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Endpoint estimates for commutators of singular

integrals related to Schrödinger operators

Luong Dang Ky

Abstract. Let L = −Δ+V be a Schrödinger operator on R
d, d ≥ 3, where

V is a nonnegative potential, V �= 0, and belongs to the reverse Hölder class
RHd/2. In this paper, we study the commutators [b, T ] for T in a class KL

of sublinear operators containing the fundamental operators in harmonic
analysis related to L. More precisely, when T ∈ KL, we prove that there
exists a bounded subbilinear operator R = RT : H1

L(R
d) × BMO(Rd) →

L1(Rd) such that

(�) |T (S(f, b))| −R(f, b) ≤ |[b, T ](f)| ≤ R(f, b) + |T (S(f, b))|,
where S is a bounded bilinear operator from H1

L(R
d) × BMO(Rd) into

L1(Rd) which does not depend on T . The subbilinear decomposition (�)
allows us to explain why commutators with the fundamental operators
are of weak type (H1

L, L
1), and when a commutator [b, T ] is of strong

type (H1
L, L

1).
Also, we discuss the H1

L-estimates for commutators of the Riesz trans-
forms associated with the Schrödinger operator L.

1. Introduction

Given a function b locally integrable on Rd, and a (classical) Calderón–Zygmund
operator T , we consider the linear commutator [b, T ] defined for smooth, compactly
supported functions f by

[b, T ](f) = bT (f)− T (bf).

A classical result of Coifman, Rochberg and Weiss (see [12]), states that the com-
mutator [b, T ] is continuous on Lp(Rd) for 1 < p <∞, when b ∈ BMO(Rd). Unlike
the theory of (classical) Calderón–Zygmund operators, the proof of this result does
not rely on a weak type (1, 1) estimate for [b, T ]. Instead, an endpoint theory was
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provided for this operator, see for example [37], [38]. A general overview about
these facts can be found for instance in [28].

Let L = −Δ + V be a Schrödinger operator on Rd, d ≥ 3, where V is a
nonnegative potential, V �= 0, and belongs to the reverse Hölder class RHd/2.
We recall that a nonnegative locally integrable function V belongs to the reverse
Hölder class RHq, 1 < q <∞, if there exists C > 0 such that

( 1

|B|
∫
B

(V (x))q dx
)1/q

≤ C

|B|
∫
B

V (x) dx

holds for every balls B in Rd. In [16], Dziubański and Zienkiewicz introduced
the Hardy space H1

L(R
d) as the set of functions f ∈ L1(Rd) such that ‖f‖H1

L
:=

‖MLf‖L1 < ∞, where MLf(x) := supt>0 |e−tLf(x)|. There, they characterized
H1
L(R

d) in terms of atomic decomposition and in terms of the Riesz transforms
associated with L, Rj = ∂xjL

−1/2, j = 1, . . . , d. In the recent years, there is
an increasing interest on the study of commutators of singular integral operators
related to Schrödinger operators, see for example [7], [10], [21], [32], [43], [44], [45].

In the present paper, we consider commutators of singular integral operators T
related to the Schrödinger operator L. Here T is in the class KL of all sublinear op-
erators T , bounded from H1

L(R
d) into L1(Rd) and satisfying for any b ∈ BMO(Rd)

and a a generalized atom related to the ball B (see Definition 2.3), we have∥∥ (b − bB)Ta
∥∥
L1 ≤ C ‖b‖BMO,

where bB denotes the average of b on B and C > 0 is a constant independent
of b and a. The class KL contains the fundamental operators (we refer the reader
to [28] for the classical case L = −Δ) related to the Schrödinger operator L:
the Riesz transforms Rj , L-Calderón–Zygmund operators (so-called Schrödinger–
Calderón–Zygmund operators), L-maximal operators, L-square operators, etc. (see
Section 4). It should be pointed out that, by the work of Shen [39] and Defini-
tion 2.9 (see Remark 2.10), one only can conclude that the Riesz transforms Rj
are Schrödinger–Calderón–Zygmund operators whenever V ∈ RHd. In this work,
we consider all potentials V which belong to the reverse Hölder class RHd/2.

Although Schrödinger–Calderón–Zygmund operators map H1
L(R

d) into L1(Rd)
(see Proposition 4.1), it was observed in [32], [48] that, when b ∈ BMO(Rd), the
commutators [b, Rj] do not map, in general, H1

L(R
d) into L1(Rd). In the classical

setting, it was derived by M. Paluszyński [35] that the commutator of the Hilbert
transform [b,H ] does not map, in general, H1(R) into L1(R). After, C. Pérez
showed in [37] that if H1(Rd) is replaced by a suitable atomic subspace H1

b (R
d)

then commutators of the classical Calderón–Zygmund operators are continuous
from H1

b (R
d) into L1(Rd). Recall that (see [37]) a function a is a b-atom if

i) supp a ⊂ Q for some cube Q,

ii) ‖a‖L∞ ≤ |Q|−1,

iii)
∫
Rd a(x) dx =

∫
Rd a(x)b(x) dx = 0.
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The space H1
b (R

d) consists of the subspace of L1(Rd) of functions f which can be
written as f =

∑∞
j=1 λjaj where aj are b-atoms, and λj are complex numbers with∑∞

j=1 |λj | < ∞. Thus, when b ∈ BMO(Rd), it is natural to ask for subspaces of

H1
L(R

d) such that all commutators of Schrödinger–Calderón–Zygmund operators
and the Riesz transforms map continuously these spaces into L1(Rd).

In this paper, we are interested in the following two questions.

Question 1. For b ∈ BMO(Rd). Find the largest subspace H1
L,b(R

d) of H1
L(R

d)
such that all commutators of Schrödinger–Calderón–Zygmund operators and the
Riesz transforms are bounded from H1

L,b(R
d) into L1(Rd).

Question 2. Characterize functions b in BMO(Rd) so that H1
L,b(R

d) ≡ H1
L(R

d).

Let X be a Banach space. We say that an operator T : X → L1(Rd) is a
sublinear operator if for all f, g ∈ X and α, β ∈ C, we have∣∣T (αf + βg)(x)

∣∣ ≤ |α| |Tf(x)|+ |β| |Tg(x)|.

Obviously, a linear operator T : X → L1(Rd) is a sublinear operator. We also say
that an operator T : H1

L(R
d) × BMO(Rd) → L1(Rd) is a subbilinear operator if

for every (f, g) ∈ H1
L(R

d)×BMO(Rd), the operators T(f, ·) : BMO(Rd) → L1(Rd)
and T(·, g) : H1

L(R
d) → L1(Rd) are sublinear operators.

To answer Questions 1 and 2, we study commutators of sublinear operators
in KL. More precisely, when T ∈ KL is a sublinear operator, we prove (see The-
orem 3.1) that there exists a bounded subbilinear operator R = RT : H

1
L(R

d) ×
BMO(Rd) → L1(Rd) so that for all (f, b) ∈ H1

L(R
d)× BMO(Rd),

(1.1)
∣∣T (S(f, b))

∣∣−R(f, b) ≤ ∣∣ [b, T ](f)∣∣ ≤ R(f, b) +
∣∣T (S(f, b))

∣∣,
whereS is a bounded bilinear operator fromH1

L(R
d)×BMO(Rd) into L1(Rd) which

does not depend on T (see Proposition 5.6). When T ∈ KL is a linear operator,
we prove (see Theorem 3.4) that there exists a bounded bilinear operator R =
RT : H

1
L(R

d)×BMO(Rd) → L1(Rd) such that for all (f, b) ∈ H1
L(R

d)×BMO(Rd),

(1.2) [b, T ](f) = R(f, b) + T (S(f, b)).

The decompositions (1.1) and (1.2) give a general overview and explains why
almost commutators of the fundamental operators are of weak type (H1

L, L
1), and

when a commutator [b, T ] is of strong type (H1
L, L

1).
Let b be a function in BMO(Rd). We assume that b non-constant, other-

wise [b, T ] = 0. We define the space H1
L,b(R

d) as the set of all f in H1
L(R

d)

such that [b,ML](f)(x) = ML(b(x)f(·) − b(·)f(·))(x) belongs to L1(Rd), and
the norm on H1

L,b(R
d) is defined by ‖f‖H1

L,b
= ‖f‖H1

L
‖b‖BMO + ‖[b,ML](f)‖L1 .

Then, using the subbilinear decomposition (1.1), we prove that all commutators of
Schrödinger–Calderón–Zygmund operators and the Riesz transforms are bounded
from H1

L,b(R
d) into L1(Rd). Furthermore, H1

L,b(R
d) is the largest space having
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this property, and H1
L,b(R

d) ≡ H1
L(R

d) if and only if b ∈ BMOlog
L (Rd) (see Theo-

rem 7.5), that is,

‖b‖BMOlog
L

= sup
B(x,r)

(
log

(
e+

ρ(x)

r

) 1

|B(x, r)|
∫
B(x,r)

|b(y)− bB(x,r)| dy
)
<∞,

where ρ(x) = sup{r > 0 : 1
rd−2

∫
B(x,r) V (y) dy ≤ 1}. This space BMOlog

L (Rd) arises

naturally in the characterization of pointwise multipliers for BMOL(R
d), the dual

space of H1
L(R

d), see [3], [33].
The above answers Questions 1 and 2. As another interesting application of

the subbilinear decomposition (1.1), we find subspaces of H1
L(R

d) which do not
depend on b ∈ BMO(Rd) and T ∈ KL, such that [b, T ] maps continuously these
spaces into L1(Rd) (see Section 7). For instance, when L = −Δ+1, Theorem 7.10
state that for every b ∈ BMO(Rd) and T ∈ KL, the commutator [b, T ] is bounded
from H1,1

L (Rd) into L1(Rd). Here H1,1
L (Rd) is the (inhomogeneous) Hardy–Sobolev

space considered by Hofmann, Mayboroda and McIntosh in [23], defined as the set
of functions f in H1

L(R
d) such that ∂x1f, . . . , ∂xd

f ∈ H1
L(R

d) with the norm

‖f‖H1,1
L

= ‖f‖H1
L
+

d∑
j=1

‖∂xjf‖H1
L
.

Recently, similarly to the classical result of Coifman–Rochberg–Weiss, Gou
et al. proved in [21] that the commutators [b, Rj ] are bounded on Lp(Rd) when-

ever b ∈ BMO(Rd) and 1 < p < dq
d−q where V ∈ RHq for some d/2 < q < d.

Later, in [7], Bongioanni et al. generalized this result by showing that the space
BMO(Rd) can be replaced by a larger space BMOL,∞(Rd) = ∪θ≥0BMOL,θ(R

d),
where BMOL,θ(R

d) is the space of locally integrable functions f satisfying

‖f‖BMOL,θ
= sup
B(x,r)

(
1(

1 + r
ρ(x)

)θ 1

|B(x, r)|
∫
B(x,r)

|f(y)− fB(x,r)| dy
)
<∞.

Let R∗
j be the adjoint operators of Rj . Bongioanni et al. established in [6]

that the operators R∗
j are bounded on BMOL(R

d), and thus from L∞(Rd) into

BMOL(R
d). Therefore, it is natural to ask for a class of functions b so that the

commutators [b, R∗
j ] map continuously L∞(Rd) into BMOL(R

d). In [7], the au-
thors found such a class of functions. More precisely, they proved in [7] that
the commutators [b, R∗

j ] map continuously L∞(Rd) into BMOL(R
d) whenever b ∈

BMOlog
L,∞(Rd) = ∪θ≥0BMOlog

L,θ(R
d). Here BMOlog

L,θ(R
d) is the space of functions

f ∈ L1
loc(R

d) such that

‖f‖BMOlog
L,θ

= sup
B(x,r)

(
log

(
e+ ρ(x)

r

)
(
1 + r

ρ(x)

)θ 1

|B(x, r)|
∫
B(x,r)

|f(y)− fB(x,r)| dy
)
<∞.

A natural question arises: can one replace the space L∞(Rd) by BMOL(R
d)?
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Question 3. Are the commutators [b, R∗
j ], j = 1, . . . , d, bounded on BMOL(R

d)

whenever b ∈ BMOlog
L,∞(Rd)?

Motivated by this question, we study the H1
L-estimates for commutators of the

Riesz transforms. More precisely, given b ∈ BMOL,∞(Rd), we prove that the com-

mutators [b, Rj ] are bounded on H1
L(R

d) if and only if b belongs to BMOlog
L,∞(Rd)

(see Theorem 3.6). Furthermore, if b ∈ BMOlog
L,θ(R

d) for some θ ≥ 0, then there
exists a constant C > 1, independent of b, such that

C−1‖b‖BMOlog
L,θ

≤ ‖b‖BMOL,θ
+

d∑
j=1

∥∥ [b, Rj ]∥∥H1
L→H1

L

≤ C ‖b‖BMOlog
L,θ
.

As a consequence, we get the positive answer for Question 3.
Now, an open question is the following:

Open question. Find the set of all functions b such that the commutators [b, Rj],
j = 1, . . . , d, are bounded on H1

L(R
d).

Let us emphasize the three main purposes of this paper. First, we prove the
two decomposition theorems: the subbilinear decomposition (1.1) and the bilin-
ear decomposition (1.2). Second, we characterize functions b in BMOL,∞(Rd) so
that the commutators of the Riesz transforms are bounded on H1

L(R
d), which an-

swers Question 3. Finally, we find the largest subspace H1
L,b(R

d) of H1
L(R

d) such
that all commutators of Schrödinger–Calderón–Zygmund operators and the Riesz
transforms are bounded from H1

L,b(R
d) into L1(Rd). Besides, we find also the char-

acterization of functions b ∈ BMO(Rd) so that H1
L,b(R

d) ≡ H1
L(R

d), which answer

Questions 1 and 2. Especially, we show that there exist subspaces of H1
L(R

d) which
do not depend on b ∈ BMO(Rd) and T ∈ KL, such that [b, T ] maps continuously
these spaces into L1(Rd), see Section 7.

