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Exponential integrability of mappings

of finite distortion

Tuomo Äkkinen and Kai Rajala

Abstract. We consider mappings with exponentially integrable distor-
tion whose Jacobian determinants are integrable over the n-ball. We show
that the boundary extensions of such mappings are exponentially inte-
grable with bounds, and give examples to illustrate that there is not too
much room for improvement. This extends the results of Beurling [2], and
Chang and Marshall [3], [10] on analytic functions, and Poggi-Corradini
and Rajala [14] on quasiregular mappings.

1. Introduction

A mapping f : Ω → Rn, on a domain Ω ⊂ Rn has finite distortion if the following
conditions are fulfilled:

(a) f ∈ W 1,1
loc (Ω,R

n),

(b) Jf = det(Df) ∈ L1
loc(Ω),

(c) there exists a measurable Kf : Ω → [1,∞), so that for almost every x ∈ Ω we
have

|Df(x)|n ≤ Kf (x)Jf (x),

where | · | is the operator norm. If Kf ≤ K <∞ almost everywhere, we say that f
is K-quasiregular. If n = 2 and K = 1, we recover complex analytic functions.
See [15], [16] and [17] for the theory of quasiregular mappings, and [6], [7] for the
theory of mappings of finite distortion.

We consider mappings f : Bn → Rn for which f(0) = 0 and

(1.1)

ˆ
Bn

Jf dx ≤ αn,

where B
n is the unit n-ball with Lebesgue measure αn.
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Our main results are concerned with mappings with exponentially integrable
distortion. More precisely, we assume that there are constants λ,K > 0 such that

(1.2)

ˆ
Bn

exp(λKf ) dx ≤ K.

We denote by Fλ,K the class of mappings satisfying these assumptions.
Integrating the derivative over radial segments and applying polar coordi-

nates, (1.1) and (1.2), it follows that if f ∈ Fλ,K, then f has a radial limit f(ξ)
at almost every boundary point ξ ∈ Sn−1. See [1] for the existence of radial limits
under milder assumptions. In this paper we prove an analog of known exponential
integrability results for the boundary extension f . We extend the results obtained
for analytic functions in [2] and [3] and for quasiregular mappings in [14] to the
class Fλ,K. We briefly recall these earlier results.

1.1. Exponential integrability for analytic functions

Let F1 be the class of analytic functions on the unit disc D with the above proper-
ties. Chang and Marshall proved the following sharp extension of an earlier result
by Beurling [2].

Theorem A ([3], Corollary 1). We have

sup
f∈F1

ˆ 2π

0

exp
(|f̄(eiθ)|2) dθ <∞.

This result is sharp in the following sense: define, for 0 < a < 1, the Beurling
functions Ba : D → C, so that

Ba(z) = log
( 1

1− az

)
log−1/2

( 1

1− a2

)
.

Then, for each 0 < a < 1, Ba ∈ F1. Moreover, one can show that

lim
a→1

ˆ 2π

0

exp
(
γ |Ba(e

iθ)|2) dθ = ∞

for every γ > 1. Essén [5] has generalized Theorem A, assuming instead of (1.1)
the weaker condition |f(D)| ≤ π.

1.2. Exponential integrability for quasiregular mappings

Let n ≥ 2, and let FK be the class ofK-quasiregular mappings satisfying the above
properties. Theorem A was generalized by Poggi-Corradini and Rajala [14] in the
following form.

Theorem B ([14], Theorem 1.1). Let n ≥ 2. Then

sup
f∈FK

ˆ
Sn−1

exp
(
α |f̄(ξ)|n/(n−1)

)
dξ <∞,
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where

α = (n− 1)
( n

2K

)1/(n−1)

.

Theorem B is sharp in dimension 2 in the sense that

sup
f∈FK

ˆ 2π

0

exp
(
γ |f̄(eiθ)|2) dθ = ∞

for any γ > 1/K. This can be seen by composing the Beurling functions with
a radial stretching, see Section 4. In higher dimensions, it is expected that the
theorem is not sharp for any K. The proof of Theorem B in [14] follows the
approach of Marshall [10] to Theorem A. A version of Theorem B for monotone
functions was proved in [12].

1.3. Exponential integrability for mappings of finite distortion

The main result of this paper is the following counterpart of Theorems A and B
for Fλ,K.

Theorem 1.1. Let n ≥ 2 and λ,K > 0. There exists a constant α = α(n, λ) > 0
such that

sup
f∈Fλ,K

ˆ
Sn−1

exp
(
α |f̄(ξ)|) dξ <∞.

