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A Born approximation from backscattering data
for live loads in Lamé system

Juan Antonio Barcelé, Magali Folch-Gabayet, Salvador Pérez-Esteva,
Alberto Ruiz and Mari Cruz Vilela

Abstract. We will study the inverse scattering problem for the Lamé
equation in elasticity with live loads. We give the definition of a Born
approximation of the load from backscattering data. We will see that
in 2D, for non-smooth load matrices the main singularities of the matrices
are in fact contained in their Born approximations. The singularities are
measured in the scale of Sobolev spaces.

1. Introduction and statement of results

We consider Q to be a square matrix (g;;(x)) of order n such that each com-
ponent ¢;;(z) is compactly supported and belongs to L"(R™), for some r to be
determined later. This Q is assumed to be the matrix of an unknown linear load
inside a known homogeneous and isotropic elastic solid. We will try to get in-
formation on its coefficients, hence to recover information on parameters inside
the unknown perturbation. We obtain partial information on the most singular
part of the matrix by defining an appropriate Born approximation based upon the
scattering data.
The loaded system is governed by the equation

(1.1) A*u(z) +w?u(z) = Q(z)u(z), w>0, z€R™ n>2,
where u, the displacement vector, is a vector-valued function from R™ to C™, and
(1.2) A*u(z) = pAlu(z) + (A + p)Vdiv u(z),

with AI denoting the diagonal matrix with the Laplace operator on the diagonal.
The constants A and p are known as the Lamé constants. Throughout this
paper we will assume that p > 0 and 2+ A > 0, so that the operator A* is strongly
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elliptic. We will denote by k, and ks the speed of propagation of longitudinal waves
(p-waves) and transverse waves (s-waves) respectively, which are given by

2 2
2 w w

E2= ——— and k?=".
NCTEDVEES

We introduce the spectral Navier operator for linear elasticity in a homogeneous
and isotropic material,

Lu(z) = A*u(z) + w?u(z), w>0, 2€R", n>2
where A* is given in (1.2).
It is well known that in a domain of R™, any solution u of the homogeneous
spectral Navier equation,

(1.3) Lu(z) = A*u(z) + w?u(zr) =0,

admits the decomposition

(14) u=u,+ug,

where
1 .

(1.5) W= Vdiva and us=u-u,
P

are called the compressional part and the shear part of u, and they are solutions
of the vectorial homogeneous Helmholiz equations ATu,(z) + k2 u,(z) = 0 and
ATug(x) + k2 us(z) = 0, respectively.

A solution u of A*u(z)+w?u(x) = 0 in an exterior domain satisfies the outgoing
Kupradze radiation conditions if u, and u, satisfy the corresponding outgoing
Sommerfeld radiation conditions; that is,

(1.6) (Or —ikp)u, = 0(7“7(”71)/2), r=|z| = oo,

(1.7) (8, —iks)us = o(r~""H/2) p=|z| - .

If u is an entire solution (i.e., a solution in the whole R™) of the homoge-
neous equation given in (1.3) satisfying the outgoing Kupradze radiation condi-
tions, then u = 0 (to see this it is enough to realize that this result is true for the
Helmholtz equation, see [5] and [14] for the two-dimensional case and [6] for the
three-dimensional case).

As a consequence, for a compactly supported vector-valued function f, if there
exists a solution u of the Navier equation

(1.8) A*u(z) +w?u(z) =f(z), w>0, z€R", n>2,

satisfying the outgoing Kupradze radiation conditions (1.6) and (1.7), where u,
and ug are given by (1.5) off the support of f, then the solution is unique.
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Any solution u of (1.1) such that
(1.9) u(z) = ui(z) + v(z),

where u;, the incident wave, is a solution of the homogeneous Lamé equation given
in (1.3), and v, the scattered solution, satisfies the outgoing Kupradze radiation
conditions (1.6) and (1.7), will be called a scattering solution for the Lamé equation.

We will always consider incident plane waves either transverse plane waves
(plane s-waves)

u;(z) = eths e g

with polarization vector ¢ € S"~! orthogonal to the wave direction § € S*~!, or
longitudinal plane waves (plane p-waves)

u?(z) = ethrlrg,

We use the so called limiting absorption principles to construct the scattered
solutions vP(z;w,f) and v*(z;w, 0, ), corresponding to incident plane p-waves
and incident plane s-waves respectively, for sufficiently high energy (see [2]). We
require the high energy condition because we do not assume any symmetry on Q;
even more, it could be a complex matrix. Even in the scalar case (Schrodinger
equation) for complex potentials (non self-adjoint operators) the uniqueness of the
scattered solution cannot be obtained for small frequencies (see [7]).

Since vP and v* satisfy (1.3) off the support of Q, we can perform the decom-
position given in (1.4) of both solutions. From the asymptotic expressions of these
decompositions we define different scattering amplitudes, which will depend on
the corresponding parameters, namely vb _((;w,0), V& (Ciw,0), vy o (CGw, 0, ¢)
and, vg ((iw, 0, ), where ¢ = x/|z|. These data are known as p — p, p — s,
s — p and, s — s scattering data, respectively.

One expects to recover the load Q from high energy limits of scattering data.
This was the case for the Schréodinger equation, the scalar analogous of (1.1),
see [10] and [9]. Nevertheless, in the case of the Lamé system the recovery from
high energy limits works for (1.1) only in very special cases, namely either assuming
Q=q(z)L or ky = ks (see [1]). It is then natural to define a Born approximation
of Q from partial knowledge of the scattering data. In a previous work [1] we
studied the case of fixed angle scattering data.

In this work we define a Born approximation Qj constructed by using the set
of backscattering data, which are given by the scattering amplitude with 8 = —(,
for any wave direction € and any polarization vector ¢ in the incident plane waves.
We prove that this approximation allows us to reconstruct the main singularities
of the matrix Q(z) in the 2D case, where the singularities are measured in Sobolev
scales (see (1.10) below).

Theorem 1.1. Let 0 < 3 < 1. If Q is a square matriz function of order 2 in R?
with compact support such that Q € W#2(R?) N L"(R2) for some r > 1, then we
have that Q — Qp € W*2(R?) + C™(R?) for all a < B+ 1/2if 0 < 3 < 1/2, and
for a < 1if B>1/2, where W»2(R?) denotes the matriz-valued Sobolev spaces.
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In Section 2 we introduce the scattering solutions and define the Born ap-
proximation for backscattering data, we recall the limiting absorption principles
collected in [2]; we write the actual potential as a Neumann—Born series in term
of the resolvent and control the Sobolev norm of the general term in the series.
The quadratic term in the Neumann—Born series has to be treated independently.
We will write it in terms of operators which have interest on their own, and will
be studied in Section 3. The case k, = ks (vectorial Schrodinger equation) can be
reduced to the scalar case and it was studied in several works (see [8], [12], [13],
and [15]), so we avoid this special case. We include an appendix with several
calculations needed in Section 3.

Notation. We denote by A® the fractional differentiation operator
A= (1= 2) 2= FHe 7,

where F denotes the Fourier transform and (€) = (1 + |¢]*)Y/2,
We use the Sobolev spaces

(1.10) WP (R™) {f eS'(R") : A°f € LP(R”)},
and the weighted Sobolev spaces
WP (R™) {f e S'(R") : ASfGLf;(R”)},

where LE(R™) = { f : (z)° f € LP(R™)}. We will also consider the homogeneous So-
bolev spaces, defined for s > 0 as

WePRM) = { f € SR : (|¢]°F) € LP(R™)},

and for s < 0, ) ) )
WeP(R™) = (WP (R"))",

with 1/p + 1/p’ = 1. For each Banach function space B appearing in this paper
we will consider the vector-valued version B of functions with values in C" whose
norm is defined by replacing accordingly the complex modulus by the norm in C™.

Let z € C with $(z) # 0if R(z) > 0. R(z) = (A + 2)~! is the resolvent of the
Laplacian. For k € R, the operator R(k? +i0) is defined by

R(k* +1i0) = weak-lim (A +2)"'g.

z—k?, I2>0

We will denote by M f the Hardy—Littlewood maximal function of a locally
integrable function in R™,

1
Mf(m)_ili%m/mo,r |f(z —y)ldy.

Acknowledgement. We would like to thank J. M. Reyes for enlightening conver-
sations.
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2. The scattering amplitudes and the Born approximation

of Q

To define the scattering amplitudes for solutions of (1.8) we introduce the Leray’s
projection operator I — R, where I denotes the identity matrix of order n and R is
the operator acting on vector fields as a matrix

R = _(R’LR])a

where R; is the Riesz transform given by

_—
Rjgm:cnp.v./w =Y () dy.
re T — Y

Via the Fourier transform we have
~ (7 f 9 _ N n
(RO = ((©) 1) 7 = Mo 1©), €€r,

with f € L2(R") and ?(f) = (fl €),... ,ﬁ(f)), where II¢ /|¢| denotes the orthogonal
projection on the line defined by &.

