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Leavitt path algebras with at most countably
many irreducible representations

Pere Ara and Kulumani M. Rangaswamy

Abstract. Let E be an arbitrary directed graph with no restrictions on
the number of vertices and edges and let K be any field. We give neces-
sary and sufficient conditions for the Leavitt path algebra LK(E) to be
of countable irreducible representation type, that is, we determine when
LK(E) has at most countably many distinct isomorphism classes of sim-
ple left LK(E)-modules. It is also shown that LK(E) has finitely many
isomorphism classes of simple left modules if and only if LK(E) is a semi-
artinian von Neumann regular ring with finitely many ideals. Equivalent
conditions on the graph E are also given. Examples are constructed show-
ing that for each (finite or infinite) cardinal κ there exists a Leavitt path
algebra LK(E) having exactly κ distinct isomorphism classes of simple
right modules.

1. Introduction

The notion of Leavitt path algebras was introduced and initially studied in [1]
and [7] as algebraic analogues of graph C∗-algebras and the study of their various
ring-theoretic properties has been the subject of a series of papers in recent years
(see, e.g., [1]–[9], [14], and [17]). In [12], Goncalves and Royer indicated a method
of constructing various representations of a Leavitt path algebra LK(E) over a
graph E by using the concept of algebraic branching systems. Expanding this,
Chen [11] studied special types of irreducible representations of LK(E) by using
the sinks as well as the infinite paths which are not tail-equivalent in the graph E
and he noted that these can also be considered as algebraic branching systems.
For additional ways of constructing irreducible representations of LK(E) see [8].

In this paper we investigate the Leavitt path algebras LK(E) which are of
countable irreducible representation type, that is, LK(E) having at most countably
many distinct isomorphism classes of simple left/right LK(E)-modules. For short,
we call a Leavitt path algebra with this property as CIRT. In many of the past
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investigations describing various algebraic properties of a Leavitt path algebra
LK(E), the individual nature of the field K did not seem to play any role at all.
In this context, it may be of of some interest to note that, when LK(E) is CIRT
and the graph E contains cycles, K must necessarily be a countable field. Our
structure theorem states that LK(E) is CIRT if and only if it is the union of a
smooth ascending chain of countable length consisting of graded ideals

0 < I1 < · · · < Iα < Iα+1 < · · · (α < τ),

where τ is a countable ordinal and, for each 0 ≤ α < τ , Iα+1/Iα is a direct sum
of at most countably many matrix rings over K and/or K[x, x−1]. Moreover, the
field K is countable whenever the graph E contains cycles (equivalently, K[x, x−1]
occurs as a direct factor in Iα+1/Iα for some α).

We also show that LK(E) will have at most finitely many non-isomorphic simple
left/right LK(E)-modules if and only if LK(E) is a semi-artinian von Neumann
regular ring with at most finitely many ideals. In particular, when E is a finite
graph, then LK(E) has this property exactly when LK(E) is an artinian semisimple
ring (equivalently, the graph E is acyclic). We also construct, for each arbitrary
(finite or infinite) cardinal κ, a Leavitt path algebra for which the cardinality of
the distinct isomorphism classes of simple right modules is exactly κ.

Acknowledgements. We are deeply grateful to the referee whose insightful com-
ments, questions and suggestions lead to a substantial improvement of the previous
version of this paper.

2. Preliminaries

For the general notation, terminology and results on Leavitt path algebras, we
refer the reader to [1], [3] and [17]. We just give a short outline of some of the
needed concepts. A (directed) graph E = (E0, E1, r, s) consists of two sets E0

and E1 together with maps r, s : E1 → E0. All the graphs E that we consider
here are arbitrary with no restrictions on the number of vertices and the number of
edges emitted by a vertex. Also K stands for an arbitrary field. For each e ∈ E1,
we call e∗ a ghost edge. We let r(e∗) denote s(e), and we let s(e∗) denote r(e).
The set of all vertices on the path μ is denoted by μ0. A vertex v in E is said to
be regular if 0 < |s−1(v)| < ∞. A singular vertex is a vertex which is not regular.

Given an arbitrary graph E and a field K, the Leavitt path K-algebra LK(E) is
defined to be the K-algebra generated by a set {v : v ∈ E0} of pairwise orthogonal
idempotents together with a set of variables {e, e∗ : e ∈ E1} which satisfy the
following conditions:

(1) s(e) e = e = e r(e) for all e ∈ E1;

(2) r(e) e∗ = e∗ = e∗s(e) for all e ∈ E1;

(3) (The “CK-1 relations”) For all e, f ∈ E1, e∗e = r(e) and e∗f = 0 if e �= f .
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(4) (The “CK-2 relations”) For every regular vertex v ∈ E0,

v =
∑

e∈E1,s(e)=v

e e∗.