This is sharp in the sense that there exists α̂ = α̂(n, λ) > α such that

sup
f∈Fλ,K

ˆ
Sn−1

exp
(
α̂ |f̄(ξ)|) dξ = ∞.

However, we do not know the best constant α in Theorem 1.1, even in dimension 2.
We discuss this issue in the next subsection.

1.4. Estimate for level sets

Marshall [10] gave a proof of Theorem A using an estimate of Beurling [2] on log-
arithmic capacity, together with sharp estimates established by Moser [11]. The
proof of Theorem B in [14] uses similar ideas and in particular an “egg-yolk prin-
ciple”, discussed in Section 5 below, and an extension of Beurling’s estimate to all
dimensions. We state a simple consequence of this estimate. Denote

Fs =
{
ξ ∈ S

n−1 : |f̄(ξ)| ≥ s
}
, Et =

{
x ∈ B

n : |f(x)| = t
}

and

An−1f(Et) =

ˆ
Sn−1(0,t)

cardf−1(y) dHn−1(y).
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Theorem C ([14], Theorem 1.5). Suppose that f is a K-quasiregular mapping in
a neighborhood of B

n
such that |f(x)| ≤M whenever |x| ≤ r < 1. Then, for every

s > M ,

Hn−1
(
Fs

) ≤ C exp
(
− (n− 1)

(nαn

2K

)1/(n−1)
ˆ s

M

dt(An−1f(Et)
)1/(n−1)

)
,

where C = C(n, r,K) > 0.

This result allows one to estimate the level sets of the boundary extension f
in the previous theorems, and it is sharp in dimension 2. We prove the following
version with exponentially integrable distortion.

Theorem 1.2. Suppose that f is a mapping of finite distortion in a neighborhood
of B

n
, satisfying (1.2), such that |f(x)| ≤ M whenever |x| ≤ r < 1. Then, for

every s > M ,

(1.3) Hn−1
(
Fs

) ≤ C1 exp

(
− C2

(ˆ s

M

dt(An−1f(Et)
)1/(n−1)

)(n−1)/n
)
,

where C1, C2 > 0 depend on n and λ, and C1 also depends on r and K.

Theorem 1.1 follows from this estimate. We do not know the best constant C2

in Theorem 1.2, even in dimension 2. In Theorem C, the best constant can be
obtained by applying symmetrization methods to give sharp capacity estimates
for the conformal n-capacity. In Theorem 1.2 one needs to work with weighted
capacities, and it seems that symmetrization methods do not work here. Therefore,
we have to use a different method that does not give the best constant.

2. Proof of Theorem 1.1 assuming Theorem 1.2

Weaker versions of Theorem A and Theorem B, with constants below the critical
constant, are considerably easier to prove, using Theorem C. We demonstrate this
well-known fact. Since analytic functions are 1-quasiregular mappings, we only
consider Theorem B. First, recall that mappings in class FK are equicontinuous.
In particular, there exists a constant r0 = r0(n,K) > 0 such that

(2.1) |f(x)| ≤ 1 for every |x| ≤ r0 ,

see [7]. We now claim Theorem B below the critical exponent. More precisely, we
claim that

(2.2) sup
f∈FK

ˆ
Sn−1

exp
(
γ |f̄(ξ)|n/(n−1)

)
dξ <∞

whenever γ < (n− 1)(n/(2K))1/(n−1).
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Recall the notation Fs and An−1f(Et) from Section 1.4. To prove (2.2), we
apply Cavalieri’s principle and write
ˆ
Sn−1

exp
(
γ |f(ξ)|n/(n−1)

)
dξ = nαn +

γn

n− 1

ˆ ∞

0

Hn−1
(
Fs

)
eγs

1/(n−1)

s1/(n−1) ds.

Therefore, it suffices to bound
ˆ ∞

1

Hn−1
(
Fs

)
eγs

1/(n−1)

s1/(n−1) ds.

By Fatou’s lemma we may assume that f is defined on a neighborhood of B
n
. Now

if s > 1 then by (2.1) and Theorem C we have

Hn−1
(
Fs

) ≤ C exp
(
− (n− 1)

(nαn

2K

)1/(n−1)
ˆ s

1

dt(An−1f(Et)
)1/(n−1)

)
,

for all f ∈ FK . Moreover, Hölder’s inequality, change of variables and (1.1) yield

(2.3) (s− 1)n/(n−1) ≤ α1/(n−1)
n

ˆ s

1

dt(An−1f(Et)
)1/(n−1)

,

and thus
Hn−1

(
Fs

) ≤ C exp
(− α(s− 1)n/(n−1)

)
,

where α = (n− 1)(n/(2K))1/(n−1). Therefore, since γ < α,

sup
f∈FK

ˆ ∞

1

Hn−1
(
Fs

)
eγs

1/(n−1)

s1/(n−1) ds

≤ C

ˆ ∞

1

eγs
1/(n−1)−α(s−1)n/(n−1)

s1/(n−1) ds <∞.