This paper is organized as follows. In Section 2, we present some notations and
preliminaries about Hardy spaces, new atoms, BMO type spaces and Schrödinger–
Calderón–Zygmund operators. In Section 3, we state the main results: two decom-
position theorems (Theorem 3.1 and Theorem 3.4), Hardy estimates for commu-
tators of Schrödinger–Calderón–Zygmund operators and the commutators of the
Riesz transforms (Theorem 3.5 and Theorem 3.6). In Section 4, we give some ex-
amples of fundamental operators related to L which are in the class KL. Section 5
is devoted to the proofs of the main theorems. Section 6 is devoted to the proofs
of the key lemmas. Finally, in Section 7, we give some examples of subspaces of
H1
L(R

d) such that all commutators [b, T ], T ∈ KL, map continuously these spaces
into L1(Rd).

Throughout the whole paper, C denotes a positive geometric constant which is
independent of the main parameters, but may change from line to line. The symbol
f ≈ g means that f is equivalent to g (i.e. C−1f ≤ g ≤ Cf). In Rd, we denote by
B = B(x, r) an open ball with center x and radius r > 0, and tB(x, r) := B(x, tr)
whenever t > 0. For any measurable set E, we denote by χE its characteristic
function, by |E| its Lebesgue measure, and by Ec the set Rd \ E.
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2. Some preliminaries and notations

In this paper, we consider the Schrödinger differential operator

L = −Δ+ V

on Rd, d ≥ 3, where V is a nonnegative potential, V �= 0. As in the works of
Dziubański et al [15], [16], we always assume that V belongs to the reverse Hölder
class RHd/2. Recall that a nonnegative locally integrable function V is said to
belong to a reverse Hölder class RHq, 1 < q <∞, if there exists C > 0 such that

( 1

|B|
∫
B

(V (x))q dx
)1/q

≤ C

|B|
∫
B

V (x) dx

holds for every balls B in Rd. By Hölder inequality, RHq1 ⊂ RHq2 if q1 ≥ q2 > 1.
For q > 1, it is well-known that V ∈ RHq implies V ∈ RHq+ε for some ε > 0
(see [19]). Moreover, V (y)dy is a doubling measure, namely for any ball B(x, r)
we have

(2.1)

∫
B(x,2r)

V (y) dy ≤ C0

∫
B(x,r)

V (y) dy.

Let {Tt}t>0 be the semigroup generated by L and Tt(x, y) be their kernels.
Namely,

Ttf(x) = e−tLf(x) =
∫
Rd

Tt(x, y)f(y) dy, f ∈ L2(Rd), t > 0.

We say that a function f ∈ L2(Rd) belongs to the space H1
L(R

d) if

‖f‖H1
L
:= ‖MLf‖L1 <∞,

whereMLf(x) := supt>0 |Ttf(x)| for all x ∈ Rd. The spaceH1
L(R

d) is then defined
as the completion of H1

L(R
d) with respect to this norm.

In [15] it was shown that the dual of H1
L(R

d) can be identified with the space
BMOL(R

d) which consists of all functions f ∈ BMO(Rd) with

‖f‖BMOL := ‖f‖BMO + sup
ρ(x)≤r

1

|B(x, r)|
∫
B(x,r)

|f(y)| dy <∞,



Commutators of singular integral operators 1339

where ρ is the auxiliary function defined as in [39], that is,

(2.2) ρ(x) = sup
{
r > 0 :

1

rd−2

∫
B(x,r)

V (y) dy ≤ 1
}
,

x ∈ Rd. Clearly, 0 < ρ(x) < ∞ for all x ∈ Rd, and thus Rd =
⋃
n∈Z

Bn, where the
sets Bn are defined by

(2.3) Bn =
{
x ∈ R

d : 2−(n+1)/2 < ρ(x) ≤ 2−n/2
}
.

The following proposition plays an important role in our study.

Proposition 2.1 (see [39], Lemma 1.4). There exist two constants κ > 1 and
k0 ≥ 1 such that for all x, y ∈ Rd,

κ−1ρ(x)
(
1 +

|x− y|
ρ(x)

)−k0 ≤ ρ(y) ≤ κρ(x)
(
1 +

|x− y|
ρ(x)

)k0/(k0+1)

.

Throughout the whole paper, we denote by CL the L-constant

(2.4) CL = 8.9k0κ

where k0 and κ are defined as in Proposition 2.1.
Given 1 < q ≤ ∞. Following Dziubański and Zienkiewicz [16], a function a is

called a (H1
L, q)-atom related to the ball B(x0, r) if r ≤ CLρ(x0) and

(i) supp a ⊂ B(x0, r),

(ii) ‖a‖Lq ≤ |B(x0, r)|1/q−1,

(iii) if r ≤ 1
CL
ρ(x0) then

∫
Rd a(x) dx = 0.

A function a is called a classical (H1, q)-atom related to the ball B = B(x0, r)
if it satisfies (i), (ii) and

∫
Rd a(x)dx = 0.

The following atomic characterization of H1
L(R

d) is due to [16].

Theorem 2.2 (see [16], Theorem 1.5). Let 1 < q ≤ ∞. A function f is in H1
L(R

d)
if and only if it can be written as f =

∑
j λjaj, where aj are (H1

L, q)-atoms and∑
j |λj | <∞. Moreover,

‖f‖H1
L
≈ inf

{∑
j

|λj | : f =
∑
j

λjaj

}
.

Note that a classical (H1, q)-atom is not a (H1
L, q)-atom in general. In fact,

there exists a constant C > 0 such that if f is a classical (H1, q)-atom, then it
can be written as f =

∑n
j=1 λjaj , for some n ∈ Z+, where aj are (H1

L, q)-atoms

and
∑n
j=1 |λj | ≤ C, see for example [47]. In this work, we need a variant of the

definition of atoms for H1
L(R

d) which include classical (H1, q)-atoms and (H1
L, q)-

atoms. This kind of atoms have been used in the work of Chang, Dafni and Stein,
see [11], [13].
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Definition 2.3. Given 1 < q ≤ ∞ and ε > 0. A function a is called a generalized
(H1

L, q, ε)-atom related to the ball B(x0, r) if

(i) supp a ⊂ B(x0, r),

(ii) ‖a‖Lq ≤ |B(x0, r)|1/q−1,

(iii)
∣∣∣ ∫

Rd

a(x) dx
∣∣∣ ≤ ( r

ρ(x0)

)ε
.

The space H
1,q,ε
L,at (R

d) is defined to be set of all functions f in L1(Rd) which

can be written as f =
∑∞

j=1 λj aj where the aj are generalized (H1
L, q, ε)-atoms

and the λj are complex numbers such that
∑∞
j=1 |λj | <∞. As usual, the norm on

H
1,q,ε
L,at (R

d) is defined by

‖f‖
H

1,q,ε
L,at

= inf
{ ∞∑
j=1

|λj | : f =

∞∑
j=1

λj aj

}
.

The space H
1,q,ε
L,fin(R

d) is defined to be set of all f =
∑k

j=1 λj aj , where the aj

are generalized (H1
L, q, ε)-atoms. Then, the norm of f in H

1,q,ε
L,fin(R

d) is defined by

‖f‖
H

1,q,ε
L,fin

= inf
{ k∑
j=1

|λj | : f =

k∑
j=1

λj aj

}
.

Remark 2.4. Let 1 < q ≤ ∞ and ε > 0. Then, a classical (H1, q)-atom is a
generalized (H1

L, q, ε)-atom related to the same ball, and a (H1
L, q)-atom is CLε

times a generalized (H1
L, q, ε)-atom related to the same ball.

Throughout the whole paper, we always use generalized (H1
L, q, ε)-atoms except

in the proof of Theorem 3.6. More precisely, in order to prove Theorem 3.6, we
need to use (H1

L, q)-atoms from Dziubański and Zienkiewicz (see above).

The following gives a characterization of H1
L(R

n) in terms of generalized atoms.

Theorem 2.5. Let 1 < q ≤ ∞ and ε > 0. Then, H1,q,ε
L,at (R

d) = H1
L(R

d) and the
norms are equivalent.

In order to prove Theorem 2.5, we need the following lemma.

Lemma 2.6 (see [31], Lemma 2). Let V ∈ RHd/2. Then, there exists σ0 > 0
depends only on L, such that for every |y − z| < |x− y|/2 and t > 0, we have

∣∣Tt(x, y)− Tt(x, z)
∣∣ ≤ C

( |y − z|√
t

)σ0

t−d/2 e−|x−y|2/t ≤ C
|y − z|σ0

|x− y|d+σ0
.

Proof of Theorem 2.5. As ML is a sublinear operator, by Remark 2.4 and Theo-
rem 2.2, it is sufficient to show that

(2.5) ‖ML(a)‖L1 ≤ C

for all generalized (H1
L, q, ε)-atom a related to the ball B = B(x0, r).
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Indeed, from the Lq-boundedness of the classical Hardy–Littlewood maximal
operator M, the estimate ML(a) ≤ CM(a) and Hölder inequality,

(2.6) ‖ML(a)‖L1(2B) ≤ C‖M(a)‖L1(2B) ≤ C|2B|1/q′‖M(a)‖Lq ≤ C,

where 1/q′ + 1/q = 1. Let x /∈ 2B and t > 0, Lemma 2.6 and (3.5) of [16] give

|Tt(a)(x)| =
∣∣∣ ∫

Rd

Tt(x, y) a(y) dy
∣∣∣

≤
∣∣∣ ∫

B

(Tt(x, y)− Tt(x, x0)) a(y) dy
∣∣∣+ |Tt(x, x0)|

∣∣∣ ∫
B

a(y) dy
∣∣∣

≤ C
rσ0

|x− x0|d+σ0
+ C

rε

|x− x0|d+ε .

Therefore,

‖ML(a)‖L1((2B)c) = ‖ sup
t>0

|Tt(a)| ‖L1((2B)c)

≤ C

∫
(2B)c

rσ0

|x− x0|d+σ0
dx+ C

∫
(2B)c

rε

|x− x0|d+ε dx ≤ C.(2.7)

Then, (2.5) follows from (2.6) and (2.7). �

By Theorem 2.5, the following can be seen as a direct consequence of Proposi-
tion 3.2 of [47] and Remark 2.4.

Proposition 2.7. Let 1 < q <∞, ε > 0 and X be a Banach space. Suppose that
T : H1,q,ε

L,fin(R
d) → X is a sublinear operator with

sup
{ ‖Ta‖X : a is a generalized (H1

L, q, ε)− atom
}
<∞.

Then, T can be extended to a bounded sublinear operator T̃ from H1
L(R

d) into X .
Moreover,

‖T̃‖H1
L→X ≤ C sup

{ ‖Ta‖X : a is a generalized (H1
L, q, ε)− atom

}
.

Now, we turn to explain the new BMO type spaces introduced by Bongioanni,
Harboure and Salinas in [7]. Here and in what follows fB := 1

|B|
∫
B
f(x) dx and

(2.8) MO(f,B) :=
1

|B|
∫
B

|f(y)− fB| dy.

For θ ≥ 0, following [7], we denote by BMOL,θ(R
d) the set of all locally inte-

grable functions f such that

‖f‖BMOL,θ
= sup

B(x,r)

(
1(

1 + r/ρ(x)
)θ MO(f,B(x, r))

)
<∞,



1342 L.D. Ky

and BMOlog
L,θ(R

d) the set of all locally integrable functions f such that

‖f‖BMOlog
L,θ

= sup
B(x,r)

( log (e+ ρ(x)/r
)

(1 + r/ρ(x))θ
MO(g,B(x, r))

)
<∞.

When θ = 0, we write BMOlog
L (Rd) instead of BMOlog

L,0(R
d). We next define

BMOL,∞(Rd) =
⋃
θ≥0

BMOL,θ(R
d)

and

BMOlog
L,∞(Rd) =

⋃
θ≥0

BMOlog
L,θ(R

d).

Observe that BMOL,0(R
d) is just the classical BMO(Rd) space. Moreover, for

any 0 ≤ θ ≤ θ′ ≤ ∞, we have

(2.9) BMOL,θ(R
d) ⊂ BMOL,θ′(R

d), BMOlog
L,θ(R

d) ⊂ BMOlog
L,θ′(R

d)

and

(2.10) BMOlog
L,θ(R

d) = BMOL,θ(R
d) ∩ BMOlog

L,∞(Rd).

Remark 2.8. The inclusions in (2.9) are strict in general. In particular:
(i) The space BMOL,∞(Rd) is in general larger than the space BMO(Rd). In-

deed, when V (x) ≡ |x|2, it is easy to check that the functions bj(x) = |xj |2,
j = 1, . . . , d, belong to BMOL,∞(Rd) but not to BMO(Rd).

(ii) The space BMOlog
L,∞(Rd) is in general larger than the space BMOlog

L (Rd).
Indeed, when V (x) ≡ 1, it is easy to check that the functions bj(x) = |xj |, j =

1, . . . , d, belong to BMOlog
L,∞(Rd) but not to BMOlog

L (Rd).