A path μ = e1 . . . en in E is closed if r(en) = s(e1), in which case μ is said to
be based at the vertex s(e1). The closed path μ is called a cycle if s(ei) �= s(ej) for
every i �= j. A graph E is said to satisfy condition (K) provided no vertex v ∈ E0

is the base of precisely one simple closed path, i.e., either no simple closed path is
based at v, or at least two are based at v. An exit for a path μ = e1 . . . en is an
edge e such that s(e) = s(ei) for some i and e �= ei.

If there is a path from vertex u to a vertex v, we write u ≥ v. A subset D of
vertices is said to be downward directed if for any u, v ∈ D, there exists a w ∈ D
such that u ≥ w and v ≥ w. A subset H of E0 is called hereditary if, whenever
v ∈ H and w ∈ E0 satisfy v ≥ w, then w ∈ H . A hereditary set is saturated if, for
any regular vertex v, r(s−1(v)) ⊆ H implies v ∈ H .

For any vertex v, the tree of v is T (v) = {w : v ≥ w}. We say there is a
bifurcation at a vertex v, if v emits more than one edge. In a graph E, a vertex v
is called a line point if there is no bifurcation or a cycle based at any vertex
in T (v). Thus, if v is a line point, there will be a single finite or infinite line
segment μ starting at v (μ could just be v) and any other path α with s(α) = v
will just be an initial sub-segment of μ. It was shown in [9] that v is a line point
in E if and only if vLK(E) (and likewise LK(E)v) is a simple right (left) ideal.
Moreover, the ideal generated by all the line points in E is the socle of LK(E).
If v is a line point, then it is clear that any w ∈ T (v) is also a line point.

We shall be using the following concepts and results from [17] in our inves-
tigation. Although it is assumed in [17] that all the graphs are countable, i.e.
have at most countably many vertices and edges, an examination of the proofs
shows that this assumption is not needed at all. A breaking vertex of a heredi-
tary saturated subset H is an infinite emitter w ∈ E0\H (that is, s−1(w) is an
infinite set) with the property that 1 ≤ |s−1(w) ∩ r−1(E0\H)| < ∞. The set of
all breaking vertices of H is denoted by BH . For any v ∈ BH , vH denotes the
element v−∑

s(e)=v,r(e)/∈H e e∗. Given a hereditary saturated subset H and a sub-

set S ⊆ BH , (H,S) is called an admissible pair. Given an admissible pair (H,S),
I(H,S) denotes the ideal generated by H ∪ {vH : v ∈ S}. It was shown in [17] that
the graded ideals of LK(E) are precisely the ideals of the form I(H,S) for some
admissible pair (H,S). Moreover, LK(E)/I(H,S)

∼= LK(E\(H,S)). Here E\(H,S)
is the quotient graph of E in which (E\(H,S))0 = (E0\H) ∪ {v′ : v ∈ BH\S}
and (E\(H,S))1 = {e ∈ E1 : r(e) /∈ H} ∪ {e′ : e ∈ E1, r(e) ∈ BH\S} and r, s are
extended to (E\(H,S))0 by setting s(e′) = s(e) and r(e′) = r(e)′.

If p = e1e2 · · · en · · · is an infinite path where the ei are edges, then for any
positive integer n, let τ≤n(p) = e1e2 · · · en and τ>n(p) = en+1en+2 · · · . Two infinite
paths p and q are said to be tail equivalent, in symbols, p ∼ q, if there exist positive
integers m and n such that τ>n(p) = τ>m(q). Then ∼ is an equivalence relation.
Given an equivalence class of infinite paths [p], Chen [11] defines an LK(E)-module
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action on the linear span V[p] of the equivalence class [p] of p and shows that V[p]

becomes a simple left LK(E)-module. He further shows that, for infinite paths p
and q, V[p]

∼= V[q] if and only if p ∼ q.

3. Leavitt path algebras of countable irreducible representa-
tion type

Throughout this and the following sections, L will denote the Leavitt path algebra
LK(E). In this section, we give a complete description of the Leavitt path algebraL
which has at most countably many distinct isomorphism classes of simple left/right
L-modules. For short, we call a Leavitt path algebra with this property as CIRT.

The proof of our main theorem is derived from the following series of Proposi-
tions containing the necessary conditions for L to be CIRT.

Proposition 3.1. If L is CIRT, then distinct cycles in E must be disjoint.

