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K3 surfaces with a non-symplectic automorphism

and product-quotient surfaces with cyclic groups

Alice Garbagnati and Matteo Penegini

Abstract. We classify all the K3 surfaces which are minimal models
of the quotient of the product of two curves C1 × C2 by the diagonal
action of either the group Z/pZ or the group Z/2pZ where p is an odd
prime. These K3 surfaces admit a non-symplectic automorphism of order
p induced by an automorphism of one of the curves C1 or C2. We prove
that most of the K3 surfaces admitting a non-symplectic automorphism
of order p (and in fact a maximal irreducible component of the moduli
space of K3 surfaces with a non-symplectic automorphism of order p) are
obtained in this way.

In addition, we show that one can obtain the same set of K3 surfaces
under more restrictive assumptions namely one of the two curves, say C2,
is isomorphic to a rigid hyperelliptic curve with an automorphism δp of
order p and the automorphism of the K3 surface is induced by δp.

Finally, we describe the variation of the Hodge structures of the sur-
faces constructed and we give an equation for some of them.

1. Introduction

One of the main themes of interest in the study of K3 surfaces S regards their
automorphisms. We call an automorphism g of S non-symplectic if it acts non-
trivially on the nowhere vanishing holomorphic 2-form ω. In the case |g| = p, a
prime number, g(ω) = ζp ω, where ζp is a primitive p-th root of unity. The pairs
(S,g) are quite rare, in the sense that there are strict restrictions on both p, which
must be smaller than or equal to 19, and on the K3 surface S, which cannot be
generic in the moduli space. More precisely, the families of K3 surfaces with a non-
symplectic automorphism of odd prime order have a finite number of connected
components and the biggest of them has dimension 9 while the moduli space of
the K3 surfaces is 20-dimensional.

Several authors worked on the classification of K3 surfaces admitting a non-
symplectic automorphism of odd prime order (see, e.g., [1], [35], [2],[20], [30], [29],
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and [28]), and their complete classification was given in [2]. The classification
is based on the following procedure: first, a non-symplectic automorphism g
of order p acting on a K3 surface S determines an action on the lattice T :=
(H2(S,Z)g)⊥) ⊂ H2(S,Z) . The lattice T satisfies several conditions. Second, one
lists all the lattices with such conditions. Third, for each lattice T in the list one
has to actually construct an example of a K3 surface admitting a non-symplectic
automorphism g and such that T � (H2(S,Z)g)⊥. Each example is given by an
ad hoc construction.

The aim of this paper is to give a systematical way to construct most of these K3
surfaces by showing that they are the minimal models of product-quotient surfaces
(i.e., of the minimal resolution of the quotient (C1×C2)/G, where the Ci are curves
of genus g(C) ≥ 1 and G is a finite group acting diagonally on the product, see
Definition 3.2). In addition, as we have already observed, the pairs (S,g) are quite
“special”, we give here a geometrical interpretation of this “speciality” in many
cases: S is the minimal model of a product-quotient surface. Moreover, we prove
that there is a curve which seems to play a central rôle in this construction. For
each odd prime p, we define the curve Dp as the hyperelliptic curve with equation
v2 = up + 1. It clearly admits an automorphism δp of order p, acting on u as the
multiplication by ζp, and an automorphim τp of order 2p which is the composition
of δp with the hyperelliptic involution. We prove the following theorem.

Theorem 1.1. If S is a K3 surface admitting a non-symplectic automorphism of
order p = 3 (resp. p = 5, 7, 11, 13, resp. p = 17, 19) whose fixed locus contains at
least 2 (resp. 1, resp. 0) curves and which acts trivially on the Picard group, then it
is the minimal model of a resolution of the quotient (C1×Dp)/(g1×τp), where g1 is
an automorphism of C1 of order 2p. The non-symplectic automorphism of order p
on S is induced by the automorphism id× δp.

The condition on the action of the automorphism on the Picard group assures
that the K3 surface is generic among the ones with a non-symplectic automorphism
with the required fixed locus.

Any K3 surface S constructed in the Theorem 1.1 admits two isotrivial families
of curves, whose general member is isomorphic to C1 and Dp respectively. The
non-symplectic automorphism of order p on S is in fact given by the action of an
automorphism on each member of one of these families.

We observe that the K3 surfaces given by the Theorem 1.1 admit a non-
symplectic automorphism of order 2p too, the one induced by id× τp. This gives a
geometrical explanation of the following significative result on non-symplectic au-
tomorphisms: if a K3 surface S admits a non-symplectic automorphism of order p,
under certain conditions on the fixed locus it admits in fact a purely non-symplectic
automorphism of order 2p (see Theorems 1.6 and 1.7 in [15], and [8], for the precise
statement).

The proof of the Theorem 1.1 is based on the construction of the K3 surfaces
that we now explain. We first bound the genus of the curves C with a cyclic group
of automorphisms G of order p (resp. 2p), having the properties that C/G � P1,
and such that there exists an eigenspace H1,0(C)ζi

p
(resp. H1,0(C)−ζi

p
) of dimen-
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sion 1 of the induced action. This is achieved by exploiting the Riemann existence
theorem, the holomorphic Lefschetz fixed-point formula, and the Chevalley–Weil
formula. Second, we classify all these curves and we couple them by choosing the
action of G in such a way that the singular surfaces (C1 ×C2)/G have pg = 1 and
q = 0. Third, we resolve the singularities and we get product-quotient surfaces X
which are not minimal models, but in two cases. We observe that K2

X could be
very negative. After having found all the (−1)-curve on X (this is a quite delicate
task, see e.g., [5]) we carefully contract them to produce a minimal model S of
(C1 × C2)/G. Finally, we prove that S is a K3 surface.

As a byproduct of the proof we classify the K3 surfaces which are minimal
models of the product-quotient surfaces with the groups Z/pZ and Z/2pZ. Hence,
we obtain also a “negative” result: if a K3 surface does not satisfy the hypothesis
of Theorem 1.1 (i.e., either it does not admit a non-symplectic automorphism of
order p, or it admits a non-symplectic automorphism of order p, but its fixed locus
does not satisfy the condition of the Theorem 1.1), then this K3 surface is not
the minimal model of a product-quotient with group Z/2pZ. However, we cannot
exclude that such a K3 surface is the minimal model of a product-quotient with
a different group. Indeed, we are aware that this is the case for at least certain
families of K3 surfaces admitting a non-symplectic automorphism of order 3. We
shall analyze this problem in a forthcoming article.

This paper is organized as follows.

In Section 2 we briefly recall classical results on cyclic covers of P1. We es-
tablish the upper and lower bound for the genus of a curve C with a cyclic
group of automorphisms of odd prime order, and the property that there exists an
eigenspace H1,0(C)ζi

p
of dimension 1. We state similar results for cyclic groups of

automorphisms of order 2p. Moreover, we give some explanatory examples intro-
ducing the curve Dp.

Section 3 is divided into three parts. In the first part we give the definition of
product-quotient surfaces and we recall the properties of these surfaces that are
needed for our purposes. In the second part we calculate the Hodge numbers of
product-quotient surfaces. In the last subsection we describe some automorphisms
of the minimal model of a product-quotient surface.

In Section 4 we describe first the procedure we used to construct product-
quotient surfaces with group either Z/pZ or Z/2pZ and pg = 1 and q = 0; and
second, we give a method to prove that these surfaces are K3 surfaces.

Sections 5 and 6 present the main results of the paper on K3 surfaces which
are minimal models of product-quotient surfaces with group either Z/pZ or Z/2pZ
respectively. Moreover, in these two sections one can find the tables with the
surfaces we constructed (see Table 1 and Table 2).

In Section 7 we give the equations for the singular models of the K3 surfaces
constructed for p = 3, 5, 7, 11. In particular if p = 5, 7, 11 we describe these surfaces
as hypersurfaces in weighted projective spaces.

In the last section we describe the variation of the Hodge structures of the K3
surfaces constructed in terms of the Hodge structure of H1(C1) relating them by
a half twist.
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The Magma [22] code used in our calculations can be found at:

users.mat.unimi.it/users/penegini/publications/programmaToT v7.m

There are essentially two programs, Surfacesp and t1t2PtsSurfaces. The former
gives a list of all product-quotient surfaces X with group Z/pZ (p any odd prime),
pg(X) = 1 and q(X) = 0, as well as the singularities of (C1 × C2)/(g1 × g2), this
program becomes very slow as p increases. The latter program gives a similar list,
it is much faster, it works also for the group Z/2pZ, but it requires two additional
data which are the number of ramification points of the two coverings Ci → Ci/G.

Notation. We work over the field of complex numbers C.

Unless otherwise stated, p will be always an odd prime number.

We will denote by ζn := e2πi/n a primitive n-th root of unity.

By “curve” or “Riemann surface” we mean a projective, non-singular curve C.
We denote by H1,0(C) = H0(C,Ω1

C) and by

g(C) := h1,0(C) := dimH1,0(C)

the genus of the curve.

By “surface” we mean a projective, non-singular surface S, and for such a
surface,

ωS = OS(KS)

denotes the canonical class,

pg(S) = h2,0(S) = h0(S, ωS)

is the geometric genus,

q(S) = h1,0(S) = h1(S, ωS)

is the irregularity and

χ(S) = 1− q(S) + pg(S)

is the Euler–Poincaré characteristic. The Noether formula is

12χ(S) = K2
S + e(S),

where e(S) is the Euler number of S.

By abuse of notation by “(−1)-curve” we mean a curve C with C � P1 and
C2 = −1.

Acknowledgments: We warmly thanks Bert van Geemen and Roberto Pignate-
lli for several essential suggestions and useful discussions. We also thank Ciro
Ciliberto, Shigeyuki Kondō, Rita Pardini and Francesco Polizzi for their comments,
and the anonymous referees whose valuable comments helped us to improve the
exposition.
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2. Curves

This section is devoted to recall some classical results on maps between curves and
in particular on cyclic covers of P1 (see for example Chapter 2 in [32]). These
results are well known but essential for the understanding of the Magma program
used in the calculations. We also provide examples of curves which will be used in
the rest of the paper (see Example 2.5).

2.1. The Riemann existence theorem

We consider a cyclic cover C → P1. As a consequence of the Riemann existence
theorem (see Chapter III in [24]), we have the following.

Proposition 2.1 (Corollary 4.10 in [24]). Let G := 〈x〉 be isomorphic to Z/nZ. Fix
a finite set B := {b1, . . . , br} ⊂ P1 of points. Then there is a 1 : 1 correspondence

⎧⎨
⎩

Isomorphism classes of cyclic covers
π : C → P1of degree n

whose branch points lie in B

⎫⎬
⎭

� 1 : 1

⎧⎨
⎩

r-tuples (xξ1 , . . . , xξr ), of generators of G, ξi ∈ Z/nZ
such that

∑r
i=1 ξi ≡ 0 mod n

up to Hurwitz moves

⎫⎬
⎭ .

Denote by mi the branching number relative to the point bi in the cover f : C → P1

associated to B. The genus g(C) is determined by the Riemann–Hurwitz relation

(2.1) 2g(C)− 2 = |G|
(
− 2 +

r∑
i=1

(
1− 1

mi

))
.

Definition 2.2 (Definition 0.8 in [5]). A representative of a Hurwitz equivalence
class of r-tuples associated to a G-cover of P1 is called a spherical system of gen-
erators for Z/nZ.

As an automorphism group of C, G = 〈g〉 gives a conformal self-mapping
g : C → C of order n. Please notice that the abstract group G has also other
realizations: as image of an admissible epimorphism 〈x〉 or as local action 〈ζn〉
near a point P ∈ C. Suppose that gk fixes a point P ∈ C, then in a suitable local
coordinate z near P we must have gk(z) = ζinz. Thus g

k is locally a rotation at P
and the rotation angle is determined in the following proposition.

Proposition 2.3 (Theorem 7 in [19]). Let C be a curve associated to the spherical
system of generators (xξ1 , . . . , xξr ). Let Pj be a point with a non trivial stabilizer
in 〈g〉 ⊂ Aut(C) of order d generated by gξj . Then gξj (z) = ζ

ηj
n z where z is a

local coordinate near the point Pj and ξjηj ≡ n/d mod n and 0 < ηj < d.
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If n = p is a prime number, we denote by ai, i = 1, . . . , p − 1, the number of
ramification points of C where the local action is given by ζip. If n = 2p, with p an
odd prime number, we denote by ai, i = 1, . . . p−1 the number of total ramification
points of C where the local action is given by −(ζip), by aj , j = p, . . . , 2p− 2 the
number of points with stabilizer generated by g2 and such that the local action
of g2 is ζjp, and finally by a2p−1 the number of points whose stabilizer is generated
by gp.

Let Z/nZ � G ⊂ Aut(C), then there is an induced linear action of G on the
Dolbeault cohomology H∗,∗(C). Let us denote by g a chosen generator of G.
Then g∗ acts on H0,1(C), and the dimension of each eigenspace will be denoted by

αj := dimH0,1(C)ζj
n
.