We can generate solutions of equation (1.8) from the following limiting absorp-
tion principle.

Theorem 2.1 (Theorem 1.1 in [2]). Let be 1/p+1/qg=1 with 2/(n+1) <1/p—
1/g < 2/nif n > 2, 0or2/3 <1/p—1/q < 1 if n = 2. Then the weak limit
absorption principle for the operator A* holds in the space LP(R™) for outgoing
Kupradze radiation conditions, that is, for f € LP(R™) the weak limit

R(w? +i0)f = weak-lim (A* 4 2)7'f

z—w?, Iz>0
exists in LY(R™) and is a weak solution of the equation (1.8) satisfying

[ R2 +10) £l gy < € P20 ]
Furthermore, if f € LP(R™) N CP(R™) then R(w? +i0) f = u is the unique solu-
tion of (1.8) satisfying the outgoing Kupradze radiation conditions given in (1.6)
and (1.7). We will refer to u as the outgoing solution.

Moreover, we have the representation (Helmholtz decomposition)

1 1
2.1 =R(w?+i0)f = 2+i0)I(RE) + — R(k2 +4i0)I(f — Rf).
(2.1) u=R(w’”+10) 2M+)\R(kp+20) (R )+IuR(k:S+zO) (f—RfT)

Given f € CJ°(R™) we can write the outgoing solution u = u, + u, off the
support of f. Here u is defined by (1.8) and u, and uy are given by (1.5). One
can verify that u, and u, satisfy the following vectorial Helmholtz equations (see
the proof of Theorem 1.1 in [2]):

1 1
Alu, + kJu, = -~ Vdivf, Alu, +kZus = = (k2f + Vdiv ).
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Since the right-hand sides of these equations are vector fields in C§°(R™) and u,
and ug satisfy the corresponding outgoing Sommerfeld radiation conditions for
these Helmholtz equations, we have the following asymptotic expansions:

. eikp|a:| e

(@) = ¢ k'™ s e (ks 2/ fal) + 0 (]~ 7072), ol oo,
. eiks\x\ i

u,(z) = c k"2 D72 Us o0 (Ks, 2/ ]2]) + 0|z~ D/2) 2] = o,

where u, o and u, ., are known as the longitudinal and transverse scattering
amplitudes of u respectively. These can be written as

1 ey~
(2.2) Wy o0 (kp, x/|2]) = 3 (Vdiv £) "~ (kp z/|]),
1
U oo (ks z/|2|) = = ((Vdiv + k2 1) £) (ks 2/|2])
1 . ~
(2.3) == (Vdiv — AI) £) (ks z/|z]).
Definition 2.2. Let u be an outgoing solution of the Lamé equation (1.8). For

f e LP(R™) with 1 < p <2(n+1)/(n+ 3), we define the longitudinal scattering
amplitude of u as

1 ~
(2.4) Wy, o0 (kp, v/ |2]) = T2 (RE)™(kp 2/]]),
and the transverse scattering amplitude of u as
1 ~
(2.5) U o0 (ks 2/ |2|) = m (T=R)E) (ks /|z]).

Remark 2.3. Observe that for f € C5°(R"™), since AR = Vdiv, the definitions
given in (2.4) and (2.5) are equal to the expressions given in (2.2) and (2.3),
respectively.

Remark 2.4. Taking into account that we can rewrite (Rf)™(£) = Hf/‘f‘(/f\(f)),
we have that

(2.6) Wy o0 (kp, 2/ 2]) = ool £ (kp 2/ )2]),

—— T
2+ A
(2.7) U o0 (ksy 2/ |2]) = i(Ime/|m|)f(ksx/|x|).

These expressions show the necessity of considering f € LP(R™) with 1 < p <
2(n+1)/(n+3) in Definition 2.2, because the restriction of the Fourier transform f
to a sphere is well defined just for p in this range of values (see [16]).

Remark 2.5. In the particular case u+ A = 0, the Navier equation given in (1.8)
is actually the vectorial Helmholtz equation ATu+ k2u = f/pu. In this case k, = ks,
and

Us oo (ks, 2/ 2]) — Up,oo (K, 2/|2]) = %?(ks /lxl).



A BORN APPROXIMATION FROM BACKSCATTERING IN LAME SYSTEM 1429

Let us observe that the scattered solution v = v(-;w, u;), see (1.9), satisfies the
following equation:

(2.8) (A* + W’ DHv=Qu +Qv.
If we apply the outgoing resolvent R(w? + i0) we get an integral equation
(2.9) [I-R(w?+i0)Q]v=R(w?+i0)Qui.
This can be solved by a Neumann series in the case of high energy,
R 1
(2.10) Z (w? +1i0) )]+ (ui).
7=0
We have the following existence result.

Proposition 2.6 ([1], Proposition 3.1). Let Q(z) = (¢;j(x)) be a square matriz
of order n such that each component q;;j(x) is compactly supported and belongs
to L™(R™) with r > n/2 and n > 2, and set t = min{(n + 1)/2,r}. Then, there
exist wg = wo(supp Q, |Q|lz-) and a constant ¢ = ¢ (supp Q) such that, for w > wo,
there is a unique solution v of the equation (2.9) in LI(R™), where 1/2—1/q = 1/2t.
Besides,

IVllLs < e w™*=2|Q]

L7

where ||Q]

Lr = maxlgi i<

Under the conditions of Proposition 2.6, we have that Qu; + Qv € LP(R"™) for
some p in the interval [1,2(n + 1)/(n + 3)), and therefore, we can define longitudi-
nal and transverse scattering amplitudes for v, the solution of the Navier equation
given in (2.8).

If we consider an incident plain p-wave u?(z) = e*»%2¢ with § € S"~!, the
Helmholtz decomposition given in (2.1) and formulae (2.6) and (2.7) gives us a
longitudinal scattering amplitude (p — p scattering data)

-1
2+ A

1
2+ A

(2.11) vj (G, 0) = T¢ Q(kp(¢—0))0— I (QvP (55w, 0))(ky €),

and a transverse scattering amplitude (p — s scattering data)
1 ~ ~
(2:12) V2 (G36.0) = 5 (1=TIE) Qb —y 0)0+ - (1=TLe) (QV" s 0)) (k).

where z/|x| = ¢ and v?(-;w, 0) is the scattered solution which satisfies the integral
equation

(2.13) (I- R(w? +i0) Q)v? = R(w? +i0) Qe vam * () ).
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If we consider as the incident wave a plane s-wave, u;(x) = e*?®p, where § and ¢
are unitary orthogonal vectors, we have as longitudinal scattering amplitude (s — p
scattering data)

(214) pOO(C7 W, 790) 2 +)\HCQ( pc_kse)QD
1 ] ~
- 2u+/\H<(QV5('?W>9>%")) (FpQ),

and as transverse scattering amplitude (s — s scattering data)
Q1) Vie(Gunbe) = (=T Qk(C—0)
(1T (Qv° 5. 0.) " (ksC).
where now v*(-;w, 0, ¢) is the scattered solution satisfying the integral equation

(2.16) (I-R(w?+i0)Q)v’ = R(w? +i0) Q(e' ¥ "Dp).

Observe that the identities given above hold whenever w > wy, since this condition
is needed to guarantee the existence of the scattered solutions (see Proposition 2.6).

2.1. Born approximation for backscattering data

The realization ( = —# produces polar coordinates in the Fourier transform vari-
able with radius proportional to the frequency w. It is convenient to show every
appearance of w in k, and k.

