Q(ζpn)) ∼= SL(2,Z/pnZ). Moreover, Gal(Q(E[pn])/Q(ζpn)) is un-
ramified at primes above p by Theorem 5.4, and this concludes the proof of the
theorem. �

Example 7.5. For each n ≥ 1 and each k ≥ 1, let En,k/Q be the elliptic curves
described in Example 6.4. Then, these curves are non-isomorphic, non-CM, defined
over Q, with j(E) ≡ 7 mod 37 (and with ordinary good reduction at 37) such that
the ramification index of 37 in the extension Q(E[37n])/Q is exactly ϕ(37n), and
E[37] is an irreducible Gal(Q/Q)-module. Hence, by the same argument as in the
proof of Theorem 7.4, we conclude that Gal(Q(E[pn])/Q(ζpn)) ∼= SL(2,Z/pnZ).

8. Ramification away from p

The goal of this section is to show that if E/Q is an elliptic curve such that the
Galois representation on the p-torsion ρE : Gal(Q/Q) → GL(E[p]) is absolutely
irreducible, then the extension Q(E[pn]) over Q(ζpn) has to ramify at some non-
archimedian prime away from p. Later on, in the last part of this section, we will
show examples of elliptic curves where the extension Q(E[pn])/Q(ζpn) is ramified
above a single prime q �= p. In order to show Theorem 1.2, we shall use Serre’s
modularity conjecture, which is now a theorem of Khare and Winterberger. Here,
however, we only need the so-called level 1 case, which was shown independently
by Dieulefait, and Khare.

Theorem 8.1 (Serre’s modularity conjecture, [21], [9], [5], [10], [11]). Let p be a
prime, let F be a finite field of characteristic p, and let ρ : Gal(Q/Q)→ GL(2,F)
be a continuous, absolutely irreducible, two-dimensional, odd (i.e., det(ρ(τ)) = −1
for any complex conjugation τ) Galois representation. Let k(ρ) be its optimal
weight (as defined in [21]) and suppose that N(ρ), the (prime-to-p) Artin conductor
of ρ, is identically 1. Then, ρ arises from Sk(ρ)(SL2(Z)), i.e., there is a cusp

form f ∈ Sk(ρ)(SL2(Z)) and an integral model ρf : Gal(Q/Q) → GL(2,O) of its
associated p-adic Galois representation, with O the ring of integers of a finite
extension of Qp, such that the reduction of ρf modulo the maximal ideal of O is
isomorphic to ρ.

Before we prove our theorem, we remind the reader about the definition of the
Artin conductor of a representation, following [21], Section 1.2. Let V be a 2-
dimensional vector space over Fp and let ρ : Gal(Q/Q)→ GL(V ) be a continuous
Galois representation. Then, the Artin conductor of ρ is defined as

N =
∏
� �=p

�n(�,ρ),
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where n(�, ρ) ≥ 0 are non-negative integers defined as follows. For each prime
number � �= p, let ν be an extension to Q of the �-adic valuation of Q, and let

G0 ⊃ G1 ⊃ · · · ⊃ Gi ⊃ · · ·

be the (higher) ramification groups of G with respect to ν. Let Vi be the subspace
of V whose elements are fixed by Gi, and define

n(�, p) =

∞∑
i=0

1

[G0 : Gi]
dimV/Vi.

It is worth noting that:

1. n(�, ρ) = 0 if and only if G0 = { 1}, i.e., if and only if ρ is unramified at �,
and

2. n(�, ρ) = dimV/V0 if and only if G1 = { 1}, i.e., if and only if ρ is tamely
ramified at �.

We also need to recall some facts about the optimal weight k(ρ), which is
defined in [21], §2. In particular, we need the following result.

Proposition 8.2 (Serre, [21], §2.9, Prop. 5). Let p be a prime, let E/Qp be an
elliptic curve, and let ρ : Gal(Qp/Qp) → GL(2,Fp) be the representation attached
to the natural action of Galois on the p-torsion E[p] of E. Then,

(1) if E/Qp has good reduction, then k(ρ) = 2;

(2) if E/Qp has multiplicative reduction, then k(ρ) = 2 if νp(j(E)) is divisible
by p, and k(ρ) = p+ 1 otherwise.

We are now ready to prove Theorem 1.2. The idea of the proof is due to Robert
Pollack.

Proof of Theorem 1.2. Let E/Q be an elliptic curve such that the Galois represen-
tation on the p-torsion ρE : Gal(Q/Q) → GL(E[p]) is absolutely irreducible, and
with either good reduction at p, or with multiplicative reduction at p and νp(j(E))
divisible by p. Suppose for a contradiction that the extension Q(E[pn]) over Q(ζpn)
is unramified at all primes not above p. Then, the extension Q(E[p])/Q(ζp) is also
unramified at all primes not above p, because of the multiplicativity of ramification
indices in towers, and because Q(ζpn)/Q(ζp) is only ramified above p.

Now, let ρE : Gal(Q/Q)→ GL(E[p]) ∼= GL(2,Fp) be the representation associ-
ated to the natural Galois action on E[p]. This representation is continuous, abso-
lutely irreducible (by assumption), and odd (see, for instance, [17], Section 1.1.2).
By our assumptions on the reduction type of E and Proposition 8.2, its weight
is k(ρE) = 2. Moreover, we have shown that Q(E[p])/Q is only ramified above p
and, thus, ρE is unramified outside p. It follows from our remarks above on the
Artin conductor that N(ρE) = 1. Hence, Theorem 8.1 implies that ρE arises
from S2(SL2(Z)). However, S2(SL2(Z)) = {0} by Theorem 3.5.2 of [4] so this is
impossible. �
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We remark that if Gal(Q(E[p])/Q) ∼= GL(2,Fp), then the Galois representa-
tion ρE is absolutely irreducible, therefore satisfying the hypothesis of Theorem 1.2.
It follows that if E/Q has good reduction at p, and Gal(Q(E[p])/Q) ∼= GL(2,Fp),
then Q(E[pn])/Q(ζpn) must ramify (at least) at some prime above a rational prime
q �= p. In the rest of this section, we find examples where the ramification happens
exactly at primes above one single rational prime q �= p.