By the Chevalley–Weil formula ([7]) (or equivalently by the application of the
Lefschetz holomorphic formula [18], page 426, to gj) one can deduce the explicit
relation among the ai’s and the αj ’s. This formula is particularly easy in case
n = p, and is the following:

(2.2) αp−r = −1 +
1

p

p−1∑
l=1

al l
−1(p− r),

where the product l−1(p− r) is taken mod p, and r = 1, . . . , n− 1.
In case n = 2p we refer to the Magma program (function MaxGenus). In both

cases, a trivial consequence is the following corollary.

Corollary 2.4. Let C → P1 be a G cover and r be the number of ramification
points for π : C → P1.

If G � Z/pZ and there exists i ∈ {1, . . . , p − 1} such that αi = 1, then
(p− 1)/2 ≤ g(C) ≤ (p− 1)2 and 3 ≤ r ≤ 2p.

If G � Z/2pZ and there exists i ∈ {1, . . . , p − 1} such that dim(H0,1(C)−ζi
p
)

= 1, then (p− 1)/2 ≤ g(C) ≤ (2p− 1)2 and 3 ≤ r ≤ 4p.

Example 2.5. Let G � Z/pZ. The triple (xp−1, xp−1, x2) is a spherical system of
generators for G. Hence, by Theorem 2.1 there exists a curve, Dp, such that Dp is
a p : 1 cover of P1 branched in 3 points and the cover automorphism δp acts locally

as ζp−1
p near two fixed points and as ζ

(p+1)/2
p near the other one. This means

that the only non zero ai’s are ap−1 = 2 and a(p+1)/2 = 1. For every choice of
three points in P1 there exists an involution of P1 switching the first two points and
fixing the other, so there exists an involution of P1 acting in this way on the branch
points of Dp → P1. This induces an involution on Dp, which will be denoted by ιp.
We observe that ιpδp = δpιp and we denote by τp = ιpδp. An equation of Dp and
the corresponding equation for its automorphisms are:

Dp : u
p = v2 − 1, δp : (u, v) �→ (ζp−1

p u, v),

ιp : (u, v) �→ (u,−v), τp : (u, v) �→ (ζp−1
p u,−v).



K3 surfaces and product-quotient surfaces with cyclic groups 1283

The genus of Dp, computed by the Riemann–Hurwitz formula, is g(Dp) = (p −
1)/2. The curve Dp is hyperelliptic over P1

[u] and so a basis for H1,0(Dp) is given

by {ujdu/v}, j = 0, . . . , (p − 3)/2. Therefore the eigenspaces decomposition of
H0,1(Dp) = H1,0(Dp) for the induced action of δp is αi = 1 if i = 1, . . . , (p− 1)/2
and αi = 0 if i = (p+ 1)/2, . . . , p− 1.

The automorphism τp of order 2p is associated to a spherical system of gener-
ators (xp+2, x2p−2, xp). The action of τp on the form uidu/v is the multiplication
by −ζi+1

p , 0 ≤ i ≤ (p − 3)/2. Hence, the eigenspaces decomposition of H1,0(Dp)
for τp is the following: if 0 ≤ i ≤ (p − 3)/2 and i ≡ 0 mod 2, then αi+1 = 1;
if 0 ≤ i ≤ (p − 3)/2 and i ≡ 1 mod 2, then αp+i+1 = 1; αj = 0 otherwise. We
observe that τp switches two of the fixed points of δp and fixes the third fixed point
of δp. Clearly the two points switched by τp are those where the local action of δp
is ζp−1

p , and the point fixed both by τp and by δp is the one where the local action

of δp is ζ
(p+1)/2
p . The automorphism τ2p coincides with δ2p, and this identifies the

local action of τp: τp fixes one point with local action −ζ
(p+1)/2
p ; τ2p fixes other two

points (switched by τp) with local action ζp−2
p ; τpp fixes other p points (permuted

by τp) with local action −ζpp = −1.
Finally we observe that D3 is the elliptic curve with complex multiplication of

order 3, which is associated to the automorphism δ3.

3. Surfaces

In this section we recall the properties of the product-quotient surfaces and their
minimal models and we calculate their numerical invariants.

3.1. Product-quotient surfaces

Let us consider two curves C1 and C2 of genera greater than or equal to 1, and
their product C1 × C2. Then Aut(C1) × Aut(C2) ⊂ Aut(C1 × C2). One can say
even more in the case g(Ci) ≥ 2.

Lemma 3.1 (Corollary 3.9 in [6]). Let us assume g(C1) ≥ 2 and g(C2) ≥ 2. If
C1 � C2, then Aut(C1 × C2) = Aut(C1) × Aut(C2); otherwise, Aut(C1 × C2) =
(Aut(C1)×Aut(C2))� Z/2Z.

Let G ⊂ Aut(C1) × Aut(C2) be a finite group and consider (C1 × C2)/G,
where G acts diagonally on the product C1 × C2.

Definition 3.2. The minimal resolution X of the singularities of (C1 × C2)/G,
whereG is a finite group with a diagonal action on the direct product of two smooth
curves C1 and C2 of respective genera at least 1, is called a product-quotient surface
with group G.

We call (C1 × C2)/G the quotient model of the product-quotient surface X .

Product-quotient surfaces were intensively studied; we refer to [5], [26] and [4]
for a detailed account. We recall only some facts important for our purposes.
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Remark 3.3. The following facts hold:

1) There are only finitely many points on C1 × C2 with non trivial stabilizer,
which is cyclic. Therefore the quotient model has only a finite number of cyclic
quotient singularities.

A cyclic quotient singularity is locally analytic isomorphic to the quotient
of C2 by the diagonal linear automorphism with eigenvalues e2πi/n, e2πiq/n, with
(q, n) = 1. This singularity is called of type 1

n (1, q), or q/n for short (see Remark 1.1
in [5]).

2) The exceptional divisor E on the minimal resolution of a cyclic quotient
singularity is given by a Hirzebruch–Jung string (see e.g., Chapter III, Section 5

in [3]). A Hirzebruch–Jung string (HJ-string, for short) is a union Ẽ := ∪k
iEi of

smooth rational curves Ei such that:

• E2
i = −bi ≤ −2 for all i,

• EiEj = 1 if | i− j |= 1,

• EiEj = 0 if | i− j |≥ 2,

where the bi’s are given by the continued fraction associated to 1
n (1, q). Indeed,

by the formula:
n

q
= b1 − 1

b2 − 1
···− 1

bk

.

3) A product-quotient surface comes together with two isotrivial fibrations. Let
us consider one of them: π2 : X → C2/G. Take any point b ∈ C2/G, and let F
denote the fibre of π2 over b. Then (see Theorem 2.1 in [33]):

• The reduced structure of F is the union of an irreducible smooth curve Y ,
called the central component of F , and either none or at least two mutually
disjoint HJ-strings, each one meeting Y at one point. These strings are in
one-to-one correspondence with the branch points of C1 → (C1/H), where
H ⊂ G is the stabilizer of b.

• The intersection of a string with Y is transversal and it takes place at only
one of the end component of the string.

4) There are formulae for calculating the self intersection of the canonical divisor
of a product-quotient surface:

K2
X ≥ 8(g(C1)− 1)(g(C2)− 1)

|G| +
∑

x∈Sing(X)

hx,

where hx depends on the type of singularity at x and the equality holds if g(Ci) ≥ 2,
for at least one value of i ∈ {1, 2}. If x is a cyclic quotient singularity of type
1
n (1, q), then

hx := 2− 2 + q + q′

n
−

k∑
i=1

(bi − 2),

where q′ ∈ {1, . . . , n − 1} is such that qq′ ≡ 1 mod n, and [b1, . . . , bk] is the
continued fraction associated to 1

n (1, q) (see Remark 1.1 in [5]).
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5) Finally, notice that X is not necessarily a minimal model. Indeed, we will
treat mostly examples with X not minimal.

3.2. Hodge structure of X

Sometimes it is useful to keep track of the action of an automorphism on each curve
separately; that is why in the following we assume G � Z/nZ � 〈x〉 ↪→ Aut(C1)
x �→ g1, and G ↪→ Aut(C2), x �→ g2. We have G = 〈g1 × g2〉 ⊂ Aut(C1 × C2),
and we write (C1 × C2)/(g1 × g2) for (C1 × C2)/(〈g1 × g2〉).

We shall describe the Hodge structure of the product-quotient surface X whose
quotient model is (C1 × C2)/G. The Hodge numbers of X are determined by the
action of G on the cohomology of C1 and C2.

As in the previous section, we denote by αi, i = 1, . . . , n the dimension of
the eigenspace H1,0(C1)ζi

n
with eigenvalue ζin w.r.t. the action of g1 and by βi,

i = 1, . . . , n, the dimension of the eigenspace H1,0(C2)ζi
n
with eigenvalue ζin with

respect to the action of g2.
By Satz 1 in [13], we have

H0(X,Ωi
X) � H0(C1 × C2,Ω

i
C1×C2

)G.

with i = 0, 1, 2
Thus by the Künneth formula, we have

• H0,0(X) = H0,0(C1 × C2)
G = H0,0(C1)⊗H0,0(C2).

• H1,0(X) = H1,0(C1×C2)
G = H1,0(C1)id⊗H0,0(C2)⊕H0,0(C1)⊗H1,0(C2)id;

in particular, h1,0(X) = h0,1(X) = αn + βn.

• H2,0(X) = H2,0(C1×C2)
G =

∑n
i=1 H

1,0(C1)ζi
n
⊗H1,0(C2)ζn−i

n
; in particular,

h2,0(X) = h0,2(X) =
∑n

i=1 αiβn−i.

In order to find h1,1(X), one has to know the number and the type of singu-
larities of (C1 × C2)/G. Indeed, the desingularization of (C1 × C2)/G introduces
some exceptional divisors which increase the Picard number of the surface and
thus h1,1(X).

Here we describe the structure of H1,1(X) starting from the description of the
action of gi on Ci, i = 1, 2.

Let us consider the set of points of C1 (resp. C2) with a non trivial stabilizer
with respect to the action of g1 (resp. g2). Let us denote by ai,h (resp. bi,h) the
number of points on C1 (resp. C2) whose stabilizer has order h and such that the
local action of g1

|g1|/h (resp. g2
|g2|/h) is ζih. Let P ∈ C1 (resp. Q ∈ C2) be a

point with stabilizer of order h (resp. k) where local action of g1 (resp. g2) is ζ
i
h,

i ∈ {1 . . . h} (resp. ζjk, j ∈ {1 . . . k}). We assume that h (resp. k) is a divisor of |g1|
different from |g1|. We will say that P × Q is a point of type ((i, h), (j, k)) and
clearly the number of these points is ai,hbj,k. The stabilizer of these points has
order d(h,k) := gcd(h, k) and the orbit of P ×Q w.r.t. g1 × g2 contains |g1|/d(h,k)
distinct points. In particular we observe that if d(h,k) = 1 the stabilizer of P ×Q
is empty and its orbit contains exactly |g1| points and if i = j = |g1|, then the
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stabilizer of P ×Q is Z/|g1|Z and the orbit of P ×Q consists only of P ×Q. Let us
now consider the quotient model (C1 × C2)/G and the image P ×Q of the point
P ×Q for the quotient map: the point P ×Q is smooth if d(h,k) = 1; otherwise it is

a singular points of type 1
d(h,k)

(1, q) where q can be computed as in Proposition 5.3

of [3]. The images of the ai,hbj,k points of type ((i, h), (j, k)) under the quotient
map consists of ai,hbj,kdh,k/|g1| points.

Now we assume that n = p is a prime number: then h (resp. k) is necessarily 1,
hence ai,h = ai (resp. bj,k = bj) with the notation of Section 2. The singular point
P ×Q ∈ (C1 × C2)/G is of type 1

p (1, ij
−1), where ij−1 is computed modulo p.

Moreover, the orbit of every point with non trivial stabilizer consists only of one
point and thus we have exactly aibj singular points on (C1 × C2)/G which are of
type 1

p (1, ij
−1).

Once one knows the number and the type of singularities of (C1 ×C2)/G, one
can easily compute h1,1(X), recalling that every singularity introduces a HJ-string,
by Remark 3.3 (2), and that

H1,1(C1 × C2)
G =

(
H1,1(C1)⊗H0,0(C2)

)⊕ (⊕i

(
H1,0(C1)ζi

n
⊗H0,1(C2)ζn−i

n

))
⊕ (⊕i

(
H0,1(C1)ζi

n
⊗H1,0(C2)ζn−i

n

))⊕ (
H0,0(C1)⊗H1,1(C2)

)
.

In particular, since H0,1(Cj)ζi
n
� H1,0(Cj)ζn−i

n
, j = 1, 2, h1,1(C1 × C2)

G =

2(1 +
∑n

i=1 αiβi).

The following proposition recaps the results proved in this section.

Proposition 3.4. Let Ci, i = 1, 2 be a curve with an automorphism gi of order n.
Let αl := dim(H0,1(C1)ζl

n
) and βm := dim(H0,1(C2)ζm

n
). Let a(i,h), b(j,k) and

d(h,k) as above. Note that i and j are invertible in Z/d(h,k)Z and we denote by ri
and sj their inverses. Let X be the minimal resolution of the quotient surface
(C1 × C2)/(g1 × g2). Then the Hodge numbers of X are:

h0,0(X) = 1, h1,0(X) = αn + βn, h2,0(X) =
n∑

i=1

αi βn−1,

h1,1(X) = 2
(
1 +

n∑
i=1

αi βi

)
+
∑
h,k

n−1∑
i=1

n−1∑
j=1

(
ai,hbj,k d(h,k)/n

)
k(i, j),

where:

• we pose k(i, j) = 0 if d(h,k) = 1;

• k(i, j) is the number of curves introduced by a singularity of type 1
d(h,k)

(1, q),

if d(h,k) = 1;

• q := i sj ∈ Z/d(h,k)Z (or equivalently q := j ri ∈ Z/d(h,k)Z).