Let us take ¢ = —0, and assume that w is sufficiently large (w > B, B to be

chosen). Changing w to v/21 + Aw in (2.11) and w to 2(\F + \/2le) w in (2.12),
we have, for K = /2u+ M/ /1,

(2.17) Q (—2w) 6 = v, (0,w) + hP(0,w),

where the term v2 (0, w), depending only on backscattering data is given by

2
VEL(0,w) = —(2p+ M) VE (= 507/2u+ X, 0) + VP, (79-1;;(_1 9)
and the error is given by

hP(0,w) = [(va( AppW; 9)) (- We)]
+(I_ )[(va( Apsw, 9)) (— Mpsw)]’

where vP(-;w, ) is the scattered solution of the integral equation (2.13), and the
parameters are defined as

(2.18)

2 2
)\ps_i =1,

20+ A 1y KT Hpp = Nps:m.
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Similarly, from (2.14) and (2.15) we get

(2.19) Q(—2wh) o = v3_(8;w, ) —h*(6;w, @),
where
S S 2(}.)\/_ S
Vo (biw, ) = *(2/~L+/\)Vp,oo( o 1,9,<p) Voo (= 50V, 0, 0)

and the error is given by

h*(0;w, @) = [(QV( Aspw, 9790)) (— :usz)wg)]
(If )[(QV ( Ass W, 9790)) ( w&)],

with v®(-;w, 0, ¢) being the solution of the integral equation (2.16) and the param-
eters are

(2.20)

22+ A 2
)\sp = W’ Ass = \//77 Hsp = H‘—K) fss = 1.

For § € S"~1 fixed, we consider n—1 unit vectors {¢a, . . ., ¢, } such that v, = ¢ (6)
is measurable in S"~! for £ = 2,...,n, and such that the set {0, ¢2,...,¢,} is an
orthonormal base of R™.

We have

Q(-2w)e; = (0-¢) Q(—2w0) 0+ Y (r- ;) Q—2w0) o

=2
Using (2.17) and (2.19) we obtain
(2.21) Q(—2wh)ej = Qy(w,0) e; — Ep(w,0) e;,
with
(2.22) Qb(w,e) ej=(0-¢)v )+ z”: (pr-€5) vi(O;w, r)
=2
and

Eb(w,e)ej:(ﬂej P(0,w) +Z (e - €)% (0;w, @p).

The above expressions are defined for w sufﬁmently large. Let B be a real posi-
tive number large enough, which will be fixed later on, such that (2.21) is defined
for w > B/2. We insert here a cutoff function y supported on w > B and identi-
cally 1 for w > 2B. Then we write

(2.23)  Q(—2wh) ej x(—2wh) = Qp(w, 0) ej x(—2wh) — Ey(w,0) ej x(—2wh),
Taking the inverse Fourier transform in polar coordinates we have

(2.24) Q(x)e; = Qp(x) e; — Ep(x) ej + @(x) ¢,
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where the matrix functions are defined as
2B
O(z)e; = 2"/ / e 290 Q) (w, ) (1 —x(—2wh)) ej do(0) w" " dw,
0 _Js | .
(2.25) Qp(z)e; = 2"/ / e @20 Qp(w, 0) x (—2wb) ej do(0) w" ! dw,
0o Jsn—t
= 2"/ / e 20 By (w,0) x (—2wh) ejdo(0) w" " dw.
0o Jsn—t

Definition 2.7. We define the Born approximation from backscattering of the
potential Q as a matrix Qp such that, for each element of the canonical base of R",
ej = (0,...,1,...,0), Qpe; is the vector-valued function from R™ to C™ given
n (2.25) and (2.22).

2.2. Recovery of singularities

In this subsection we see under which conditions the main singularities of the poten-
tial Q are recovered from its Born backscattering approximation. That is, we want
to prove that Qp contains, in the scale of Sobolev spaces, all the singularities of Q.
From (2.24),
Q(z) e; = Qu() e; — Ep(2) €,
modulo a C*°(R™) matrix function.
From (2.18) and (2.20) we can write

n
By(w,0)e; =EPej+ EVe;+ Y (Bj e;+ Eles),

=2
where
(2.26) Efi (w,0) e = (0 ¢;) T [(QVF (-3 Appw, 0)) ™ (—pippw 0)],
(2:27) E§ (w,0)ej = (0 e;) (T—TIg) [(QVP (- Aps w,0)) ™ (—p1ps )],
(2.28) E;,e (w,0)e; = (pr-e;) 1 [(QV (5 Aspw, 9,@@)) (— Mspwe)]a
and
(229) Bl (@,0)e; = (o ) (1= TLa) [(QV (-5 Ao w, 0, 00)) "~ (—ptss 0]

To estimate the W®2(R") norm of the functions defined by (2.26)—(2.29), we
ignore the products ¢, - e; and the orthogonal projections, so we are reduced to
estimate the integrals

/ /g (QV (-3 A, 0)) "~ (—t1pa wO)|” dor(0) (1 + (20)*)*w" " dov,

for a = s, p. From (2.13) we take the Neumann—Born series solutions and we obtain,

for a = p, s,
oo

(QVP (-5 Xpa w, 0)) ™ (—ppa w ) = Z akt1(w,0),

k=1
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with

o) : k iTpaw-(- -~

Qi1 (@, 0) = ((QR((Apaw)® +10))7(Q() ™" 0)) ™ (—pupa w ),
where 7,, =1 and 7,, = 2/(1 + K).

In a similar way, we have for £ =2,...,n and a = p, s,

(QVv° (-5 Asqw, 0, 00)) " (—psaw ) = Z aki1(@,0),

with
Q! 1 (@, 0) = ((QR((Asaw)? +0)) " (Q() €20 i) )™ (— g w ),

where 75, = 2K /(1 + K) and 755 = 1.
Therefore we can reduce the analysis to estimate for k = 2,..., 4 =1,...,n
and a = s,p

195,

/ | 1@ 00 dr(0) (1 + (2)2)7w" " o

We start by giving estimates of the above integrals for k > 3 as was done in [15]
and [13], using estimates for the resolvent in the Sobolev spaces W? P(R™).

Proposition 2.8. Assume that Q € W2(R") is compactly supported and 3 < n/2,
n = 2,3. Then there exists a constant C = C(«, ) such that

o0
230) @ lRyer < CF [t Qs QIR
where
B (n-1Dk—-3) /1 By n—1 1 28
(2.31) %——k—f—l-l-i? (5_5)—’— 5 maX{O 5‘7}»

a=psandl=1,...,n

The proof follows the lines of Proposition 4 in [13] by recalling the following
estimates for the resolvent given in Lemmas 2.9 and 2.10.
Writing 01 = 0 and 0y = ¢4(0) for £ =1,...,n, we introduce, for a,b € {p, s},

R (@)(®)(2) = e~ 7 R((Aap w)? +0) (70 @() 6y) (a),
where ®(z) a square matrix of order n.

Lemma 2.9. Let s > 0, and let r and t be such that 0 < 1/t —1/2 < 1/(n+1)
and 0 < 1/2—1/r <1/(n+1). There exist §, &' and C (independent of w) such
that
I RE(@)(@)[| e < Cw™HOVRAYD @) e,
) —5 s’
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Lemma 2.10. Let s1, 82,83 > 0, s3 < 81, S3 < S9, and let r, t and p be such that
t < min{p,r} and

Then
1@ £llyyese < ClPflwyern [Ifllwwozr -

Moreover, if ® is compactly supported and 6,6 € R, then
12 £llyysse < Clsupp £,6,0") [l wer [IF]lyezm -

The proof of Lemma 2.9 is similar to that of Lemma 5.2 in [1]. Lemma 2.10
can be found in [3] and [11].

Proof of Proposition 2.8. Since
(232) R ((Qaw)?+i0)(2()pr)(x) = RI((Aapw)® +i0) (2())(2) e,

where
RI(Apw)? +1i0)(®(-)(2)

denotes the matrix whose j-column is the vector R((Agp w)? +i0) (P14, ..., D)7,
we can write

(233) [ Qa klives

<), |
B Jsn—1

< C/B /S”—l || (R(él,be(w))kfl (Q)()Hil do(6) p2etn=1 g

. _ 2
[ et QRy ) Qe ) do| do() e d
Rn

Now we follow the argument of Proposition 4 in [13].
We insert a cut off function ¢ which is one to one on the support of Q and
write, for some values of ¢,

[(QRE, @) Qe ()]
< 1Qllez || e REY (@) (RS (@)™ (Qepe) ()]

< Cw D2/ g [[(QREG (W)@ 20Ol

where we used Lemma 2.9. We write G = sze (w) and we use an iteration of both
Lemmas 2.9 and 2.10 following the diagram:

R Q- R, Q-
W?,twngi,gkfz wa,tkfs_ AN W?“ -0 Wg,m “ L',

Q0 ~ GQI ~ QGQO-- ~(QG)°QI—~ G() ~ (QG) o,
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where 7, and t; are to be chosen to satisfy, for £ =2,...,k — 1,
0<1 1< 1 q 0<1 1< 1
-z an I -

“t 2" n+1 -2 r, " n+1’
1 1 1 B
¢y < minq{2, ; 0<-4+———=£
¢ < min{2 e} _2+7“z+1 ty n
1 1 1 273 1 1 1
0<-4——-==2 d 0<--= .
2 T o =12+l
We obtain

1 (QRE(@)(@) ™ (Qba) ()| < Co™ Q52

where
k—2

s (ZG-7)ri-a)

=2

’}/k:*(kf].