Next, let us recall the notation of Schrödinger–Calderón–Zygmund operators.
Let δ ∈ (0, 1]. According to [33], a continuous function K : Rd × Rd \ {(x, x) :

x ∈ Rd} → C is said to be a (δ, L)-Calderón–Zygmund singular integral kernel if
for each N > 0,

(2.11) |K(x, y)| ≤ C(N)

|x− y|d
(
1 +

|x− y|
ρ(x)

)−N

for all x �= y, and

(2.12) |K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ C
|x− x′|δ
|x− y|d+δ

for all 2|x− x′| ≤ |x− y|.
As usual, we denote by C∞

c (Rd) the space of all C∞-functions with compact
support, by S(Rd) the Schwartz space on R

d.
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Definition 2.9. A linear operator T : S(Rd) → S ′(Rd) is said to be a (δ, L)-
Calderón–Zygmund operator if T can be extended to a bounded operator on L2(Rd)
and if there exists a (δ, L)-Calderón–Zygmund singular integral kernel K such that
for all f ∈ C∞

c (Rd) and all x /∈ supp f , we have

Tf(x) =

∫
Rd

K(x, y) f(y) dy.

An operator T is said to be a Schrödinger–Calderón–Zygmund operator associ-
ated with L (or L-Calderón–Zygmund operator) if it is a (δ, L)-Calderón–Zygmund
operator for some δ ∈ (0, 1]. We say that T satisfies the condition T ∗1 = 0 if there
are q ∈ (1,∞] and ε > 0 so that

∫
Rd Ta(x)dx = 0 holds for every generalized

(H1
L, q, ε)-atoms a.

Remark 2.10. (i) Using Proposition 2.1, inequality (2.11) is equivalent to

|K(x, y)| ≤ C(N)

|x− y|d
(
1 +

|x− y|
ρ(y)

)−N

for all x �= y.
(ii) By Theorem 0.8 of [39] and Theorem 1.1 of [40], we see that the Riesz

transforms Rj are the L-Calderón–Zygmund operators satisfying R∗
j1 = 0 when-

ever V ∈ RHd.
(iii) If T is a L-Calderón–Zygmund operator then it is also a classical Calderón–

Zygmund operator, and thus T is bounded on Lp(Rd) for 1 < p <∞ and bounded
from L1(Rd) into L1,∞(Rd).

3. Statement of the results

Recall that KL is the set of all sublinear operators T bounded from H1
L(R

d) into
L1(Rd) and that there are q ∈ (1,∞] and ε > 0 such that

‖(b− bB)Ta‖L1 ≤ C ‖b‖BMO

for all b ∈ BMO(Rd), any generalized (H1
L, q, ε)-atom a related to the ball B, where

C > 0 is a constant independent of b, a.

3.1. Two decomposition theorems

Let b be a locally integrable function and T ∈ KL. As usual, the (sublinear) com-
mutator [b, T ] of the operator T is defined by [b, T ](f)(x) := T

(
(b(x)−b(·)) f(·))(x).

Theorem 3.1 (Subbilinear decomposition). Let T ∈ KL. There exists a bounded
subbilinear operator R = RT : H

1
L(R

d) × BMO(Rd) → L1(Rd) such that for all
(f, b) ∈ H1

L(R
d)× BMO(Rd), we have∣∣T (S(f, b))

∣∣−R(f, b) ≤ ∣∣ [b, T ](f)∣∣ ≤ R(f, b) +
∣∣T (S(f, b))

∣∣,
where S is a bounded bilinear operator from H1

L(R
d)×BMO(Rd) into L1(Rd) which

does not depend on T .
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Using Theorem 3.1, we obtain immediately the following result.

Proposition 3.2. Let T ∈ KL so that T is of weak type (1, 1). Then, the sub-
bilinear operator T(f, g) = [g, T ](f) maps continuously H1

L(R
d) × BMO(Rd) into

L1,∞(Rd).

As the Riesz transforms Rj = ∂xjL
−1/2 are of weak type (1, 1) (see [30]), the

following can be seen as a consequence of Proposition 3.2 (see also [32]).

Corollary 3.3 (see [32], Theorem 4.1). Let b ∈ BMO(Rd). Then, the commutators
[b, Rj ] are bounded from H1

L(R
d) into L1,∞(Rd).

When T is linear and belongs to KL, we obtain the bilinear decomposition
for the linear commutator [b, T ] of f , [b, T ](f) = bT (f) − T (bf), instead of the
subbilinear decomposition as stated in Theorem 3.1.

Theorem 3.4 (Bilinear decomposition). Let T be a linear operator in KL. Then,
there exists a bounded bilinear operator R = RT : H

1
L(R

d) × BMO(Rd) → L1(Rd)
such that for all (f, b) ∈ H1

L(R
d)× BMO(Rd), we have

[b, T ](f) = R(f, b) + T (S(f, b)),

where S is as in Theorem 3.1.

3.2. Hardy estimates for linear commutators

Our first main result of this subsection is the following theorem.

Theorem 3.5. (i) Let b ∈ BMOlog
L (Rd) and T be a L-Calderón–Zygmund operator

satisfying T ∗1 = 0. Then, the linear commutator [b, T ] is bounded on H1
L(R

d).

(ii) When V ∈ RHd, the converse holds. Namely, if b ∈ BMO(Rd) and [b, T ] is
bounded on H1

L(R
d) for every L-Calderón–Zygmund operator T satisfying T ∗1 = 0,

then b ∈ BMOlog
L (Rd). Furthermore,

‖b‖BMOlog
L

≈ ‖b‖BMO +

d∑
j=1

∥∥ [b, Rj] ∥∥H1
L→H1

L

.

Next result concerns theH1
L-estimates for commutators of the Riesz transforms.

Theorem 3.6. Let b ∈ BMOL,∞(Rd). Then, the commutators [b, Rj], j =

1, . . . , d, are bounded on H1
L(R

d) if and only if b ∈ BMOlog
L,∞(Rd). Furthermore, if

b ∈ BMOlog
L,θ(R

d) for some θ ≥ 0, we have

‖b‖BMOlog
L,θ

≈ ‖b‖BMOL,θ
+

d∑
j=1

∥∥ [b, Rj ] ∥∥H1
L→H1

L

.

Remark that the above constants depend on θ.
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Note that BMOlog
L (Rd) is in general proper subset of BMOlog

L,∞(Rd) (see Re-
mark 2.8). When V ∈ RHd, although the Riesz transforms Rj are L-Calderón–
Zygmund operators satisfying R∗

j1 = 0, Theorem 3.6 cannot be deduced from
Theorem 3.5.

As a consequence of Theorem 3.6, we obtain the following interesting result.

Corollary 3.7. Let b ∈ BMO(Rd). Then, b belongs to LMO(Rd) if and only if
the vector-valued commutator [b,∇(−Δ + 1)−1/2] maps continuously h1(Rd) into
h1(Rd,Rd) = (h1(Rd), . . . , h1(Rd)). Furthermore,

‖b‖LMO ≈ ‖b‖BMO +
∥∥ [b,∇(−Δ+ 1)−1/2]

∥∥
h1(Rd)→h1(Rd,Rd)

.

Here h1(Rd) is the local Hardy space of D. Goldberg (see [20]), and LMO(Rd)
is the space of all locally integrable functions f such that

‖f‖LMO := sup
B(x,r)

(
log

(
e +

1

r

)
MO(f,B(x, r))

)
<∞.

It should be pointed out that LMO type spaces appear naturally when studying
the boundedness of Hankel operators on the Hardy spaces H1(Td) and H1(Bd)
(where Bd is the unit ball in Cd and Td = ∂Bd), characterizations of pointwise
multipliers for BMO type spaces, endpoint estimates for commutators of singular
integrals operators and their applications to PDEs, see for example [5], [9], [24],
[25], [28], [36], [41], and [42].

4. Some fundamental operators and the class KL

The purpose of this section is to give some examples of fundamental operators
related to L which are in the class KL.

4.1. The Schrödinger–Calderón–Zygmund operators

Proposition 4.1. Let T be any L-Calderón–Zygmund operator. Then, T belongs
to the class KL.

Proposition 4.2. The Riesz transforms Rj are in the class KL.

The proof of Proposition 4.2 follows directly from Lemma 5.13 and the fact
that the Riesz transforms Rj are bounded from H1

L(R
d) into L1(Rd).

To prove Proposition 4.1, we need the following two lemmas.

Lemma 4.3. Let 1 ≤ q < ∞. Then, there exists a constant C > 0 such that for
every ball B, f ∈ BMO(Rd) and k ∈ Z+,

( 1

|2kB|
∫
2kB

|f(y)− fB|q dy
)1/q

≤ C k ‖f‖BMO.
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The proof of Lemma 4.3 follows directly from the classical John–Nirenberg
inequality. See also Lemma 6.6 below.

Lemma 4.4. Let 1 < q ≤ ∞ and ε > 0. Assume that T is a (δ, L)-Calderón–
Zygmund operator and a is a generalized (H1

L, q, ε)-atom related to the ball B =
B(x0, r). Then,

‖Ta‖Lq(2k+1B\2kB) ≤ C 2−kδ0 |2kB|1/q−1

for all k = 1, 2, . . ., where δ0 = min{ε, δ}.

Proof. Let x ∈ 2k+1B \ 2kB, so that |x − x0| ≥ 2r. Since T is a (δ, L)-Calderón–
Zygmund operator, we get

|Ta(x)| ≤
∣∣∣ ∫
B

(K(x, y)−K(x, x0)) a(y) dy
∣∣∣+ |K(x, x0)|

∣∣∣ ∫
Rd

a(y) dy
∣∣∣

≤ C

∫
B

|y − x0|δ
|x− x0|d+δ |a(y)| dy + C

1

|x− x0|d
(
1 +

|x− x0|
ρ(x0)

)−ε( r

ρ(x0)

)ε
≤ C

rδ

|x− x0|d+δ + C
rε

|x− x0|d+ε ≤ C
rδ0

|x− x0|d+δ0 .

Consequently,

‖Ta‖Lq(2k+1B\2kB) ≤ C
rδ0

(2kr)d+δ0
|2k+1B|1/q ≤ C 2−kδ0 |2kB|1/q−1. �

Proof of Proposition 4.1. Assume that T is a (δ, L)-Calderón–Zygmund for some
δ ∈ (0, 1]. Let us first verify that T is bounded from H1

L(R
d) into L1(Rd). By

Proposition 2.7, it is sufficient to show that

‖Ta‖L1 ≤ C

for all generalized (H1
L, 2, δ)-atom a related to the ball B. Indeed, from the L2-

boundedness of T and Lemma 4.4, we obtain that

‖Ta‖L1 = ‖Ta‖L1(2B) +
∞∑
k=1

‖Ta‖L1(2k+1B\2kB)

≤ C |2B|1/2‖T ‖L2→L2‖a‖L2 + C

∞∑
k=1

|2k+1B|1/2 2−kδ |2kB|−1/2 ≤ C.

Let us next establish that

‖(f − fB)T a‖L1 ≤ C ‖f‖BMO

for all f ∈ BMO(Rd), and for any generalized (H1
L, 2, δ)-atom a related to the ball
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B = B(x0, r). Indeed, by Hölder’s inequality, Lemma 4.3 and Lemma 4.4, we get

‖(f − fB)T a ‖L1

= ‖(f − fB)T a ‖L1(2B) +
∑
k≥1

‖(f − fB)T a ‖L1(2k+1B\2kB)

≤ ‖(f − fB)χ2B‖L2‖T ‖L2→L2‖a‖L2 +
∑
k≥1

‖f − fB‖L2(2k+1B)‖Ta‖L2(2k+1B\2kB)

≤ C ‖f‖BMO +
∑
k≥1

C(k + 1)‖f‖BMO|2k+1B|1/22−kδ|2kB|−1/2 ≤ C ‖f‖BMO,

which ends the proof. �

4.2. The L-maximal operators

Recall that {Tt}t>0 is heat semigroup generated by L and Tt(x, y) are their kernels.
Namely,

Ttf(x) = e−tLf(x) =
∫
Rd

Tt(x, y) f(y) dy, f ∈ L2(Rd), t > 0.

Then the “heat” maximal operator is defined by

MLf(x) = sup
t>0

|Ttf(x)|,

and the “Poisson” maximal operator is defined by

MP
Lf(x) = sup

t>0
|Ptf(x)|,

where

Ptf(x) = e−t
√
Lf(x) =

t

2
√
π

∫ ∞

0

e−t
2/(4u)

u3/2
Tu f(x) du.

Proposition 4.5. The “heat” maximal operator ML is in the class KL.
Proposition 4.6. The “Poisson” maximal operator MP

L is in the class KL.
Here we just give the proof of Proposition 4.5. For the one of Proposition 4.6,

we leave the details to the interested reader.