Theorem 8.3 (Kida, [12], Theorems 1.1 and 1.2). Let q and p ≥ 2 be distinct
primes. Let E/Q be an elliptic curve. Then:

(1) The extension Q(E[p])/Q is unramified at the primes above q if and only if
E/Q has (a) good reduction at q, or (b) multiplicative reduction at q and
νp(−νq(j(E))) is a positive integer.

(2) Assume that Q(E[p])/Q is unramified at q, and E/Q has multiplicative re-
duction at q. Then, Q(E[pn])/Q is unramified if and only if 1 ≤ n ≤
νp(−νq(j(E))).

Example 8.4. Let E/Q be the curve with Cremona label 11a1. We saw in Ques-
tion 4.7 that Q(E[5]) = Q(ζ5), and therefore the extension Q(E[5])/Q(ζ5) is triv-
ially unramified at 5. Note however that E has bad reduction at 11, and Q(E[5])/Q
is unramified at 11. Kida’s Theorem 8.3 says that the bad reduction at 11 must
be multiplicative, and ν5(−ν11(j(E))) must be positive. Indeed, the reduction is
bad multiplicative (Δ = −115, c4 = 24 · 31) and

j(E) = −122023936

161051
= −212 · 313

115
,

and so ν5(−ν11(j(E))) = 1 > 0.

Example 8.5. In this example we find primes p, integers n ≥ 1, and elliptic curves
E/Q such that Gal(Q(E[pn])/Q) ∼= GL(2,Z/pnZ) and such that Q(E[pn])/Q(ζnp )
is unramified at primes above p, and only ramified at primes above at most one
prime q �= p. In order to find such examples, it suffices to find elliptic curves with
the following properties:

(a) E/Q with ordinary good reduction at p;
(b) if j(E) ≡ λ ∈ Fp, and j0 is the canonical lift of λ, then j(E) ≡ j0 mod pn+1

if p is odd (and mod 2n+2 for p = 2);
(c) the representation ρE,p : Gal(Q/Q) → GL(2,Z/pnZ) must be surjective

(one can be verify with Sage whether ρE,p : Gal(Q/Q) → GL(2,Fp) is surjective;
if p ≥ 5, then ρE,p is surjective if and only if ρE,p is surjective);

(d) there is at most one prime of additive reduction q; and (e) every prime � of
multiplicative reduction satisfies 1 ≤ n ≤ νp(−ν�(j(E))).

For instance, let p = 5, and let E/Q be the curve with Cremona reference
“61a1” and j-invariant j = −912673/61, given by the model

y2 + xy = x3 − 2x+ 1.

The curve E/Q has bad multiplicative reduction at 61 (with Kodaira symbol I1),
and good reduction elsewhere. Note that j ≡ 7 ≡ −32768 ≡ j0 mod 25, where
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j0 = −32768 is the canonical lift of λ = 2 ∈ F5. With the help of Sage, we
have verified that ρE,5 : Gal(Q/Q) → GL(2,F5) is surjective. Finally, notice
that there is only one prime of bad reduction, namely q = 61. Hence, all the
necessary hypotheses are met, and Q(E[5])/Q(ζ5) is a SL(2,F5) extension that is
only ramified at primes above a unique rational prime, namely q = 61.

In the following table we give a few examples we have found using Cremona’s
tables (all curves with conductor ≤ 300000, a total of 1887909 curves) of primes p,
integers n ≥ 1, and curves E/Q with j-invariant j(E) that verify conditions (a)
through (e) as above. In all examples we have verified that ρE,p : Gal(Q/Q) →
GL(2,Fp) is surjective (with Sage). If p ≥ 5, then the Galois representation ρE,p :
Gal(Q/Q)→ GL(2,Z/pnZ) is also surjective. In all cases, the Kodaira symbol at q
is I1.

p n j0 j(E) Cremona q

2 8 −3375 −185193/114407 114407a1 114407
3 6 −32768 −5168743489/143729 143729a1 143729
5 5 −32768 −147197952/2539 2539a1 2539
7 4 2126 +O(75) 38272753/21283 21283a1 21283
11 3 7665 +O(115) 65597103937/110879 110879c1 110879
13 2 −884736000 −35937/1873 1873a1 1873
17 2 74802 +O(175) −117649/89 89a1 89
19 3 −752904 +O(195) 49836032/57587 57587a1 57587

We conclude with an example of an elliptic curve whose conductor is not prime.
Let E/Q be the curve with label “309a1” and model

y2 + xy = x3 − 6x+ 9.

The curve E/Q has bad multiplicative reduction at 3 and 103, with Kodaira sym-
bols I5 and I1 respectively, and good reduction elsewhere. The j-invariant of E
satisfies

j(E) = −24137569

25029
= −176 · 3−5 · 103−1 ≡ 14 mod 25.

Thus, j(E) ≡ j0 mod 25, where the canonical invariant in this case is j0 =
−884736 (see Example 4.4). With the help of Sage, we have verified that ρE,5 :
Gal(Q/Q)→ GL(2,F5) is surjective. Hence, all the necessary hypotheses are met,
and Q(E[5])/Q(ζ5) is a SL(2,F5) extension that is only ramified at primes above a
unique rational prime, namely q = 103. However, the extension Q(E[25])/Q(ζ25)
also ramifies at primes above 3.
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