For € > 0 small, we can choose {r;,t;} such that 1/t; —1/r11 = 1/2—/n+e,
2<1<k-—2and 1/t —1/ry = max{e,1/2 — 23/n}. Taking ¢ — 07 and putting
together all the above in (2.33), we obtain the desired (2.30) and (2.31). O

A consequence of Proposition 2.8 is:

Corollary 2.11. Letn = 2 and assume that Q € W52 (R?) is compactly supported
and B < 1. Then there exists a constant C' = C(«, B) such that, for any k > 3,

190 kw2 < CFBF=IE=AIDYQ] L2 [1Qllgg 5.2,

where £ = 1,2, a < f+1—max{0,1/4— 3/2}. In particular, > ;- , Q a . converges
in W*2(R?), for a < B+ 3/4, by choosing the constant B large enough.

For the rest of the section we will assume that n = 2.

It remains to estimate [|Qf 5||3ye2. From (2.32) we can reduce this to the
estimate the norm in W*?2(R?) of certain scalar functions.

To do this notice that each of the functions Q) ,, Ql,, Q2, and Q2, can
be written as linear combination of functions correspondlng to longitudinal and
transverse scattering amplitudes that we denote by Qp 5 Qp 5 and so on.

Given a,b,c € R and f, g complex functions in R? we define 72.(f,g) b

(230)  TA(f9)w) = (fR@W? +i0)(g() ™" 0)) " (~cwh).

We find that to prove that Q% 2 EW*A(R?), it suffices to see that 7. (q1,Rx Reqz)

€ W*2(R?) for k, ¢ € {1,2}, for any two of the entries ¢, qo of the matrix func-

tion Q and for certain values of the parameters a,b, and c¢. The following table

contains all the values of the parameters a, b and ¢ that appear in each of the eight
cases to be studied.
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9,5 | 9 Q% (o) Qs ot Qs | Q2%
2 2K 2 2K

1 K Kt 1
¢ K+ | (K+1) || B+ | (K+1)

sl . 2 2 2K 2K . .
K+1) | K+ | K+1) | (K+1)

oy . 2K 2K 2 2 . .
K+ | K+ || K+ | K+1)

Rescaling the cases corresponding to Qs b, i;, Qp; and Q by making
2w/(K + 1) = @, we have that it is enough to study the operators T for the
values of a,b and ¢ given in the following table:

alll1| K| 1|K|1|K|K*']1

b1 1 1 1 | K| K 1 1

cl|l1|1 | K|K]|1 1 1 1

The following proposition gives an expression of 7.2, as the sum of a principal
value and an integral operator over a sphere. Let us denote

Lriira () = {€ €R? 1 € =il = 72]m] }.
Proposition 2.12. Given n € R?,

TE(f,9) () = Goulf, 9) () + Houl £, 9) (),

where
N AT ((1+2)p—
G () = [ 2 “fo((§|j+cg’|n|f) s
and
~ 1 - b
Hecdoo)) =g [ F@a((1+3)n-¢)doto)
1,%7]

Proof. From (2.34) we can write

To(f9)w) = (F+ (Rla*w? +10)(g() ™)) (—cw).
The result follows making —cw 6 = 1 and using the well-known identity

1
R(k* +1i0)g(x) = p.v. /RZW{J(@ méder—kdUk*g( z), zeR’ O

We introduce the following operators.
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Definition 2.13. Given ry,r, > 0, for € R? we define the operators Try rp such
that R R R
77"177“2(f>g)(77) = ngﬂ"Q(fa 9)(77) +H7"177“2(f>g)(77)7

where

~

f©g(n—¢)

2 —|rn—&2+rin

GeoralF0)(0) = . | 7 e

and )
i

T - P
o / J@sa-gane

ﬁrlﬂ“z(fag)(n) =

With this definition, we have that

ﬁ,r(f,g)(n), if a =¢, with r = (1+ g>71)
—~ —1
(47 D)= Fwnm. sta=nwimr=t(142)7

Ti2.as2(9, F)(m), ifb=c=1.
In Section 3 we will prove:

Proposition 2.14. Let 0 < a,3 < 1 and b > 0. For f,g € W52(R?), the bilinear
operator Hqp satisfies

[Hao(fs9)llwez < Cllfllwez llgllwe.:,
when o < f+1/2.

Proposition 2.15. Fori = 1,2, let ¢; have compact support belonging to L™ (R?)N
WH2(R?), with r > 1. Then G, satisfies

Gas(f.9) € WO (R?) + C=(R?),

and
| F7 X513 Gab (s ) |lyyare < Cllarllwe 2 llg2llvws.z,

fO’f’ (fag) = (qlaq2) or (qlaRijQQ)a jak = 1>2a ZfOé < 6 + 1/2 a’nd ﬁ S [Oa 1/2)
and any a < 14f 1/2 < g < 1.

From Propositions 2.14 and 2.15 we obtain:

Corollary 2.16. Let n =2 and consider the matriz Q in W#2(R?) with compact
support. If 0 < B <1,4=1,2 and a = p, s, we have

195 2llwez < ClIQIye.2,

for0<a <1 suchthata < f+1/2if 5<1/2, and any a <1 if f>1/2.

Proof of Theorem 1.1. The proof follows from Corollary 2.11 (which makes the
difference between g > 1/2 and 8 < 1/2) and Propositions 2.14 and 2.15. O
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3. Smoothing properties of the operators H,; and G,

In this section we will prove the following theorems.

Theorem 3.1. For 0 < a,a <1l andb>0,let2<1<3,1/(2))+1/p=1. For
frg € WomV/L2(R2) N LP(R?) we have

(31 [ HanlFs Do < Aula,0) {Iflwarzlgllee + 1 flzrlgllwa-z}-

Theorem 3.2. Let2 <1< 3,0<a,a<1,0<a—1/l,b>0 and q; with compact
support for i = 1,2 and belonging to W—1/12(R?) NL"(R?), for some r > 1. Then
fOT' (f,g) = (Q17QQ) or (ql,Rij:QZ)v J»k = 1,27

Gas(f:9) € W2 (R?) + C=(R?),

and
| F (1513 Gad (Fr ) || e < Cllanllwa—1s12llg2 wa-1/12

where F denotes the Fourier transform. The constant C depends on a,b and the
supports of q;, i =1, 2.

Propositions 2.14 and 2.15 follow directly from these theorems.

3.1. Proof of Theorem 3.1

Since the spherical operator H; 2,1/2 was treated in [15], we will assume from now
on that (a,b) # (1/2,1/2).
Now we make some geometric considerations. Let

= {(n¢ eR*xR*: [ —an|=b|nl}.

Then, for each n, I'y 5(n) is the n-section of ®:

Ts(n) = (€€ R : (n,€) € 3.

For ¢ € R? fixed and for a # b we recognize the ¢é-section of ® as

b
Mas@ = {ne® e —anl=blnl} = {n e B : [0 - o= |§|b2|}v

and for a = b,
Aap(€) = {n eR®: <€,%€—n> =0}-
Notice that

—_
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where

Lap(n) =Tg,(n) UT, (),
rh ) ={¢eR?: [¢—an| =blnl, (¢—an,n) >0},
T, ={¢e€R : [¢—an| =blnl, (&—an,n) <0}

Also define for ¢ € R? the set A;b(g) by
n€E Azb(f) = £c I‘I (n).

We have that
H;b(f,g)(n) = Hf—(hb(g» f)(n)v

and therefore we can reduce our study to the operator "H;b(f,g)(n).

Now we describe the stereographic projection used in the paper. Let £ # 0
in R? and denote by C,.(§) = £ + rS! the circle centered at ¢ and radius r > 0.
Let ¢ be the line orthogonal to ¢ passing through £ — req, with e; = £/[£|. For
every ¢ € £, let n(¢) be the intersection of the line passing through ¢ and the point
Py = ¢+ rey. Then the mapping n(¢) is a bijection of £ onto Cy(§)\{P1}.