In order to prove Theorems A and B one has to combine the arguments above
with a method developed by Moser [11] to give a sharp version of Trudinger’s
inequality. See Section 5 for further discussion.

As discussed above, we are not able to prove Theorem 1.1 with the best possible
constant. Therefore, the main difficulty in the proof is to establish Theorem 1.2.
This is more difficult than in the case of quasiregular mappings. Once we have
Theorem 1.2 at our disposal, Theorem 1.1 can be proved in a similar way as above.

Proof of Theorem 1.1. We repeat the steps above but with our new estimates.
First, the equicontinuity property (2.1) holds also in the class Fλ,K with r0 =
r0(n, λ,K), cf. [7]. Let α > 0 and f ∈ Fλ,K. By Cavalieri’s principle we can write

ˆ
Sn−1

exp
(
α |f̄(ξ)|) dξ = nαn + α

ˆ ∞

0

Hn−1
(
Fs

)
eαs ds

and thus it suffices to bound ˆ ∞

1

Hn−1
(
Fs

)
eαs ds.
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Now if s > 1, then by equicontinuity and Theorem 1.2 we have

Hn−1
(
Fs

) ≤ C1 exp
(
− C2

(ˆ s

1

dt(An−1f(Et)
)1/(n−1)

)(n−1)/n)
.

Moreover, (2.3) holds under our assumptions, and thus

Hn−1
(
Fs

) ≤ C1 exp
(− C2 α

−1/n
n (s− 1)

)
.

Combining the estimates, we have

sup
f∈Fλ,K

ˆ ∞

1

Hn−1
(
Fs

)
eαs ds ≤ C

ˆ ∞

1

eαs−C2α
−1/n
n (s−1) ds <∞,

if α < C2 α
−1/n
n . �

3. Proof of Theorem 1.2

3.1. Symmetrization and weighted modulus

We first discuss the methods used to prove Theorems C and 1.2. We will apply
modulus (or capacity) estimates. Let Γ be a family of paths in Rn. Let ρ : Rn →
[0,∞] be a Borel measurable function. We say that ρ is admissible for Γ, or
ρ ∈ Adm(Γ), if ˆ

γ

ρ ds ≥ 1

for all rectifiable γ ∈ Γ. If ω is a non-negative measurable function, then the
weighted modulus Modω(Γ) is

Modω(Γ) = inf
ρ∈Adm(Γ)

ˆ
Rn

ρn(x)ω(x) dx.

If ω ≡ 1, then Mod(Γ) = Modω(Γ) is the conformal modulus.
Let 0 < r < 1 and M = max|x|≤r |f(x)|. Consider the modulus of the family Γ

of paths connecting Bn(0, r) to Fs. Define

(3.1) ρ(x) =
( ˆ s

M

dt(An−1f(Et)
)1/(n−1)

)−1 ‖Df(x)‖(An−1f(Et)
)1/(n−1)

,

when |f(x)| = t ∈ (M, s) and ρ(x) = 0 otherwise. Then ρ is admissible for Γ
outside a negligible exceptional set. After a change of variables and an application
of the distortion inequality for f , this implies

Mod1/K(Γ) ≤
ˆ
Rn

ρ(x)n dx =
( ˆ s

M

dt(An−1f(Et)
)1/(n−1)

)1−n

.
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Therefore, Theorems C and 1.2 follow if a suitable lower bound for Mod1/K(Γ)
is found. In the case of quasiregular mappings, this amounts to proving a lower
bound for Mod(Γ). In this case, the lower bound

(3.2) Mod(Γ) ≥ nαn

2

(
log

C

Hn−1(Fs)1/(n−1)

)1−n

can be established using symmetrization methods. More precisely, (3.2) is proved
by spherical cap symmetrization and it is sharp in the sense that the constant in
front of the logarithm is the best possible. Theorem C follows by combining the
estimates. See [14] and the references therein for details.

In the case of exponentially integrable Kf , one would also like to prove a sharp
lower bound for Mod1/K(Γ) using symmetrization. It seems that symmetrization
methods cannot be directly applied to the weighted modulus. Using the exponen-
tial integrability of Kf one can, however, show that

Mod1/K(Γ) ≥ C ϕ (Mod∗(Γ)),

where ϕ(t) = t/ log(e + 1/t), and

Mod∗(Γ) = inf
ρ∈Adm(Γ)

ˆ
Rn

ρn(x)

log(e + ρ(x))
dx.