Remark 3.5. We recall that αi (resp. βi) are uniquely determined by ai (resp. bi)
and viceversa, thus the Hodge numbers of X depend only on the set of values
{αi, βi}, i = 1, . . . , n (or equivalently on the set of values {ai, bi}, i = 1, . . . , n).
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3.3. The minimal model S

As observed in Remark 3.3 (5), the surface X is in general non minimal. Let us
denote by S the minimal model of X . Since hi,0 are birational invariant, the Hodge
numbers h0,0, h1,0, h2,0 of the product-quotient X coincide with the ones of its
minimal minimal model S. More complicated is the computation of h1,1(S).

In order to determine the minimal model S of a product-quotient X , we have
to find all the (−1)-curves on X . In the cases we will treat the (−1)-curves are
central components of reducible fibres of one or both isotrivial fibrations of X .
Then, after contractions of these, the (−1)-curves could be images of some divisors
in the HJ-strings. Note that this is in general not true, see e.g., [5]. A quick
method to calculate the self intersection of the central components is given in [27].
We shall recall it.

Definition 3.6. We say that a reducible fibre F1 of π2 : X → C2/G is of type

(q1/n1, . . . , qr/nr) if it contains exactly r HJ-strings Ẽ1, . . . , Ẽr, where each Ẽi is of
type 1

ni
(1, qi). The same definition holds for a reducible fibre F2 of π1 : S → C1/G.

Proposition 3.7 (Proposition 2.8 in [27]). Let F1 be of type (q1/n1, . . . , qr/nr),
and let Y1 be its central component. Then

(Y1)
2 = −

r∑
i=1

qi
ni

.

If F2 is of type (q′1/n1, . . . , q
′
r/nr), then (Y2)

2 = −∑r
i=1 q

′
i/ni.

In the following example we construct two surfaces, S1 and S2, both of them
are the minimal model of quotients of D3×D3 by a diagonal action of Z/3Z but the
action of this group is different in the two cases. As a consequence the minimal
resolution of one quotient has an infinite number of (−1)-curves, the minimal
resolution of the other has no (−1)-curves and the minimal models of these two
resolutions are totally different: one of them is a rational surface, one is a K3
surface.

Example 3.8. Let us consider the product of two elliptic curves D3 × D3 and
its automorphisms δ3 × δ13 and δ3 × δ23 . Denote by Xi the minimal resolution of
(D3×D3)/(δ3×δi3) and by Si its minimal model. Recall that δi3 acts onH0,1(D3) as
the multiplication by ζi3. We obtain h0,0(Xi) = h0,0(Si) = 1, h1,0(Xi) = h1,0(Si) =
0 for i = 1, 2; h2,0(X1) = h2,0(S1) = 0 and h2,0(X2) = h2,0(S2) = 1.

Now we compute h1,1(Xi): on (D3 × D3)/(δ3 × δ3) there are 9 singular-
ities of type 1

3 (1, 1) and on (D3 × D3)/(δ3 × δ23) there are 9 singularities of
type 1

3 (1, 2). The resolution of a point of type 1
n (1, 1) introduces 1 curve of

self intersection −n, and thus h1,1(X1) = 9 + dim
(
H1,1(D3 ×D3)

δ3×δ3
)
= 13.

The desingularization of singularities of type 1
n (1, n − 1) introduces n − 1 ra-

tional curves with self intersection −2, whose dual diagram is An−1, and thus

h1,1(X2) = 2 · 9 + dim
(
h1,1(D3 ×D3)

δ3×δ23
)
= 20.

With the same method of the Section 7 we obtain that an equation for (D3 ×
D3)/(δ3 × δi3) is given by y2 = x3 + (v2 − 1)2i, which is the equation of an elliptic
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fibration over P1
[v]. If i = 1, this elliptic fibration is a rational elliptic fibration (this

depend on the degree of (v2 − 1)2i). By the standard theory of elliptic fibration
(cf. [25]), it has 3 reducible fibers (over 1, −1 and ∞) of type IV (coming from
the contraction of the central components of the reducible fibers on X1). The
rank of the Mordell–Weil group of this elliptic fibration is 2 (= 10 − 2 − 6, by
Corollary VII. 2.4 in [25], with ρ = 10 and

∑
c∈Δ rc = 6). This implies that

there are infinite sections of this elliptic fibration, and thus an infinite number
of (−1)-curves. Since the minimal elliptic fibration is obtained by contracting 3
(−1)-curves on X1, we obtain that X1 contains an infinite number of (−1)-curve.
Since X1 is birational to P2, there exists a minimal model of X1 which is S1 := P2

and h1,1(S1) = 1.
The elliptic fibration y2 = x3 + (v22 − 1)4 has a K3 surface as minimal model.

The reducible fibers of this elliptic fibration are 3 fibers of type IV ∗ each of them
consists of the central component (which is a (−2)-curve, by Proposition 3.7) and
of three copy of A2. So X2 coincides with S2 and h1,1(S2) = 20. This K3 surface
was constructed in [34].

3.4. Automorphisms of S and quotient surfaces

By construction the surface (C1×C2)/(g1×g2) admits an automorphism of order n
induced by id×g2 ∈ Aut(C1×C2) (or equivalently by g1×id ∈ Aut(C1×C2)). This
automorphism lifts to an automorphism of X and of S. Thus, one can consider
the quotient ((C1 × C2) / (g1 × g2)) / (id× g2). Since 〈g1 × g2, id × g2〉 = 〈g1 ×
id, id× g2〉, we have the following commutative diagram:

C1 × C2

↙n:1 ↘n:1

(C1 × C2) /g1 × g2 (C1 × C2) /id× g2

↘n:1 ↙n:1

C1/g1 × C2/g2.

This diagram lifts to the minimal resolution of all the surfaces we are considering,
and so one obtains that the surface X has a generically n2 : 1 map to C1/g1 ×
C2/g2, and in particular to P1 × P1, if we assume Ci/gi � P1. Moreover, the map
X → P1 × P1 induces a rational n2 : 1 map S ��� P1 × P1.

We can explicitly describe the action of id×g2 on the cohomology ofX (we keep
the assumption Ci/gi � P1): id × g2 acts as the identity on the spaces H0,0(X)
and H1,0(X) . The invariant subspace of H2,0(X) under id × g2 is the image of
the space H1,0(C1)

g1 ⊗H1,0(C2)
g2 and thus has dimension αnβn = 0. As we saw

in Section 3.2, the space H1,1(X) splits into two parts: the image of H1,1(C1 ×
C2)

g1×g2 and a direct summand, say R, which comes from the resolution of the
singularities of (C1×C2)/(g1×g2). Hence, H

1,1(X)id×g2 splits into the direct sum
of the image of (H0,0(C1)⊗H1,1(C2))⊕(H1,0(C1)

g1⊗H0,1(C2)
g2)⊕(H0,1(C1)

g1⊗
H1,0(C2)

g2)⊕ (H1,1(C1)⊗H0,0(C2)) and Rid×g2. The dimension of the first term
is 2+2αnβn = 2. We note that, if every point in the branch locus of Ci, i = 1, 2 is
of total ramification, then the action of id× g2 is the identity on R, and one finds
H1,1(X)id×g2 = (H0,0(C1)⊗H1,1(C2))⊕ (H1,1(C1)⊗H0,0(C2))⊕ (R ⊗ C).
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4. K3 surfaces

This section is devoted to the construction of K3 surfaces S, which are minimal
model of product-quotient surfaces.

We recall that by definition aK3 surface S has h1,0(S) = 0 and trivial canonical
bundle. The Hodge numbers of S are uniquely determined by these properties and
are h0,0(S) = h2,0(S) = 1, h1,0(S) = 0, h1,1(S) = 20.

4.1. Product-quotient surfaces with pg = 1 and q = 0

Let S be the minimal model of a product-quotient X with quotient model (C1 ×
C2)/(g1×g2). If S is a K3 surface, then q(S) = h1,0(S) = 0 and pg(S)=h2,0(S) =1.
Since hi,0 are birational invariants, h1,0(X) = 0, h2,0(X) = 1. Therefore, by Propo-
sition 3.4, αn + βn = 0 and

∑n
i=1 αi βn−i = 1. In particular,

αn = βn = 0 and there exists i ∈ {1, . . . , n} such that(4.1)

αi = βn−i = 1, αj βn−j = 0 if j = i.

Condition (4.1) is divided in two: a condition on each factor of the product, namely
the action of gi on H1,0(Ci); and a condition on the whole product, namely the
action of g1 × g2 on H2,0(C1 × C2).

Now we shall give a procedure to construct product-quotient surfaces with pg =
1 and q = 0. Since, in general, this algorithm requires excessively long calculations,
many of them are performed using the Magma program. While describing the
procedure we also indicate which part of the program does what.

First we search for pairs (C1,g1) which satisfy the following two conditions:
αn = 0, or equivalently Ci/gi � P1; and there exists an index 0 < j < n such that
αj = 1. The first condition is obtained by giving spherical systems of generators
for G (see Theorem 2.1). The second one is obtained exploiting the Chevalley–
Weil formula and calculating the rotation angles as in Proposition 2.3. Analogous
conditions must hold for a second pair (C2,g2).

Second we couple the curves by requiring that there exists an i ∈ {1 . . . n} such
that αi = βn−i = 1 and αj βn−j = 0 if j = i.

Let us assume that n = p a prime. The curvesCi admitting an automorphism gi

of order p such that Ci/gi � P1 and αj = 1 for some j ∈ {1, . . . , p− 1}, have genus
at most (p − 1)2, by Corollary 2.4. The number of the ramification points of the
cover Ci → Ci/gi is at most 2p. This implies that the number of curves with these
properties is finite. These curves are classified by the Magma program, using the
function Surfacesp. The function calculates all the partitions of all the numbers
from 3 up to 2p, giving all the admissible ramification data (a1, . . . , an−1) of the
coverings Ci → Ci/gi � P1. Afterwards it evaluates the αj , and lists only the ones
with αj = 1 for at least one j ∈ {1, . . . , p− 1}.

Remark 4.1. We observe that for every prime p there exists at least one curve with
the required properties, the one with ap−1 = 2 and a(p+1)/2 = 1 (cf. Example 2.5).
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The condition αj βn−j=0 if j = i implies that the list (α1, . . . , αp−1, β1, . . . βp−1)
contains at least p− 2 zeros. This condition is verified in the function MaybeSur1

of the Magma program. Then, the function TheSur tests if a surface given by
MaybeSur1 has also pg = 1.

Proposition 4.2. There exists a finite number of families of surfaces S which are
the minimal model of (C1 × C2)/(g1 × g2), with |(g1 × g2)| = p, and pg(S) = 1
and q(S) = 0.

Proof. For a given p, the number of surfaces S is finite, since the numbers of pairs
(Ci,gi) is so (cf. Corollary 2.4).

The automorphism id × g2 induces an automorphism on S which acts non
trivially on H2,0(S), see Section 3.4. In order to give a bound for p we prove that
there exist no a surface Z with pg(Z) = 1, q(Z) = 0 and an automorphism of
order p > 19 acting non trivially on H2,0(Z).

Let Z be a minimal surface with h2,0(Z) = 1 which admits an automorphism σ
of order p and let H2(Z,C)ζi

p
be the eigenspace of the eigenvalue ζip for the action

of σ, i = 0, . . . , p− 1. The dimension of H2(Z,C)ζi
p
does not depend on i if i = 0.

Thus, if there exists i = 0, i ∈ {1, . . . , p − 1} such that dim(H2(Z,C)ζi
p
) ≥ 1,

then b2(Z) ≥ p− 1.
Since h2,0(Z) = 1, K2

Z ≥ 0. By h1,0(Z) = 0 follows that χ(Z) = 2 and that
e(Z) ≤ 24 by Noether equality. So b2(Z) ≤ 22.

Since there exists no a surface Z with pg(Z) = 1 q(Z) = 0 and b2(Z) > 22,
there exists no a surfaces Z with pg(Z) = 1, q(Z) = 0 and an automorphism of
order p > 19 acting non trivially on H2,0(Z). �

Remark 4.3. Since a minimal surface with pg = 1, q = 0 can not admit an
automorphism of order p > 19, there exist no pairs (C1 × C2,g1 × g2) such that
|g1×g2| = p > 19, dim(H1(C1×C2)

g1×g2) = 0 and dim(H2,0(C1×C2)
g1×g2) = 1.

Lemma 4.4. Let X be the minimal resolution of (C1 ×C2)/G. Let Fi be the fiber
of πj : X → Cj/G, {i, j} = {1, 2}. We recall Fi � Ci. If q(X) = 0, then the linear
systems |Fi| on X, i = 1, 2 are complete and of dimension 1.