Every ¢ € £ can be written as ¢ = (|¢| —r)e; + sep € £, with ea = e{ and
s € R. Then,

o= (s () e sl () s

parametrizes Cy(§)\{P1} in R.
If n € C.()\{P1} is written in polar coordinates as n = (|£| + rcosf)e; +
rsinfes, 0 € (0,27), then n = n(s) with

2rsind
(1 —cosb)’

where in particular the length measure in C,.(§) in the variable s is given by
2y —1
do=(1+(5-)") ds.
2r
The following Fubini’s theorem holds in @ (see [15]):

Lemma 3.3. Let h > 0 be a measurable function on ®. Then, for b > 0 and
—b#a€eR,

In|
/R2 /I—‘Q,b(n) (§>n) 0'7](6) n /]RZ /Aa,b(f) (gan) |£| 0'5(7’]) f’

where o will denote the Lebesque measure on either Tq p(C) or Aqp(C), for ¢ € R2.

To complete the proof of Theorem 3.1 we will need the following proposition.
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Proposition 3.4. Let | > 2, h € L?(R?) and

(3.2) F(§) Z/A;b(f) (/F;b(n)| (n—¢ | doy (& )|’I7|2a Ydoe(n).

We have
F(€) < AZ(a,b) |h| 22 €22/

Proof. Assume first that a # b.
We can split
1 2
Ly =Tay (n) UL, 3 (n),

with
Ifi(n) ={¢eR?: E=an+bncosp+bntsing, 0<p<m/2},
and a similar definition for I‘Zf(n) with —m/2 < ¢ < 0. For ¢ € R? we introduce
the set A;f(f), 1 =1,2, where
ATHE) = ALY O UATTE) and € AJH(E) = £ € T3,

Then
F(§) = F1(§) + F2(6),

with

2 o .
BO= [ ([ 1hn=€)Poy@) P dotn), =12
AL NITE ()
It is not difficult to verify that

a+ bcosb b )
A:”bl(g):{neRQ: =5 f+a2*b2§lsm9, —m <6< —6(a,b) },

(similar definition for Ajbz(f) with 9((1 b) < 0 < =), where 6(a,b) is such that
sinf(a,b) = j+b2 and cosf(a,b) = 2+bz, and for n = n(s),

n(s)
In(s)]

(similar definition for F;f(n) with —oco <t < —2b]n(s)|) and

Bl gyt

5 — =
+ (wrem) L+ (g5mcay)

To ) = { €)= €16) 25 + (1) T2, 2bn(s)] <t < oo},

() = aln(s)|+bn(s)| -

Hence, for : =1, 2,

N (n(2b[€]s) — (20 |n(s)1)]” [ n(2b [¢]s)[** dt ds
S ‘“’2'5'// (+ ) (1 + (a2 — 2)257) ’
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where

Dp:“&ﬂ:f

<s<0,t>1}, DQ:{(s,t):0<s< t<0}.

1 1
(a+0)2 (a+b)?

A calculation gives us that

n(2b€ls) — &' (2bIn(s)[t) =[] (y1(s.t) €1 + ya2(s, 1) e2),

with
nsst) = (1= 0= b+ T ) i) + oy (o)
ps.t) = (1= a= b+ Y i(s) - Ty n(s)
ﬁl(s)_ﬁ(aHH(a?% ) o 772(3)_1+(a22b——8b2>252'

Let 7(s) = (71(s),7m2(s)) and y(s,t) = (y1(s,t) e1 + y2(s,t) e2). Then, from (3.3),

9 11420 ()% dt ds
) R© =l [ e

We consider the transformation h(s,t) = || y(s,t), which for b # a has jaco-

bian
8b* [€]* (s, t)]
(15 52 — B2)2) (1 + 2)2(a? - 12)

Jh(s,t) =

where

(3.5) g(s,t) = —(a+b)(a® —b)?(1 —a)ts®* — (b—a)(1 —a)t
+ (a®> = b*)(1 — a — b) at’s + |a* — b*|(a — b — 1) as

Let { > 2 and 1/l + 1/l = 1. By Hélder’s inequality,

(3.6) Fi(€) < 46 672 [1o]2 gy (1i(1€], @, )"

where

61 (et = ol P / / (1+ (a2 = 12)26%) " Ji(s) 2" di ds
. % )y @y 7 7 .
|£|21 /L2l /1 1+t2)2 v lg(s, )|V /1

From |7j(s)|? < (a+b)2 and |g(s,t)| = |g(—s,—t)|, we obtain
|a2 _ b2|l//l
(3.8) Ii(1€],a,b) < C(a T b)2al p2U /L[] J(a, ),
(3.9) ﬂmw:/ f@ﬂ%ﬁ:/ F(s,0) dsdt,
Dy D»

with f(s,1) = 1/((L+ )27 (14 (a? = 12)%5%)> " |g(s. )] /")
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By the estimate of the integral J(a,b) given in Proposition 4.1 in the appendix,
the proposition follows in the case a # b.

For the case a = b = r # 1/2 we indicate briefly how to modify the previous
proof: we have that

EALO = n=n(s) = e+ s e

where s € (—1/(2r),0) for i =1, and s € (0,1/(2r)) when ¢ = 2. Then (3.4) holds

with 7j(s) = (71(s),72(s)) = (1/(2r), 2rs), hence |7j(s)| < 1/2r%
In this case,

4r €[ 1g (s, )|

1+2)2 where g(s,t) = (1 —r)t + 2r2s [(1 — 2r)t* — 1].

(3.10) Jh(s,t) =

With this in hand, we have that (3.6)—(3.9) hold for a = b, hence using the estimate
of J(r,r) in the appendix we complete the proof of the proposition. O

Proof of Theorem 3.1. As mentioned, it suffices to estimate || H;b(f, g)Hi-Vaz. B
Lemma 3.3,

11009 e = [ V)0l
S%AQ#(/F+<)|f(f)‘| 30— )] doy(©)) Py

o Lo JVFOF([, 13t €0 donie) = do(e)a

NGl /AW( / i i) L doo e

- [ 1Ol Fe

The theorem follows from Proposition 3.4, using the Hausdorff—~Young inequality
to estimate [|gll,, < [|gll, - O

IN

Remark 3.5. The constant A;(a,b) in Theorem 3.1 was given in terms of the
estimate for the function J(a,b) proved in Proposition 4.1 in the appendix. By
inspection one can see that with this construction A;(a,-) is locally integrable
n (0,00), see Remark 4.3.

Remark 3.6. We notice that Theorem 3.1 along with Remark 3.5 holds for the
operator

a 9 dO’
ool = g [ 1F@) - €)1 ao )
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3.2. Proof of Theorem 3.2
To study G, , we will use the following properties of the Sobolev spaces.

Lemma 3.7. If g has compact support,

1) Given d > 0, there exists a constant C' > 0, such that if & and &' are in R?
and satisfy |€ —&'| < d, then

(3.11) 19 < C M g(¢),

2) For B € R, v > 0, there exists a constant depending on (B, and the support
of g such that

(3.12) 191l a2 < Cllgllys.o-

3) If |a] < 1 we have, forik=1,2,

(3.13) H]: (MVg) < Cgllyias
(3.14) | F~Y (M R;Ryg) HWM < Cliglyos
(3.15) | FH MV R Reg)| |y < C llgllwes.

Proof. The proof of (3.11) and (3.12) for 0 < v < 1 can be found in [15]; then (3.12)
for v > 0 can be obtained by iteration. For (3.13) see [12]. To prove (3.14) just
notice that since —1 < a < 1 then |z|** is an Ay weight in R? (see [17]), so that M
is bounded in L2(R2, |z|** dz). For (3.15) we use the same argument and

|0,R; Rig(€)] < c('g( 4 10,5 ), €cr?

€
so that
2
_ 2 —— 2 1920
|7 IV E R o < €3 [ |0FRaao)]” e dn
2
(310 <c [ ol e i+ o3 [ jogo e
=1

Since g has compact support there exists ¢ € C°(R?) such that 9,9 = g =
@+ g. Then [9;g(n)| In|* < C(1 +[-)*|@]* (1 +]-[)* |g], hence

[ 103 1 < C lglfyes.

Thus, from (3.16) we obtain (3.15). O

We will also use Calderén’s pointwise inequality for Sobolev functions (which
is a mean value type theorem (see [4])).
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Lemma 3.8. Let g € W'P(R?) = {h eS8 (R?): VheLP(R?)} for somep > 1.
Then we have, almost everywhere,

(3.17) lg(x) — g(y)| < C(M(Vg)(z) + M(Vg)(y)) |z —yl.

We notice that since G5 (f,9) = Gi—a,b(g, f), then excluding the case G212
that was studied in ([15]), for the proof of Theorem 3.2 it will be sufficient to study

Gab(f,9) when (f,9) = (q1,92), (q1, RjRrg2) and (R;Rkq1,q2) in the case a # b.
Assume for the rest of the section that a # b.