Now it follows from [4] that Mod∗(Γ) is reduced under spherical symmetrization.
Therefore, we get

Mod∗(Γ0) ≥ C
(
log

1

Hn−1(Fs)1/(n−1)

)−n

.

Combining the estimates gives

Hn−1(Fs) ≤ C1 exp
(− C2 I(s,M)(n−1)/n log−1/n

(
e+ I(s,M)

))
,

where

(3.3) I(M, s) =

ˆ s

M

du(An−1f(Eu)
)1/(n−1)

.

This is weaker than what is claimed in Theorem 1.2. Therefore, we need to find an
alternative method for proving Theorem 1.2. In what follows, we prove a better
lower bound directly for the integral of ρn using elementary chaining arguments
and the exponential integrability of Kf .

3.2. Proof of Theorem 1.2

Let f satisfy the assumptions of Theorem 1.2. Fix 0 < r < 1/2 and set

M = max
|x|≤r

|f(x)|.
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Let s > M , and let ρ be the function in (3.1). Also, define ρ̂ : Rn → [0,∞],

ρ̂(x) = I(M, s)−1 Jf (x)
1/n(An−1f(Et)
)1/(n−1)

,

when |f(x)| = t ∈ (M, s) and ρ̂(x) = 0 otherwise (I(M, s) is defined in (3.3)).
Then we have

(3.4) ρ(x) ≤ ρ̂(x)Kf (x)
1/n

almost everywhere by the distortion inequality. If γ connects Bn(0, r) to Fs =
{ξ ∈ Sn−1 : |f̄(ξ)| ≥ s}, we have

(3.5)

ˆ
γ

ρ ds ≥ I(M, s)−1

ˆ
f(γ)

1(An−1f(E|x|)
)1/(n−1)

ds(x) ≥ 1

whenever the change of variables formula holds for the restriction of f to γ. It is not
difficult to see that the exceptional set does not affect any of the estimates below.

We also have

(3.6)

ˆ
Rn

ρ̂(x)n dx = I(M, s)1−n.

Indeed, applying change of variables and polar coordinates, and recalling the defi-
nition of An−1f(Et), we have

I(M, s)n
ˆ
Rn

ρ̂(x)n dx =

ˆ
M≤|y|≤s

cardf−1(y) dy(An−1f(E|y|)
)n/(n−1)

=

ˆ s

M

ˆ
Sn−1(0,t)

cardf−1(y) dHn−1(y)(An−1f(Et)
)n/(n−1)

dt = I(M, s).

We claim that

(3.7)

ˆ
Rn

ρ̂(x)n dx ≥ C2

(
log

C1

Hn−1(Fs)

)−n

,

where C1 and C2 are as in the statement of the theorem. The theorem follows by
combining (3.6) and (3.7). To prove (3.7), we will use a parametrization of Bn by
“spherical coordinates” as follows. For j ∈ N, set

(3.8) Aj = [0, 1]n ∩ {
2−j ≤ xn ≤ 2−j+1

}
,

and divide Aj into 2
j(n−1) closed cubes Qj

i of side length 2−j with disjoint interiors.
More precisely,

Qj
i = [ i12

−j, (i1 + 1) 2−j]× . . .× [ in−12
−j , (in−1 + 1) 2−j]× [ 2−j, 2−j+1],

where i = (i1, . . . , in−1) ∈ {0, . . . , 2j − 1}n−1. Denote by Qj the collection of Qj
i :s

at level j, and set
Q = ∪jQj.



Exponential integrability of mappings of finite distortion 1467

We also denote Q0
0 = [0, 1]n−1 × [1, 2], and

G = [0, 1]n−1 × [0, 2].

The top of a cube Qj
i is

T (Qj
i ) = Qj

i ∩ {xn = 2−j+1}.

We say that Qj
i and Qj+1

i′ are consecutive if

T (Qj+1
i′ ) ⊂ Qj

i .

Moreover, we say that a cube Ql
i′ is a descendant of Qj

i (l > j) if there is a sequence

of consecutive cubes starting from Qj
i ending at Ql

i′ , meaning any two cubes in
order from the sequence are consecutive. With this terminology, each cube in Q
has 2n−1 descendants at the next level.