Proof. We may assume that E contains cycles, since there is nothing to prove if
E is acyclic. Suppose that there are two different cycles g, h based at the same
vertex v. Consider the infinite path ggg · · · which, for convenience, we write as
p = g1g2g3 · · · indexed by the set P of positive integers where gi = g for all i.
Now for every subset S of P, define an infinite path pS by replacing gi by h if
and only if i ∈ S. Observe that this gives an uncountable family of pairwise
different infinite paths on E. Denote by Y this family of infinite paths. Now, if
q = β1β2 · · · is a path in Y , then the paths in Y which are tail-equivalent to q
have the form γ1 · · · γjβi+1βi+2βi+3 · · · , where i, j are non-negative integers and
γ1, . . . , γj ∈ {g, h}. This is a countable family and so each tail-equivalence class
contains countably many infinite paths in Y . Consequently, there are uncountably
many distinct tail equivalence classes of paths in Y . By Chen [11], L then has
uncountably many non-isomorphic simple left/right L-modules. This contradicts
the fact that L is a CIRT. Hence no two cycles in E have a common vertex. �

Proposition 3.2. If the graph E contains cycles and L is CIRT, then the field K
must be countable.

Proof. Consider a cycle c based at a vertex v in E. Then H = {u ∈ E0 : u �� v} is
a hereditary saturated set and E0\H = M(v) is downward directed. By Propo-
sition 3.1, distinct cycles have no common vertex. Hence c is a cycle with-
out exits in M(v). By Theorems 3.12 and 4.3 of [14], each irreducible polyno-
mial g(x) ∈ K[x, x−1] then gives rise to a primitive ideal Pg of L, generated by
I(H,BH )∪{g(c)} (and a corresponding simple module having Pg as its annihilator).
Since L is CIRT,K[x, x−1] cannot have uncountably many irreducible polynomials.
This implies that K must be a countable field. �

We next establish an important property for E when L is CIRT.

Proposition 3.3. If L is CIRT, then the graph E contains line points or cycles
without exits, or both.
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Proof. Suppose, by way of contradiction, the graph E contains no line points and
no cycles without exits.

Let v be a vertex in E, and set F = T (v), seen as a subgraph of E, that
is, we consider the tree of v together with all edges in E connecting the vertices
of T (v). It is enough to show that F has uncountably many tail-equivalence classes
of infinite paths. We wish to build a countable complete subgraph G of F having
the same properties.

First, we construct an increasing family of countable complete subgraphs Fn

starting with F0 = {v}. Indeed, the graphs Fn ⊆ F will satisfy the property
that, for u ∈ (Fn)

0, if u is a regular vertex in Fn, then s−1
Fn

(u) = s−1
E (u). This

clearly implies that Fn is a complete subgraph of E, see Definition 1.6.7 in [3].
Now assume that Fn has been built for some n ≥ 0. For each vertex u ∈ (Fn)

0

which is a sink in Fn and which is a regular vertex in E, add to Fn all the finitely
many edges emitted by u in E and the end vertices of these edges. For each vertex
u ∈ (Fn)

0 which is a sink in Fn and which is an infinite emitter in E, add a
countable number of edges emitted by u in E and the corresponding end vertices
of these edges. This way we get the new subgraph Fn+1. Let G be the union of
all the Fn’s. Then G is a complete subgraph of F , and G contains no line points
and no cycles without exits.

Clearly LK(G) is a subalgebra of LK(F ) and the map sending an infinite path
in G to the same infinite path in F induces an injective map from the set TG of the
tail-equivalence classes of infinite paths in G to the set TF of the corresponding
tail-equivalence classes of infinite paths in F . Thus if TG is uncountable so is TF .

To show that the set TG is uncountable, let X be the set of all infinite paths
in G together with the finite paths in G ending in a singular vertex. For each finite
path γ (which could also be a vertex), define

Z(γ) =
{
p ∈ X such that p = γp′, where p′ is some path in G

}
.

Then X can be made a locally compact Hausdorff space, and the collection

{Z(γ) \
⋃

e∈F Z(γe)
}
,

for γ a finite path and F a finite set of edges starting at r(γ), is a basis of compact
open sets in X (see Theorem 2.1 in [18]). Since G is a countable graph, these sets
form a countable basis of open and closed (compact) sets for X and hence X is
second countable. Since G does not have line points or cycles without exits, we
see that X has no isolated points.

Now Z(v) is a compact Hausdorff totally disconnected space with no isolated
points and hence is isomorphic to the Cantor space (see Theorem 13 in [16]). This
means Z(v) contains 2ℵ0 infinite paths. Since G is countable, an argument similar
to the one used in the proof of Proposition 3.1 shows that the tail-equivalence
classes of paths in Z(v) are at most countable. Since |Z(v)| = 2ℵ0 , we conclude
that G (and hence E) contains 2ℵ0 infinite paths which are not mutually tail-
equivalent. By Chen [11], L will then have 2ℵ0 non-isomorphic simple left/right
L-modules, a contradiction.

Hence E always contains line points and/or cycles without exits. �



1268 P. Ara and K.M. Rangaswamy

For a ring R and any index set Λ, we denote by MΛ(R) the ring of matrices
with coefficients in R, indexed on Λ, and having only finitely many nonzero entries.