Proof. Since F 2
i = 0, we have the short exact sequence

0 → O(KX − Fi) → O(KX) → OFi(KFi) → 0.

This induces the long exact sequence in cohomology

H1(X,O(KX)) → H1(Fi,O(KFi)) → H2(X,O(KX−Fi)) → H2(X,O(KX)) → 0.

By Serre duality, dim(H1(X,O(KX))) = q(X) = 0 and H2(X,O(KX − Fi)) =
H0(X,O(Fi)). Therefore,

dim(H0(X,O(Fi))) = dim(H1(Fi,O(KFi))) + dim(H2(X,O(KX)))

= dim(H0(Fi,O)) + 1 = 2.
�
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Proposition 4.5. Let X be the minimal resolution of (C1 ×C2)/G. If q(X) = 0,
the dimension of the family of product-quotient surfaces X is r1 + r2 − 6, where
Ci → Ci/G is ramified in ri points. Moreover this family is a quasi-projective
irreducible variety.

Proof. By Proposition 2.1, the number η of parameters of the family of product-
quotient surfaces is less than or equal to r1 + r2 − 6. For simplicity we assume
r2 = 3. If η < r1 − 3, then there exists a positive dimensional family of curves
isomorphic to C1 which induces a family of isotrivial fibrations on X , whose fibers
are isomorphic to C1. Since q(X) = 0, Pic(X) = NS(X)/Tors � ZN for a certain
positive integer N . By Lemma 4.4, the linear system |F1| is complete and of
dimension 1. Since Pic(X) is discrete there is no positive dimensional family of
such linear systems. Therefore η = r1 − 3. The family is quasi-projective and
irreducible by Theorem 5.4 in [6]. �

As stated in Proposition 4.2, we are looking for a finite number of surfaces.
These are given by the program Surfacesp. However the number of permutations
of the ramification points increases too rapidly with the growth of p for a compu-
tation in a short time. Since our aim was the construction of K3 surfaces, and we
know the dimension of the families we are searching for, we wrote another program
with a fixed number of ramification points, and hence with fixed dimension of the
family. The program t1t2PtsSurfaces, given a cyclic group G of order p or 2p
and the numbers ti, i = 1, 2, of ramification points of Ci → C1/G � P1, returns
a list of product-quotient surfaces T with pg(T ) = 1 and q(T ) = 0, as well as the
singularities of T .

Remark 4.6. If |g1| = 2p, then by Remark 2.4 there exists a finite list of curves
with at least one αj = 1 and ζj2p is a primitive 2p-root of unity. If the action
of g1 on C1 is of this type, the same must be true for the action of g2 on C2,
thus we have a finite list for (C1 × C2)/(g1 × g2). Hence, we obtain a complete
classification of such surfaces as in Proposition 4.2. Otherwise, if we assume that
the action of g1 on C1 is such that αj = 1 and ζj2p is a either a primitive p-root
of unity or (−1), then the same must be true for the action of g2 on C2. In this
case we can not construct a complete list of the curves C1 and C2, since we have
no an upper bound for their genera, and so for the number of ramification points
of the map fi : Ci → Ci/gi � P1. Anyway, if we fix the maximal number n of
ramification points for fi, then we obtain a finite list of curves Ci and thus a
finite number of surfaces (C1 ×C2)/(g1 × g2) as in Proposition 4.2. Our aim is to
construct K3 surfaces, so the bound on n depends on the dimension of the moduli
space of K3 surfaces. More precisely, the moduli space of projective K3 surfaces
has dimension 19, so the sum of the ramification points of f1 and f2 can not be
grater then 25.

4.2. K3 surfaces

Let S be the minimal model of (C1 ×C2)/(g1 × g2). If S is a K3 surface, then by
definition pg(S) = 1 and q(S) = 0. Therefore the K3 surfaces obtained as minimal
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model of (C1 ×C2)/(g1×g2) are among the ones listed in Section 4.1. In order to
prove that S is a K3 surface one has to verify that the canonical bundle is trivial.

Lemma 4.7. Let Z be a surface obtained contracting −K2
X (−1)-curves on X.

We recall that pg(Z) = 1 and q(Z) = 0. Let F1 be the class of the fiber of the
fibration π2 : X → C2/〈g2〉 and F2 be the class of the fiber of the fibration π1 : X →
C1/〈g1〉. Let E be the sum of all the exceptional divisors of the blow up X → Z.
If (KX − E)F1 = 0 and (KX − E)F2 = 0, then KZ is trivial. In this case Z is
minimal.

Proof. We shall denote by Pk the singular points of (C1 × C2)/(g1 × g2), and
by Aj,k the j-th irreducible component of the HJ-string of the blow-up π : X →
(C1 × C2)/(g1 × g2) over Pk.

Let D be an effective divisor on X , then D = λ1F1+λ2F2+λ3B+
∑

j,k λj,kAj,k

with λi, λj,k ≥ 0 and BF1 > 0, BF2 > 0. If DF1 = 0 and DF2 = 0, then
λ1 = λ2 = λ3 = 0. For every k, ∪jAj,k is a HJ-string, hence DAj,k = 0 for every j
and k. Therefore DF1 = DF2 = 0 give a homogeneous linear system in λj,k. The
corresponding matrix is a diagonal block matrix and each block is invertible, being
associated to the resolution of the quotient singularity Pk. Thus D = 0.

The divisor KX − E is an effective divisor being the pullback of the canonical
divisor of Z, which has pg(Z) = 1. Applying the previous result to D = KX − E
we obtain KX − E = 0 hence KZ is trivial. �

Necessary conditions to obtain a K3 surface S as minimal model of the minimal
resolution X of the quotient (C1 × C2)/(g1 × g2) are the following:

1. hi,0(X) = 1, for i = 0, 2;

2. h1,0(X) = 0;

3. there are exactly −K2
X (−1)-curves on X .

Thus, in order to classify the K3 surfaces S, we list the surfaces X satisfying the
conditions (1), (2). If |g1 × g2| = p is prime number, as already said, this is done
by the program Surfacesp.

Next we consider the (−1)-curves which are either central components Y of
reducible fibers (we calculate Y 2 using Proposition 3.7) or appear as image of
curves in HJ-string after some contractions. In this way we find −K2

X (−1)-curves.
After the contraction of all these curves we always obtain a surface which satisfies
the condition of Lemma 4.7 and so a surface Z with trivial canonical bundle. This
implies that there are no other (−1)-curves on Z, which is thus the minimal model
S of X and in particular S is a K3 surface.

4.3. Non-symplectic automorphisms

We saw in Section 3.4 that every surface S which is the minimal model of a product-
quotient with g1×g2 admits an automorphism induced by id×g2 which acts non
trivially on H2,0(S). This means that if S is a K3 surface, the automorphism
induced on S by id× g2 is a purely non-symplectic automorphism on S. Thus the
surface S admits a non-symplectic automorphism of prime order.
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Definition 4.8. Let W be a K3 surface. Let ωW be a generator of H2,0(W ). An
automorphism g ∈ Aut(W ) of order n is called symplectic if g(ωW ) = ωW , and
purely non-symplectic if g(ωW ) = ζin ωW and ζin is a primitive n-root of unity.

We observe that an automorphism of prime order p which is non-symplectic
is purely non-symplectic. This type of automorphism are classified [2]. In this
section we summarize the main results on non-symplectic automorphisms of prime
order, which will be considered in the following.

For every prime number 2 ≤ p ≤ 19 there exists a K3 surface W admitting a
non-symplectic automorphism g of order p. Let us assume 3 ≤ p ≤ 19. The fixed
locus Fixg(W ) = {w ∈ W such that g(w) = w} consists of the disjoint union of
n isolated points and k + 1 curves. At most one of the fixed curves has a positive
genus (see Theorems 4.1, 5.3, 6.3, 7.3, and 8.4 in [2]), and we denote by g(C) the
genus of the curve with highest genus. Hence, the fixed locus consists of n isolated
points, k rational curves and another curve C with a possibly positive genus. For
each prime number 3 ≤ p ≤ 19 such that |g| = p, there exists a finite number of
possibilities for the fixed locus Fixg(W ), and the fixed locus is uniquely determined
by the data n, g(C), k + 1. So (p, n, g(C), k + 1) is an invariant which determines
the fixed locus. For each prime p = |g|, the admissible choices for (n, g(C), k + 1)
are listed in Theorems 4.1, 5.3, 6.3, 7.3, and 8.4 of [2], where it is also proved that
there exists a K3 surface with a non-symplectic automorphism of order p with fixed
locus determined by (n, g(C), k + 1) for every admissible choice of the invariants.

More precisely, the invariants (p, n, g(C), k + 1) determine uniquely the two
lattices Sp

(n,g(C),k+1) := H2(W,Z)g and T p
(n,g(C),k+1) := (H2(W,Z)g)⊥ and a K3

surface admits a non-symplectic automorphism of order p with fixed locus de-
termined by (n, g(C), k + 1) only if Sp

(n,g(C),k+1) is primitively embedded in its

Néron–Severi group. This allows one to describe the family of K3 surfaces with
a non-symplectic automorphism of order p and a prescribed fixed locus in terms
of the period map of K3 surfaces. We will denote by Mp

(n,g(C),k+1) the family of

K3 surfaces admitting a non-symplectic automorphism of order p with fixed lo-
cus determined by (n, g(C), k + 1). It has one connected component of dimension
(rk(T p

(n,g(C),k+1))/(p − 1)) − 1. To give a more precise description of the moduli

space of the K3 surfaces that admit a non-symplectic automorphism of order p
and a prescribed fixed locus, we consider the action of g on T p

(n,g(C),k+1) ⊗ C,

which does not depend on the K3 surface considered. By definition g has no
eigenvalue 1 on T p

(n,g(C),k+1) ⊗ C and the decomposition in eigenspaces consists

of p − 1 equidimensional eigenspaces (of the eigenvalues ζip, i = 1, . . . p − 1). Let

(T p
(n,g(C),k+1) ⊗C)ζp be the unique eigenspace such that (T p

(n,g(C),k+1)⊗C)2,0ζp
= 0.

Set B := {z ∈ P((T p
(n,g(C),k+1) ⊗ C)ζp) such that (z, z) = 0, (z, z) > 0}. The

space B is a ball of dimension (rk(T p
(n,g(C),k+1))/(p − 1)) − 1. Let Γ := {γ ∈

O(T p
(n,g(C),k+1) ⊗ C) such that γg = gγ}. There is a birational map between the

space of the K3 surfaces admitting a non-symplectic automorphism as required
and B/Γ (see Section 11 of [11]). The family Mp

(n,g(C),k+1) is an irreducible quasi-

projective variety (see Theorem 9.1 and Proposition 9.3 in [2]).
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For a fixed prime number 3 ≤ p ≤ 19, there are some inclusions among the fam-
ilies Mp

(n,g(C),k+1); for example, M3
(9,0,6) ⊂ M3

(8,0,5). All these inclusions are des-

cribed in [2], and the maximal components are determined in Theorem 9.5 of [2]:

if p = 3, there are three maximal components: M3
(3,−,0), M3

(0,4,1), M3
(0,5,2)

and for every admissible data (n, g(C), k+1), we have M3
(n,g(C),1) ⊂ M3

(0,4,1) and

M3
(n,g(C),k+1) ⊂ M3

(0,5,2) if k+1 ≥ 2. The dimension of each family is m = 9− n;

if p = 5, 7, 11, there are two maximal components: Mp
(n,−,0), and Mp

(n,g(C),1)

and for every admissible data (n, g(C), k+1), we haveMp
(n,g(C),k+1) ⊂ Mp

(n′,g(C′),1)
if k + 1 = 0. The dimension of each family is m = (13− n)/(p− 2) if p = 5, 7 and
m = (11− n)/(p− 2) if p = 11;

if p = 13, 17, 19, there is only one (rigid) K3 surface admitting a non-symplectic
automorphism of order p. Thus there is one maximal component (in fact one
component of dimension 0) which is M13

(9,0,1), M17
(7,−,0), M19

(5,−,0) respectively.

The K3 surfaces we are constructing as product-quotients are members of the
families of K3 surfaces admitting a non-symplectic automorphism of prime order.
In the following sections we will construct K3 surfaces S and we will determine the
fixed locus of the non-symplectic automorphism induced by id×g2 (or by some of
its powers), and thus we identify on which component of the family of K3 surfaces
with a non-symplectic automorphisms they lie.

The following remark is used to determine the fixed locus.

Remark 4.9. Let us assume |g2| = p is a prime number. The automorphism gS

of S induced by id × g2 fixes the central components of all the reducible fibers
of the fibration π2. Similarly, it fixes the central components of all the reducible
fibers of the fibration π1 since id × g2 ≡ g1 × id mod (g1 × g2). Moreover, it
fixes all the singular points of the HJ-strings introduced resolving the singularities
of (C1 × C2)/(g1 × g2). It is possible that the automorphism fixes some disjoint
components of certain HJ-strings which do not meet any other fixed curves.

5. K3 surfaces which are minimal models of (C1×C2)/(Z/pZ)

The aim of this section is to list and to describe the K3 surfaces obtained as
minimal model of (C1 × C2)/(g1 × g2) with |g1 × g2| = p.