The set T (Q0
0) can be mapped onto T (Qj

i ) by scaling the first n−1 coordinates
by a factor of 2−j and composing with a translation. Denote such map by φj and
let ljv : [0, 1] → Rn, ljv(t) = (1− t)φj(v) + tφj+1(v). Then{

ljv(t) : v ∈ T (Q0
0)
}

is a family of line segments connecting T (Qj
i ) to T (Q

j+1
i′ ) in Qj

i . Adding these line
segments together, we get piecewise linear paths connecting the tops of any two
consecutive cubes. Recall that our goal is to estimate Hn−1(Fs) by the n-integral
of ρ̂. Applying the estimate below to the upper half space and lower half space, we
may assume that xn ≥ 0 for every x ∈ Fs. There exists a universal constant L > 0
and an L-bi-Lipschitz homeomorphism h : G→ A+(1/2, 1), where

A+(1/2, 1) =
{
x ∈ Bn(0, 1) \ Bn(0, 1/2) : xn ≥ 0

}
,

so that h maps the bottom of G onto the upper half of the unit sphere and the top
onto the upper half of Sn−1(0, 1/2).

For each k ∈ N, let Gk = [0, 1]n−1 × [2−k, 2 + 2−k] and hk : Gk → G, hk(x) =
h(x1, . . . , xn−1, xn − 2−k). Moreover, define

Pk =
{
Q ∈ Qk : hk(Q) ∩ Fs �= ∅}, pk = card Pk.

Then, since the hk(Q):s cover Fs, we have

Hn−1(Fs) ≤ Ln−1pk 2
−k(n−1),

where L is the bi-Lipschitz constant of h. Therefore, (3.7) follows if we show

(3.9)

ˆ
Rn

ρ̂(x)n dx ≥ C2

(
log

C1

pk2−k(n−1)

)−n

.

Since f has exponentially integrable distortion in a neighborhood of B̄n it is con-
tinuous in that neighborhood and thus uniformly continuous in B̄

n. Therefore,
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taking k large enough, we may assume that |f(x)| ≥ s in hk(Q) for every Q ∈ Pk.
Fix Q(�) ∈ Pk, � = 1, . . . , pk, and let Γk denote the family of paths in Gk that
connects the bottom of Q(�) to the top of Gk, which are constructed from the line
segments described above and line segments of length 2−k parallel to xn axis con-
necting the top of Q0

0 to the top of Gk. If γ ∈ Γk, then hk ◦γ connects Sn−1(0, 1/2)
to Fs. If hk(γ) meets Sn−1(0, 1/2) at a point z/2, we define γ′ to be hk ◦ γ outside
Bn(0, 1/2), and the line segment J connecting z/2 and rz in Bn(0, 1/2). Then γ′

connects Fs and Bn(0, r). Therefore, by (3.5),

(3.10)

ˆ
J

ρ ds+

ˆ
γ

ρ ◦ hk ds ≥ L−1

ˆ
γ′
ρ ds ≥ L−1,

outside the exceptional set, where L is the bi-Lipschitz constant of h.
Let {Qj

ij
(�)}kj=0 be the sequence of consecutive cubes containing the paths γ∈Γk.

With the parametrization introduced above and change of variables we haveˆ
T (Q0

0)

ˆ
ljv

ρ ◦ hk ds dv ≤ 2j(n−1)

ˆ
Qj

i

ρ ◦ hk dx.

Thus integrating (3.10) over T (Q0
0), yields

1 ≤ CL
k∑

j=1

2j(n−1)

ˆ
Qj

ij
(	)

ρ ◦ hk(x) dx + CL

ˆ
A(r,1/2)

ρ(x)

|x|n dx+ ε(k),

where C depends only on n, A(r, 1/2) = Bn(0, 1/2) \Bn
(0, r). The term ε(k) > 0

comes from the line segments connecting T (Q0
0) to top ofGk. Moreover, limk→∞ ε(k)

= 0 and thus it can be absorbed to the left hand side. Summing over � gives

(3.11) pk ≤ CL

pk∑
	=1

k∑
j=1

2j(n−1)

ˆ
Qj

ij
(	)

ρ ◦ hk(x) dx + pkCL

ˆ
A(r,1/2)

ρ(x)

|x|n dx.

First assume that

CL

ˆ
A(r,1/2)

ρ(x)

|x|n dx <
1

2
.

By (3.11) we have

(3.12) pk ≤ 2CL

pk∑
	=1

k∑
j=1

2j(n−1)

ˆ
Qj

ij
(	)

ρ ◦ hk(x) dx.