We are now ready to prove the main result of this section.

Theorem 3.4. Let E be an arbitrary graph and K be any field. Then the following
properties are equivalent:

(i) L = LK(E) is CIRT;

(ii) L is the union of a well-ordered smooth ascending chain of countable length
consisting of graded ideals

(∗) 0 < I1 < · · · < Iα < Iα+1 < · · · (α < τ)

where, τ is a countable ordinal, for each 0 ≤ α < τ , Iα+1/Iα is a direct sum
of at most countably many matrix rings MΛ(R), where Λ are arbitrarily-sized
index sets and R is either K or K[x, x−1]. Moreover, K will be a countable
field whenever E contains cycles.

Proof. Assume (i). By Proposition 3.3, the graph E contains line points and/or
cycles without exits. Let I1 be the ideal generated by all the line points and vertices
on all the cycles without exits in E. Then I1 = I(H, ∅), where H = I1 ∩ E0.
By [3], I1 is a direct sum of matrices of the form Mni(K) and/or Mlj (K[x, x−1])
where ni, lj are cardinal numbers. Suppose we have defined a graded ideal Iα =
I(Hα, Bα) for some α ≥ 1 where Hα = Iα ∩ E0 and Bα = {v ∈ BHα : vHα ∈ Iα}.
If Iα �= L, consider L/Iα ∼= LK(E\(Hα, Bα)). Now L/Iα is CIRT and hence,
by Proposition 3.3, E\(Hα, Bα) contains line points and/or cycles without exits.
Define the ideal Iα+1 ⊃ Iα so that Iα+1/Iα is the ideal generated by all the
line points and the vertices on all the cycles without exits in E\(Hα, Bα). By [3],
Iα+1/Iα is then a direct sum of matrices of the formMni(K) and/orMlj (K[x, x−1])
where ni, lj are cardinal numbers. If γ is a limit ordinal and Iα has been defined
for all α < γ, then define Iγ =

⋃
α<γIα. By transfinite induction, we then obtain

a smooth ascending chain (∗) of graded ideals with the desired properties and its
union is L. Now each graded ideal is isomorphic to the Leavitt path algebra of a
suitable graph (see [15]) and so is a ring with local units. Hence every left/right
ideal of Iα+1 is also a left/right ideal of L. It is then readily seen that every simple
Iα+1-module is isomorphic to a simple L-module. Since L is CIRT, the length of
the chain τ is countable and that, for each α < τ , Iα+1/Iα is a direct sum of at
most countably many matrices of the form Mni(K) and/or Mlj(K[x, x−1]).

Moreover, Proposition 3.2 shows that the field K must be countable if E con-
tains cycles. This proves (ii).

Assume (ii), so that L is the union of a chain of graded ideals satisfying the
stated properties. Let S = L/M be a simple module where M is a maximal left
ideal of L. Let β be the smallest ordinal such that Iβ � M . Clearly β is a non-limit
ordinal. Let β = α+ 1. Then Iα ⊆ M . So,

S = (M + Iα+1)/M ∼= Iα+1/(Iα+1 ∩M) ∼= (Iα+1/Iα)/[(Iα+1 ∩M)/Iα].
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Thus every simple left L-module is isomorphic to a simple left module over the
ring Iα+1/Iα for some α with 0 ≤ α < τ . Now for each α, Iα+1/Iα is CIRT,
due to the fact that Iα+1/Iα is a direct sum of at most countably many matrix
rings Mnk

(K) and matrix rings Mrj(K[x, x−1]), where nk, rj are arbitrarily-sized
cardinal numbers and that K is countable whenever rj �= 0 for some rj . Since τ is
a countable ordinal, it is readily seen that L is also CIRT. �

Remark 3.5. In Theorem 3.4, if the graph E is acyclic, then for every α < τ ,
Iα+1/Iα is isomorphic to a direct sum of matrix rings over K and hence is a direct
sum of simple modules. Thus the chain (∗) becomes the socular chain for L. In
other words, L becomes a semi-artinian von Neumann regular ring with countable
Loewy length. Note that, in this case, there is no restriction on the cardinality of
the field K.

4. Leavitt path algebras of finite irreducible representation
type

We now wish to specialize to the case when the Leavitt path algebra L = LK(E) is
of finite irreducible representation type, that is, when L has at most finitely many
distinct isomorphism classes of simple left L-modules. In this case, L satisfies
conditions stronger than those of Theorem 3.4. Specifically, L becomes a semi-
artinian von Neumann regular ring with finitely many two-sided ideals. Moreover,
the result holds for arbitrary fields K without any restrictions.

We begin with the following lemma, and its corollary, which are used in the
proof of Theorem 4.3.