Proof of Proposition 4.5. Obviously, ML is bounded from H1
L(R

d) into L1(Rd).
Now, let us prove that

‖(f − fB)ML(a)‖L1 ≤ C ‖f‖BMO

for all f ∈ BMO(Rd), any generalized (H1
L, 2, σ0)-atom a related to the ball B =

B(x0, r), where the constant σ0 > 0 is as in Lemma 2.6. Indeed, by the proof of
Theorem 2.5, for every x /∈ 2B,

ML(a)(x) ≤ C
rσ0

|x− x0|d+σ0
.
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Therefore, using Lemma 4.3, the L2-boundedness of the classical Hardy–Littlewood
maximal operator M and the estimate ML(a) ≤ CM(a), we obtain that

‖(f − fB)ML(a)‖L1

= ‖(f − fB)ML(a)‖L1(2B) + ‖(f − fB)ML(a)‖L1((2B)c)

≤ C ‖f − fB‖L2(2B)‖M(a)‖L2 + C

∫
|x−x0|≥2r

|f(x)− fB(x0,r)|
rσ0

|x− x0|d+σ0
dx

≤ C ‖f‖BMO,

where we have used the following classical inequality:∫
|x−x0|≥2r

|f(x)− fB(x0,r)|
rσ0

|x− x0|d+σ0
dx ≤ C ‖f‖BMO,

which proof can be found in [17]. This completes the proof of Proposition 4.5. �

4.3. The L-square functions

Recall (see [15]) that the L-square funcfions g and G are defined by

g(f)(x) =
(∫ ∞

0

∣∣ t ∂tTt(f)(x)∣∣2 dt

t

)1/2

and

G(f)(x) =
( ∫ ∞

0

∫
|x−y|<t

∣∣ t ∂tTt(f)(y)∣∣2 dy dt

td+1

)1/2

.

Proposition 4.7. The L-square function g is in the class KL.
Proposition 4.8. The L-square function G is in the class KL.

Here we just give the proof for Proposition 4.7. For the one of Proposition 4.8,
we leave the details to the interested reader.

In order to prove Proposition 4.7, we need the following lemma.

Lemma 4.9. There exists a constant C > 0 such that

(4.1)
∣∣ t ∂tTt(x, y + h)− t ∂tTt(x, y)

∣∣ ≤ C
( |h|√

t

)δ
t−d/2 e−

c
4 |x−y|2/t,

for all |h| < |x− y|/2, 0 < t. Here and in the proof of Proposition 4.7, the constants
δ, c ∈ (0, 1) are as in Proposition 4 of [15].

Proof. One only needs to consider the case
√
t < |h| < |x− y|/2. Otherwise, (4.1)

follows directly from (b) in Proposition 4 of [15].
For

√
t < |h| < |x− y|/2. By (a) in Proposition 4 of [15], we get∣∣ t ∂tTt(x, y + h)− t ∂tTt(x, y)

∣∣ ≤ C t−d/2 e−c|x−y−h|
2/t + C t−d/2 e−c|x−y|

2/t

≤ C
( |h|√

t

)δ
t−d/2 e−

c
4 |x−y|2/t.

�
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Proof of Proposition 4.7. The (H1
L−L1) type boundedness of g is well-known, see

for example [15], [22]. Let us now show that

‖(f − fB) g(a)‖L1 ≤ C ‖f‖BMO

for all f ∈ BMO(Rd), any generalized (H1
L, 2, δ)-atom a related to the ball B =

B(x0, r). Indeed, it follows from Lemma 4.9 and (a) in Proposition 4 of [15] that
for every t > 0, x /∈ 2B,∣∣ t∂tTt(a)(x)∣∣ = ∣∣∣ ∫

B

(
t ∂tTt(x, y)− t ∂tTt(x, x0)

)
a(y) dy + t ∂tTt(x, x0)

∫
B

a(y) dy
∣∣∣

≤ C
( r√

t

)δ
t−d/2 e−

c
4 |x−x0|2/t ‖a‖L1

+ C t−d/2 e−c|x−x0|2/t
(
1 +

√
t

ρ(x)
+

√
t

ρ(x0)

)−δ( r

ρ(x0)

)δ
≤ C

( r√
t

)δ
t−d/2 e−

c
4 |x−x0|2/t.

Therefore, as 0 < δ < 1, using the estimate e−
c
2 |x−x0|2/t ≤ C(c, d)( t

|x−x0|2 )
d+2,

g(a)(x) ≤ C
{∫ ∞

0

(r2
t

)δ
t−d e−

c
2 |x−x0|2/t dt

t

}1/2

≤ C
{∫ |x−x0|2

0

(r2
t

)δ
t−d

( t

|x− x0|2
)d+2 dt

t
+

∫ ∞

|x−x0|2

(r2
t

)δ
t−d

dt

t

}1/2

≤ C
rδ

|x− x0|d+δ .

Therefore, the L2-boundedness of g and Lemma 4.3 yield

‖(f − fB) g(a)‖L1 = ‖(f − fB) g(a)‖L1(2B) + ‖(f − fB) g(a)‖L1((2B)c)

≤ ‖f − fB‖L2(2B)‖g(a)‖L2 + C

∫
|x−x0|≥2r

∣∣ f(x)− fB(x0,r)

∣∣ rδ

|x− x0|d+δ dx

≤ C ‖f‖BMO,

which ends the proof. �

5. Proof of the main results

In this section, we fix a non-negative function ϕ ∈ S(Rd) with supp ϕ ⊂ B(0, 1)
and

∫
Rd ϕ(x)dx = 1. Then, we define the linear operator H by

H(f) =
∑
n,k

(
ψn,kf − ϕ2−n/2 ∗ (ψn,kf)

)
,

where ψn,k, n ∈ Z, k = 1, 2, . . . is as in Lemma 2.5 of [16] (see also Lemma 6.2).

Remark 5.1. When V (x) ≡ 1, we can define H(f) = f − ϕ ∗ f .
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Let us now consider the set E = {0, 1}d \ {(0, · · · , 0)} and {ψσ}σ∈E the wavelet
with compact support as in Section 3 of [4] (see also Section 2 of [28]). Suppose
that ψσ is supported in the cube (1/2 − c/2, 1/2 + c/2)d for all σ ∈ E . As it is
classical, for σ ∈ E and I a dyadic cube of Rd which may be written as the set of x
such that 2jx− k ∈ (0, 1)d, we note

ψσI (x) = 2dj/2ψσ(2jx− k).

In the sequel, the letter I always refers to dyadic cubes. Moreover, we note kI the
cube of same center dilated by the coefficient k.

Remark 5.2. For every σ ∈ E and I a dyadic cube. Because of the assumption
on the support of ψσ, the function ψσI is supported in the cube cI.

In [4] (see also [28]), Bonami et al. established the following.

Proposition 5.3. The bounded bilinear operator Π, defined by

Π(f, g) =
∑
I

∑
σ∈E

〈f, ψσI 〉 〈g, ψσI 〉 (ψσI )2,

is bounded from H1(Rd)× BMO(Rd) into L1(Rd).

5.1. Proof of Theorem 3.1 and Theorem 3.4

In order to prove Theorem 3.1 and Theorem 3.4, we need the following key two
lemmas, whose proofs will given in Section 6.

Lemma 5.4. The linear operator H is bounded from H1
L(R

d) into H1(Rd).

Lemma 5.5. Let T ∈ KL. Then, the subbilinear operator

U(f, b) := [b, T ] (f − H(f))

is bounded from H1
L(R

d)× BMO(Rd) into L1(Rd).

By Proposition 5.3 and Lemma 5.4, we obtain:

Proposition 5.6. The bilinear operator S(f, g) := −Π(H(f), g) is bounded from
H1
L(R

d)× BMO(Rd) into L1(Rd).

We recall (see [28]) that the class K is the set of all sublinear operators T
bounded from H1(Rd) into L1(Rd) so that for some q ∈ (1,∞],∥∥ (b − bB)T a

∥∥
L1 ≤ C ‖b‖BMO,

for all b ∈ BMO(Rd), any classical (H1, q)-atom a related to the ball B, where
C > 0 a constant independent of b, a.

Remark 5.7. By Remark 2.4 and as H1(Rd) ⊂ H1
L(R

d), we obtain that KL ⊂ K,
which allows to apply the two classical decomposition theorems (Theorem 3.1 and
Theorem 3.2 of [28]). This is a key point in our proofs.
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Proof of Theorem 3.1. As T ∈ KL ⊂ K, it follows from Theorem 3.1 of [28] that
there exists a bounded subbilinear operator V : H1(Rd) × BMO(Rd) → L1(Rd)
such that for all (g, b) ∈ H1(Rd)× BMO(Rd), we have

(5.1)
∣∣T (−Π(g, b))

∣∣− V(g, b) ≤ ∣∣ [b, T ](g)∣∣ ≤ V(g, b) + ∣∣T (−Π(g, b))
∣∣.

Let us now define the bilinear operator R by

R(f, b) := |U(f, b)|+ V(H(f), b)

for all (f, b) ∈ H1
L(R

d) × BMO(Rd), where U is the subbilinear operator as in
Lemma 5.5. Then, using the subbilinear decomposition (5.1) with g = H(f),∣∣T (S(f, b))

∣∣−R(f, b) ≤ ∣∣ [b, T ](f)∣∣ ≤ ∣∣T (S(f, b))
∣∣+R(f, b),

where the bounded bilinear operator S : H1
L(R

d) × BMO(Rd) → L1(Rd) is given
in Proposition 5.6.

Furthermore, by Lemma 5.5 and Lemma 5.4, we get

‖R(f, b)‖L1 ≤ ‖U(f, b)‖L1 + ‖V(H(f), b)‖L1

≤ C ‖f‖H1
L
‖b‖BMO + C ‖H(f)‖H1‖b‖BMO ≤ C ‖f‖H1

L
‖b‖BMO,

where we used the boundedness of V on H1(Rd) × BMO(Rd) into L1(Rd). This
completes the proof. �

Proof of Theorem 3.4. The proof follows the same lines except that now, one deals
with equalities instead of inequalities. Namely, as T is a linear operator in KL ⊂ K,
Theorem 3.2 of [28] yields that there exists a bounded bilinear operator W :
H1(Rd)× BMO(Rd) → L1(Rd) such that for every (g, b) ∈ H1(Rd)× BMO(Rd),

[b, T ] (g) = W(g, b) + T (−Π(g, b))

Therefore, for every (f, b) ∈ H1
L(R

d)× BMO(Rd),

[b, T ] (f) = R(f, b) + T (S(f, b)),

whereR(f, b) := U(f, b)+W(H(f), b) is a bounded bilinear operator fromH1
L(R

d)×
BMO(Rd) into L1(Rd). This completes the proof. �

5.2. Proof of Theorem 3.5 and Theorem 3.6

First, recall that VMOL(R
d) is the closure of C∞

c (Rd) in BMOL(R
d). Then, the

following result due to Ky [29].

Theorem 5.8. The space H1
L(R

d) is the dual of the space VMOL(R
d).

In order to prove Theorem 3.5, we need the following key lemmas, whose proofs
will be given in Section 6.
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Lemma 5.9. Let 1 ≤ q < ∞ and θ ≥ 0. Then, for every f ∈ BMOlog
L,θ(R

d),

B = B(x, r) and k ∈ Z+, we have

( 1

|2kB|
∫
2kB

|f(y)− fB|q dy
)1/q

≤ Ck

(
1 + 2kr

ρ(x)

)(k0+1)θ

log
(
e+ (ρ(x)2kr )

k0+1
) ‖f‖BMOlog

L,θ
,

where the constant k0 is as in Proposition 2.1.

Lemma 5.10. Let 1 < q < ∞, ε > 0 and T be a L-Calderón–Zygmund operator.
Then, the following two statements hold:

(i) If T ∗1 = 0, then T is bounded from H1
L(R

d) into H1(Rd).

(ii) For every f, g ∈ BMO(Rd), and for every generalized (H1
L, q, ε)-atom a re-

lated to the ball B,∥∥ (f − fB) (g − gB)T a
∥∥
L1 ≤ C ‖f‖BMO ‖g‖BMO.

Proof of Theorem 3.5. (i). Assume that T is a (δ, L)-Calderón–Zygmund operator.
We claim that, by Lemma 5.10, it is sufficient to prove that

(5.2) ‖(b− bB) a‖H1
L
≤ C ‖b‖BMOlog

L

and

(5.3) ‖(b− bB)T a‖H1
L
≤ C ‖b‖BMOlog

L

hold for every generalized (H1
L, 2, δ)-atom a related to the ball B = B(x0, r) with

the constants are independent of b, a. Indeed, if (5.2) and (5.3) are true, then∥∥ [b, T ] (a)∥∥
H1

L

≤ ∥∥ (b− bB)T a
∥∥
H1

L

+ C
∥∥T ((b− bB) a)

∥∥
H1

≤ C ‖b‖BMOlog
L

+ C ‖T ‖H1
L→H1

∥∥ (b − bB) a
∥∥
H1

L

≤ C ‖b‖BMOlog
L
.

Therefore, Proposition 2.7 yields that [b, T ] is bounded on H1
L(R

d); moreover,∥∥ [b, T ] ∥∥
H1

L→H1
L

≤ C,

where the constant C is independent of b.
The proof of (5.2) is similar to the one of (5.3) but uses an easier argument;

we leave the details to the interested reader. Let us now establish (5.3). By
Theorem 5.8, it is sufficient to show that

(5.4)
∥∥φ(b− bB)T a

∥∥
L1 ≤ C ‖b‖BMOlog

L
‖φ‖BMOL

for all φ ∈ C∞
c (Rd). Besides, from Lemma 5.10,∥∥ (φ− φB) (b− bB)T a

∥∥
L1 ≤ C ‖b‖BMO ‖φ‖BMO ≤ C ‖b‖BMOlog

L
‖φ‖BMOL

.

This together with Lemma 2 of [15] allow us to reduce (5.4) to showing that

(5.5) log
(
e+

ρ(x0)

r

) ∥∥ (b− bB)T a
∥∥
L1 ≤ C ‖b‖BMOlog

L
.
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Setting ε = δ/2, it is easy to check that there exists a constant C = C(ε) > 0
such that

log(e+ kt) ≤ C kε log(e+ t)

for all k ≥ 2, t > 0. Consequently, for all k ≥ 1,

(5.6) log
(
e+

ρ(x0)

r

)
≤ C 2kε log

(
e+

( ρ(x0)
2k+1r

)k0+1)
.