Define
Δj,k(x) =

∑
Q∈Qj

S(k,Q)χQ(x),

where S(k,Q) denotes the number of cubes in Pk which are descendants of Q.
Then we may write (3.12) as (recall the notation Aj given in (3.8))

pk ≤ 2CL
k∑

j=1

2j(n−1)

ˆ
Aj

(ρ ◦ hk)(x)Δj,k(x) dx.
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Applying Hölder’s inequality and the pointwise inequality (3.4) gives

pk ≤ 2CL

k∑
j=1

2j(n−1)

ˆ
Aj

(ρ ◦ hk)(x)Δj,k(x) dx

≤ 2CL

k∑
j=1

2j(n−1)‖ρ̂ ◦ hk‖n,Aj

(ˆ
Aj

Kf (hk(x))
1/(n−1) Δ

n/(n−1)
j,k (x) dx

)(n−1)/n

≤ 2CL

k∑
j=1

2j(n−1)‖ρ̂ ◦ hk‖n,Aj

(
max
Q∈Qj

S(k,Q)
)1/n

·
( ˆ

Aj

Kf(hk(x))
1/(n−1) Δj,k(x) dx

)(n−1)/n

.

Moreover, by the definition of Δj,k, we have

ˆ
Aj

Kf(hk(x))
1/(n−1) Δj,k(x) dx ≤ pk 2

−jn max
Q∈Qj

 
Q

Kf (hk(x))
1/(n−1) dx,

where
ffl

denotes integral average. Invoking Jensen’s inequality with the convex
function t �→ exp(λtn−1), we see that for any Q ∈ Qj ,

(3.13)

 
Q

Kf(h(x))
1/(n−1) dx ≤ λ−1/(n−1) log1/(n−1) (K 2jn).

Combining the estimates, we have

(3.14) pk ≤ C Lp
(n−1)/n
k

k∑
j=1

‖ρ̂ ◦ hk‖n,Aj

(
max
Q∈Qj

S(k,Q)
)1/n

log1/n(K 2jn),

where C depends on n and λ. We next split the sum in (3.14) into two sums which
are estimated separately. Let

ak = k − log2
(
p
1/(n−1)
k

)
.

If j ≤ ak, we use the trivial estimate

max
Q∈Qj

S(k,Q) ≤ pk.

When j > ak, we have

max
Q∈Qj

S(k,Q) ≤ 2(k−j)(n−1),

since each cube has 2n−1 descendants at the next level.
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Combining the estimates and applying Hölder’s inequality to the sums, we have

(CL)−1pk ≤ pk

ak∑
j=1

‖ρ̂ ◦ hk‖n,Aj log1/n(K 2jn)

+ p
(n−1)/n
k

k∑
j=ak+1

‖ρ̂ ◦ hk‖n,Aj2
(k−j)(n−1)/n log1/n(K 2jn)

≤ pk a
(n−1)/n
k ‖ρ̂ ◦ hk‖n,G log1/n(K 2akn)

+ p
(n−1)/n
k ‖ρ̂ ◦ hk‖n,G 2k(n−1)/n

( k∑
j=ak+1

2−j log1/(n−1) (K 2jn)
)(n−1)/n

.

There exists a universal constant C′ > 0 such that

∞∑
j=ak+1

2−j log1/(n−1) (K 2jn) ≤ C′ 2−ak log1/(n−1) (K 2akn).

Moreover, by the definition of ak,

(3.15) 2−ak = 2−k p
1/(n−1)
k .

Combining the estimates gives (we may assume K ≥ 1)

1 ≤ C′′ a(n−1)/n
k ‖ρ̂‖n,Rn log1/n (K 2ak) ≤ C′′ ‖ρ̂‖n,Rn log(K 2ak),

where C′′ depends on n and λ. Applying (3.15) to ak gives (3.9).

We are left with the case

(3.16)
1

2
≤ CL

ˆ
A(r,1/2)

ρ(x)

|x|n dx,

where C and L are as in (3.11). We can apply the pointwise inequality (3.4) and
Jensen’s inequality, in a similar way as above, to show that

(3.17)

ˆ
A(r,1/2)

ρ(x)

|x|n dx ≤ C ‖ρ̂‖n log
K
r
,

where C depends on n and λ. Notice that, by increasing the constant C1 accord-
ing to r if needed, we may assume that the inequality (1.3) holds for all values
of s > M such that r ≤ Hn−1(Fs). On the other hand, if r > Hn−1(Fs), then (3.16)
combined with (3.17) gives (3.9).

Notice that the constant C2 there only depends on n and λ, while C1 depends
on K as the estimate above shows, but also on n, r and λ as discussed earlier. The
proof of Theorem 1.2 is complete.
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4. Example

We next show the sharpness of Theorem 1.1, apart from the constant α. We
first consider dimension n = 2. Let η > λ > 0. We define a radial stretching
f : R2 → R2 by f(0) = 0, and

f(x) =

⎧⎪⎨
⎪⎩

z

|z| exp
(− log2(|z|)

η

)
, when |z| ≤ 1

z, when |z| > 1.