Lemma 4.1. Suppose R is a von Neumann regular ring and A is a non-zero
proper ideal of R. Then every simple left R-module is isomorphic to a simple left
module over R/A or A. Conversely, every simple left module over R/A, or A is
isomorphic to some simple left R-module.

Proof. Let R/M be a simple left R-module, where M is a maximal left ideal of R.
Then it is easy to see that R/M is isomorphic to a simple left module over R/A
or A according as (i) M ⊃ A, or (ii) M � A.

To prove the converse, we only consider the case of a simple left A-module S,
as the other case is trivial. Write S = A/N , where N is a maximal left ideal of A.
For n ∈ N there is an idempotent e in A such that en = n. It follows from this
that N is indeed a left R-module, and so S = A/N is a simple R-module. �

Corollary 4.2. Suppose LK(E) is semi-artinian ring with finitely many ideals.
Then LK(E) has at most finitely many non-isomorphic simple left modules.

Proof. Suppose the semi-artinian ring L = LK(E) has only finitely many two-sided
ideals. Then we can build a finite ascending chain of two-sided ideals 0 < S1 <
· · · < Sn = L where, for each i = 1, . . . , n−1, Si+1/Si is a simple ring which, being
also semi-artinian, is a direct sum of isomorphic simple left ideals. Consequently,
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each Si+1/Si has a single isomorphism class of simple left Si+1/Si-modules. Also
by [6], LK(E) is von Neumann regular. We then conclude, by Lemma 4.1, that L
has exactly n distinct isomorphism classes of simple left L-modules. �

Theorem 4.3. Let E be an arbitrary graph and K be any field. Then the following
are equivalent for the Leavitt path algebra L = LK(E):

(i) L has at most finitely many non-isomorphic simple left/right L-modules;

(ii) L is a semi-artinian ring with finitely many two-sided ideals.

Proof. Assume (i). Since there are only finitely many non-isomorphic simple left
modules, LK(E) has only finitely many distinct primitive ideals. We wish to show
that there are no non-graded prime ideals in LK(E). Now any non-graded prime
ideal of LK(E) is primitive (see Theorem 4.3 in [14]). From Theorem 3.12 of [14],
the non-graded prime ideals of LK(E) are precisely the ideals P generated by
I(H,S) ∪ {f(c)}, where P ∩ E0 = H , S = {v ∈ BH : vH ∈ P}, c is a cycle without
exits in E\H , and f is an irreducible polynomial in K[x, x−1]. So, if LK(E) has
one such non-graded prime ideal P , then corresponding to each of the infinitely
many irreducible polynomials g in K[x, x−1], LK(E) will have a non-graded prime
(and hence a primitive) ideal Pg generated by I(H,S) ∪ {g(c)}. This contradicts
that LK(E) has only a finite number of primitive ideals. Thus every prime ideal
of LK(E) must be graded and we appeal to Corollary 3.13 in [14] to conclude that
the graph E satisfies condition (K). From Theorem 6.16 in [17], we then conclude
that every ideal of LK(E) is graded.

Thus if I is an ideal of LK(E) then, being a graded ideal, I = I(H,S), where
H = I∩E0 and S = {v ∈ BH : vH ∈ I} and, moreover, LK(E)/I ∼= LK(E\(H,S))
by [17]. As the Jacobson radical of the Leavitt path algebra LK(E\(H,S)) is
zero (see [6]), we conclude that I is the intersection of all the primitive ideals
containing I. As there are only finitely many primitive ideals in LK(E), we then
conclude that LK(E) contains only finitely many distinct ideals which are all of
the form I(H,S) for some admissible pair (H,S).

We also claim that E contains no cycles. Because if there is a cycle g in E,
then by condition (K) there will be another cycle h �= g sharing a common vertex
with g and this contradicts Proposition 3.1. Hence E is acyclic and L is von
Neumann regular, by [5]. Also, by Proposition 3.3, E contains line points and
so S1 = Soc(L) �= 0. Also, since there are only finitely many ideals, S1 is a
direct sum of finitely many homogeneous components: S1 =

⊕n1

i=1 S1i with S1i

a direct sum of isomorphic simple left ideals of L. Let H = S1 ∩ E0. Now
L/S1

∼= LK(E\(H, ∅)) satisfies the same hypothesis as L and hence has a non-
zero socle S2/S1. Proceeding like this and using the fact that L has at most
finitely many ideals, we conclude L is the union of a finite ascending chain of
ideals {0} = S0 ⊂ S1 ⊂ · · · ⊂ Sm = L where, for each i, Si+1/Si = Soc(L/Si) and
is a direct sum of finitely many homogeneous components. This proves (ii).

