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Hilbert cubes in arithmetic sets

Rainer Dietmann and Christian Elsholtz

Abstract. We show upper bounds on the maximal dimension d of Hilbert
cubes H = a0 + {0, a1} + · · · + {0, ad} ⊂ S ∩ [1, N ] in several sets S of
arithmetic interest.

a) For the set of squares we obtain d = O(log logN). Using previously
known methods this bound could have been achieved only condition-
ally subject to an unsolved problem of Erdős and Radó.

b) For the set W of powerful numbers we show d = O((logN)2).

c) For the set V of pure powers we also show d = O((logN)2), but
for a homogeneous Hilbert cube, with a0 = 0, this can be improved
to d = O((log logN)3/ log log logN), when the ai are distinct, and
d = O((log logN)4/(log log logN)2), generally. This compares with
a result of d = O((logN)3/(log logN)1/2) in the literature.

d) For the set V we also solve an open problem of Hegyvári and Sárközy,
namely we show that V does not contain an infinite Hilbert cube.

e) For a set without arithmetic progressions of length k we prove d =
Ok(logN), which is close to the true order of magnitude.

1. Introduction

1.1. Results on progression-free sets and squares, discussion of methods

If a0 �= 0, a1, . . . , ad are elements of an additive group, we define

H(a0; a1, . . . , ad) := a0 + {0, a1} + · · · + {0, ad} =
{
a0 +

d∑
i=1

εiai : εi ∈ {0, 1}
}

to be a Hilbert cube of dimension d. Note that here and in the following we do not
require the ai to be distinct, unless noted explicitly. For a0 = 0 it is convenient to
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slightly amend the definition to

H(0; a1, . . . , ad) :=
{ d∑

i=1

εiai : εi ∈ {0, 1},
d∑

i=1

εi > 0
}
,

excluding the empty sum. This special case of a homogeneous Hilbert cube is also
often called the set of ‘subset sums’. Moreover, one can in an obvious way extend
these definitions to infinite Hilbert cubes, imposing the additional condition that
only finitely many εi are different from zero. Homogeneous infinite Hilbert cubes
are also known in the literature as ‘finite sums’, or as ‘IP sets’ (see for example [2]).
For an infinite set A one writes this as

FS(A) =
{∑

i

εiai : εi ∈ {0, 1}, 0 <
∑
i

εi < ∞
}
.

In this paper, though, our focus will mainly, but not exclusively, be on finite Hilbert
cubes.

There are many questions connecting the size d with the number of distinct
elements in a d-dimensional cube. This topic is closely connected to questions on
‘sumset growth’ studied in additive combinatorics. The question of the maximal
size d such that there is some Hilbert cube H(a0; a1, . . . , ad) in a given set S of
integers has been frequently studied. Also, a number of different methods have
been used in these investigations.

Given a set S ⊂ {1, . . . , N} and

H(0; a1, . . . , ad) ⊂ S

for positive ai, then also
H(a1; a2, . . . , ad) ⊂ S,

so the maximal dimension of a subset sum in S clearly is less than or equal to one
plus the maximal dimension of a Hilbert cube in S. In general, it seems, the case
of subset sums might be easier. At least, certain methods developed for subset
sums, see e.g. [8], cannot be extended to the general case.

In this paper we focus on questions where the set S has some interesting arith-
metic meaning, such as the set of squares, or the set of powerful numbers. Here
the results and methods by Hegyvari and Sárközy [30] and Gyarmati, Sárközy and
Stewart [26] have been influential. As we will observe, the study of these arithmetic
sets is closely related to questions on sets S which do not contain long arithmetic
progressions. There are a number of investigations, connecting sumsets and sub-
set sums with the length of arithmetic progressions or studying sumsets in the
set of squares. We will mention some of these results below, but there is further
work by Lagarias, Odlyzko and Shearer [36], Sárközy [41], Erdős and Sárközy [15],
Ruzsa [40], Szemerédi and Vu [47], [48], Khalfalah and Szemerédi [34], Nguyen
and Vu [38].

