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The index of symmetry of a flag manifold

Fabio Podestà

Abstract. We study the index of symmetry of a compact generalized flag
manifold M = G/H endowed with an invariant Kähler structure. When
the group G is simple we show that the leaves of symmetry are irreducible
Hermitian symmetric spaces which depend only on the invariant complex
structure and we estimate their dimension.

1. Introduction

Recently Olmos, Reggiani and Tamaru ([8]) introduced the notion of index of
symmetry for a Riemannian manifold. In particular given a Riemannian mani-
fold (M, g) on which the full group of isometries G acts transitively, one can define
the distribution of symmetry D which at each point x ∈ M is given by the val-
ues at x of all Killing vector fields X with ∇X |x = 0, where ∇ denotes the Levi
Civita connection of g. The main motivation for introducing D is the fact that the
index of symmetry ıs(M) := dimD coincides with dimM precisely when (M, g)
is a symmetric space. Therefore the coindex dimM − ıs(M) can be viewed as
a sort of “distance” of the manifold from being a Riemannian symmetric space.
It is proved that the distribution D is actually integrable and that the maximal
integral submanifolds, which we will call the leaves of symmetry, are Riemannian
symmetric s paces which are embedded into M as totally geodesic submanifolds.

In this work we will focus on compact generalized flag manifolds, namely com-
pact homogeneous spaces G/H where G is a connected compact semisimple Lie
group and H is the centralizer in G of a torus. It is well known that these man-
ifolds exhaust all compact Kähler manifolds which admit a transitive semisimple
compact Lie group of biholomorphic isometries. If M = G/H is a such a man-
ifold endowed with an invariant Kähler structure given by an invariant complex
structure J and a Kähler metric g compatible with J , then (M, g) is de Rham
irreducible if and only if G is simple and in this case G coincides (up to covering)
with the full group of isometries of (M, g) up to a few exceptions which can be
listed (see §2). Our main result can be stated as follows.
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Theorem 1.1. Let M = G/H be a compact generalized flag manifold endowed with
a non-symmetric G-invariant Kähler structure (g, J). Suppose that G is simple and
that it coincides with the full group of isometries of g. Then,

i) the leaves of symmetry are complex , totally geodesic submanifolds which are
irreducible Hermitian symmetric spaces.

ii) There exists a compact Lie subgroup H ′ ⊃ H such that the fibers of the fibra-
tion G/H → G/H ′ coincide with the leaves of symmetry. The subgroup H ′

depends only on the complex structure J and not on the metric g.

iii) If k denotes the co-index of symmetry (i.e., k = dimG/H ′), then

(1.1) dimG ≤ 1

2
k(k − 1) and k ≥ 6 ,

with k = 6 precisely when g = su(4) and h = 2R⊕ su(2).

We first remark that when G is not simple and splits (locally) as a product
G = G1 × · · ·×Gr of simple factors G1, . . . , Gr, then there are subgroups Hi ⊂ Gi

such that M = G1/H1×· · ·×Gr/Hr biholomorphically and isometrically , so that
the above theorem can be applied on each factor leading to the general description
of the leaves of symmetry for any generalized flag manifold. The hypothesis that G
coincides (up to covering) with the full group of isometries is also not too restrictive,
as the result due to Onishchick shows (see Theorem 2.1).

As stated in our main theorem, it is remarkable that the leaves of symmetry
are irreducible symmetric spaces and that the subgroup H ′ depends exclusively
on the invariant complex structure and not on the Kähler metric. In Remark 3.4
we give a simple and constructive way to identify the subgroup H ′ in terms of
the highest root of the root system of the Lie algebra g of G, equipped with
the ordering corresponding to the invariant complex structure. Note also that in
general the invariant complex structure on M does not descend to an invariant
(almost)-complex structure on G/H ′.

Note also that in [2] the authors prove an estimate for the co-index of symmetry
from which we get dimG ≤ 1

2k(k+1), while the estimate (1.1) is finer in our setting.
We remark that k ≥ 6 improves the inequality k ≥ 2 which is proved in a general
setting in [2].

The paper is structured as follows. In Section 2 we give a brief survey on the
basic structure of generalized flag manifolds and their invariant Kähler structures;
we then explain the notion of index of symmetry and related geometric features.
In Section 3 we give the proof of the main theorem 1.1.