(ii)=⇒(i). This follows from Corollary 4.2. �

Remark 4.4. One might wonder what are the finite lattices appearing as ideal
lattices of the algebras LK(E) characterized in Theorem 4.3. Indeed, observe that
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the lattice of ideals of a von Neumann regular ring is a distributive lattice. It
follows from Bergman’s theorem, [10], that every finite distributive lattice can be
represented as the lattice of ideals of a unital ultramatricial algebra. On the other
hand, Proposition 2.12 in [13] asserts that this unital ultramatricial algebra is
Morita-equivalent to a Leavitt path algebra LK(E) of an acyclic graph. For this
graph E, the conditions in Theorem 4.3 (ii) necessarily hold. In conclusion, we see
that the class of lattices appearing as ideal lattices of the algebras described in
Theorem 4.3 is exactly the class of all finite distributive lattices.

5. Equivalent graphical conditions

In this section we describe the graphical properties of E under which the Leavitt
path algebra LK(E) is of finite irreducible representation type. We begin with
a simple lemma describing when two line points generate isomorphic simple right
ideals.

Lemma 5.1. Given two line points u, v, uLK(E) ∼= vLK(E) if and only if T (u)∩
T (v) is not empty.

Proof. Suppose θ : u LK(E) → v LK(E) is an isomorphism. Then θ is given by the
left multiplication by the non-zero element θ(u) = vsu for some s ∈ LK(E). We
can clearly assume that s = vsu. Write s =

∑m
i=1ki αi β

∗
i where ki ∈ K and αi, βi

are finite paths in E. If a term ki αi β
∗
i = ki v αi β

∗
i u �= 0, then v = s(αi),

u = s(βi) and r(αi) = r(βi) = w, so w ∈ T (u) ∩ T (v). Conversely, suppose
w ∈ T (u)∩T (v). Since u is a line point, so is w and there is a unique path μ from u
to w. Then u a �−→ w μ∗u a is an isomorphism from the simple module uLK(E)
to wLK(E) with the map w b �−→ uμw b being the inverse isomorphism. By a
similar argument, vLK(E) ∼= wLK(E). Consequently, uLK(E) ∼= vLK(E). �

The next theorem describes the graphical conditions on E under which LK(E)
is of finite irreducible representation type.

Theorem 5.2. Let E be an arbitrary graph and let K be any field. Then the
Leavitt path algebra LK(E) is of finite irreducible representation type if and only
if all of the following conditions hold:

(i) E is acyclic;

(ii) E0 has only finitely many distinct hereditary saturated subsets H and for
each such H the corresponding set BH of breaking vertices is finite; and

(iii) In the poset of admissible pairs in E, (E0, ∅) is the supremum of a finite
ascending chain

(H0 = ∅, ∅) < (H1, ∅) < (H1, BH1) < (H2, BH1 ∩BH2) < (H2, BH2)

< (H3, BH2 ∩BH3) < (H3, BH3) < · · ·
where, for j ≥ 0, Hj+1 is a hereditary saturated subset of E0 and Hj+1\Hj

is the hereditary saturated closure of the set of line points in E\(Hj , BHj ).
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Proof. If LK(E) has finite irreducible representation type, then in the proof of
Theorem 4.3 it was shown that E is acyclic and that LK(E) has at most finitely
many two-sided ideals (which are all graded). The latter property is equivalent
to condition (ii) by Theorem 5.7 in [17]. To prove condition (iii), we shall use
the fact, established in Theorem 4.3, that LK(E) (and each of its homomorphic
images) is semi-artinian. We wish to construct a chain of ideals of the form I(H,S).
Let J1 = Soc(LK(E)). By [9], J1 is the ideal generated by the hereditary satu-
rated closure H1 of the set T1 of all the line points in E. Now J1 = I(H1,∅) and,
by [17], J1 is the kernel of an epimorphism f : LK(E) −→ LK(E\(H1, ∅)) where
(E\(H1, ∅))0 = E0\H1 ∪ {v′ : v ∈ BH1} and that f(vH1) = v′ for all v ∈ BH1 . Let
J2 = I(H1,BH1 )

= 〈H1, {vH1 : v ∈ BH1}〉. so that J2/J1 ∼= 〈{v′ : v ∈ BH1}〉 ⊂
LK(E\(H1, ∅)). By [17], LK(E)/J2 ∼= LK(E\(H1, BH1))

∼= LK(E\H1) since
(E\(H1, BH1))

0 = E0\H1 and (E\(H1, BH1))
1 = {e ∈ E1 : r(e) /∈ H1}. Now

LK(E)/J2 has a non-zero socle (being semi-artinian) and let H2 be a hereditary
saturated subset of E0 containing H1 such that H2\H1 is the hereditary saturated
closure of the set T2 of all the line points in E\(H1, BH1). Define

J3 = 〈J2,H2〉 = 〈H2, {vH1 : v ∈ BH1}〉
so that

J3/J2 ∼= 〈H2\H1〉 = Soc(E\(H1, BH1)) ⊂ LK(E\(H1, BH1))
∼= LK(E\H1).