To deal with the integral G\a,b( f,9), the idea is to split R? for fixed 7 in dis-
joint regions, one of them is a small annulus M, ,(n) containing the singularity
on [ —an| =0b|n|. In order to bound the integral in this region we will use the
cancelation of the kernel in (3.20) together with Lemma 3.8. The rest of the regions
are dyadic annuli approaching the singularity. Harmonic analysis tools will be used
to control the part of the integral over the annuli distant to the singularity, and
the integral over the remaining parts will be estimated by integrating on spheres
and using the estimates of the constants A;(a, s) appearing in the control of the
norm of H, s(f, g) in Theorem 3.1.

Recalling that a,b > 0, we let

1
1 3 1 min{b, |b —al}, a#b,
(3.18) ¢ = 3 min{a, b}, ¢ = 3 max{a,b} and d=

1
3 min{1,a}, a=b.
For € R?, we define
Ao(n) = {€ € R? + ¢ —an| < e1nl},
1
A;(n) = {5 (1-55) G lnl < le—an| —ealnl < (1-557) (b —en) ),
(b—c1) In|

j = 1’27""N1(77)7 and Nl(n) :10g2 Qd ?

Map(n) = {§ €R? « |[€ —an| —bln|| < d},
Bitn) = {e e - Dy je ool < 220 i}

—-b
CRDTTI

i=1,2,...,Na2(n), and Na(n) = log,

Bo(n) = {£ € R : € —an| > c2nl}.
We decompose the operator é\a,b as

N1(n) (n)
(3.19) G Po+ZP+Qo+ZQZ+V

Jj=1
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where

B20) V(o) = p. [ O =6) 4

Mo () 1€ —anl?> —02|n|

5 _ GIURE .
Pj(f’g)(n) - /Aj(n) b2|77|2 7 |£7(177|2 df, J _0a172a-~-aN1(77)7

S p v [©i-8 0 .
Arom= [ R e =012 N

The proof of Theorem 3.2 will be an immediate consequence of the following
two results.

Proposition 3.9. Let 0 < a <1 and l > 2 such that

0< !
o——.
l

If ¢ and g2 have compact support in We=1/12(R?) and (f,9) = (q1,q2) or (f,9) =
(q1, Rj Rk q2), then

16(f,9) =V, 9|l ez < Cllallwe-rz g2llwa-1/12,
where the constant C' > 0 depends on a, b, and the supports of the g1 and qs.

Proposition 3.10. Let a« <1 and l > 2 such that 0 < o — 1/1. If 1 and g2 have
compact support and belong to L"(R?) for some r > 1 and (f,g) = (Rjq1,q2) or

(f,9) = (a1, Rj q2), then
1 F (o ) VL D) ez < Cllaillwa-sn lgallwo-siee,
where the constant C > 0 depends on a, b, and the supports of ¢1 and qs.

We will prove Proposition 3.9 by analyzing each part in (3.19) except the op-
erator V. We start by studying the boundedness of the operators Py and Q.

Proposition 3.11. If ¢1 and g2 have compact support in Wafl/l’z(Rz), then for

any of the cases (f,g) = (q1,42), (f,9) = (@1, Rj R q2) or (f,9) = (R R q1,q2)
we have

(1) If0o<a<1landl>2,

(3:21) IPo(f, Dllwez < Cllaallwa-1/12 lgz2llwa-1/1.2.
(2) If a—1/1>0,

(3.22) 1Q0(f, 9)llwez < Cllarllwa-1/12 |lg2llwa-1/12.

The constant C' > 0 depends on a, b, and the supports of q1 and qs.
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Proof. (1) Since | B;Ruqy (€)| < |Gi(€)], then

G©lam-o . C
de < —
o lan — €2 TP © TP

| Po(R, Re a1, 42)(n)| s/A /A NGITROIES
o(n

If £ € Aog(n) then |€| < (a+ c¢1)|n|. Hence, by (3.12), if &€ > 0 is such that
a—14+¢e<0,

2 — ~
|| Po(R; Ri q1,q2) | jiyae < ||Q2||?/V—e,z/ C [n|* 4+2€/ |G (6)? de
R2 0<|¢|<(L+a+c1)|n|

2 ~ o2 20—4+42
<laslfy-eo [ GO [ Ol dy de
R? 0<l¢|<(1+ater)|n|
2 2
< Cllalfya-rsen lazliy-c2 < Cllallfpa-n llg2llpa-r/a-
Since this is also true for o = 0, we obtain (3.21).

The estimate of ||Py(q1,q2)|lwe.2 is included in the previous case and || Py(q1,
R;jRiq2)|lwe2 can be treated in a similar way.

(2) Let B such that 1 — 8 < .
Notice that if £ € By(n), then | —an| > C|¢ — n| and

(1€ = an| +blnl) (1€ —an| —bln]) > Cl& —n|°|n>~".

Hence
. 161 (O] 1g2(n — &)
R; R d
| Qo(R; kQ1>q2)<77)|§/B (e —anl +blnD) (E —an = o) ©
C 132(n = &)[
d
= 7 /Bo(n)| AN
and

R:R 2' , C 2a0—4+2p3 ~ |(T2(777£)|d 2d
@0, Rl < € [ et ([ e SN ae)

< C/]Rz |77|2a—4+2[3 /Bo(n) |qA1(€)|2 dg(/]R2 %dg) ]

<ClgallPy s / Gk / 224428 g e
R2 Inl< 2]

(3.23) < Clla2lly s /w @ ()17 (€72 7220 de < CllanlFyasos llaally -
Let 8 =1—1/l, then using again (3.12) it follows that

(3.24) H Qo(R; Ry ql,qz)HWmQ < Cllq1llwo-1/12 ||g2llwa-1/1.2.

Now if we use (3.23) for &« = 0 and 8 > 1 we obtain

(3.25) | Qo(Rj Rk q1,42)|| 12 < Cllarlwo-12 [lazllws.2-
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Notice that if 1 — 4+« —1/1 > 0, then from (3.12),
(3.26) lgllws-12 < C(llarllzz + llaillyia-r/i-a-sra-1.2)
< C(”Ql”L? + quHWa—l/l,Z) < Clg1llpa-1/t2.
On the other hand, if 5+ a —1/1 > 0, then
(3-27) ||QZ||W—&2 < C(||Q2||L2 + H(DHWa—l/l—(fHa—l/z),z)
< C(llg2llr2 + llg2llyira-1/2) < Cllg2llwa-1/1.2.

Since o — 1/1 > 0, we can choose 3 > 1 such that
1 1

Then (3.22) follows from (3.23)—(3.27).
The estimates corresponding to the pair (¢i, R; Rk ¢2) and (g1, g2) are similar.
O

Now we study the operators Zf\fl(") Q; and Z;,V:lin) P;.

Proposition 3.12. Let a € (0,1), b > 0, 2 <1 < 3, 1/(2)) +1/p = 1 and

a < 1. For any of the cases (f,9) = (q1,492), (f,9) = (a1, Rj Ry q2) or (f,g) =
(Rj Ry q1, q2), with q1 and gz with compact support in W—/L2(R2) | we have

N2 (n)

(3.28) | X atra,.. < Clalwesns laalbyeina
Ni(n)

(3:29) | > Pi£.9)|| .0 < Cllasllwa-is laellesns,

where the constant C' may depend on a, b, and the supports of q1 and go.

Proof. We start by proving (3.28). We can write, for ¢ = 1,2,..., Na(n),

. 1 1
Bi(n) = {gng L E&=an+¢ with ¢ €Typireapy(n), o <7 < = 1}.

20 20—
Then,
[@1(8)] qu(n Ol
&t < [ ¢
| ol < B € —an|? —b2n|?
171 () 1g2(n — &)l
= Aopir(cy— dr
[ SN =i S
2i—1 1 / =R =R
= G (&) 1a2(n — &) dopsr(cs—1) (§) dr
/211. (27"(02 =)+ e =)l o, e
b+r(ca —b) ~
il / (2r(c2 =) +12(c2 — b)?) Horteplan a)a) dr
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b+r(ca—0b)
Since s —trrreo7 < 1

)

N2 (n)

Na(n) T
DIETRIUEE DI N A L
i=1 =1 27

9Nz2(n) N 1
< |'l7| / ) Ha,b-&-?“(cz—b) (‘h» Q2)(7)) dr < C/O ! Ha,b-‘,—r(cg—b) (qh Q2)(77)| dr.
2N2(m)

By Minkowski’s inequality we have

Na(:) Na()
I3 eall,.. =] 3 avaorr],
i=1
SCH/ I/_\Iax7b+T(C2—b)(q1,q2)(.)dr|.|a .
<C/ HHabM (2=t (91, @2) 0] - [* Hder—C/ ||Hab+r(c2 b) (91, 2 ||Waz

Theorem 3.1 and Remarks 3.5 and 3.6 yield

1
/0 | Ha bt (cat) (@11 02)|| e dF

1

< C{llgllwe-r2llg2llce + llgrlle ”@”W‘kl/lv?}/ Ap(a,b+r(cz = b)) dr
0

=Cllallwe-1r2 llg2llie + llarllze lg2liwa-1r02} -

As p <2 and ¢, i = 1,2, has compact support we get

lgillr < Cllaillze < Cllgllwea-1/02,
and
Na(+)

| ¥ o, < Clalweis lalwe .
i=1

This estimation is valid for o = 0, so the proof of (3.28) is complete.