Notation. For a compact Lie group, we denote its Lie algebra by the correspond-
ing lowercase gothic letter. If a group G acts on a manifold M , for every X ∈ g
we denote by X̂ the corresponding vector field on M induced by the G-action.

Acknowledgments. The author thanks D.V. Alekseevsky for valuable conversa-
tions.
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2. Preliminaries

In this section we will review some basic facts about generalized flag manifolds and
the symmetry index.

2.1. Generalized flag manifolds

We consider a compact connected semisimple Lie group G and a compact sub-
group H which coincides with the centralizer in G of a torus. The homogeneous
space M = G/H is a generalized flag manifold and it can be equipped with invari-
ant Kähler structures. We will now state some of the main properties of generalized
flag manifolds, referring to [1] and [3] for a more detailed exposition.

We fix a maximal abelian subalgebra t ⊂ h and the B-orthogonal decomposition
g = h⊕m. The subspace m can be naturally identified with the tangent space ToM ,
where o := [H ] ∈ G/H . If R denotes the root system of gC relative to the Cartan
subalgebra tC, for every root α ∈ R the corresponding root space is given by
gα = C · Eα and

hC =
⊕

α∈Rh

gα, mC =
⊕

α∈Rm

gα,

where Rh ⊂ R is a closed subsystem of roots and Rm := R \Rh. The roots in Rh

are characterized by the fact that they vanish on the center c ⊆ t of h. Observe
that (Rh +Rm) ∩R ⊆ Rm.

Any G-invariant complex structure J on M induces an endomorphism J ∈
End(m) with J2 = −Id. If we extend J to mC and we decompose mC = m1,0⊕m0,1

into the sum of the ±i - eigenspaces of J , then the integrability of J is equivalent to
the fact that q := hC ⊕m1,0 is a subalgebra, actually a parabolic subalgebra of gC.
Moreover it can be shown that G-invariant complex structures are in bijective
correspondence with the invariant orderings of Rm, namely subsets R+

m ⊂ Rm such
that

Rm = R+
m ∪ (−R+

m), R+
m ∩ (−R+

m) = ∅, (Rh +R+
m) ∩R ⊂ R+

m,

the correspondence being given by m1,0 =
⊕

α∈R+
m
gα. Invariant orderings are then

in one-to-one correspondence with Weyl chambers in the center c of h, namely con-
nec-ted components of the set c \⋃α∈Rm

ker(α|c), and an invariant ordering in Rm

can be combined with an ordering in Rh to provide a standard ordering in R.
If we fix an invariant complex structure J on M (hence a Weyl chamber C

in c), we can endow M with many G-invariant Kähler metrics which are Hermi-
tian with respect to J . Actually, it can be proved that G-invariant symplectic
structures, namely G-invariant non-degenerate closed two-forms, are in one-to-one
correspondence with elements in the Weyl chambers in c. Indeed, if ω ∈ Λ2(m) is
a symplectic form, then there exists ξ in some Weyl chamber in c such that

ω(X,Y ) = B(adξ X,Y ), X, Y ∈ m.

Moreover ω is the Kähler form of a Kähler metric g with respect to the complex
structure J (i.e., g := ω(·, J ·) defines a Kähler metric) if and only if ξ ∈ C.

Finally, if M = G/H is endowed with an invariant Kähler structure (g, J) and
G =loc G1×· · ·×Gk is the decomposition into a product of simple factors, then H



1418 F. Podestà

splits accordingly as H =loc H1×· · ·×Hk for Hi ⊂ Gi, and M is biholomorphically
isometric to the product of irreducible Kähler homogeneous spaces M = M1×· · ·×
Mk, Mi := Gi/Hi. The next result, due to Onishchik ([9]), deals with the basic
question whether g coincides with the full algebra of Killing vector fields.

Theorem 2.1. If G is a compact connected simple Lie group and acts almost
effectively on M = G/H, then G coincides (up to a covering) with the identity
component of the full isometry group Q, with the following exceptions:

(a) M = CP 2n+1 and g = sp(n+ 1), h = u(1)⊕ sp(n), q = su(2n+ 2);

(b) g = so(2n− 1), h = u(n− 1), q = so(2n), n ≥ 4;

(c) M = Q5 and g = g2, h = u(2), q = so(7).