Theorem 5.1. All the K3 surfaces which are minimal models of (C1×Dp)/(g1×
δp), |g1 × g2| = p admit a non-symplectic automorphism of order p whose fixed
locus is one of those listed in Table 1.

Viceversa, let S be a K3 surface, generic in the family of the K3 surfaces
admitting a non-symplectic automorphism of odd prime order p with fixed locus
listed in column (n, g, k+1) of Table 1. Then S is minimal the model of (C1×C2)/
(g1×g2) with |g1×g2| = p, and for each such surface S we can choose (C2,g2) �
(Dp, δp) and the non-symplectic automorphism on S is always induced by id× δp.
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Moreover, the same holds true for every K3 surface admitting a non-symplectic
automorphism of odd prime order p with fixed locus listed in the column (n, g, k+1)
of the Table 1 and with minimal Picard number.

p g(C1) (α1, . . . αp−1) (a1, . . . , ap−1) Sing(C1 × Dp/g1 × δp) K2
X (n, g, k + 1) m

3 4 (3, 1) (0, 6)
(

1
3

)18 −6 (6, 0, 3) 3

3 3 (2, 1) (1, 4)
(

1
3

)12,
(
2
3

)3 −4 (7, 0, 4) 2

3 2 (1, 1) (2, 2)
(

1
3

)6,
(
2
3

)6 −2 (8, 0, 5) 1

3 1 (0, 1) (3, 0)
(
2
3

)9 0 (9, 0, 6) 0

5 6 (3, 2, 1, 0) (0, 0, 0, 5)
(

1
5

)10,
(
3
5

)5 −12 (7, 0, 1) 2

5 4 (2, 1, 1, 0) (0, 1, 0, 3)
(

1
5

)6,
(
2
5

)5,
(
4
5

) −8 (10, 0, 2) 1

5 2 (1, 0, 1, 0) (0, 2, 0, 1)
(
1
5

)2,
(
2
5

)5,
(
4
5

)2 −4 (13, 0, 3) 0

7 6 (2, 2, 1, 1, 0, 0) (0, 0, 0, 0, 1, 3)
(

1
7

)6,
(
3
7

)3,
(
4
7

)2,
(
5
7

) −14 (8, 0, 1) 1

7 3 (0, 1, 1, 0, 0, 1) (0, 0, 0, 2, 1, 0)
(
1
7

)2,
(
2
7

)2,
(
3
7

)5 −7 (13, 0, 2) 0

11 5 (1, 1, 0, 1, 1, (0, 0, 1, 0, 0,
(

1
11

)2,
(

2
11

)
,
(

3
11

)2, −13 (11, 0, 1) 0

0, 0, 1, 0, 0) 0, 1, 0, 0, 1)
(

4
11

)
,
(

5
11

)
,
(

7
11

)2

13 6 (1, 1, 1, 0, 1, 1, (0, 0, 0, 1, 0, 0,
(

1
13

)2,
(

2
13

)
,
(

3
13

)2, −17 (9, 0, 1) 0

0, 0, 1, 0, 0, 0) 0, 0, 0, 1, 0, 1)
(

5
13

)
,
(

6
13

)
,
(

9
13

)2

17 8 (1, 1, 1, 1, 1, 1, (0, 0, 0, 0, 0, 0,
(

1
17

)2,
(

4
17

)
,
(

5
17

)
, −23 (7,−, 0) 0

0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
(

7
17

)2,
(

8
17

)
,
(

9
17

)2

0, 0, 0, 0) 0, 0, 1, 1)

19 9 (1, 1, 1, 1, 1, 1, (0, 0, 0, 0, 0, 0,
(

1
19

)2,
(

3
19

)
,
(

5
19

)2, −25 (5,−, 0) 0

0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0
(

7
19

)
,
(

9
19

)
,
(
13
19

)2

0, 0, 0, 0, 0, 0) 0, 0, 1, 1, 0, 1)

Table 1.

Proof. Let us fix p. By Section 4.3 we know the dimension Mp of the maximal
components of the family of K3 surfaces with a non-symplectic automorphism
of order p. Since every K3 surface which is the minimal model of a product-
quotient with group Z/pZ admits a non-symplectic automorphism of order p (see
Section 3.4), we can bound the number of moduli of the pairs (C1,g1), (C2,g2)
by Mp, see also Proposition 4.5.

The first step consists in listing the product-quotient surfaces with pg = 1
and q = 0. This is done using the program t1t2PtsSurfaces, giving the group
G � Z/pZ and the numbers t1, t2 such that t1 ≥ 3, t2 ≥ 3 and t1 + t2 = m − 6,
where m ≤ Mp. Indeed, recall that t1 and t2 are the numbers of branching points
of the projections Ci → Ci/gi respectively. Then t1−3 and t2−3 are the moduli of
the pairs (Ci,gi) and m is the dimension of family of the product-quotient surfaces,
by Proposition 4.5.

Second step: for every product-quotient surface in the list, one has to check if
the minimal model is a K3 surface and has to calculate the fixed locus, determining
(n, g, k+ 1), of the induced automorphism. This is done for every entry in the list
exactly as in Example 6.5.

Every member of the family, FPQ(C1, C2), of K3 surfaces which are minimal
models of (C1×C2)/(g1×g2), is also a member of a familyMp

(n,g,k+1). This implies
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that FPQ(C1, C2) ⊂ Mp
(n,g,k+1). For every (n, g, k+1), there exists always a choice

of (C1,g1) and (C2,g2) such that dim(FPQ(C1, C2)) = dim(Mp
(n,g,k+1)). Since

both these families are quasi-projective and irreducible, the generic K3 surface in
Mp

(n,g,k+1) is the minimal model of a product-quotient surface.

Moreover, we observe that different (up to isomorphism) admissible choices for
(C1,g1), (C2,g2) correspond to the same component Mp

(n,g,k+1). In Table 1 we

give one example for each component. It is remarkable that one can always con-
struct this example choosing (C2,g2) � (Dp, δp). In Table 1 one can find: the prop-
erties which characterize the pair (C1,g1); the singularities of (C1 ×Dp)/(g1 × δp);
the value of K2

X ; the fixed locus (n, g, k + 1) of the automorphism induced on S;
and this identifies Mp

(n,g,k+1) whose dimension is m.

In order to prove the last assertion, we recall that if S is in Mp
(n,g,k+1) and has

minimal Picard number, then its Picard group is uniquely determined (recall that
p = 2), we denote it by Lp

(n,g,k+1). In [2] it is proved that the all K3 surfaces S in

Mp
(n,g,k+1) and with NS(S) � Lp

(n,g,k+1) admit certain models. Hence it suffices

to prove that all the surfaces admitting such models are product-quotient surfaces.
This is done in Section 7. �

The quotients (C1×D3)/(g1× δ3) which admit a minimal model which is a K3
surface were already classified in [14], Remark 3.1, and are listed in the first 4 rows
of Table 1.

Remark 5.2. The example listed in Table 1 are all the examples obtained as
described if p ≤ 7. For p ≥ 11 there are other admissible pairs (C1,g1), (C2,g2),
such that Ci � Dp, i = 1, 2, which correspond to the components M11

(11,0,1),

M13
(9,0,1), M17

(7,−,0), M19
(5,−,0).

Remark 5.3. A very explicit example of this construction for the K3 surface in
line 5 of Table 1 is given in [21].

6. K3 surfaces which are minimal models of (C1×C2)/(Z/2pZ)

In Section 5 we described K3 surfaces which are minimal models of a product-
quotient surfaces with group Z/pZ. If p ≤ 11 we do not get the maximal irreducible
components of the moduli space of K3 surfaces with a non-symplectic automor-
phism of order p. In order to find at least one maximal irreducible component of
such moduli space, we consider product-quotient surfaces with the group Z/2pZ.

Theorem 6.1. Let p = 3 (resp. 3 < p ≤ 13, 13 < p ≤ 19). All the K3 surfaces
which are minimal models of (C1 × Dp)/(g1 × τp), |g1 × τp| = 2p admit a non-
symplectic automorphism of order p whose fixed locus is one of those listed in
Table 2.

Viceversa, let S be a K3 surface generic in the family of the K3 surfaces
admitting a non-symplectic automorphism of order p which fixes at least 2 (respect-
ively 1, 0) curves. Then S is the minimal model of (C1 × C2)/(g1 × g2) with
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|g1×g2| = 2p and for each such surface S we can always choose (C2,g2) � (Dp, τp)
and hence the non-symplectic automorphism on S is always induced by id× δp. In
Table 2 we list an example for each family assuming (C2,g2) � (Dp, τp).

Moreover, the same holds true for every K3 surface admitting a non-symplectic
automorphism of order p which fixes at least 2 (resp. 1, 0) curves and with minimal
Picard number.

p g(C1) (α1, . . . α2p−1) (a1, . . . , a2p−1) Sing(C1 × Dp/g1 × τp) K2
X (n, g, k+1) m