Then, by Lemma 4.4 and Lemma 5.9, we get

log
(
e+

ρ(x0)

r

) ∥∥ (b− bB)T a
∥∥
L1

= log
(
e+

ρ(x0)

r

) ∥∥ (b− bB)T a
∥∥
L1(2B)

+
∑
k≥1

log
(
e +

ρ(x0)

r

)∥∥ (b− bB)T a
∥∥
L1(2k+1B\2kB)

≤ C log
(
e+

(ρ(x0)
2r

)k0+1) ∥∥ b− bB
∥∥
L2(2B)

‖Ta‖L2

+ C
∑
k≥1

2kε log
(
e+

( ρ(x0)
2k+1r

)k0+1) ∥∥ b− bB
∥∥
L2(2k+1B)

‖Ta‖L2(2k+1B\2kB)

≤ C |2B|1/2‖b‖BMOlog
L

‖a‖L2

+ C
∑
k≥1

2kε(k + 1) |2k+1B|1/2‖b‖BMOlog
L

2−kδ |2kB|−1/2

≤ C ‖b‖BMOlog
L
,

where we used δ = 2ε. This ends the proof of (i).

(ii) By Remark 2.10, (ii) can be seen as a consequence of Theorem 3.6 that we
are going to prove now. �

Next, let us recall the following lemma due to Tang and Bi [44].

Lemma 5.11 (see [44], Lemma 3.1). Let V ∈ RHd/2. Then, there exists c0 ∈ (0, 1)
such that for any positive number N and 0 < h < |x− y|/16, we have

∣∣Kj(x, y)
∣∣ ≤ C(N)(

1 + |x−y|
ρ(y)

)N 1

|x− y|d−1

( ∫
B(x,|x−y|)

V (z)

|x− z|d−1
dz +

1

|x− y|
)

and∣∣Kj(x, y + h)−Kj(x, y)
∣∣

≤ C(N)(
1 + |x−y|

ρ(y)

)N hc0

|x− y|c0+d−1

( ∫
B(x,|x−y|)

V (z)

|x− z|d−1
dz +

1

|x− y|
)
,

where Kj(x, y), j = 1, . . . , d, are the kernels of the Riesz transforms Rj.
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In order to prove Theorem 3.6, we need also the following two technical lemmas,
whose proofs will be given in Section 6.

Lemma 5.12. Let 1 < q ≤ d/2 and c0 be as in Lemma 5.11. Then, Rj(a) is C
times a classical (H1, q, c0)-molecule (e.g. [40]) for all generalized (H1

L, q, c0)-atom
a related to the ball B = B(x0, r). Furthermore, for any N > 0 and k ≥ 4, we
have

(5.7)
∥∥Rj(a)∥∥Lq(2k+1B\2kB)

≤ C(N)(
1 + 2kr

ρ(x0)

)N 2−kc0 |2kB|1/q−1,

where C(N) > 0 depends only on N .

Lemma 5.13. Let 1 < q ≤ d/2 and θ ≥ 0. Then, for every f ∈ BMO(Rd),
g ∈ BMOL,θ(R

d) and (H1
L, q)-atom a related to the ball B = B(x0, r), we have∥∥ (g − gB)Rj(a)

∥∥
L1 ≤ C ‖g‖BMOL,θ

and ∥∥ (f − fB) (g − gB)Rj(a)
∥∥
L1 ≤ C ‖f‖BMO ‖g‖BMOL,θ

.

Proof of Theorem 3.6. Suppose that b ∈ BMOlog
L,∞(Rd), i.e. b ∈ BMOlog

L,θ(R
d) for

some θ ≥ 0. By Proposition 3.2 of [47], in order to prove that [b, Rj ] are bounded
on H1

L(R
d), it is sufficient to show that ‖ [b, Rj](a)‖H1

L
≤ C ‖b‖BMOlog

L,θ
for all

(H1
L, d/2)-atom a. Similarly to the proof of Theorem 3.5, it remains to show

(5.8)
∥∥ (b− bB) a

∥∥
H1

L

≤ C ‖b‖BMOlog
L,θ

and

(5.9)
∥∥ (b − bB)Rj(a)

∥∥
H1

L

≤ C ‖b‖BMOlog
L,θ

hold for every (H1
L, d/2)-atom a related to the ball B = B(x0, r), where the con-

stants C in (5.8) and (5.9) are independent of b, a.

As before, we leave the proof of (5.8) to the interested reader.

Let us now establish (5.9). Similarly to the proof of Theorem 3.5, Lemma 5.13
allows to reduce (5.9) to showing that

(5.10) log
(
e+

ρ(x0)

r

)∥∥ (b− bB)Rj(a)
∥∥
L1 ≤ C ‖b‖BMOlog

L,θ
.

Setting ε = c0/2, there is a constant C = C(ε) > 0 such that for all k ≥ 1,

(5.11) log
(
e+

ρ(x0)

r

)
≤ C 2kε log

(
e+

( ρ(x0)
2k+1r

)k0+1)
.
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Note that r ≤ CLρ(x0) since a is a (H1
L, d/2)-atom related to the ball B(x0, r).

In (5.7) of Lemma 5.12, we choose N = (k0 + 1)θ. Then, Hölder inequality, (5.11)
and Lemma 5.9 allow to conclude that

log
(
e+

ρ(x0)

r

)∥∥ (b − bB)Rj(a)
∥∥
L1

= log
(
e +

ρ(x0)

r

)∥∥ (b− bB)Rj(a)
∥∥
L1(24B)

+
∑
k≥4

log
(
e+

ρ(x0)

r

)∥∥ (b − bB)Rj(a)
∥∥
L1(2k+1B\2kB)

≤ C log
(
e+

(ρ(x0)
24r

)k0+1)∥∥ b− bB
∥∥
L

d
d−2 (24B)

‖Rj(a)‖Ld/2

+ C
∑
k≥4

2kε log
(
e+

( ρ(x0)
2k+1r

)k0+1) ∥∥ b−bB∥∥
L

d
d−2 (2k+1B)

‖Rj(a)‖Ld/2(2k+1B\2kB)

≤ C ‖b‖BMOlog
L,θ

+ C ‖b‖BMOlog
L,θ

∑
k≥4

k2−kε

≤ C ‖b‖BMOlog
L,θ

where we used c0 = 2ε. This proves (5.10), and thus [b, Rj ] are bounded onH1
L(R

d).

Conversely, assume that [b, Rj ] are bounded on H1
L(R

d). Then, although b

belongs to BMOlog
L,∞(Rd) from a duality argument and Theorem 2 of [7], we would

also like to give a direct proof for completeness.
As b∈BMOL,∞(Rd) by assumption, there exist θ≥0 such that b∈BMOL,θ(R

d).

For every (H1
L, d/2)-atom a related to some ball B = B(x0, r). By Remark 2.4

and Lemma 5.13,∥∥Rj((b − bB) a)
∥∥
L1 ≤ ∥∥ (b− bB)Rj(a) ‖L1 + C

∥∥ [b, Rj ](a)∥∥H1
L

≤ C ‖b‖BMOL,θ
+ C

∥∥ [b, Rj]∥∥H1
L→H1

L

hold for all j = 1, . . . , d. In addition, noting that r ≤ CLρ(x0) since a is a (H1
L, d/2)-

atom related to some ball B = B(x0, r), Hölder inequality and Lemma 1 of [7] (see
also Lemma 6.6 below) give∥∥ (b − bB)a

∥∥
L1 ≤ ‖b− bB‖Ld/(d−2)(B) ‖a‖Ld/2(B) ≤ C ‖b‖BMOL,θ

.

By the characterization of H1
L(R

d) in terms of the Riesz transforms (see [16]),
the above proves that (b− bB)a ∈ H1

L(R
d), moreover,

(5.12)
∥∥ (b− bB)a

∥∥
H1

L

≤ C
(
‖b‖BMOL,θ

+

d∑
j=1

∥∥ [b, Rj ]∥∥H1
L→H1

L

)

where the constant C > 0 is independent of b, a.
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Now, we prove that b ∈ BMOlog
L,θ(R

d). More precisely, the following:

(5.13)
log(e + ρ(x0)/r)

(1 + r/ρ(x0))θ
MO(b, B(x0, r)) ≤ C

(
‖b‖BMOL,θ

+

d∑
j=1

∥∥ [b, Rj ]∥∥H1
L→H1

L

)

holds for any ball B(x0, r) in Rd. In fact, we only need to establish (5.13) for
0 < r < ρ(x0)/2 since b ∈ BMOL,θ(R

d).
Indeed, in (5.12) we choose B = B(x0, r) and a = (2|B|)−1(f − fB)χB , where

f = sign (b− bB). Then, it is easy to see that a is a (H1
L, d/2)-atom related to the

ball B. We next consider

gx0,r(x) = χ[0,r](|x − x0|) log
(ρ(x0)

r

)
+ χ(r,ρ(x0)](|x − x0|) log

( ρ(x0)

|x− x0|
)
.

Then, thanks to Lemma 2.5 of [33], one has ‖gx0,r‖BMOL ≤ C. Moreover, it is
clear that gx0,r(b − bB)a ∈ L1(Rd). Consequently, (5.12) together with the fact
that BMOL(R

d) is the dual of H1
L(R

d) allows us to conclude that

log(e+ ρ(x0)/r)

(1 + r/ρ(x0))θ
MO(b, B(x0, r)) ≤ 3 log

(ρ(x0)
r

)
MO(b, B(x0, r))

= 6
∣∣∣ ∫

Rd

gx0,r(x) (b(x) − bB) a(x) dx
∣∣∣ ≤ 6 ‖gx0,r‖BMOL

‖(b− bB) a‖H1
L

≤ C
(
‖b‖BMOL,θ

+

d∑
j=1

∥∥ [b, Rj]∥∥H1
L→H1

L

)
,

where we used r < ρ(x0)/2 and∫
Rd

(b(x)− bB) a(x) dx =
1

2 |B(x0, r)|
∫
B(x0,r)

∣∣ b(x)− bB(x0,r)

∣∣ dx.
This ends the proof. �

6. Proof of the key lemmas

First, let us recall some notations and results due to Dziubański and Zienkiewicz
in [16]. These notations and results play an important role in our proofs.

Let P (x) = (4π)−d/2e−|x|2/4 be the Gauss function. For n ∈ Z, the space
h1n(R

d) denotes the space of all integrable functions f such that

Mnf(x) = sup
0<t<2−n

|P√
t ∗ f(x)| = sup

0<t<2−n

∣∣∣ ∫
Rd

pt(x, y) f(y) dy
∣∣∣ ∈ L1(Rd),

where the kernel pt is given by pt(x, y) = (4πt)−d/2e−
|x−y|2

4t . We equipped this
space with the norm ‖f‖h1

n
:= ‖Mnf‖L1.

For convenience of the reader, we list here some lemmas used in our proofs.
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Lemma 6.1 (see [16], Lemma 2.3). There exist a constant C > 0 and a collection
of balls Bn,k = B(xn,k, 2

−n/2), n ∈ Z, k = 1, 2, . . ., such that xn,k ∈ Bn, Bn ⊂⋃
k Bn,k, and

card
{
(n′, k′) : B(xn,k, R 2−n/2) ∩B(xn′,k′ , R 2−n/2) �= ∅} ≤ RC

for all n, k and R ≥ 2.

Lemma 6.2 (see [16], Lemma 2.5). There are nonnegative C∞-functions ψn,k,
n ∈ Z, k = 1, 2, . . ., supported in the balls B(xn,k, 2

1−n/2), such that

∑
n,k

ψn,k = 1 and ‖∇ψn,k‖L∞ ≤ C 2n/2.

Lemma 6.3 (see (4.7) in [16]). For every f ∈ H1
L(R

d), we have∑
n,k

‖ψn,kf‖h1
n
≤ C ‖f‖H1

L
.

To prove Lemma 5.4, we need the following.

Lemma 6.4. There exists a constant C = C(ϕ, d) > 0 such that

(6.1)
∥∥ f − ϕ2−n/2 ∗ f

∥∥
H1 ≤ C ‖f‖h1

n
, for all n ∈ Z, f ∈ h1n(R

d).

The proof of Lemma 6.4 can be found in [20]. In fact, in [20], Goldberg proved
it just for n = 0; however, by dilations, it is easy to see that (6.1) holds for every
n ∈ Z, f ∈ h1n(R

d) with an uniform constant C > 0 depends only on ϕ and d.

Proof of Lemma 5.4. It follows from Lemma 6.4 and Lemma 6.3 that

‖H(f)‖H1 =
∥∥∥∑
n,k

(
ψn,kf − ϕ2−n/2 ∗ (ψn,kf)

)∥∥∥
H1

≤
∑
n,k

∥∥∥ψn,kf − ϕ2−n/2 ∗ (ψn,kf)
∥∥∥
H1

≤ C
∑
n,k

‖ψn,kf‖h1
n
≤ C ‖f‖H1

L

for every f ∈ H1
L(R

d). This completes the proof. �

For 1 < q ≤ ∞ and n ∈ Z. Recall (see [16]) that a function a is said to be a
(h1n, q)-atom related to the ball B(x0, r) if r ≤ 21−n/2 and

(i) supp a ⊂ B(x0, r),

(ii) ‖a‖Lq ≤ |B(x0, r)|1/q−1,

(iii) if r ≤ 2−1−n/2 then
∫
Rd a(x) dx = 0.