2.2. The index of symmetry

The concept of index of symmetry has been introduced in [8]. If (M, g) is a
Riemannian manifold and K(M, g) is the set of all Killing vector fields, at each
point x ∈ M we can define the subspace

px := {X ∈ K(M, g)| ∇X |x = 0},
where ∇ denotes the Levi Civita connection of g. The elements of px are called
transvections at q and the symmetric isotropic subalgebra kx at x is defined as the
linear span of the commutators [X,Y ] with X,Y ∈ px. It is clear that

ux := kx ⊕ px

is an involutive Lie algebra. The symmetric subspace sx ⊂ TxM is then defined as

sx := {X̂x| X ∈ px}
and the index of symmetry ıs(M) is infx∈M dim sx. When M is homogeneous,
the assignment x �→ sx defines a distribution which is proven to be integrable
and autoparallel. The maximal integral leaves of this symmetry distribution are
Riemannian symmetric spaces which are embedded in M as totally geodesic sub-
manifolds. One of the main reasons for considering the index of symmetry is the
well-known fact that ıs(M) = dimM if and only ifM is a symmetric space (see [8]).

3. The main result

In this section we consider a generalized flag manifold M = G/H , where G is
a compact semisimple connected Lie group and we endow M with a G-invariant
Kähler structure, given by a complex structure J and a Kähler metric g. We also
keep the same notations as in the previous section.

We will also assume that the Lie algebra g coincides with the algebra of the
full isometry group and we fix a reductive decomposition

g = h⊕m, [h,m] ⊆ m.

We denote by o := [eH ] ∈ G/H and by p the subspace po ⊂ g. We first prove:



The index of symmetry of a flag manifold 1419

Lemma 3.1. The subspace p ⊆ g is Ad(H)-invariant and contained in m. There-
fore p ∼= so and it is complex, i.e., J(so) = so.

Proof. If h ∈ H and X ∈ p, then Âd(h)X = h∗X̂ and therefore for every w ∈ ToM
we have

∇wÂd(h)X |o = dh−1|o(∇dh−1wX̂) = 0,

hence Ad(h)X ∈ p. If we fix a maximal abelian subalgebra t ⊆ h then [t, p] ⊆ p.
This implies that pC splits as the sum of root spaces and therefore pC = (pC∩hC)⊕
(pC ∩mC). Since p ∩ h = {0} by well known properties of Killing vector fields, we
see that pC ⊆ mC, hence p ⊆ m.

We now prove that p is complex. Recall (see e.g. [1]) the fact that the h-mod-

ule m splits as the sum of mutually inequivalent submodules m =
⊕k

i=1 mi each of
which is therefore J-stable. Since p is an h-submodule, it is the sum of a certain
number of submodules mj and therefore it is J-stable. �

Keeping the same notations, we fix a Cartan subalgebra tC ⊂ gC and an ordering
of the corresponding root system R so that

m1,0 =
⊕

α∈R+
m

gα.

The submodule pC is also the sum of certain root spaces, say pC =
⊕

α∈Rp
gα,

where Rp ⊂ Rm with Rp = −Rp. We now recall the well-known expression for the
Levi Civita connection of an invariant metric on a reductive homogeneous space
(see e.g. [7]). If X,Y, U ∈ m, then

(3.1) − 2 go(∇Ŷ X̂, Û) = 〈[Y,X ]m, U〉+ 〈[X,U ]m, Y 〉+ 〈[Y, U ]m, X〉,
where 〈·, ·〉 is the Ad(H)-invariant scalar product on m corresponding to go. There-
fore, X ∈ p if and only if for every Y, U ∈ m we have

(3.2) 〈[Y,X ]m, U〉+ 〈[X,U ]m, Y 〉+ 〈[Y, U ]m, X〉 = 0.

We can extend (3.2) C-linearly and we can also suppose that X = Eα for some
α ∈ R+

p , where R+
p = Rp ∩ R+

m. Here {Eα}α∈R denotes the standard Chevalley
basis of the root spaces (see e.g. Theorem 5.5 in [5]). Equation (3.2) implies
that Eα ∈ pC if and only if for every roots β, γ ∈ Rm we have

(3.3) 〈[Eβ , Eα]m, Eγ〉+ 〈[Eα, Eγ ]m, Eβ〉+ 〈[Eβ , Eγ ]m, Eα〉 = 0.