3 25 (9, 7, 5, 3, 1) (0, 12, 0, 0, 0)
(

1
6

)12 ,
(

1
3

)12 ,
(
1
2

)12 −36 (0, 5, 2) 9

3 22 (8, 6, 4, 3, 1) (0, 10, 2, 0, 0)
(

1
6

)10 ,
(

1
3

)13 ,
(
1
2

)10 −31 (1, 4, 2) 8

3 19 (7, 5, 3, 3, 1) (0, 8, 4, 0, 0)
(
1
6

)8 ,
(

1
3

)14 ,
(
1
2

)8 −26 (2, 3, 2) 7

3 16 (6, 4, 2, 3, 1) (0, 6, 6, 0, 0)
(
1
6

)6 ,
(

1
3

)15 ,
(
1
2

)6 −21 (3, 2, 2) 6

3 17 (6, 5, 3, 2, 1) (0, 8, 0, 2, 0)
(
1
6

)8 ,
(
1
3

)8 ,
(

2
3

)3 ,
(
1
2

)8 −24 (3, 3, 3) 6

3 13 (5, 3, 1, 3, 1) (0, 4, 8, 0, 0)
(
1
6

)4 ,
(

1
3

)16 ,
(
1
2

)4 −16 (4, 1, 2) 5

3 14 (5, 4, 2, 2, 1) (0, 6, 2, 2, 0)
(
1
6

)6 ,
(
1
3

)9 ,
(

2
3

)3 ,
(
1
2

)6 −19 (4, 2, 3) 5

3 15 (5, 4, 3, 2, 1) (1, 7, 0, 0, 0)
(
1
6

)7 ,
(

5
6

)
,
(
1
3

)7 ,
(
2
3

)
,
(

1
2

)8 −21 (4, 3, 4) 5

3 10 (4, 2, 0, 3, 1) (0, 2, 10, 0, 0)
(
1
6

)2 ,
(

1
3

)17 ,
(
1
2

)2 −11 (5, 0, 2) 4

3 11 (4, 3, 1, 2, 1) (0, 4, 4, 2, 0)
(
1
6

)4 ,
(

1
3

)10 ,
(

2
3

)3 ,
(
1
2

)4 −14 (5, 1, 3) 4

3 12 (4, 3, 2, 2, 1) (1, 5, 2, 0, 0)
(
1
6

)5,
(
5
6

)
,
(

1
3

)8,
(
2
3

)
,
(
1
2

)6 −16 (5, 2, 4) 4

3 7 (3, 1, 0, 2, 1) (0, 1, 8, 0, 3)
(
1
6

)
,
(
1
3

)13 ,
(
1
2

)5 −7 (6, 0, 3) 3

3 9 (3, 2, 1, 2, 1) (1, 3, 4, 0, 0)
(
1
6

)3 ,
(

5
6

)
,
(
1
3

)9 ,
(
2
3

)
,
(

1
2

)4 −11 (6, 1, 4) 3

3 4 (2, 0, 0, 1, 1) (0, 0, 6, 0, 6)
(
1
3

)9 ,
(

1
2

)8 −3 (7, 0, 4) 2

3 7 (2, 2, 1, 1, 1) (1, 3, 0, 2, 0)
(
1
6

)3,
(
5
6

)
,
(
1
3

)3,
(
2
3

)4,
(

1
2

)4 −9 (7, 1, 5) 2

3 3 (1, 0, 0, 1, 1) (1, 0, 4, 0, 3)
(

5
6

)
,
(
1
3

)6 ,
(

2
3

)
,
(

1
2

)5 −2 (8, 0, 5) 1

3 5 (1, 1, 1, 1, 1) (2, 2, 0, 0, 0)
(
1
6

)2,
(
5
6

)2,
(

1
3

)2,
(
2
3

)2,
(
1
2

)4 −6 (8, 1, 6) 1

3 1 (0, 0, 0, 0, 1) (0, 1, 2, 0, 3)
(
5
6

)
,
(

2
3

)4 ,
(
1
2

)5 0 (9, 0, 6) 0

5 22 (4, 2, 0, 4, (0, 0, 6, 0,
(

1
10

)6 ,
(
1
5

)2 , −28 (1, 2, 1) 4

2, 1, 5, 3, 1) 0, 0, 2, 0, 0)
(
2
5

)6 ,
(
3
5

)
,
(
1
2

)6

5 17 (3, 2, 0, 3, (0, 0, 4, 0,
(

1
10

)4 ,
(
1
5

)3 ,
(

2
5

) −21 (4, 1, 1) 3

1, 1, 4, 2, 1) 2, 0, 2, 0, 0)
(
3
5

)6 ,
(

1
2

)4

5 13 (3, 2, 1, 2, (0, 0, 2, 2,
(

1
10

)2 ,
(

3
10

)2 ,
(

1
5

)4 −14 (7, 1, 2) 2

1, 1, 2, 1, 0) 0, 0, 2, 0, 0)
(
3
5

)
,
(

2
5

)2 ,
(
1
2

)4

5 12 (3, 2, 1, 1, (0, 0, 1, 1,
(

1
10

)
,
(

7
10

)
,
(
1
5

)7 −13 (7, 0, 1) 2

0, 2, 2, 1, 0) 0, 0, 6, 0, 0)
(

2
5

)3 ,
(
3
5

)
,
(

4
5

)
,
(

1
2

)2

5 8 (2, 1, 1, 1, (0, 0, 1, 1,
(

1
10

)
,
(

7
10

)
,
(
1
5

)3 −9 (10, 0, 2) 1

0, 1, 1, 1, 0) 0, 0, 2, 2, 0)
(

2
5

)3 ,
(
3
5

)
,
(

4
5

)
,
(

1
2

)2

5 4 (1, 1, 1, 0, (0, 1, 0, 1,
(

3
10

)
,
(

9
10

)
, −5 (13, 0, 3) 0

0, 1, 0, 0, 0) 0, 0, 2, 0, 0)
(
1
5

)3 ,
(

3
5

)2 ,
(
1
2

)2

7 19 (2, 1, 3, 2, 0, 3, (0, 0, 0, 4, 0, 0,
(

1
14

)4 ,
(
4
7

)2 , −25 (3, 1, 1) 2

1, 0, 3, 1, 0, 2, 1) 0, 0, 2, 0, 0, 0, 0)
(
5
7

)5 ,
(

1
2

)4

7 13 (1, 1, 2, 2, 0, 1, (0, 0, 0, 1, 2, 1,
(

1
14

)2 ,
(
11
14

)
,
(

5
14

)
, −15 (8, 1, 2) 1

1, 1, 2, 0, 0, 1, 1) 0, 0, 0, 0, 0, 0, 0)
(

1
7

)
,
(
5
7

)
,
(
3
7

)2 ,
(

1
2

)4

7 12 (1, 1, 2, 1, 0, 1, (0, 0, 0, 1, 1, 0,
(

1
14

)
,
(

5
14

)
,
(

1
7

)3 , −14 (8, 0, 1) 1

0, 1, 2, 1, 0, 1, 1) 2, 0, 0, 0, 2, 0, 0)
(

3
7

)
,
(
4
7

)
,
(
5
7

)3 ,
(

1
2

)2

7 6 (0, 0, 1, 0, 0, 1, (1, 0, 0, 1, 0, 0,
(

1
14

)
,
(

9
14

)
,
(
1
7

)
, −10 (13, 0, 2) 0

0, 0, 1, 1, 0, 1, 1) 2, 0, 0, 0, 0, 0, 0)
(
3
7

)3 ,
(
6
7

)
,
(
1
2

)2

11 21 (1, 0, 2, 1, 2, 1, 0, (0, 0, 0, 0, 0, 3, 0,
(

1
22

)3 ,
(
19
22

)
, −31 (2, 1, 1) 1

2, 0, 2, 1, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0,
(

6
11

)
,
(

9
11

)3 ,
(
1
2

)4

2, 1, 0, 1, 0, 2, 1) 0, 0, 0, 0, 0, 0, 0)
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11 10 (1, 1, 1, 1, 0, 0, 0, (0, 0, 0, 0, 0, 0, 1,
(

3
22

)
,
(

7
22

)
,
(

1
11

)2 , −13 (11, 0, 1) 0

1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0,
(

2
11

)
,
(

4
11

)
,
(

9
11

)
,

1, 1, 1, 0, 0, 0, 0) 0, 0, 0, 0, 2, 0, 0)
(
1
2

)2

13 12 (0, 0, 1, 0, 1, 1, 0, (0, 0, 0, 0, 0, 0, 1,
(

1
26

)
,
(

5
26

)
,
(

3
13

)2 , −18 (9, 0, 1) 0

1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
(

4
13

)
,
(

6
13

)
,
(

7
13

)
,

1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0,
(
1
2

)2

1, 0, 1, 1) 0, 0, 0, 0)

17 16 (1, 0, 1, 0, 1, 0, 1, (0, 0, 0, 0, 0, 0, 0,
(

1
34

)
,
(
23
34

)
, −22 (7,−, 0) 0

1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0,
(

5
17

)2 ,
(

7
17

)2 ,
(
15
17

)
,

1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
(
1
2

)2

1, 1, 0, 1, 0, 0, 1 0, 2, 0, 0, 0, 0, 0,

0, 1, 0, 1, 0) 0, 0, 0, 0, 0)

19 18 (1, 1, 1, 1, 1, 0, 0, (0, 0, 0, 0, 0, 0, 0, 0,
(

3
38

)
,
(
11
38

)
,
(

1
19

)2 , −22 (5,−, 0) 0

1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,
(

4
19

)
,
(

8
19

)
,
(

17
19

)

0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
(
1
2

)2

0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 1, 0, 0, 0, 0, 0) 0, 0, 0, 2, 0, 0)

Table 2.

Proof. The proof is analogous to that of Theorem 5.1. We remark that in Table 2
one can find: the properties which characterize the pair (C1,g1); the singularities
of (C1 ×Dp)/(g1 × τp); the value of K2

X ; the fixed locus (n, g, k + 1) of the auto-
morphism induced on S; and this identifies Mp

(n,g,k+1) whose dimension is m. �

Corollary 6.2. All the K3 surfaces admitting a non-symplectic automorphism of
order p = 3 (resp. 3 < p ≤ 13, 13 < p ≤ 19) which fixes at least 2 (resp. 1, 0)
curves admit a non-symplectic automorphism of order 2p induced by id× τp.

The results in Corollary 6.2 were already proved in [8] for p = 3 and [15]
for p > 3.

Remark 6.3. The example in line 9 of Table 2 was already considered in [10] and
is also related to the construction presented in [23].

Remark 6.4. The K3 surfaces given in Table 2 admit an automorphism of or-
der 2p, induced by id × τp (Corollary 6.2) and one of order 2, induced by id× ιp.
The fixed locus of these automorphisms can be computed case by case. In Section 7
we compute it in certain cases, by using a projective model of the surfaces.

Example 6.5. As example we completely describe the construction of the K3
surface in line 19 of Table 2. We consider the pairs (C1,g1) and (C2,g2) such that
|gi| = 10 and:

• g(C1) = 22, C1 → C1/〈g1〉 is branched in 7 points; 6 of them are points
of total ramification and the local action of the automorphism near these
points is −ζ35 , the seventh point is a ramification point of order 5 and the
local action of g1

2 is ζ35 ; The dimension of the eigenspaces for the induced
action in cohomology is (α1, . . . , α9) = (4, 2, 0, 4, 2, 1, 5, 3, 1);

• C2 � D5, g2 = τ5 (cf. Example 2.5).
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Figure 1.

We will denote by Pi, i = 1, 2, 3, 4, 5, 6, 7 the branch points of C1 → P1, by Qj ,
j = 1, 2, 3 the branch points of C2 → P1 and we assume that Q1 is a point of total
ramification, Q2 is a branch point of order 5 and Q3 is a branch point of order 2.

The singularities of the quotient (C1 × C2)/(g1 × g2) are:

6 singularities of type 1
10 (1, 1) (over Pi ×Q1, i = 1, . . . , 6);

6 singularities of type 1
5 (1, 2) (over Pi ×Q2, i = 1, . . . , 6);

6 singularities of type 1
2 (1, 1) (over Pi ×Q3, i = 1, . . . , 6);

2 singularities of type 1
5 (1, 1) (over P7 ×Q2);

1 singularity of type 1
5 (1, 3) (over P7 ×Q1).

The resolution of the singularities is as in Figure 1. From now on we will use
the labels as in Figure 1.

By Proposition 3.7 the curves Vi, i = 1, . . . , 7, are (−1)-curves, the curve H1 is
a (−1)-curve, the curve H2 is a curve of genus 2 and self intersection −4 and the
curve H3 is a curve of genus 10 and self intersection −3.

In order to construct the minimal model S, we consider the following contrac-
tions:

1) we contract the curves Vi, i = 1, . . . , 7;

2) we contract the image of the curves Ai, i = 1, . . . , 6;

3) we contract the image of the curves Bi, i = 1, . . . , 7;

4) we contract the image of the curves Ci, i = 1, . . . , 6;

5) we contract the image of the curve H1;

6) we contract the image of the curve D.

We obtain the surface S as in the Figure 2.
We contracted 28 curves and since the canonical bundle of X has self-intersec-

tion K2
X = −28, we obtain K2

S = 0. Now we verify that the surface S satisfies the
hypothesis of Lemma 4.7 and this proves that S is a K3 surface.
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Figure 2.

By adjunction, 2g(C1) − 2 = (KX − F2)F2 = KXF2 = 42 and 2g(C2) − 2 =
(KX − F1)F1 = KXF1 = 2. The exceptional divisor E of the blow up X → S is

E =

6∑
i=1

(
6Vi + 3Ai + 2Bi + Ci

)
+ 3V7 + 2B7 + 2H1 +D.

The curves Vi, i = 1, . . . , 6 are sections of the fibration π2, the curve V7 meets the
fiber F1 of the same fibration in two points. Since F1E =F1(

∑6
i=1(6Vi)+3V7) = 42,

(KX − E)F1 = KXF1 − EF1 = 0. Analogously, the curve H1is a section of the
fibration π1. Since F2E = F22H1 = 2, (KX − E)F2 = KXF2 − EF2 = 0.

By Remark 4.9 the fixed locus of gS on S consists of one curve of genus 2,
labelled in Figure 2 by H̃2 and 1 point, labelled in Figure 2 by P7.

Since C2 is a rigid curve and C1 varies in an irreducible 4-dimensional family,
we in fact construct an irreducible 4-dimensional family F of K3 surfaces S with
a non-symplectic automorphism of order 5 and fixed locus (n, g, k + 1) = (1, 2, 1).
Therefore F ⊂ M5

(1,2,1).

We observe that the order 10 automorphism induced on S by id × τ5 fixes 7
points labelled in Figure 2 by Pi, i = 1, . . . , 7 and the involution induced on S by
(id× τ5)

5 fixes one curve of genus 10, labelled in Figure 2 by H̃3.

6.1. Intermediate quotients

The 2p : 1 map C1 ×Dp → (C1 ×Dp)/(g1 × τp) clearly factorizes through

C1 ×Dp
p:1−→ (C1 ×Dp)/(g1 × τp)

2 2:1−→ (C1 ×Dp)/(g1 × τp).

This induces a 2:1 rational map between the minimal model, Q, of (C1×Dp)/(g1×
τp)

2 and the K3 surface S. In particular Q is a 2-cover of a K3 surface. We observe
that pg(Q) ≥ pg(S). This immediately implies that the Kodaira dimension k(Q)
of Q is non negative. The following examples show that all the other three possi-
bilities, k(Q) = 0, 1, 2, are realized by our classification. First we notice that the
genus of the quotient C1/g1

2 is αp and so q(Q) = αp.
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Consider line 18 of Table 2, corresponding to the quotient (D3×D3)/(τ
5
3 × τ3).

The quotient (D3 × D3)/(τ
5
3 × τ3)

2 is isomorphic to (D3 × D3)/(δ3 × δ23). The
minimal model of such a surface is described in [34] (see Examples 3.8 and 2.5,
and the fourth line of Table 1) and is a K3 surface. In particular in this case
k(Q) = 0.

Let us consider the line 9 of Table 2. The map C1 → C1/g1
2 � P1 is branched

in 12 points and an equation of C1 is w3 = p12(t) where p12(t) is a polynomial
with 12 simple roots. With the same method we will apply in Section 7, case
p = 3, we obtain the equation y2 = x3 + p212(t) of (C1 × Dp)/(g1 × τp)

2. So
the surface Q admits an elliptic fibration, its birational invariant are q(Q) = 0,
pg(Q) = 3 = α2 + α5, and we obtain k(Q) = 1.

Let us consider the line 19 of Table 2. It corresponds to the quotient (C1×D5)/
(g1×τ5) where g(C1) = 22. Let Y be the minimal resolution of (C1×D5)/(g1×τ5)

2.
As in Example 6.5 , one proves that the singularities of (C1×D5)/(g1×τ5)

2 are 10
singularities of type 1

5 (1, 1), 12 singularities of type 1
5 (1, 2) and 2 singularities of

type 1
5 (1, 3). The computation of K2

Y can be done as explained in Remark 3.3 (4)
and it gives K2

Y = 10 > 0. Since Q is the minimal model of Y , K2
Q ≥ K2

Y and we

conclude that K2
Q > 0, Q is a surface of general type, and so k(Q) = 2.