Also, let M : D → HR be the Möbius transformation

M(z) =
1− z

1 + z

onto the right half plane HR. Moreover, let Ba : C → C, 0 < a < 1, be the Beurling
functions defined in the introduction. Now define a mapping

Ga : D → C, Ga = Ba ◦M−1 ◦ f ◦M.

Then Ga(0) = 0. Moreover, since M−1 ◦ f ◦M is one-to-one and maps D onto D,

ˆ
D

JGa(z) dA(z) =

ˆ
D

Ba(z) dA(z) ≤ π.

The distortion of f is not difficult to calculate. Outside D the distortion is 1, and
in D ∩HR we have

(4.1) Kf(z) =
|Df(z)|2
Jf (z)

= max
{2

η
log

( 1

|z|
)
,
(2
η
log

( 1

|z|
))−1}

,

cf. [7]. Since M and Ba are conformal, we have

ˆ
D

exp
(
λKGa(z)

)
dA(z) =

ˆ
HR

JM−1(w) exp
(
λKf (w)

)
dA(w).

Applying (4.1), and our assumption η > λ, we see that the integral on the right is
finite and only depends on η/λ. In particular, the integral does not depend on a.
We conclude that there existsK = K(η, λ) such thatGa ∈ Fλ,K for every 0 < a < 1.
We now have Beurling’s estimate for the functions Ba:

H1
({
θ : |Ba(e

iθ)| ≥Ma

}) ≥ C exp(−M2
a ),

where C > 0 is independent of a, and Ma = log1/2
(
1/(1 − a)

)
. Applying this

estimate and the definition of f , we have a similar estimate for Ga. Namely,

(4.2) H1
({
θ : |Ga(e

iθ)| ≥Ma

}) ≥ C1 exp(−√
ηMa),

where C1 > 0 depends on the constant C above and λ. Let γ > 0.
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Applying (4.2), we have the following chain of inequalities:

ˆ Ma

0

H1
({ |Ga(e

iθ)| ≥ t
})
eγt dt ≥

ˆ Ma

0

H1
({ |Ga(e

iθ)| ≥Ma

})
eγt dt

≥ C1

e
√
ηMa

ˆ Ma

0

eγt dt = γ−1C1 e
(γ−√

η )Ma .

This and Cavalieri’s principle together imply

sup
0<a<1

ˆ 2π

0

exp
(
α̂ |Ga(e

iθ)|) dθ = ∞

whenever α̂ >
√
λ.

In dimensions n ≥ 3, examples showing the sharpness of Theorem 1.1, except
for the constant α, can be constructed in the same way. Namely, replacing f with

f(x) =

⎧⎪⎨
⎪⎩

x

|x| exp
(−|log |x||n/(n−1)

η

)
, when |x| ≤ 1

x, when |x| > 1

with a large η, and the Beurling functions Ba with the quasiconformal logarithm
maps sending aen to infinity. The Möbius transformations are chosen so that they
map the unit ball onto a half-space. We leave the details to the interested reader.

5. Egg-yolk principle and Moser’s inequality

In [10] Marshall conjectured and egg-yolk principle whose validity would simplify
his proof of Theorem A. The conjecture was proved in [13] by Poggi-Corradini.
In [14], the following generalization was established and applied to prove Theo-
rem B.

Theorem D ([14], Theorem 1.6). Let n ≥ 2. There exists 0 < r0(n,K) < 1 such
that, if f : Bn → Rn is a K-quasiregular mapping and f(0) = 0, then 0 ≤ M <
max|x|≤r0 |f(x)| implies

ˆ
{|f(x)|<M}

Jf (x) dx ≥ αnM
n.

We notice that the following generalization holds.

Theorem 5.1. Let n ≥ 2. There exists 0 < r0(n, λ,K) < 1 such that if f : Bn → Rn

satisfies (1.2) and f(0) = 0, then 0 ≤M < max|x|≤r0 |f(x)| implies

ˆ
{|f(x)|<M}

Jf (x) dx ≥ αnM
n.
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One of the main tools in the proof of Theorem D is Poletsky’s inequality, which
says that if f is K-quasiregular and Γ is a path family, then

Mod(f(Γ)) ≤ Kn−1Mod(Γ).

If f has exponentially integrable distortion, we have the corresponding inequality
in the form

Mod(f(Γ)) ≤ ModKn−1(Γ).

This inequality as well as the following estimate are proved in [8].