We recall now that for β, γ ∈ Rm we have

〈Eβ , Eγ〉 = −iεβ · 〈JEβ , Eγ〉 = −iεβ · ω(Eβ , Eγ)

= −iεβ ·B([ξ, Eβ ], Eγ) = −iεβ · β(ξ) ·B(Eβ , Eγ),

where εβ = ±1 according to β ∈ R±
m. Therefore 〈Eβ , Eγ〉 = 0 unless γ = −β and

(3.4) 〈Eβ , E−β〉 = −iεβ · β(ξ).
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It follows that equation (3.3) is significant only when β+γ = −α, and in this case,

Nβ,γ · 〈E−α, Eα〉+Nα,γ · 〈E−β , Eβ〉+Nβ,α · 〈E−γ , Eγ〉 = 0.

Since α+ β+ γ = 0 we have that Nα,β = Nβ,γ = Nγ,α (see Lemma 5.1 in [5]), and
therefore we must have

(3.5) 〈E−α, Eα〉 = 〈E−β , Eβ〉+ 〈E−γ , Eγ〉.
Using (3.4), we see that (3.5) is equivalent to

(3.6) ((1 + εγ) · γ + (1 + εβ) · β)(ξ) = 0.

Now, α > 0, so that β and γ are both negative or have opposite sign. If β, γ < 0
then (3.6) is automatic, while if , say, β < 0 and γ > 0, then (3.6) implies γ(ξ) = 0.
This contradicts the fact that γ ∈ Rm, while h is the centralizer of ξ in g. Therefore
we conclude that α ∈ R+

m belongs to Rp if and only if α �= −β − γ with β and γ
in Rm with opposite signs or, equivalently, if and only if (α + R+

m) ∩ R = ∅. This
allows the following characterization:

Lemma 3.2. The subspace pC ∩ m1,0 coincides with the center z of the nilpotent
subalgebra m1,0 of gC.

Proof. Indeed the center z is spanned by root vectors Eα, α ∈ R+
m, such that

[Eα, Eβ ] = 0 for every β ∈ R+
m and this is equivalent to saying that α + R+

m does
not contain roots. �

We remark that the subalgebra m1,0 is the nilponent radical of the parabolic
subalgebra q̄ := hC ⊕m1,0.

If we now put k := [p, p] and u := p ⊕ k, then (u, k) is a symmetric pair and we
can prove the following lemma.

Lemma 3.3. If g is simple, the pair (u, k) is an irreducible Hermitian symmetric
pair. The Lie algebra u is also simple.

Proof. The fact that the symmetric pair (u, k) is Hermitian follows from Lemma 3.1,
so we need prove that it is irreducible. Note that pC = z ⊕ z̄. Moreover, Proposi-
tion 4.3 in [4] shows that ad(h) preserves z and the action of h on z is irreducible.
This implies that ad(h) acts irreducibly on p. We now decompose h = k ⊕ k′ with
respect to the Cartan Killing form B, where k′ := k⊥ ∩ h. We have

B([k′, p], p) = B(k′, [p, p]) = 0,

and since [k′, p] ⊆ p, we conclude that [k′, p] = {0}. This means that the ad(k)-action
on p is also irreducible and our first claim follows. Now [u, u] = u so that u is
semisimple. Since k acts on p irreducibly and the symmetric pair is Hermitian, we
immediately see that u is simple (see e.g. Proposition 7.5 in [7]). �

Remark 3.4. From the characterization of pC ∩R+
m, we see that pC contains the

root space gθ, where θ ∈ R is the highest root. Actually, θ is the highest weight
for the irreducible representation of H on z. This gives a way for detecting the
Lie algebra u out of the painted Dynkin diagram D of the flag manifold G/H (see,
e.g., [1], [3] for a detailed exposition). Indeed we can consider the painted Dynkin
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diagram corresponding to the given flag manifold G/H , in which the Dynkin dia-
gram of the semisimple part of hC is obtained by deleting some (black) nodes in
the Dynkin diagram of gC. We can then embed D into the extended Dynkin dia-
gram D̃ of gC and we see that the Dynkin diagram of uC is given by the connected
component containing −θ of the complement in D̃ of the black nodes (see also the
discussion on p. 88 in [4]).