7. Equations

7.1. Automorphisms of order p = 3

In Proposition 4.2 of [1] it is proved that every K3 surface admitting a non-sym-
plectic automorphism of order 3 fixing at least two curves is in fact an isotrivial
elliptic fibration with generic fiber isomorphic to the elliptic curveEζ3 with complex
multiplication of order 3. Indeed, every such a K3 surface is described as an
elliptic K3 surface with an equation of type y2 = x3 + f12(t). In view of our
construction this is very natural: we proved that every such a K3 surface is the
minimal model of the quotient (C1 × D3)/(g1 × τ3) where D3 � Eζ3 and τ3 are
described in Example 2.5 and (C1,g1) varies. The maximal component is obtained
by (C1,g1) as in the first line of Table 2. In this case C1 is a 6 : 1 cover of P1

whose ramification consists of 12 points of order 6. An equation of C1 is w6 =
f12(t), where deg(f12(t)) = 12 and f12(t) does not have multiple roots. The local
action near the fixed points is −ζ23 (see Table 2) and thus we can assume that
the automorphism g1 is g1 : (w, t) �→ (−ζ23w, t). The new functions x := uw2,
y := vw3 and t are invariant for g1 × τ3 and satisfy the equation

y2 = x3 + f12(t).

Moreover, if W is the surface defined by this equation, then the generic fiber of the
map C1 ×D3 → W consists of 6 points, thus we have the following commutative
diagram:

C1 ×D3

6 : 1 ↙ ↘ 6 : 1
W ��� (C1 ×D3)/(g1 × τ3)
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which shows that W and S are birational and so W is a singular model of the K3
surface S. This construction was also considered in Example 3.11 of [16].

More in general, the curve C1 has an equation of type w6 = f12(t), where f12
does not admit roots with multiplicity greater than 5 and there exists no a polyno-
mial h(t) such that either f12(t) = h2(t) or f12(t) = h3(t). If some of the roots of
f12(t) have multiplicity higher than 1, then the fixed locus of id× δ3 changes and
we obtain a member of a more special family (cf. lines from 2 to 18 of Table 2).

We saw in Section 5 that certain K3 surfaces admitting a non-symplectic auto-
morphism of order 3, can be obtained as quotient of (C1×D3) by an automorphism
of order 3, g1×δ3. So we obtain a different equation for these K3 surfaces. Indeed,
in this case one can assume C1 to have the following equation w3 = f6(t), such
that f6(t) does not admit roots with multiplicity greater than 2. In a very similar
way as before this gives the following equation for the quotient surface:

y2 = x3 + f6(t)
2.

These equations were already considered in [14] and [15].

In [2] it is proved that every K3 surface in M3
(n,g,k+1) and with minimal Picard

number has the following equation: y2 = x3 + f12(t). This is exactly the one of
the product-quotient (C1 ×D3)/(g1 × τ3) with C1 given by w6 = f12(t). Observe
that also the equation of (C1 ×D3)/(g1 × δ3) is of this type. This concludes the
proofs of Theorems 5.1 and 6.1 in case p = 3.

7.2. Automorphisms of order p = 5

In Theorem 6.1 and Table 2 we proved that the K3 surfaces admitting a non-
symplectic automorphism of order 5 with at least one curve in the fixed locus are
the minimal models of quotients (C1×D5)/(g1×τ5) for a certain choices of the pair
(C1,g1). In particular the maximal component (with fixed locus (n, g(C), k+1) =
(1, 2, 1)) is obtained choosing C1 to be a 10 : 1 cover of P1 branched along 6
points of order 10 and 1 point of order 5. An equation of C1 is w10 = f6(t)
where deg(f6(t)) = 6 and f6(t) does not have multiple roots (we are assuming the
branch point of order 5 is at infinity). The local action near the fixed points is −ζ35
(see Table 2) and so we can assume that the automorphism g1 is g1 : (w, t) �→
(−ζ35 w, t). The functions x := uw2, y := vw5 and t are invariant under g1 × τ5
and satisfy the equation

y2 = x5 + f6(t).

As in the case p = 3, one shows that this gives in fact a (singular) model of the
K3 surface S. The equation exhibits S as double cover of P2

[x,t] branched along

the (non homogenous) sextic x5 + f6(t) = 0. A similar model for this K3 surface
is described in Example 5.1 of [2], where the relation with the curves C1 and D5

was not observed.
More in general, we observe that every curve C1 in Table 2 admits an equation

of the type w10 = f6(t) with f6(t) which is not a square, such that g1 : (w, t) →
(−ζ25 w, t). If f6(t) is generic we find the previous equation and so the maximal
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component of the moduli space of K3 surfaces admitting a non-symplectic automor-
phism of order 5 fixing at least one curve. Specializations of the polynomial f6(t)
induce specializations of the K3 surface S. For example the line 20 of Table 2
corresponds to the curve C1 given by w10 = t2g4(t), deg(g4(t)) = 4, and g4 does
not have multiple roots. The corresponding K3 surface is the double cover of P2

[x,t]

branched along the sextic x5 + t2g4(t) = 0, which has a singular point of type A4

in the point (x, t) = (0, 0).

Every K3 surface that is the double cover of P2 branched along a sextic can
be viewed as a hypersurface in the weighted projective space WP(3, 1, 1, 1). In
particular, the homogeneous equation of S can be written as y2 = x5s+ f6(t : s),
where (y : x : s : t) are the homogeneous coordinates of WP(3, 1, 1, 1) (y is the co-
ordinate of weight 3). This remark will be useful in view of the equations we found
in cases p = 7, 11.

In [2] it is proved that every K3 surface in M5
(n,g,k+1) and minimal Picard

number is a double cover of P2
(x:s:t) with following equation y2 = x5s + f6(t : s).

This is exactly the one of the product-quotient (C1 ×D5)/(g1 × τ5) with C1 given
by w5 = f6(t). Observe that also the equation of (C1 × D5)/(g1 × δ5) is of this
type. This concludes the proofs of Theorems 5.1, 6.1 in case p = 5.

The automorphism τ5 (resp. δ5) on D5 induces the non-symplectic automor-
phism id× τ5 (resp. id× δ5) of order 10 (resp. 5) on the K3 surface S which acts
on the coordinates (x, y, t) as (x, y, t) → (ζ45 x,−y, t) (resp. (x, y, t) → (ζ45 x, y, t)).
The fixed locus of id × δ5 consists of one curve of genus 2 if f6(t) is generic, and
specializes to different fixed locus when f6(t) specializes (see also [2], Example 5.1).

We observe that the non-symplectic automorphism (id × τ5)
5 of order 2 is

exactly the cover involution of the double cover of P2 and this allows one to compute
easily its fixed locus.

We saw in Section 5 that certain K3 surfaces admitting a non-symplectic au-
tomorphism of order 5, can be obtained from the quotient (C1 × D5)/(g1 × δ5).
So we obtain a different equation for these K3 surfaces. The surfaces obtained in
this way are listed in Table 1. In the case of the 1-dimensional and 0-dimensional
families the equation of the curve C1 is w5 = f3(t), deg(f3(t)) = 3 and f3 is not
a cube, and the automorphism is g1 : (w, t) → (ζ35w, t). The functions x := uw2,
y := vw5 and t are invariant and give a (singular) model of the K3 surface S, with
equation y2 = x5s+ f2

3 (t).

7.3. Automorphisms of order p = 7

In Theorem 6.1 and Table 2, we proved that the K3 surfaces admitting a non-
symplectic automorphism of order 7 with at least one curve in the fixed locus are
the minimal model of the quotient (C1 ×D7)/(g1 × τ7) for a certain choice of the
pair (C1,g1). In particular, the maximal component (with fixed locus (n, g(C), k+
1) = (3, 1, 1)) is obtained choosing C1 to be a 14 : 1 cover of P1 branched along 4
points of order 14 and 1 point of order 7. An equation of C1 is w14 = t(t− 1)(t−
λ1)(t − λ2). The local action near the fixed points is −ζ47 (see Table 2) and thus
the automorphism is g1 : (w, t) �→ (−ζ47w, t). The functions x := uw2, y := vw7, t
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are invariant for g1× τ7 and satisfy the equation y2 = x7+ t(t− 1)(t−λ1)(t−λ2).
As in case p = 3, one shows that this gives in fact a (singular) model of the K3
surface S: the equation can be homogeneized to

(7.1) y2 = x7s+ t(t− s2)(t− λ1s
2)(t− λ2s

2) ⊂ WP(4, 2, 1, 1)(y:t:x:s).

In order to show that equation (7.1) corresponds in fact to a (singular model of a)
K3 surface we observe that the surface defined by (7.1) is well formed (Definition 6.9
in [12]) and quasismooth (Definition 6.3 in [12]). If a hypersurface Z of degree d in a
weighted projective space WP(a0, a1, a2, a3) is well formed and quasismooth, then

the adjunction formula generalizes and the canonical sheaf is ωZ � OZ(d−
∑3

i=0 ai)

(cf. Paragraph 6.14 in [12]). In particular, if d =
∑3

i=0 ai, then Z is a K3 surface
and so the surface defined by (7.1) is a singular model of a K3 surface.

We recall that the generic hypersurface of degree 8 in WP(4, 2, 1, 1) is a singular
model of a K3 surface ([31], Section 4.5) with two singularities of type 1

2 (1, 1) at
the points (1 : 1 : 0 : 0), (−1 : 1 : 0 : 0). The surface defined by (7.1) (which is not
general) has no other singular points.

Remark 7.1. Observe that the K3 surface described by the equation y2 = x7s+
t(t − s2)(t − λ1s

2)(t − λ2s
2) admits an elliptic fibration, induced by the pencil

of rational curves x = μs in WP(2, 1, 1)(t:s:x), whose fiber over μ is isomorphic to

y2 = μ7s4+ t(t−s)(t−λ1s)(t−λ2s). By elementary transformations one can bring
it to the following Weierstrass form Y 2 = X3 + (α+ βμ7)X + (μ7 − 1). Viceversa
every K3 surfaces admitting an elliptic fibration described by the equation Y 2 =
X3 + (α + βμ7)X + (μ7 − 1) can be described as a hypersurface in WP(4, 2, 1, 1)
with equation (7.1) by the inverse transformation.

In [2] it is proved that every K3 surface in M3
(n,g,k+1) and with minimal Pi-

card number admits an elliptic fibration with the following Weierstrass equation:
y2 = x3 + (a+ bt7)x + (t7 − 1). We proved that the product-quotient surfaces
(C1 × D7)/(g1 × τ7) has the equation (7.1). By Remark 7.1, every surface with
Weierstrass equation y2 = x3+(a+ bt7)x+(t7− 1) admits also a model as the one
given by (7.1) and so is a product-quotient surface (C1 ×D7)/(g1 × τ7), with C1

given by w14 = f4(t). Observe that also the equation of (C1 ×D7)/(g1 × δ7) is of
this type. This concludes the proofs of Theorems 5.1 and 6.1 in case p = 7.

The automorphism induced on S by id× τ7 acts on the coordinates of WP(4, 2,
1, 1) in the following way: (y : t : x : s) �→ (−y : t : ζ67 x : s). It has order 14 and
its fixed locus consists of 5 points: (0 : 0 : 1 : 0), (0 : 0 : 0 : 1), (0 : 1 : 0 : 1),
(0 : λ1 : 0 : 1), (0 : λ2 : 0 : 1). The singular points of WP(4, 2, 1, 1) are switched by
the automorphism. The fixed locus of the non-symplectic automorphism of order 7
induced by id × δ7 consists of the point (0 : 0 : 1 : 0) and of the curve y2 = t(t −
s2)(t−λ1s

2)(t−λ2s
2) ⊂ WP(4, 2, 1). The well formed expression (cf. Definition 5.11

in [12]) of this curve is y2 = t(t−s)(t−λ1s)(t−λ2s) ⊂ WP(2, 1, 1) (see Lemma 5.7
in [12]) and the genus of such a curve is 1 (e.g., Corollary 3.4.4 in [9]).

We observe that the singular points of WP(4, 2, 1, 1) are contained in the fixed
locus of the automorphism. From (7.1) one sees that S is a 2 : 1 ramified cover of
WP(2, 1, 1), with branch locus given by x7s+ t(t−s2)(t−λ1s

2)(t−λ2s
2) = 0. The
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weighted projective plane WP(2, 1, 1) has a natural embedding in P3 with coordi-
nates (x0 : x1 : x2 : x3) = (t : x2 : s2 : xs), whose image is a cone Q of equation
x2
3 = x1x2. The branch locus of the covering is now given by the intersection

of Q and the curve x3
1x3 + x0(x0 − x2)(x0 − λ1x2)(x0 − λ2x2) = 0, which does not

pass through the vertex of Q. The automorphism descends to P3 with the action
(x0 : x1 : x2 : x3) �→ (x0 : ζ27x1 : x2 : ζ7x3). The fixed locus is the isolated point
(0 : 1 : 0 : 0) and the curve x1 = x3 = 0, which passes through the vertex of Q.
We blow up the vertex of Q introducing a copy of P1. The induced automorphism
leaves invariant the exceptional divisor E and fixes the strict transform of the fixed
curve B. Since it restricts to an automorphism of E, it fixes two points on it, one
of them is E ∩B. Above the other fixed point on E we find two fixed point on S.