If v ∈ BH1\BH2 , then r(s−1(v)) ⊂ H2 ⊂ J3 and since vH1 ∈ J3, we conclude
that v ∈ J3. In the isomorphism LK(E)/J2 ∼= LK(E\H1)), v gets mapped to an
element in (J3/J2) ∩ (E0\H1) = H2\H1 and so v ∈ H2. Thus BH1\BH2 ⊂ H2

and so J3 = 〈H2, {vH2 : v ∈ BH1 ∩ BH2}〉 = I(H2,BH1∩BH2)
. Note that, in the

isomorphism LK(E)/J1 ∼= LK(E\(H1, ∅)), J3/J1 maps to Soc(LK(E\(H1, ∅))).
Define J4 = I(H2,BH2 )

. Proceeding like this, we obtain a chain of ideals

{ 0} = I(H0=∅,∅) ⊂ I(H1,∅) ⊂ I(H1,BH1)
⊂ I(H2,BH1∩BH2)

⊂ I(H2,BH2 )
⊂ I(H3,BH2∩BH3 )

⊂ I(H3,BH3)
⊂ · · ·(∗∗)

whose union is LK(E). Here, for each j ≥ 0, Hj+1 is a hereditary saturated subset
of E0 and Hj+1\Hj is the hereditary saturated closure of the set Tj+1 of all the
line points in E\(Hj, BHj ). Note that, for each j ≥ 0, there are only finitely many
equivalence classes of line points in E\(Hj , BHj ), due to condition (ii). Our con-
struction shows that, in the poset of admissible pairs, (E0, ∅) is then the supremum
of a finite ascending chain

(∅, ∅) < (H1, ∅) < (H1, BH1) < (H2, BH1 ∩BH2)

< (H2, BH2) < (H3, BH2 ∩BH3) < (H3, BH3) < · · ·
where the sets Hj are as described above.

Conversely, condition (i) implies, by [5], that LK(E) is von Neumann regular
and condition (ii) implies that it has only finitely many two-sided ideals (which
are all graded ideals). Consider the chain indicated in condition (iii), and the
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corresponding chain of ideals (∗∗) constructed above. Denote I(H1,∅) by S1 and,
for each i ≥ 2, denote I(Hi,BHi−1

∩BHi
) by Si. Then we get the ascending finite

chain
{ 0} ⊂ S1 ⊂ · · · ⊂ St = LK(E)

where S1 = Soc(LK(E)) and for each i, Si+1/Si = Soc(LK(E)/Si). Hence LK(E)
is a semi-artinian ring. By Theorem 4.3, LK(E) is of finite irreducible representa-
tion type. �

Example 5.3. To illustrate Theorem 5.2, consider the graph P3 depicted in the
next section: it is clearly acyclic. Its hereditary saturated subsets of vertices are:
H0 = ∅, the empty set; H1 = {v11, v12, v13, . . .}; H2 = H1 ∪ {v21, v22, v23, . . .};
H3 = (P3)

0. Since the graph is row-finite there are no breaking vertices. Then the
chain in condition (iii) is given by

(∅, ∅) < (H1, ∅) < (H2, ∅) < (H3 = (P3)
0, ∅).

We point out that one can build examples showing that no two of the three
conditions in Theorem 5.2 imply the third.

6. Examples

In this section, we wish to illustrate Theorems 3.4 and 4.3 by constructing non-
trivial examples of LK(E) which, being semi-artinian (von Neumann regular) rings,
are the union of a finite or infinite socular chain

0 < S1 < S2 < · · · < Sn < · · ·

where S1 = Soc(LK(E)) and, for each j < n, Sj+1/Sj = Soc(LK(E)/Sj). To
have a really simple example, one can assume that S1 and each Sj+1/Sj are direct
sums of isomorphic simple modules. Since the socle of a Leavitt path algebra is
generated by line points in the graph, the assumed property on S1 and Sj+1/Sj

imply that the line points belonging to S1 (and likewise in Sj+1/Sj) all must form
a single straight line segment.

It is this idea that was used to construct the “pyramid” examples in refer-
ence [6]. In some sense these examples are the simplest examples of semi-artinian
Leavitt path algebras of infinite graphs with arbitrary Loewy length.

We will show that, for each (finite or infinite) cardinal κ, the Leavitt path
algebra LK(Pκ) of the pyramid graph Pκ has exactly κ distinct isomorphism classes
of simple right LK(E)-modules.

Let P1 be the graph

•v1,1 �� •v1,2 �� •v1,3 �� •v1,4 ��

consisting of a single infinite path. Now all the vertices v1,i are line points in P1 and
so v1,iLK(P1) is a simple module for all i (see [9]). Also LK(P1) = ⊕iv1,iLK(P1) =
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Soc(LK(P1)). From Lemma 5.1 it is clear that, for all i < j, v1,iLK(P1) ∼=
v1,jLK(P1). Since LK(P1) is a direct sum of simple modules, every simple right
LK(P1)-module is isomorphic to the simple right ideal v1,iLK(P1) and we conclude
that all the simple right LK(P1)-modules are isomorphic.