To prove (3.29) we consider i such that b— 5= (c; —b) > 0. Then proceeding
as in the proof of (3.28) we obtain that

Ni(n)

| X P9 < C@b) larliwa-sin lazlwe-sie.

Jj=to

Now it remains to deal with the first i9 — 1 terms, but for ¢ > 0 fixed, the norms
IP;(f,g)llwea2 can be handled as the case i = 0 in Proposition 3.11. O

Proof of Proposition 3.9. The proof follows from Propositions 3.11 and 3.12. O
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For 0 < € < d we define

Moy () ={¢:e<bln|—|g—an| <d}, M) (n) ={¢:e<|¢—an|—bn| <d},

so that

V(f,9)(n) = tim ( /M;;:< f(é‘)ﬁ(n:b 25|>n 3 der /N . [(©)4(n—¢) ).

€= 0 m 1€ —an|? m 1€ —an? —b%n|?
e>0

For the proof of Proposition 3.10 we will use the following lemma.

Lemma 3.13. Let T be the operator defined by

T2 (£ 9) 1) = X oy () 1]~ / FOl 30— ©) de,

MIF UM (n)
a€Randl>2,1/(20)+1/p=1. For f,g € We=/L2(R?) N LP(R?) we have

(3:30) || T2 u(f, D)l ype < Cab){Iflya-rsiz lgllzee + 112t llgllyira-1/2 }
= C O a2 llgllee + £ lLe lglla-rse )

In particular, if we take oo =0 in (3.30) we have

| T2 o(f, D)oz < Clab){Iflwa-rz 1l ze + 1 Fll 2t llgllwa-1/02}
<C O/ llwe-rzllgllee + £ llee llgllwa-1r2}

Proof. We rewrite Mj;r(n) UMy (n) as

{€€Tunsm) : 1—%_ Sl_ﬁ}U{gera,bs() 1+m_ §1+ﬁ}.
Then,
Tey(fr9)m) = To (fr9)(m) + Ty (f,9) (),
290 = X oy () Il /ME Nt — e

We will study 7., (f,9)(1):

7o () = vl [ [ @l - oldete) i

e a b.s(n)

_W N 1 N
() [ sHasalf9)n) ds < Clart) /1_isHa,bs<f,g><n>.

KL
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Now we use Minkowski’s inequality, Theorem 3.1 and (3.5) so that

1 A~
175 G o)l = 1T GO o <€ [ sBunta)rds| 1o

< C(a,0) {Ifllya-rsez lgllze + I Lo [ lrans -

L2

Define
¢ M2y (n) = M2y ()

a reflection with respect to I'g 5(n) given by

bn| —an
3.31 =an+ —1 —an)=2an—E&+2b|n .
(331) 6@ =an+ (2_y 7~ 1) (€~ an) =2en— €+ 2ol
Then ¢ is a bijection, ¢ = I is the identity, and
bln| — 1€ —an|
3.32 Jp) =142 ———>——.
(332) T6(6) e
(3.33) [6(§) —anl —blnl=0blnl =€ —anl, &€ My (n).
(3.34) |6(€) — &l = =2 (1€ —an| = blnl), €€ Mgy ().
|¢(§) —an| e
<2, £eM; and > 1.
|§ —an)| b (n) I
o0 = @
R P )]
1
= - <2 if |n| > 1.
bln|—lo—* (&) —anl
1+ 2= —an

Proof of Proposition 3.10. Let ¢1, g2 be as in the hypothesis and let (f, g) = (¢1, g2),
(q1, Rj Ry, g2) or (R; Ry q1,g2)-
Using (3.31)—(3.34) we can rewrite

V(f.9)n) = lim {TE(f,9)(n) —2L5(f.9)(n) — 2I5(f, 9)(n)}.

e—0,e>0
where
N B [F(6(€)d(n—6(€) = F(©) §n—&)]
5(”W”A@Mm BB —arf PP T4(€)]de,
5 ) F€)30 - ¢
Q(ﬂgﬂnf—jgigm)ﬂ¢@)_any+mmﬂg_anvka
and "
% ) F€)30 -6
JAﬁmm>/§ N T CGE )
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g
If £ € M ,(n), then

b
|£7 a77| 2 57 when |77| > 1,
then for i = 2,3,
X(n: Inj>13 (1 |I (f,9)(n)] < C(a,b) ab(fv 9)(n),
and by Lemma 3.13,
17 >y O I (£ 9O e < C {llgllze 1 llwa-srn + 1 2o Igllwa-sr2}-
For i = 1,2, since | i Reai| < |di] and [lallzr < C llgillz2, p < 2. we have
H f_l(X{n:|n|>1}(') I (f.9)() ||Wa,z < Cllaillwa-1/12 ||@2llwa-1/t.
Now we will study I£(f,g). By (3.32),

= B F(@(€)G(n — ¢(8) — F©)gn—€)
L B

a,b

(o ()) Gn —6(6)) — F(©)G(n —€)
_Q/M(ﬂ,m) (le( “
215

&) —an|+blnl)|¢—an

=I5, (f.9)(n) — 25 o (f.9) () + 215 5(f. 9) (),

where

F(@(€) §(n— 6(&) = F(&) §n— &)

dg,
My () |9(&) — anl® — b2[nf?

E(f,9)(n) =

S~

~

N o f(¢(€) g(n = ¢(£))
I 5(f,9)(n) /Mijb_(") (Ip(€) —anl+blnl) [€ — an

_ B O30 —¢)
1T 5(f,9)(n) = /Mi,'b(") (|¢(§) —an|+b |7)|) € —an|

d.

We have, for i = 2, 3,
X{n:|n|>1} 7) !Ilz fv )( )! <CTab(f, )( )

Hence,

| 7 =1y O I (F, ) [ypee < Cllatllweiiz llgzllwain2, i=2,3.

Now we treat fil(f, )(n ):

g 9(&)) [3(n — (-]
falh9)n) = /M;;m O
[Fe©) - F©lan-9 - -
+/m) S e = T + T3 ().
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Consider first (f,g) = (R; Rk q1,¢2)-

Notice that since go € L"(R?) with r > 1 has compact support then z;q2 €
L"(R?) for i = 1,2, and we can assume that r < 2. Then Vg € WHP(R?) for some
p>1, and by (3.17), (3.33) and (3.34) we have

01 (2D M(V2)(n — 6(€))

1R B v, a) )| < J§4E<n> O©) —an[ +b]
@ (6(€) M(Vaa)(n — &)
+/Mab(77) [¢(§) — an| + bln] “
A o @ () M(Vaa)(n - &)
<C{MLAqm$““””“V@X” ®d£+Ang e

= C{T (a1, 42) () + T5 (a1, 42)(n) }-

Since

| Xgr1s13 () T 1 (a1, a2) ()| < C T2 (ar, FM(VR)) (1),

then by Lemma 3.13 and (3.13), it follows that

(335) [ F 7 (xqrsn () Tiaa1:@) () ez < C | Tog (a1, F 7 MVER)) || yee
< C{llallwa-112 [IM(V@) |2t + @l | FH (V@) || o

< Cllallwa-rez [lg2llwa-1/12.