The fixed locus of the non-symplectic involution id× ι is the curve x7s+ t(t−
s2)(t− λ1s

2)(t− λ2s
2) ⊂ WP(2, 1, 1). This is a curve of genus 9 in WP(2, 1, 1) by

Corollary 3.4.4 in [9].
In Table 1 we showed that certain K3 surfaces admitting a non-symplectic

automorphism of order 7, can be obtained from the quotient (C1 ×D7)/(g1 × δ7).
In the case of the 0-dimensional family the equation of the curve C1 is w7 = t(t−1)
and the automorphism is g1 : (w, t) → (ζ47w, t). The functions x := uw2, y := vw7

and t are invariant and gives a (singular) model of the K3 surface S, with equation
y2 = x7s+ t2(t− s2)2 ⊂ WP(4, 2, 1, 1)(y:t:x:s).

7.4. Automorphisms of order p = 11

If p = 11, one can obtain an equation for a (singular model) of S, minimal model
of (C1 ×D11)/(g1 × τ11), as in cases p = 3, 5, 7: an equation for the curve C1 is
w11 = t(t− 1)(t−λ) (where if λ = 0, 1 the curve C1 is the one described in line 27
of Table 2, if either λ = 1 or λ = 0, the curve C1 is the one described in line 28
of Table 2) and the automorphism g1 : (w, t) → (−ζ611, t). An equation of S is
y2 = x11s− t(t− s4)(t− λs4) where y := vw11, t, x := uw2 and s are coordinates
of the weighted projective space WP(6, 4, 1, 1). As in case p = 7, one shows that
this equation define in fact a singular model W of a K3 surface. The surface W is
singular in the point (1 : 1 : 0 : 0).

As in the previous cases, in order to conclude the proofs of Theorems 5.1
and 6.1 it suffices to show that every K3 surface with equation the elliptic fibration
y2 = x3 + ax + t11 (cf. Example 7.1 in [2]) admits in fact the equation y2 =
x11s− t(t− s4)(t− λs4) ⊂ WP(6, 4, 1, 1). This can be done as in Remark 7.1

The automorphism id × τ11 induces the non-symplectic automorphism (y : t :
x : s) �→ (−y : t : ζ1011x : s) on the surface W whose fixed locus consists of the
points (0 : 0 : 0 : 1), (0 : 1 : 0 : 1), (0 : λ : 0 : 1), and (0 : 0 : 1 : 0) (which are all
distinct if λ = 0 and λ = 1). The point (0 : 0 : 1 : 0) is a singular point of type of
the surface.

The automorphism id × δ11 induces the non-symplectic automorphism (y : t :
x : s) �→ (y : t : ζ1011x : s) on the surface W whose fixed locus consists of the point
(0 : 0 : 1 : 0) and of the curve y2 = t(t−s4)(t−λs4) ⊂ WP(6, 4, 1). The well formed
expression of this curve is y2 = t(t−s2)(t−λs2) ⊂ WP(3, 2, 1) which is quasismooth
if λ = 0, λ = 1. In this case the genus of the curve is 1 (see Theorem 7.2 in [12]).
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The automorphism id × ι induces the non-symplectic involution (y : t : x : s)
�→ (−y : t : x : s) on the surface W whose fixed locus consists of the curve
x11s − t(t − s4)(t − λs4) ⊂ WP(4, 1, 1) whose genus is 10, if λ = 0, λ = 1 (see
Theorem 7.2 in [12]).

8. Moduli of K3 surfaces

By Theorems 5.1 and 6.1, certain components Mp
(n,g(C),k+1) of the moduli space

of the K3 surfaces with an automorphism of order p coincide with certain moduli
spaces FPQ(C1, Dp) of the K3 surfaces which are minimal models either of the
quotients (C1 ×Dp)/(g1× δp) or of the quotients (C1 ×Dp)/(g1× τp). Since both
Dp → Dp/δp � P1 and Dp → Dp/τp � P1 are branched in 3 points, the parameters
of the family depend only on the parameters of the curve C1. In particular the
dimension of the family of K3 surfaces is r − 3, where r =

∑
ai is the number of

ramification points of the cover C1 → C1/g1 � P1, cf. Proposition 4.5. Here we
describe the relation between the moduli of the curve C1 and the moduli of the
surface S. In particular we relate the variation of the Hodge structure of weight 2
of S with the one of H1(C1,Q).

A particular case is the one with p = 3 and the quotient (C1 ×D3)/(g1 × δ3).
In this case the variation of the Hodge structure of S (and of a Calabi–Yau 3-fold
constructed from S and D3) is described in [14]. Moreover, if the family is 1-
dimensional, the Picard–Fuchs equation of the surface S is found from the one of
the curve C1 (cf. Section 2.5 in [14]).

We now assume S to be the minimal model of (C1 ×Dp)/(g1 × δp). By con-
struction S admits a non-symplectic automorphism gS induced by id × δp. The
moduli space of the K3 surfaces S obtained in such a way is determined by the
variation of the period of S in a certain eigenspace H2(S,C)ζj

p
, cf. Section 4.3.

Indeed, the choice of the period of S determines the Hodge structure of H2(S,C)
completely.

Proposition 8.1. Let S be a generic K3 surface in the family FPQ(C1 × Dp)
of the surfaces minimal models of (C1 × Dp)/(g1 × δp) listed in Table 1. The
weight 2 Hodge structure of the transcendental lattice of S, TS ⊗Q, is induced by
the weight 1 Hodge structure of H1(C1,Q). In particular, the half twist (TS⊗Q)1/2
is H1(C1,C). As a consequence the dimension of the family FPQ(C1 × Dp) is
2g(C1)/(p− 1)− 1.

Proof. Since S is generic, the transcendental lattice of S carries a weight 2 Hodge
structure of type (1, (p− 1)(m+ 1)− 2, 1). Since the K3 surface S admits a non-
symplectic automorphism gS, the Hodge structure of TS ⊗ Q is of CM-type with
the field K � Q(ζp) (cf. [17]). In order to perform a half twist on the Hodge
structure one has to fix a CM-type, i.e. a set Σ of (p − 1)/2 distinct embeddings
of K in C with the property that no two of them are conjugate. By abuse of

notation, we put Σ = {ζp, . . . , ζ(p−1)/2
p } and so Σ = {ζ(p+1)/2

p , . . . , ζp−1
p }.



K3 surfaces and product-quotient surfaces with cyclic groups 1307

The eigenspaces decomposition (for the action of δp) of H
1(Dp) consists of p−1

vector spaces of dimension 1. Therefore K−1/2 � H1(Dp) as Hodge structure of
weight 1, where K−1/2 is the negative half twist of K (see Section 1.4 in [17])

Let us denote by ν : C1 ×Dp → S the map induced by the quotient map. The
pull-back ν∗ maps TS ⊗ Q in the (g1 × δp) -invariants in H1(C,Q) ⊗H1(Dp,Q).
For dimensional reason,

TS ⊗Q � ν∗(TS ⊗Q) =
(
H1(C,Q)⊗Q H1(Dp,Q)

)g1×δp
.

Let us consider the half twist of both the members of the above equation:

(8.1) (TS ⊗Q)1/2 � (
(H1(C,Q)⊗Q H1(Dp,Q))g1×δp

)
1/2

.

In order to compute the second member of (8.1), we first consider the (g1 × δp)-
invariant subspace of H1(C1,C) ⊗ H1(Dp,C) ⊂ H2(C1 ×Dp,C). We recall that
H1,0(Dp)ζi

p
is an eigenspace of dimension 1 if i ≤ (p − 1)/2, and is trivial if

i > (p − 1)/2. By the fact that pg(S) = 1, the pair (C1,g1) is such that there
exists only one value h̄ such that h̄ > (p − 1)/2 and H1,0(C1)ζh̄

p
is non zero. So

the Hodge decomposition of an eigenspace H1(C1)ζk
p
is trivial, in the sense that

H1(C1)ζk
p
= Ha,b(C1)ζk

p
with (a, b) ∈ {(1, 0), (0, 1)}, except for k = h̄. Hence we

obtain:

((
H1(C,C) ⊗H1(Dp,C)

)g1×δp)
=

p−1∑
i=1

(
(H1(C1,C)ζi

p
⊗H1(Dp,C)ζp−i

p

)

= H1,0(C1)ζh̄
p
⊗H1,0(Dp)ζp−h̄

p
⊕

(p−1)/2∑
i=1

(
H1,0(C1)ζi

p
⊗H0,1(Dp)ζp−i

p

)

⊕H0,1(C1)ζp−h̄
p

⊗H0,1(Dp)ζh̄
p
⊕

(p−1)∑
i=(p+1)/2

(
H0,1(C1)ζi

p
⊗H1,0(Dp)ζp−i

p

)
.

Now we consider the splitting given by the choice of Σ = {ζp, . . . , ζ(p−1)/2
p } and

we recall that the action of gS on TS is induced by the action of δp on Dp. So(∑p−1
i=(p−1)/2

(
H0,1(C1)ζi

p
⊗H1,0(Dp)ζp−i

p

))
Σ̄
= 0. Hence,

((
H1(C,Q)⊗Q H1(Dp,Q)

)g1×δp)1,0
1/2

=
(
H1,0(C1)ζh

p
⊗H1,0(Dp)ζp−h

p

)

⊕
( (p−1)/2∑

i=1

H1,0(C1)ζi
p
⊗H0,1(Dp)ζp−i

p

)
.

Since H1,0(Dp)ζi
p
� C if i ≤ (p− 1)/2, we obtain

((
H1(C,Q)⊗QH

1(Dp,Q)
)g1×δp)1,0

1/2
� H1,0(C1)ζh

p
⊕
(p−1)/2∑

i=1

H1,0(C1)ζi
p
= H1,0(C1).
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By conjugacy,

((
H1(C1,Q)⊗Q H1(Dp,Q)

)g1×δp)0,1
1/2

= H0,1(C1).

Substituting in (8.1), we obtain (TS ⊗Q)1/2 � H1(C1,C) as Hodge structure.
In particular rk(TS ⊗ Q) = 2g(C1) and by the computation of the moduli

of the K3 surface S with a non-symplectic automorphism of order p, it follows
m = 2g(C1)/(p− 1)− 1. �

Remark 8.2. The eigenspaces decomposition (for the action of g1) of H
1(C1,Q)

splits this space in(p−1) equidimensional subspaces and thus(p−1)(dim(H1(C1)ζj
p
))

= 2g(C1) for every j ∈ {1, . . . , p − 1}. By the previous proposition we have
dim(H1(C1)ζj

p
) = 2g(C1)/(p− 1) = m+ 1 for every j ∈ {1, . . . , p− 1}. Moreover,

in the proof of the previous proposition we saw that there exists a unique value h̄
such that h̄ > p−1 and H1,0(C1)ζh̄

p
is non zero. In particular dim(H1,0(C1)ζh̄

p
) = 1,

because pg(S) = 1. So

m = dim(H1(C1)ζh̄
p
)− 1 = dim(H1,0(C1)ζh̄

p
⊕H0,1(C1)ζh̄

p
)− 1

= dim(H1,0(C1)ζp−h̄
p

) = αh̄.

Remark 8.3. In case S is the minimal model of (C1 × Dp)/(g1 × τp) one can
obtain a result similar to the one of Proposition 8.1: the half twist of TS ⊗Q is a
sub-Hodge structure of H1(C1,Q) and in fact the one of

∑p−1
i=1 H1(C1,C)−ζi

p
. An

explicit example is given in Section 3.11 of [17].

The variation of the period of S is described by the Picard–Fuchs equation
of ωS, and so by the Picard–Fuchs equation of certain holomorphic 1-form on C1.
In particular if C1 varies in a 1-dimensional family, then it admits an equation
of type yN = ta(t − 1)b(t − λ)b. The forms of these curves and their Picard–
Fuchs equations are described in Section 2.5 of [14], and this immediately gives
the Picard–Fuchs equations of S.

For example the Picard–Fuchs equation of the 1-dimensional family M5
(10,0,2) is

the Picard–Fuchs equation of the 1-holomorphic form ωC of C1 such that g1(ωC) =
ζ3pωC . Since an equation for C1 is y5 = t(t − 1)(t − λ), the holomorphic form we
are interested in is ω1 := dt/y2 and its Picard Fuchs equation is

λ(1 − λ)
∂2

∂λ2
+
(4
5
− 8

5
λ
) ∂

∂λ
− 2

25
=

2

5

t(t− 1)

(t− λ)y2
.
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Basel, 2007.



1310 A. Garbagnati and M. Penegini

[22] Magma database of small groups. http://magma.maths.usyd.edu.au/magma/

htmlhelp/text404.htm.

[23] Matsumoto, K. and Terasoma, T.: Theta constants associated to cubic three-
folds. J. Algebraic Geom. 12 (2003), no. 4, 741–775.

[24] Miranda, R.: Algebraic curves and Riemann surfaces. Graduate Studies in Math-
ematics 5, American Mathematical Society, Providence, RI, 1995.

[25] Miranda, R.: The basic theory of elliptic surfaces. Dottorato di Ricerca in Matem-
atica, Dipartimento di Matematica dell’ Università di Pisa, ETS Editrice Pisa, 1989.
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degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy.

E-mail: matteo.penegini@unimi.it

Both authors are partially supported by PRIN 2010–2011 “Geometria delle varietà alge-
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