Now we can define the subalgebra

h′ := h⊕ p

and note that the corresponding connected Lie subgroup H ′ ⊂ G is compact,
because h′ has maximal rank. Indeed the closure H̄ ′ is connected and has Lie
algebra h̄′ which normalizes h′. Therefore we have the B-orthogonal decomposition
h̄′ = h′ ⊕ f with [h′, f] ⊆ h′ ∩ f = {0}. It then follows that f commutes with h′,
hence with the maximal abelian subalgebra contained in h ⊂ h′. Therefore f ⊂ h,
hence f = {0} and H ′ = H̄ ′.

The homogenous space M ′ = G/H ′ is compact and has dimension given by
the coindex of symmetry k. Note that in general the invariant complex structure
on M does not descend to an invariant (almost)-complex structure on M ′.

Lemma 3.5. We have k ≥ 6.

Proof. Since G is simple, its action on M ′ is almost effective and therefore dimG ≤
1
2k(k+1). Note that k is an even integer. In [2] it is proved that k = 2 implies that
dimM = 3, so that in our case k ≥ 4. We now show that k = 4 can be ruled out.
Indeed in this case we have dimG ≤ 10 and being G simple, we have g = su(3)
or so(5) ∼= sp(2). In any case all the flag manifolds with isometry group SU(3) or
SO(5) are Hermitian symmetric spaces (note that SO(5)/U(2) ∼= SO(6)/U(3)). �

Lemma 3.6. We have

(3.7) dimG ≤ 1

2
k(k − 1) .

Proof. We have the general estimate dimG ≤ 1
2 k(k + 1), since G acts almost

effectively on M . We first show that equality can never occur. Indeed, it is well
known (see e.g. [6]) that equality occurs precisely when g ∼= so(k+1) and h′ ∼= so(k).
Note that k ≥ 6 by Lemma 3.5 and therefore h′ is simple. We note that h′ = k′⊕ u
using the same notations as in the proof of Lemma 3.3. Moreover, [k′, p] = 0
implies that [k′, [p, p]] = [k′, k] = 0 by Jacobi, hence [k′, u] = {0} and k′ is an ideal
of h′. Since h′ is simple we see that k′ = {0} and h′ = u ∼= so(k). Now using
the fact that (u, k) is an Hermitian symmetric pair, we have that h = k is either
R⊕ so(k − 2) or u(k2 ). Now only h = u(k2 ) c an be the isotropy of a flag manifold
with g = so(k+1) (see e.g. [3]) and again the only invariant Kähler metric on such
flag manifold is the symmetric one.

A classical result (see e.g. Theorem 3.2 in [6]) states that the dimension d of the
isometry group of a k-dimensional manifold (k �= 4) is less or equal to 1

2 k(k−1)+1
whenever it is not equal to 1

2 k(k + 1). Moreover, when d = 1
2 k(k − 1) + 1, a

complete classification of the manifold is achieved (see Theorem 3.3 in [6]), showing
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that the isotropy representation has always a non trivial fixed vector. Since h′

has maximal rank, the isotropy representation of h′ has no trivial submodule and
therefore dimG ≤ 1

2 k(k − 1). �

Lemma 3.7. We have that k = 6 if and only if g = su(4), h = 2R⊕ su(2). In this
case the leaves of symmetry are biholomorphic to CP 2 = SU(3)/U(2).

Proof. By Lemma 3.6 we get dimG ≤ 15. Since G is simple and using the argu-
ments in the proof of Lemma 3.5, we see that g = su(4) or g2. When g = su(4) we
see that the only non-symmetric flag is the one with h = 2R⊕ su(2) and a simple
computation shows that u ∼= su(3).

As for g2, we have precisely two distinct flag manifolds with G = G2, namely
M = G2/H where h ∼= u(2) with semisimple part containing a long or a short root
space. If Rh consists of a long root, then M ∼= Q5 = SO(7)/SO(2) × SO(5), the
metric is symmetric and G2 is a proper subgroup of the full isometry group (see
Theorem 2.1). If Rh is given by a short root, thenM is the twistor space of the Wolf
space G2/SO(4). In this case it is easy to see that the module p is 2-dimensional
(corresponding to the fibres of the twistor fibration), hence k = 8. �
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