Let P2 be the graph

•v1,1 �� •v1,2 �� •v1,3 �� •v1,4 ��

•v2,1 ��

��

•v2,2 ��

�����������
•v2,3 ��

������������������
•v2,4 ��

����������������������������

Now the line points in the graph P2 are the vertices in the first row, namely,
v1,1, v1,2, v1,3, . . . and they generate the socle S of P2 which, from the explana-
tion in describing LK(P1) above, is a direct sum of isomorphic faithful simple
right LK(P2)-modules. Also, by [17], P2/S ∼= LK(F ) where F ∼= P1 and so
P2/S = Soc(P2/S) is a direct sum of isomorphic simple modules annihilated by
the ideal S. Thus LK(P2) has exactly two distinct isomorphism classes of simple
LK(P2)-modules.

Let P3 be the graph

•v1,1 �� •v1,2 �� •v1,3 �� •v1,4 ��

•v2,1 ��

��

•v2,2 ��

�����������
•v2,3 ��

������������������
•v2,4 ��

����������������������������

•v3,1 ��

��

•v3,2 ��

�����������
•v3,3 ��

������������������
•v3,4 ��

����������������������������

As above, the vertices v1,1, v1,2, v1,3, . . . generate the socle S of LK(P3) which
is a direct sum of isomorphic faithful simple LK(P3)-modules and LK(P3)/S ∼=
LK(P2). Clearly, by Lemma 4.1 and the description of LK(P2) above, S2/S ∼=
Soc(LK(P2)) is a direct sum of isomorphic simple LK(P3)-modules annihilated by
the ideal S and that

LK(P3)/S2
∼= LK(P2)/Soc(LK(P2)) ∼= Soc[LK(P2)/Soc(LK(P2)]

is a direct sum of isomorphic simple LK(P3)-modules annihilated by the ideal S2.
Thus we conclude that LK(P3) has exactly three distinct isomorphism classes of
simple right LK(P3)-modules.

Proceeding like this, we conclude, by simple induction, that for any positive
integer n, the Leavitt path algebra LK(Pn) of the “pyramid” graph Pn with n “lay-
ers” has exactly n distinct isomorphism classes of simple right LK(Pn)-modules.

Let Pω =
⋃

n∈N
Pn be the “pyramid” graph of length ω constructed inductively

and represented pictorially as follows.
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•v1,1 �� •v1,2 �� •v1,3 �� •v1,4 ��

•v2,1 ��

��

•v2,2 ��

�����������
•v2,3 ��

������������������
•v2,4 ��

����������������������������

•v3,1 ��

��

•v3,2 ��

�����������
•v3,3 ��

������������������
•v3,4 ��

����������������������������

• ��

��

• ��

�����������
• ��

�������������������� • ��

�����������������������������

Again, by induction, it follows that LK(Pω) has exactly ω distinct isomorphism
classes of simple LK(Pω)-modules.

The graph Pω+1 is obtained from the graph Pω by adding a single vertex vω+1

and connecting it by an edge to each of the vertices vj,1 for j < ω in the graph Pω.
Specifically, (Pω+1)

0 = (Pω)
0 ∪ {vω+1}, (Pω+1)

1 = (Pω)
1 ∪ {eω+1,j : j < ω} where,

for each j, s(eω+1,j) = vω+1 and r(eω+1,j) = vj,1. If Sω denotes the ω-socle
being the ideal generated by all the vertices in Pω , then LK(Pω+1)/Sω is a simple
LK(Pω+1)-module whose annihilator ideal is Sω and it is isomorphic to the Leavitt

path algebra of a graph {vω+1• } consisting of a single vertex and no edges. Clearly
LK(Pω+1) has ω + 1 distinct isomorphism classes of simple LK(Pω+1)-modules.

Proceeding this way, as was shown in [6], we can construct, by transfinite
induction, a “pyramid” graph Pλ for each ordinal λ. The Leavitt path algebra
LK(Pλ) is a semi-artinian von Neumann ring of Loewy length λ such that, for
each α < λ, the quotient Sα+1/Sα of successive socles is isomorphic to the Leavitt

path algebra of an infinite line segment (like the graph P1) or a graph {v•} consisting
of a single vertex and no edges, according as α is a successor or a limit ordinal.
Thus Sα+1/Sα has exactly one isomorphism class of simple modules (annihilated
by Sα). By transfinite induction, one can then show that the Leavitt path algebra
LK(Pλ) has exactly |λ| isomorphism classes of simple LK(Pλ)-modules.
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