Lemma 5.2. Let f satisfy (1.2). Let 0 < 4r < R < 1. Then there exist constants
C1, C2 > 0 depending on n, λ and K such that

ModKn−1(Γ) ≤ C1

( ˆ R/2

2r

ds

s log(C2s−n)

)1−n

,

where Γ is the family of all paths connecting Bn(0, r) to Rn \Bn(0, R).

Theorem 5.1 can be proved by following the proof of Theorem 1.6 in [14] and
replacing the estimates there by the estimates above. We omit the details.

As discussed earlier, we do not know the optimal constant C2 in Theorem 1.2.
However, a Moser-type result can still be established as follows.

Theorem 5.3. Assume that Theorem 1.2 holds with constant C2 = β. Then
Theorem 1.1 holds with constant α = βα−1/n, i.e.

sup
f∈Fλ,K

ˆ
Sn−1

exp
(
β α−1/n

n |f̄(ξ)|) dξ <∞.

Recall that the proof of Theorem 1.1 in Section 2 gives the theorem with α <

βα
−1/n
n . Theorem 5.3 shows that integrability still holds at the critical exponent.

We need the following generalization of Moser’s inequality. This is a corollary of
Theorem 3 in [9].

Theorem E. Let ψ : [0,∞[→ [0,∞[ be a strictly increasing local Lipschitz function
satisfying ψ(0) = 0 and ˆ ∞

0

(
ψ′(t)

)n
dt ≤ 1.

Then there is a constant Cn depending only on n such that

ˆ ∞

0

exp
(
ψ(t)− t(n−1)/n

)
dt(n−1)/n ≤ Cn.

Proof of Theorem 5.3. Cavalieri’s principle yields

(5.1)

ˆ
Sn−1

exp
(
β α−1/n

n |f̄(ξ)|) dξ = nαn + β α−1/n
n

ˆ ∞

0

Hn−1
(
Fs

)
eβα

−1/n
n s ds.
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Choose r0 as in Theorem 5.1, and let M = max|x|≤r0 |f(x)|. Then, by (1.1) and
Theorem 5.1, we have M < 1 and

(5.2)

ˆ
{x∈Bn:|f(x)|≤M}

Jf (x) dx =

ˆ M

0

An−1f(Et) dt ≥ αnM
n.

Again, we may assume that f is continuous up to the boundary. By Theo-
rem 1.2 and by (5.1) it suffices to estimate

ˆ ‖f‖∞

0

exp
(
β α−1/ns− ϕ(n−1)/n(s)

)
ds,

where ϕ(s) = 0 when 0 < s ≤M and

ϕ(s) = βn/(n−1)

ˆ s

M

dt(An−1f(Et)
)1/(n−1)

for s > M . Define ϕ̃ : (0,∞) → (0,∞),

ϕ̃(s) =

{
μ s, if 0 < s ≤M

ϕ(s) + μM, if s > M.

Here

μ =

(
βnM´M

0
An−1f(Et) dt

)1/(n−1)

.

Notice that ϕ̃(0) = 0 and ϕ̃′(s) > 0 for every s > 0. Furthermore,

ϕ̃(n−1)/n ≤ ϕ(n−1)/n + (μM)(n−1)/n.

Using this and (5.2) it suffices to estimate the integral

(5.3)

ˆ ‖f‖∞

0

exp
(
β α−1/ns− ϕ̃(n−1)/n(s)

)
ds.

Let φ : (0,∞) → (0,∞),

φ(y) =

{
s, if y = ϕ̃(s)

‖f‖∞, if y > ‖ϕ̃‖∞.

Changing variables with s = φ(y) in (5.3) gives

ˆ ∞

0

exp
(
β α−1/nφ(y)− y(n−1)/n

)
φ′(y) dy.

Integrating by parts, we see that it suffices to estimate
ˆ ∞

0

exp
(
β α−1/nφ(y)− y(n−1)/n

)
y−1/n dy.
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Note that

βα−1/n
n φ′(y) =

{
μ−1 β α−1/n

n , if 0 < y ≤ μM

β−1/n α−1/n
n

(An−1f(Eφ(y))
)1/(n−1)

, if y > μM.

So by change of variables y = ϕ̃(t), the definition of μ and (1.1) we have

ˆ ∞

0

(
β α−1/n

n φ′(y)
)n
dy

= μ1−n βn α−1
n M + α−1

n β−n/(n− 1)

ˆ ∞

μM

(An−1f(Eφ(y))
)n/(n−1)

dy

= μ1−n βn α−1
n M + α−1

n

ˆ ∞

M

An−1f(Et) dt

= α−1
n

ˆ ∞

0

An−1f(Et) dt ≤ 1.

Now invoking Theorem E gives the claim. The proof is complete. �
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