In order to prove Lemma 5.5, we need the following lemma.
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Lemma 6.5. Let 1 < q ≤ ∞, n ∈ Z and x ∈ Bn. Suppose that f ∈ h1n(R
d)

with supp f ⊂ B(x, 21−n/2). Then, there are (H1
L, q)-atoms aj related to the balls

B(xj , rj) such that B(xj , rj) ⊂ B(x, 22−n/2) and

f =
∑
j

λj aj ,
∑
j

|λj | ≤ C ‖f‖h1
n

with a positive constant C independent of n and f .

Proof. By Theorem 4.5 of [16], there are (h1n, q)-atoms aj related to the balls
B(xj , rj) such that B(xj , rj) ⊂ B(x, 22−n/2) and

f =
∑
j

λj aj ,
∑
j

|λj | ≤ C ‖f‖h1
n
.

Now, let us establish that the aj’s are (H1
L, q)-atoms related to the balls

B(xj , rj).
Indeed, as xj ∈ B(x, 22−n/2) and x ∈ Bn, Proposition 2.1 implies that rj ≤

22−n/2 ≤ CLρ(xj), where CL is as in (2.4). Moreover, if rj < 1
CL
ρ(xj), then

Proposition 2.1 implies that rj ≤ 2−1−n/2, and thus
∫
Rd aj(x) dx = 0 since aj

are (h1n, q)-atoms related to the balls B(xj , rj). These prove that the aj ’s are
(H1

L, q)-atoms related to the balls B(xj , rj). �

Proof of Lemma 5.5. As T ∈ KL, there exist q ∈ (1,∞] and ε > 0 such that

(6.2)
∥∥ (b− bB)T a

∥∥
L1 ≤ C ‖b‖BMO

for all b ∈ BMO(Rd) and generalized (H1
L, q, ε)-atom a related to the ball B.

From the fact that H
1,q,ε
L,fin(R

d) is dense in H
1,q,ε
L,at (R

d) = H1
L(R

d) (see Theo-
rem 2.5), we need only prove that

‖U(f, b)‖L1 =
∥∥ [b, T ] (f − H(f))

∥∥
L1 ≤ C ‖f‖H1

L
‖b‖BMO

holds for every (f, b) ∈ H
1,q,ε
L,fin(R

d)× BMO(Rd).

For any (n, k) ∈ Z × Z+. As xn,k ∈ Bn and ψn,kf ∈ h1n(R
d), it follows from

Lemma 6.5 and Remark 2.4 that there are generalized (H1
L, q, ε)-atoms an,kj related

to the balls B(xn,kj , rn,kj ) such that B(xn,kj , rn,kj ) ⊂ B(xn,k, 2
2−n/2) and

(6.3) ψn,kf =
∑
j

λn,kj an,kj ,
∑
j

|λn,kj | ≤ C ‖ψn,kf‖h1
n

with a positive constant C independent of n, k and f .
Clearly, supp ϕ2−n/2 ∗ an,kj ⊂ B(xn,k, 5.2

−n/2) since supp ϕ ⊂ B(0, 1) and supp

an,kj ⊂ B(xn,k, 2
2−n/2); the following estimate holds:

‖ϕ2−n/2 ∗ an,kj ‖Lq ≤ ‖ϕ2−n/2‖Lq ‖an,kj ‖L1 ≤ (2−n/2)d(1/q−1)‖ϕ‖Lq

≤ C
∣∣B(xn,k, 5.2

−n/2)
∣∣1/q−1

.
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Moreover, as xn,k ∈ Bn,∣∣∣ ∫
Rd

ϕ2−n/2 ∗ an,kj dx
∣∣∣ ≤ ‖ϕ2−n/2‖L1 ‖an,kj ‖L1 ≤ C

(5.2−n/2
ρ(xn,k)

)ε
.

These prove that ϕ2−n/2 ∗ an,kj is C times a generalized (H1
L, q, ε)-atom related to

B(xn,k, 5.2
−n/2). Consequently, (6.2) yields

(6.4)
∥∥ (b − bB(xn,k,5.2−n/2))T (ϕ2−n/2 ∗ an,kj )

∥∥
L1 ≤ C ‖b‖BMO.

By an analogous argument, it is easy to check that

(ϕ2−n/2 ∗ an,kj )(b − bB(xn,k,5.2−n/2))

is C‖b‖BMO times a generalized (H1
L,

q+1
2 , ε)-atom related to B(xn,k, 5.2

−n/2).
Hence, it follows from (6.3) and (6.4) that∥∥ [b, T ] (ϕ2−n/2 ∗ (ψn,kf)

)∥∥
L1 ≤ ∥∥ (b− bB(xn,k,5.2−n/2)

)
T
(
ϕ2−n/2 ∗ (ψn,kf)

)∥∥
L1

+
∥∥∥T ((b − bB(xn,k,5.2−n/2)) (ϕ2−n/2 ∗ (ψn,kf))

)∥∥∥
L1

≤ C ‖ψn,kf‖h1
n
‖b‖BMO,(6.5)

where we used the fact that T is bounded from H1
L(R

d) into L1(Rd) since T ∈ KL.
On the other hand, by f ∈ H

1,q,ε
L,fin(R

d), there exists a ball B(0, R) such that

supp f ⊂ B(0, R). As B(0, R) is a compact set, Lemma 6.1 allows to conclude
that there is a finite set ΓR ⊂ Z× Z+ such that for every (n, k) /∈ ΓR,

B(xn,k, 2
1−n/2) ∩B(0, R) = ∅.

It follows that there are N,K ∈ Z+ such that

f =
∑
n,k

ψn,k f =

N∑
n=−N

K∑
k=1

ψn,k f.

Therefore, (6.5) and Lemma 6.3 yield

‖U(f, b)‖L1 ≤
∥∥∥ N∑
n=−N

K∑
k=1

∣∣∣ [b, T ] (ϕ2−n/2 ∗ (ψn,kf)
)∣∣∣ ∥∥∥

L1

≤ C ‖b‖BMO

∑
n,k

‖ψn,kf‖h1
n
≤ C ‖f‖H1

L
‖b‖BMO,

which ends the proof. �

Proof of Lemma 5.9. First, we claim that for every ball B0 = B(x0, r0),

(6.6)
( 1

|B0|
∫
B0

|f(y)− fB0 |q dy
)1/q

≤ C

(
1 + r0

ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)

r0
)k0+1

) ‖f‖BMOlog
L,θ
.
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Assume that (6.6) holds for a moment. Then,

( 1

|2kB|
∫
2kB

|f(y)− fB|q dy
)1/q

≤
( 1

|2kB|
∫
2kB

|f(y)− f2kB|q dy
)1/q

+
k−1∑
j=0

|f2j+1B − f2jB|

≤
(
1 + 2kr

ρ(x)

)(k0+1)θ

log
(
e+ (ρ(x)

2kr
)k0+1

) ‖f‖BMOlog
L,θ

+
k−1∑
j=0

2d

(
1 + 2j+1r

ρ(x)

)θ
log

(
e+ ρ(x)

2j+1r

) ‖f‖BMOlog
L,θ

≤ C k

(
1 + 2kr

ρ(x)

)(k0+1)θ

log
(
e+ (ρ(x)

2kr
)k0+1

) ‖f‖BMOlog
L,θ
.

It remains to prove (6.6). Let us define the function h on Rd as follows:

h(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, x ∈ B0,

2r0 − |x− x0|
r0

, x ∈ 2B0 \B0,

0, x /∈ 2B0,

and notice that

(6.7) |h(x)− h(y)| ≤ |x− y|
r0

.

Setting f̃ := f − f2B0 . By the classical John–Nirenberg inequality, there exists
a constant C = C(d, q) > 0 such that

( 1

|B0|
∫
B0

|f(y)− fB0 |q dy
)1/q

=
( 1

|B0|
∫
B0

∣∣ h(y)f̃(y)− (hf̃)B0

∣∣q dy)1/q

≤ C ‖hf̃‖BMO.

Therefore, the proof of the lemma is reduced to showing that

‖hf̃‖BMO ≤ C

(
1 + r0/ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)/r0)k0+1

) ‖f‖BMOlog
L,θ
,

namely, for every ball B = B(x, r),

(6.8)
1

|B|
∫
B

∣∣h(y)f̃(y)− (hf̃)B
∣∣ dy ≤ C

(
1 + r0/ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)/r0)k0+1

) ‖f‖BMOlog
L,θ
.

Now, let us focus on inequality (6.8). Noting that supp h ⊂ 2B0, inequal-
ity (6.8) is obvious if B ∩ 2B0 = ∅. Hence, we only consider the case B ∩ 2B0 �= ∅.
Then, we have the following two cases:
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The case r > r0. The fact B ∩ 2B0 �= ∅ implies that 2B0 ⊂ 5B, and thus

1

|B|
∫
B

∣∣h(y)f̃(y)− (hf̃)B
∣∣ dy ≤ 2

1

|B|
∫
B

|h(y)f̃(y)| dy

≤ 2.5d
1

|2B0|
∫
2B0

|f(y)− f2B0 | dy ≤ C

(
1 + 2r0/ρ(x0)

)θ
log

(
e+ ρ(x0)/(2r0)

) ‖f‖BMOlog
L,θ

≤ C

(
1 + r0/ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)/r0)k0+1

) ‖f‖BMOlog
L,θ
.

The case r ≤ r0. Inequality (6.7) yields

1

|B|
∫
B

∣∣h(y)f̃(y)− (hf̃)B
∣∣ dy ≤ 2

1

|B|
∫
B

∣∣ h(y)f̃(y)− hB f̃B
∣∣ dy

≤ 2
1

|B|
∫
B

∣∣ h(y) (f̃(y)− f̃B)
∣∣ dy

+ 2 |f̃B| 1

|B|
∫
B

1

|B|
∣∣∣ ∫
B

(h(x)− h(y)) dy
∣∣∣ dx

≤ 2
1

|B|
∫
B

|f(y)− fB| dy + 4
r

r0
|fB − f2B0 |.(6.9)

By r ≤ r0, B = B(x, r) ∩B(x0, r0) �= ∅, Proposition 2.1 gives

r

ρ(x)
≤ r0
ρ(x)

≤ κ
r0

ρ(x0)

(
1 +

|x− x0|
ρ(x0)

)k0 ≤ C
(
1 +

r0
ρ(x0)

)k0+1

.

Consequently,

1

|B|
∫
B

|f(y)− fB| dy ≤
(
1 + r/ρ(x)

)θ
log(e + ρ(x)/r)

‖f‖BMOlog
L,θ

≤ C

(
1 + r0/ρ(x0)

)(k0+1)θ

log
(
e + (ρ(x0)/r0)k0+1

) ‖f‖BMOlog
L,θ
,(6.10)

and

1

|B(x, 23r0)|
∫
B(x,23r0)

∣∣ f(y)− fB(x,23r0)

∣∣ dy ≤
(
1 + 23r0/ρ(x)

)θ
log

(
e+ ρ(x)/(23r0)

) ‖f‖BMOlog
L,θ

≤ C

(
1 + r0/ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)/r0)k0+1

) ‖f‖BMOlog
L,θ
.(6.11)

Noting that, for every k ∈ N with 2k+1r ≤ 23r0,

|f2k+1B − f2kB| ≤ 2d
1

|2k+1B|
∫
2k+1B

|f(y)− f2k+1B| dy

≤ C

(
1 + 23r0/ρ(x)

)θ
log

(
e+ ρ(x)/(23r0)

) ‖f‖BMOlog
L,θ

≤ C

(
1 + r0/ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)/r0)k0+1

) ‖f‖BMOlog
L,θ
,
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allows us to conclude that

(6.12)
∣∣ fB(x,r)−fB(x,23r0)

∣∣ ≤ C log(e + r0/r)

(
1 + r0/ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)/r0)k0+1

) ‖f‖BMOlog
L,θ
.

Then, the inclusion 2B0 ⊂ B(x, 23r0), together with the inequalities (6.9),
(6.10), (6.11) and (6.12), yield

1

|B|
∫
B

|h(y)f̃(y)− (hf̃)B| dy ≤ 2
1

|B|
∫
B

|f(y)− fB| dy

+ 4
r

r0

( ∣∣ fB(x,r) − fB(x,23r0)

∣∣+ 4dMO(f,B(x, 23r0))
)

≤ C
(
1 +

r

r0
log

(
e+

r0
r

)) (
1 + r0/ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)/r0)k0+1

) ‖f‖BMOlog
L,θ

≤ C

(
1 + r0/ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)/r0)k0+1

) ‖f‖BMOlog
L,θ
,

where we used r
r0

log(e+ r0
r ) ≤ supt≤1 t log(e+1/t) <∞. This ends the proof. �

By an analogous argument, we can also obtain the following, which was proved
by Bongioanni et al (see Lemma 1 of [7]) through another method.

Lemma 6.6. Let 1 ≤ q < ∞ and θ ≥ 0. Then, for every f ∈ BMOL,θ(R
d),

B = B(x, r) and k ∈ Z+, we have( 1

|2kB|
∫
2kB

|f(y)− fB|q dy
)1/q

≤ Ck
(
1 +

2kr

ρ(x)

)(k0+1)θ

‖f‖BMOL,θ
.