On the other hand, since by (3.11) we have |¢1(¢(€))] < CM @ (€), then
(3:36) | xys11(0) Tia(Ry Re ar, 42)(n)| < O Tg,(F~ MGy, F~H (M (V@) (n),
and again by Lemma 3.13,

(3.37) || F (xqrs13 () T 2(a1, @2) )| e < Cllatllwa-1s12 g2llwei/1z.
Similarly we can prove that

~

(3.38) (11513 (M) T 1 (@1, Ry Rica2)(n)| < C T2y (@, F~(M(VR; Rigs))) (),
(15130 5 (a1, R Ric g2) ()| SCTCf’b( 1MQ1,]:_1(M(VR@2)))(7;),

From (3.35)—(3.38), and Lemma 3.13, we arrive to
[F 7 s O 5 9) ) e < Cllallwe-1me laollwe-r/s,

for (f,g9) = (Rj Rk ¢1,42), (¢1, R; Rk q2) and the easier case (q1, g2).
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Finally, we have to estimate J5(f,g). We see that

P(&)j P&k ~ ik ~ ~
A Tt U(o(8)) — 3Er (€)] @2(n —€)
J5(Rj R q1,92)(n) :/1»5* [ ) |¢:(£) —avﬂfl b21|77|2] - dg

r€s
a,b

- / LERED [G(6(9) — @ (9)] @2(n— &) .
a My l6(§) — anl? = b2[n|?
v f [t — St 60 -9
My [6(§) — anl* — b%|n|?
= J5.1(R; R q1(6(€)), 42) () + J5.5(R; Ry a1 (6(€)), g2) ().

Then the analysis is similar to the previous cases. Just notice that since a # b and
using (3.18), we have

¢(£)J ¢(§)k _ fj &k C -
| [6(E)? |£|2‘§ T a9 ¢l

The terms J5(¢1, R; Rk, q2) and J5(¢1,¢2) can be handled in a similar way so that

IF 7 (xs13O) T ) O) e < Cllalwaie lgzllweiez,

and the proof of Proposition 3.10 is complete. O

4. Appendix

In this section we study the convergence for points (a,b) with b > 0,0 < a < 1 of
the integral J(a,b), see (3.9).

Proposition 4.1. J(a,b) < oo for every (a,b) € R x (0, 00).
For the proof we will need the following lemma.

Lemma 4.2. Let v1,v2 € R with y1 # 72, 8 < 1 and I a bounded interval on R.
We have

dx
<CB)(d' %8 4+ |1|1d?P),
e SO )

where d = |y1 — 72| and |I| is the measure of I.

Proof of Proposition 4.1. If a # b, then

J(a,b) = //D (142" (14

where D = {(s,t) : —1/(a+b)?> <5< 0,t > 1} and g is given by (3.5).

dtds
a2 — b2)252)* 7" |g(s, )1/
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Ifa=b=r+#1/2, then

C\al' oo 0 ds dt
J(r,r) < (—2> / / =211 /
r 1 -1/ (1482) lg(s, t)|"/!

(see (3.10) for the definition of g in this case). Since J(1 — a,b) = J(a,bd) it is
enough to estimate J(1 — b,b), J(a,a) and J(a,b) for(a,b) € L, where

L ={(a,b) € (0,1)x(0,00) : {0<b<aanda<1/2} U{0<b+#aanda>1/2}}
Let (a,b) € (0,1) x (0,00) and write the function g as

g(s,t) = (1 —a)(a—b)t[ — (a+b)*(a—b)s* +1]
+(a+b)|a—blas[((1—a)=b)t>— (b+(1—a)).

1) Case (a,b) € L.
Given t € (1, 00) fixed, let

gu(s) = g(5,t) = qa(t) 8* + q2(t) 5 + q3(1),

where

@(t) = —(1 —a)(a+b)*(a — b)*t,
g2(t) = (a+b)la—bla[((1 —a)— b)t2 —(b+(1-a)],
q3(t) = (1 —a)(a—b)t.
If (a,b) € L and ¢ € (1,00) is fixed, a straightforward argument, shows that the

above polynomial g; has two different real roots aq (t) and as(t).
We have

la—b[/f(t)

d(t) = [ (t) — aa(t)| = ln@®)]

=(a+0)

If ro > 0 then f(t) > r; t*, and hence

(a+b)(a—blall—a—blt>  all—a—bJt
d(t) > (1—a)(a+b)3(a—b)2t o (1—a) (a+b)2|a—b|~
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For ro < 0 we consider the function

_t*+ A+ B

F(t) 4 ’

te[l,00), A<0, A> < 4B.
It can be easily seen that if \/—2B/A < 1 then F(t) > F
>

) and hence t* + At? +
B > t*(1+ A + B), while if \/—2B/A > 1 then F(t)
t4 +At2 +B Z t4(4B47A2).

(1
F(\/—2B/A) and hence
B

Applying this to our function f(t), we see that if \/—2rs/ro < 1 then f(t) >
(4(2a — 1)(b* — a?) + 4a?) t* and hence

- 2¢/(2a — 1)(b% — a?) + a*t

d(t
Ry
—4(1 — a)?(a® — b*)b*(2a — 1) .
For \/—2r3/re > 1 then f(t) > b+ 1= a) t*. We obtain
a0 > 2/ [2a — 1|t

“all —a+b|(a+b)32|a— b2
Finally we see that for (a,b) € L and ¢ € [1,00) we have
1 1 1 1 B(a,b)
+ + - =

lal [1 —a— b 2\/|(2a—1)(b2—a2)|+a4 2b\/|2a — 1]} 1 13

If we apply Lemma 4.2 and we take 2 < I < 3, in order to have 2I'/l — 1 > 0,
we have

J(ab)<c/w;/0 ds 4
WEE L E G OFT ) Js—an(O)F s —as(®) Y

T (at+b)?

1
— <
S

d(t)

> dt cLl) /OO dt
<Cc@l . .
<, )/1 =2 gy () |/ d ()2 /-1 + (a+b)2 J, t472V |qu(8) |V /0 d ()2 /!
And hence,

1 v/ i1 Bla,b)!'/
(1—a)(a+b)3|afb|2) (B0 CEDE )

2) Case a =1-—0.
For 1/2<b< 1,

g*(t) = g(s,t) =b(1—2b)((1 + (2b— 1) s*)t + 2(1 — b) ).

Since —1 < s < 0 and ¢t > 1 we have that (1 + (2b—1)s?)t +2(1 —b)s > 2b— 1.
Hence |g*(t)| > b(2b — 1)? and

J(a,b) < (

C

JA—bb) < — =
(1 ) < (b(2b—1)2)l/l
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For 0 < b<1/2,
) =b1=2b)((14(2b—1)s*)t —2(1 —b)s).
Since 1 + (2b — 1) 82 > 0 then |g*(t)| > b|1 — 2b| |1 — b| |s], and so
C
(bJ1— 26 [1 )"

J(1—0b,b) <

3) Casea=b=1r#1/2.
For 1/2< r <1, letting u = (1 —7)t +2r?s[(1 — r)t*> — 1] we get

al +1 (1-r)t du dt
J(r,r) < / / -
—ryt—1/2(-2rz-1) Jult/t (1= 2r) 2 = 1] (1 4¢2)"(1=2/D
<(£>al e l/l/ dt (£>al +1|172r|71'/l
—\r2 |1 —2r| 2T \p2 '

For 0 < r < 1/2 we have

ol ds dt
J(T,T) S (T_2 . ' o l’/l'
VS 22 (A=)t 202 s [(1—r) 82 — 1]

Let

dsdt

0
- /
{t>1n{|a-2rt2-1<1-r} J =% (1 + t2)l’*2l’/l| (1-7r)t+2r2s [(177*) t2 — 1]

]

and

- / /0 ds dt
(t>1n( -2 —1>1-r} J=3 (14 12)0 =201 (=) £+ 202 5 [(1—r) £2 — 1]]""
To estimate I, notice that if t € {t > 1} N {|(1 —2r)t? — 1] < 1 —r} then

(1 =r)t+2r2s[(1=r) 2 =1]| > (1=7)(t-3) and (= )1/2<t<(2_7“)1/2,

1-2r 1-2r
Hence,
I< /(12_2:)1/2 i ds dt <C (1—r) /1
T (- ) e T (U2 BRI

To estimate II we make the change of variable u = (1 —r) ¢+ 2r%s ((1—2r)t> —1).
Notice that for t € {t > 1} N{|(1 —=2r)t> — 1| >1—7r}, 2 #1—2r.

. /(1:%)1/2 /(1—7")15—%((1—27")152—1) dudt
L (1—r)t ul/12r2 [1— (1 —2r) 2] 2/ (1-2/D)

+/OO /(1 )t dudt
(Z£)"2 Ja—ryi-L(a—2r)t2-1) ul’/t2r2 [1 — (1 — 2r)t2] 12 (1=2/0

1—-2r

(1—2r)~t/
2 i

<C

r
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Hence we see that

O al'+1 v
Jo) < () -2 0
Remark 4.3. Direct calculations show that for any fixed a € R, the function
A;i(a,r) is integrable in any finite interval in (0, 00) not containing r = —a.
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