Proof of Lemma 5.10. (i) Assume that T is a (δ, L)-Calderón–Zygmund operator
for some δ ∈ (0, 1]. For every generalized (H1

L, 2, δ)-atom a related to the ball B, as
T ∗1 = 0, Lemma 4.4 implies that Ta is C times a classical (H1, 2, δ)-molecule (see
for example [40]) related to B, and thus ‖Ta‖H1 ≤ C. Therefore, Proposition 2.7
yields T maps continuously H1

L(R
d) into H1(Rd).

(ii) By Lemma 4.3, Lemma 4.4 and Hölder inequality, we get∥∥ (f − fB) (g − gB)T a
∥∥
L1

=
∥∥ (f − fB) (g − gB)T a

∥∥
L1(2B)

+
∑
k≥1

∥∥ (f − fB) (g − gB)T a
∥∥
L1(2k+1B\2kB)

≤ ‖f − fB‖L2q′ (2B) ‖g − gB‖L2q′ (2B) ‖T (a)‖Lq

+
∑
k≥1

‖f − fB‖L2q′(2k+1B) ‖g − gB‖L2q′ (2k+1B) ‖T (a)‖Lq(2k+1B\2kB)

≤ C ‖f‖BMO‖g‖BMO+
∑
k≥1

C(k+1)2‖f‖BMO‖g‖BMO|2k+1B|1/q′2−kδ|2kB|1/q−1

≤ C ‖f‖BMO‖g‖BMO,

where 1/q + 1/q′ = 1. �
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Proof of Lemma 5.12. It is well-known that the Riesz transforms Rj are bounded
from H1

L(R
d) into H1(Rd), in particular, one has

∫
Rd Rj(a)(x) dx = 0. More-

over, by the Lq-boundedness of Rj (see [39], Theorem 0.5) one has ‖Rj(a)‖Lq ≤
C|B|1/q−1. Therefore, it is sufficient to verify (5.7). Thanks to Lemma 5.11, as a
is a generalized (H1

L, q, c0)-atom related to the ball B, for every x ∈ 2k+1B \ 2kB,

|Rj(a)(x)| ≤
∣∣∣ ∫

B

(
Kj(x, y)−Kj(x, x0)

)
a(y) dy

∣∣∣+ |Kj(x, x0)|
∣∣∣ ∫
B

a(y) dy
∣∣∣

≤
∫
B

C(N)(
1 + |x− x0|/ρ(x0)

)N+4N0

|y − x0|c0
|x− x0|d+c0−1

{∫
B(x,|x−x0|)

V (z)

|x− z|d−1
dz +

1

|x− x0|
}
|a(y)| dy

+
C(N)(

1 + |x− x0|/ρ(x0)
)N+4N0+c0

1

|x− x0|d−1

( ∫
B(x,|x−x0|)

V (z)

|x− z|d−1
dz +

1

|x− x0|
)( r

ρ(x0)

)c0

≤ C(N)(
1 + 2kr

ρ(x0)

)N ( 1(
1 + 2k+2r

ρ(x0)

)N0

rc0

(2kr)d+c0−1
·
∫
B(x,|x−x0|)

V (z)

|x− z|d−1
dz +

2−kc0

|2kB|
)
.

(6.13)

Here and in what follows, the constants C(N) depend only on N , but may change
from line to line. Note that for every x ∈ 2k+1B\2kB, B(x, |x−x0 |) ⊂ B(x, 2k+1r)
⊂ B(x0, 2

k+2r). The fact V ∈ RHd/2, d/2 ≥ q > 1, and Hölder’s inequality yield

(6.14)
∥∥∥ ∫

B(x,|x−x0|)

V (z)

|x− z|d−1
dz

∥∥∥
Lq(2k+1B\2kB,dx)

≤ C (2k+1r)1−2/d
{∫

2k+1B\2kB

(∫
B(x,2k+1r)

|V (z)|d/2
|x− z|d−1

dz
)2q/d

dx
}1/q

≤ C (2kr)1−2/d |2k+1B|1/q−2/d
{∫

B(z,2k+1r)

dx

∫
B(x0,2k+2r)

|V (z)|d/2
|x− z|d−1

dz
}2/d

≤ C 2kr |2kB|1/q−1

∫
B(x0,2k+2r)

V (z) dz.

Combining (6.13), (6.14) and Lemma 1 of [21], we obtain that

∥∥Rj(a)∥∥Lq(2k+1B\2kB)
≤ C(N)(

1 + 2kr
ρ(x0)

)N (rc02kr|2kB|1/q−1

(2kr)d+c0−1

1(
1 + 2k+2r

ρ(x0)

)N0

∫
B(x0,2k+2r)

V (z) dz +
2−kc0

|2kB| |2
k+1B|1/q

)

≤ C(N)

(1 + 2kr/ρ(x0))N
2−kc0 |2kB|1/q−1,

where N0 = log2 C0+1 with C0 the constant in (2.1). This completes the proof. �
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Proof of Lemma 5.13. Note that r ≤ CLρ(x0) since a is a (H1
L, q)-atom related to

the ball B = B(x0, r); and a is CLc0 times a generalized (H1
L, q, c0)-atom related to

the ball B = B(x0, r) (see Remark 2.4). In (5.7), we choose N = (k0 + 1)θ. Then,
Hölder’s inequality and Lemma 6.6 give

∥∥ (g−gB)Rj(a)∥∥L1 =
∥∥ (g − gB)Rj(a)

∥∥
L1(24B)

+

∞∑
k=4

∥∥ (g−gB)Rj(a)∥∥L1(2k+1B\2kB)

≤ ‖g − gB‖Lq′ (24B) ‖Rj‖Lq→Lq ‖a‖Lq

+

∞∑
k=4

‖g − gB‖Lq′(2k+1B\2kB) ‖Rj(a)‖Lq(2k+1B\2kB)

≤ C ‖g‖BMOL,θ
+ C

∞∑
k=4

(k + 1) |2k+1B|1/q′
(
1 +

2k+1r

ρ(x)

)(k0+1)θ

· ‖g‖BMOL,θ

1(
1 + 2kr

ρ(x)

)(k0+1)θ
2−kc0 |2kB|1/q−1

≤ C ‖g‖BMOL,θ
,

where 1/q + 1/q′ = 1. Similarly, we also obtain that∥∥ (f − fB) (g − gB)Rj(a)
∥∥
L1 =

∥∥ (f − fB) (g − gB)Rj(a)
∥∥
L1(24B)

+
∞∑
k=4

∥∥ (f − fB) (g − gB)Rj(a)
∥∥
L1(2k+1B\2kB)

≤ ‖f − fB‖L2q′ (24B) ‖g − gB‖L2q′ (24B) ‖Rj(a)‖Lq

+

∞∑
k=4

‖f − fB‖L2q′ (2k+1B) ‖g − gB‖L2q′(2k+1B) ‖Rj(a)‖Lq(2k+1B\2kB)

≤ C ‖f‖BMO ‖g‖BMOL,θ
,

which ends the proof. �

7. Some applications

The purpose of this section is to give some applications of the decomposition
theorems (Theorem 3.1 and Theorem 3.4). To be more precise, we give some
subspaces of H1

L(R
d), which do not necessarily depend on b and T , such that all

commutators [b, T ], for b ∈ BMO(Rd) and T ∈ KL, map continuously these spaces
into L1(Rd).

Especially, using Theorem 3.1 and Theorem 3.4, we find the largest subspace
H1
L,b(R

d) of H1
L(R

d) so that all commutators of Schrödinger–Calderón–Zygmund

operators and the Riesz transforms are bounded from H1
L,b(R

d) into L1(Rd). Also,

it allows to find all functions b in BMO(Rd) so that H1
L,b(R

d) ≡ H1
L(R

d).
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7.1. Atomic Hardy spaces related to b ∈ BMO(Rd)

Definition 7.1. Let 1 < q ≤ ∞, ε > 0 and b ∈ BMO(Rd). A function a is
called a (H1

L,b, q, ε)-atom related to the ball B = B(x0, r) if a is a generalized

(H1
L, q, ε)-atom related to the same ball B and

(7.1)
∣∣∣ ∫

Rd

a(x) (b(x) − bB) dx
∣∣∣ ≤ ( r

ρ(x0)

)ε
.

As usual, the space H1,q,ε
L,b (Rd) is defined as H1,q,ε

L,at (R
d) with generalized (H1

L, q, ε)-

atoms replaced by (H1
L,b, q, ε)-atoms.

Obviously, H1,q,ε
L,b (Rd) ⊂ H

1,q,ε
L,at (R

d) ≡ H1
L(R

d) and the inclusion is continuous.

Theorem 7.2. Let 1 < q ≤ ∞, ε > 0, b ∈ BMO(Rd) and T ∈ KL. Then, the
commutator [b, T ] is bounded from H1,q,ε

L,b (Rd) into L1(Rd).

Remark 7.3. The space H1
b (R

d) which has been considered by Tang and Bi [44]

is a strict subspace of H1,q,ε
L,b (Rd) in general. As an example, let us take 1 < q ≤ ∞,

ε > 0, L = −Δ + 1, and b be a non-constant bounded function, then it is easy
to check that the function f = χB(0,1) belongs to H1,q,ε

L,b (Rd) but not to H1
b (R

d).
Thus, Theorem 7.2 can be seen as an improvement of the main result of [44].

We should also point out that the authors in [44] proved their main result
(see [44], Theorem 3.1) by establishing that∥∥ [b, Rj ](a)∥∥L1 ≤ C ‖b‖BMO

for all H1
b -atom a. However, as pointed in [8] and [28], such arguments are not

sufficient to conclude that [b, Rj ] is bounded from H1
b (R

d) into L1(Rd) in general.

Proof of Theorem 7.2. Let a be a (H1
L,b, q, ε)-atom related to the ball B = B(x0, r).

We first prove that (b − bB)a is C ‖b‖BMO times a generalized (H1
L, (q̃ + 1)/2, ε)-

atom, where q̃ ∈ (1,∞) will be defined later and the positive constant C is inde-
pendent of b, a. Indeed, one has supp (b − bB)a ⊂ supp a ⊂ B. In addition, from
Hölder inequality and John–Nirenberg (classical) inequality,∥∥ (b−bB) a∥∥L(q̃+1)/2 ≤

∥∥ (b−bB)χB∥∥Lq̃(q̃+1)/(q̃−1) ‖a‖Lq̃ ≤ C ‖b‖BMO |B|(−q̃+1)/(q̃+1),

where q̃ = q if 1 < q < ∞ and q̃ = 2 if q = ∞. These together with (7.1) yield
that (b − bB)a is C ‖b‖BMO times a generalized (H1

L, (q̃ + 1)/2, ε)-atom, and thus
‖(b− bB)a‖H1

L
≤ C ‖b‖BMO.

We now prove that S(a, b) belongs to H1
L(R

d).
By Theorem 3.4, there exist, for j = 1, . . . , d, bounded bilinear operators

Rj : H
1
L(R

d) ×BMO(Rd) → L1(Rd), such that

[b, Rj ](a) = Rj(a, b) +Rj(S(a, b)),
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since Rj is linear and belongs to KL (see Proposition 4.2). Consequently, for every
j = 1, . . . , d, as Rj ∈ KL,∥∥Rj(S(a, b))

∥∥
L1 =

∥∥ (b− bB)Rj(a)−Rj((b − bB)a)−Rj(a, b)
∥∥
L1

≤ ∥∥ (b−bB)Rj(a)∥∥L1+‖Rj‖H1
L→L1

∥∥ (b−bB) a∥∥H1
L

+‖Rj(a, b)‖L1

≤ C ‖b‖BMO.

This together with Proposition 5.6 prove that S(a, b) ∈ H1
L(R

d), and moreover
that

(7.2) ‖S(a, b)‖H1
L
≤ C ‖b‖BMO.

Now, for any f ∈ H1,q,ε
L,b (Rd), there exists an expansion f =

∑∞
k=1 λkak where

the ak are (H1
L,b, q, ε)-atoms and

∑∞
k=1 |λk| ≤ 2‖f‖H1,q,ε

L,b
. Then, the sequence

{∑n
k=1 λkak}n≥1 converges to f in H1,q,ε

L,b (Rd) and thus in H1
L(R

d). Hence, Propo-

sition 5.6 implies that the sequence {S(
∑n
k=1 λkak, b)}n≥1 converges to S(f, b)

in L1(Rd). In addition, by (7.2),

∥∥∥S( n∑
k=1

λk ak, b
)∥∥∥

H1
L

≤
n∑
k=1

|λk| ‖S(ak, b)‖H1
L
≤ C ‖f‖H1,q,ε

L,b
‖b‖BMO.

We then use Theorem 3.1 and the weak-star convergence in H1
L(R

d) (see [29])
to conclude that∥∥ [b, T ](f)∥∥

L1 ≤ ‖RT (f, b)‖L1 + ‖T ‖H1
L→L1 ‖S(f, b)‖H1

L

≤ C ‖f‖H1
L
‖b‖BMO + C ‖f‖H1,q,ε

L,b
‖b‖BMO ≤ C ‖f‖H1,q,ε

L,b
‖b‖BMO,

which ends the proof. �

7.2. The spaces H1
L,b(R

d) related to b ∈ BMO(Rd)

In this section, we find the largest subspace H1
L,b(R

d) of H1
L(R

d) so that all com-
mutators of Schrödinger–Calderón–Zygmund operators and the Riesz transforms
are bounded from H1

L,b(R
d) into L1(Rd). Also, we find all functions b in BMO(Rd)

so that H1
L,b(R

d) ≡ H1
L(R

d).

Definition 7.4. Let b be a non-constant BMO-function. The space H1
L,b(R

d)

consists of all f in H1
L(R

d) such that [b,ML](f)(x) = ML(b(x)f(·) − b(·)f(·))(x)
belongs to L1(Rd). We equipped H1

L,b(R
d) with the norm

‖f‖H1
L,b

= ‖f‖H1
L
‖b‖BMO +

∥∥ [b,ML](f)
∥∥
L1 .

Here, we just consider non-constant functions b in BMO(Rd) since [b, T ] = 0
if b is a constant function.
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Theorem 7.5. Let b be a non-constant BMO-function. Then, the following state-
ments hold:

(i) For every T ∈ KL, the commutator [b, T ] is bounded from H1
L,b(R

d) into

L1(Rd).

(ii) Assume that X is a subspace of H1
L(R

d) such that all commutators of the
Riesz transforms are bounded from X into L1(Rd). Then, X ⊂ H1

L,b(R
d).

(iii) H1
L,b(R

d) ≡ H1
L(R

d) if and only if b ∈ BMOlog
L (Rd).

To prove Theorem 7.5, we need the following lemma.

Lemma 7.6. Let b be a non-constant BMO-function and f ∈ H1
L(R

d). Then, the
following conditions are equivalent:

(i) f ∈ H1
L,b(R

d).

(ii) S(f, b) ∈ H1
L(R

d).

(iii) [b, Rj](f) ∈ L1(Rd) for all j = 1, . . . , d.

Furthermore, if one of these conditions is satisfied, then

‖f‖H1
L,b

=‖f‖H1
L
‖b‖BMO+

∥∥ [b,ML](f)
∥∥
L1 ≈ ‖f‖H1

L
‖b‖BMO + ‖S(f, b)‖H1

L

≈ ‖f‖H1
L
‖b‖BMO+

d∑
j=1

∥∥ [b, Rj](f)∥∥L1 ,

where the constants are independent of b and f .

Proof. (i)⇔ (ii). As ML ∈ KL (see Proposition 4.5), by Theorem 3.1, there is a
bounded subbilinear operator R : H1

L(R
d)× BMO(Rd) → L1(Rd) such that

ML(S(f, b))−R(f, b) ≤ ∣∣ [b,ML](f)
∣∣ ≤ ML(S(f, b)) +R(f, b).

Consequently, [b,ML](f) ∈ L1(Rd) if and only if S(f, b) ∈ H1
L(R

d); moreover,

‖f‖H1
L,b

≈ ‖f‖H1
L
‖b‖BMO + ‖S(f, b)‖H1

L
.

(ii)⇔ (iii). As the Riesz transforms Rj are in KL (see Proposition 4.2), by
Theorem 3.4, there are d bounded subbilinear operatorRj : H

1
L(R

d)×BMO(Rd) →
L1(Rd), j = 1, . . . , d, such that

[b, Rj ](f) = Rj(f, b) +Rj(S(f, b)).

Therefore, S(f, b) ∈ H1
L(R

d) if and only if [b, Rj ](f) ∈ L1(Rd) for all j = 1, . . . , d;
moreover,

‖f‖H1
L
‖b‖BMO + ‖S(f, b)‖H1

L
≈ ‖f‖H1

L
‖b‖BMO +

d∑
j=1

∥∥ [b, Rj ](f)∥∥L1 . �
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Proof of Theorem 7.5. By Theorem 3.1, there is a bounded subbilinear operator
RT : H

1
L(R

d)× BMO(Rd) → L1(Rd) such that∣∣T (S(f, b))
∣∣−RT (f, b) ≤

∣∣ [b, T ](f)∣∣ ≤ |T (S(f, b))|+RT (f, b).

Applying Lemma 7.6 gives for every f ∈ H1
L,b(R

d),∥∥ [b, T ](f)∥∥
L1 ≤ ‖T ‖H1

L→L1 ‖S(f, b)‖H1
L
+ ‖RT (f, b)‖L1

≤ C ‖f‖H1
L,b

+ C ‖f‖H1
L
‖b‖BMO ≤ C ‖f‖H1

L,b
.

Therefore, [b, T ] is bounded from H1
L,b(R

d) into L1(Rd). This ends the proof of (i).
The proof of (ii) follows directly from Lemma 7.6.
The proof of (iii) follows directly from Theorem 3.6 and Lemma 7.6. �

7.3. Atomic Hardy spaces H log
L,α(R

d)

Definition 7.7. Let α ∈ R. We say that the function a is a H log
L,α-atom related to

the ball B = B(x0, r) if

(i) supp a ⊂ B,

(ii) ‖a‖L2 ≤ (
log

(
e+ ρ(x0)

r

))α|B|−1/2,

(iii)

∫
Rd

a(x) dx = 0.

As usual, the space H log
L,α(R

d) is defined as H
1,q,ε
L,at with generalized (H1

L, q, ε)-

atoms replaced by H log
L,α-atoms.

Clearly, H log
L,0(R

d) is just H1(Rd) ⊂ H1
L(R

d). Moreover, H log
L,α(R

d) ⊂ H log
L,α′(Rd)

for all α ≤ α′. It should be pointed out that when L = −Δ+ 1 and α ≥ 0, then
H log
L,α(R

d) is just the space of all distributions f such that∫
Rd

Mf(x)/λ(
log(e+Mf(x)/λ)

)α dx <∞

for some λ > 0. Moreover (see [27] for the details),

‖f‖Hlog
L,α

≈ inf
{
λ > 0 :

∫
Rd

Mf(x)/λ(
log

(
e+Mf(x)/λ

))α dx ≤ 1
}
.

Theorem 7.8. For every T ∈ KL and b ∈ BMO(Rd), the commutator [b, T ] is

bounded from H log
L,−1(R

d) into L1(Rd).

Proof. Let a be a H log
L,−1-atom related to the ball B = B(x0, r). Let us first prove

that (b−bB)a ∈ H1
L(R

d). As H1
L(R

d) is the dual of VMOL(R
d) (see Theorem 5.8),

it is sufficient to show that for every g ∈ C∞
c (Rd),∥∥ (b− bB) a g

∥∥
L1 ≤ C ‖b‖BMO ‖g‖BMOL .
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Indeed, using the estimate |gB| ≤ C log(e+ρ(x0)/r)‖g‖BMOL
(see Lemma 2 of [15]),

the Hölder inequality and the classical John–Nirenberg inequality give∥∥ (b − bB) a g
∥∥
L1 ≤ ∥∥ (g − gB) (b− bB) a

∥∥
L1 + |gB|

∥∥ (b − bB) a
∥∥
L1

≤ ∥∥ (g − gB)χB
∥∥
L4

∥∥ (b− bB)χB
∥∥
L4 ‖a‖L2

+ C log
(
e+

ρ(x0)

r

)
‖g‖BMOL

∥∥ (b − bB)χB
∥∥
L2 ‖a‖L2

≤ C ‖b‖BMO ‖g‖BMOL
,

which proves that (b − bB) a ∈ H1
L(R

d), moreover, ‖(b− bB) a‖H1
L
≤ C ‖b‖BMO.

Similarly to the proof of Theorem 7.2, we also obtain that

‖S(f, b)‖H1
L
≤ C ‖f‖Hlog

L,−1
‖b‖BMO

for all f ∈ H log
L,−1(R

d). Therefore, Theorem 3.1 allows to conclude that∥∥ [b, T ](f)∥∥
L1 ≤ C ‖f‖Hlog

L,−1
‖b‖BMO,

which ends the proof. �

As a consequence of the proof of Theorem 7.8, we obtain the following result.

Proposition 7.9. Let T ∈ KL. Then, T(f, b) := [b, T ](f) is a bounded subbilinear

operator from H log
L,−1(R

d)× BMO(Rd) into L1(Rd).

7.4. The Hardy–Sobolev space H1,1
L (Rd)

Following Hofmann et al. [23], we say that f belongs to the (inhomogeneous)
Hardy–SobolevH1,1

L (Rd) if f, ∂x1f, . . . , ∂xd
f ∈H1

L(R
d). Then, the norm onH1,1

L (Rd)
is defined by

‖f‖H1,1
L

= ‖f‖H1
L
+

d∑
j=1

‖∂xjf‖H1
L
.

It should be pointed out that the authors in [23] proved that the spaceH1,1
−Δ(R

d)

is just the classical (inhomogeneous) Hardy–SobolevH1,1(Rd) (see for example [1]),
and can be identified with the (inhomogeneous) Triebel–Lizorkin space F 1,2

1 (Rd)
(see [26]). More precisely, f belongs to H1,1(Rd) if and only if

Wψ(f) =
{∑

I

∑
σ∈E

∣∣ 〈f, ψσI 〉∣∣2(1 + |I|−1/d
)2|I|−1χI

}1/2

∈ L1(Rd),

moreover,

(7.3) ‖f‖H1,1 ≈ ‖Wψ(f)‖L1 .

Here {ψσ}σ∈E is the wavelet as in Section 4.
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Theorem 7.10. Let L = −Δ + 1. Then, for every T ∈ KL and b ∈ BMO(Rd),
the commutator [b, T ] is bounded from H1,1

L (Rd) into L1(Rd).

Remark 7.11. When L = −Δ + 1, we can define H(f) = f − ϕ ∗ f instead
of H(f) =

∑
n,k(ψn,kf − ϕ2−n/2 ∗ (ψn,kf)) as in Section 5. In other words, the

bilinear operator S in Theorem 3.1 and Theorem 3.4 can be defined as S(f, g) =
−Π(f − ϕ ∗ f, g). As H(f) = f − ϕ ∗ f , it is easy to see that

∂xj (H(f)) = H(∂xjf).

Here and in what follows, for any dyadic cube Q = Q(y, r) := {x ∈ Rd : −r ≤
xj − yj < r for all j = 1, . . . , d}, we denote by BQ the ball

BQ :=
{
x ∈ R

d : |x− y| < 2
√
dr
}
.

To prove Theorem 7.10, we need the following lemma.

Lemma 7.12. Let L = −Δ+1. Then, the bilinear operator Π maps continuously
H1,1(Rd)× BMO(Rd) into H1

L(R
d).

Proof. Note that ρ(x) = 1 for all x ∈ Rd since V (x) ≡ 1. We first claim that there
exists a constant C > 0 such that

(7.4)
∥∥ (1 + |I|−1/d)−1(ψσI )

2
∥∥
H1

L

≤ C

for all dyadic I = Q[x0, r) and σ ∈ E . Indeed, it follows from Remark 5.2 that supp
(1 + |I|−1/d)−1(ψσI )

2 ⊂ cI ⊂ cBI , and it is clear that ‖(1 + |I|−1/d)−1(ψσI )
2‖L∞ ≤

|I|−1‖ψ‖L∞ ≤ C|cBI |−1. In addition,∣∣∣ ∫
Rd

(1 + |I|−1/d)−1(ψσI (x))
2 dx

∣∣∣ = (1 + |I|−1/d)−1 ≤ C
r

ρ(x0)
.

Hence, (1 + |I|−1/d)−1(ψσI )
2 is C times a generalized (H1

L,∞, 1)-atom related to
the ball cBI , and thus (7.4) holds.

Now, for every (f, g) ∈ H1,1(Rd)× BMO(Rd), (7.4) implies that∥∥Π(f, g)∥∥
H1

L

=
∥∥∥∑

I

∑
σ∈E

〈f, ψσI 〉 〈g, ψσI 〉 (ψσI )2
∥∥∥
H1

L

≤ C
∑
I

∑
σ∈E

( ∣∣〈f, ψσI 〉∣∣ (1 + |I|−1/d)
)
|〈g, ψσI 〉|

≤ C ‖Wψ(f)‖L1 ‖g‖Ḟ 0,2
∞ ≤ C ‖f‖H1,1 ‖g‖BMO,

where we have used the fact that BMO(Rd) ≡ Ḟ 0,2
∞ (Rd) is the dual of H1(Rd) ≡

Ḟ 0,2
1 (Rd), we refer the reader to [18] for more details. �

Proof of Theorem 7.10. Let (f, b) ∈ H1,1
L (Rd)×BMO(Rd). Thanks to Lemma 7.12,

Remark 7.11 and Lemma 5.4, we get

‖S(f, b)‖H1
L
≤ C ‖H(f)‖H1,1 ‖b‖BMO ≤ C ‖f‖H1,1

L
‖b‖BMO.
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Then we use Theorem 3.1 to conclude that∥∥ [b, T ](f)∥∥
L1 ≤ ‖RT (f, b)‖L1 + ‖T ‖H1

L→L1 ‖S(f, b)‖H1
L
≤ C ‖f‖H1,1

L
‖b‖BMO,

which ends the proof. �

As a consequence of the proof of Theorem 7.10, we obtain the following result.

Proposition 7.13. Let L = −Δ+ 1 and T ∈ KL. Then, T(f, b) := [b, T ](f) is a
bounded subbilinear operator from H1,1

L (Rd)× BMO(Rd) into L1(Rd).
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[30] Li, H-Q.: Estimations Lp des opérateurs de Schrödinger sur les groupes nilpotents.
J. Funct. Anal. 161 (1999), no. 1, 152–218.

[31] Li, P. and Peng, L.: The decomposition of product space H1
L × BMOL. J. Math.

Anal. Appl. 349 (2009), no. 2, 484–492.

[32] Li, P. and Peng, L.: Endpoint estimates for commutators of Riesz transforms
associated with Schrödinger operators. Bull. Aust. Math. Soc. 82 (2010), no. 3,
367–389.



Commutators of singular integral operators 1373

[33] Ma, T., Stinga, P. R., Torrea, J. L. and Zhang, C.: Regularity estimates in
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