Further, the study of combinatorial aspects of Hilbert cubes has a long tra-
dition, see for example Hilbert [32], Hegyvári, [28], [29], Gunderson, Rödl and
Sidorenko [24], and the very recent result by Conlon, Fox and Sudakov [5].
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A connection of the maximal dimension of a Hilbert cube with the complexity
of sequences has been investigated by Woods [50]. For example he showed that an
upper bound on the dimension of a Hilbert cube in the set of primes provides a
lower bound on the complexity of prime testing. While we do not follow this path
here, it can be observed that the existence of a high dimensional Hilbert cube, say
of dimension d, and of size |H | > cd, with c > 1 (compare Lemma 1.4), would allow
to store these more than cd elements very efficiently, just by storing the d+ 1 base
elements. From this perspective, and in view of the philosophy behind the famous
conjecture of Erdős and Szemerédi [17] that sets of integers do not simultaneously
contain a large additive and a large multiplicative structure, it seems reasonable
to expect that for multiplicatively defined sets, such as those studied in this paper,
such an efficient (additively defined) saving is only possible for quite small subsets.

The connection of Hilbert cubes and arithmetic progressions has been famously
studied by Szemerédi [46] and more recently by Gowers [20], who introduced in
this connection what is now known as the Gowers uniformity norm, and in the
paper by Green and Tao [23] on long progressions in the primes.

In this paper we make use of a variety of methods, some of which have been
used before in connection with subset sums, but had to be adapted in order to make
use of them for the more general Hilbert cubes. In our earlier paper [11] we had
introduced a new method, based on the study of sumset growth for progression-
free sets. This led to an almost exponential sumset growth. In this paper we
introduce a tool, Lemma 1.4 below, to the study of Hilbert cubes, which extends
a recent method of Schoen [43], and which eventually achieves exponential sumset
growth for the sets under consideration. For the set of squares and progression-free
sets (Theorems 1.1 and 1.3) this improves, and simplifies, our work in [11]. The
two methods above make use of global properties of the set S, such as avoiding
arithmetic progressions.

To handle the more delicate and less structured set of pure powers it seems
best to make in addition use of local obstructions modulo primes. Here a number
of estimates on primes, including Linnik’s theorem and sieve methods, have to be
used. This route had been developed by Gyarmati, Sárközy and Stewart [26] for
the study of subset sums.

The combination of these methods seems stronger than any of these meth-
ods alone. After these prolegomena on methods let us turn our attention to the
arithmetic sets under consideration.

Brown, Erdős and Freedman [3] asked whether the maximal dimension of a
Hilbert cube in the set

S2 = {n2 : n ∈ N}
of integer squares is absolutely bounded or not. Experimentally, one finds only
very small cubes such as

1 + {0, 528} + {0, 840}+ {0, 840} = {12, 232, 292, 292, 372, 372, 412, 472}.
Observe that in this example 292 and 372 occur as sums in two different ways.
Cilleruelo and Granville [4], Solymosi [45] and Alon, Angel, Benjamini and Lu-
betzky [1] explain that the Bombieri–Lang conjecture implies that d is absolutely
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bounded. The study of sumsets A+ B being a subset of the set of integer squares
S2 ∩ [1, N ] is well understood when |A| = 2. Here a2 + bi = x2 and a1 + bi = y2

gives a2 − a1 = x2 − y2 = (x+ y)(x− y). On the other hand, for any factorization
a2−a1 = d1d2 with d1 > d2 > 0 of the same parity, one finds x = d1+d2

2 , y = d1−d2

2 ,
and hence bi = x2 − a2 = y2 − a1. Given a1, a2 and the factorizations of a2 − a1
one finds the corresponding set B. For a fixed set A = {a1, a2} with a1 �= a2 there
exist only finitely many possible values of corresponding x, y and therefore only a
finite set B. On the other hand, when the elements a1, a2 can vary in [1, N ], the
size of |B| can be as large as the divisor function τ(a2 − a1)/2, i.e.,

|B| ≤ exp
(

(log 2 + o(1))
logN

log logN

)

is essentially the best possible general bound (see [39], Theorem 4 and its proof).
When |A| = 3 the problem of studying A + B ⊂ S2 goes back to Euler. For
some historical explanation, and for relating the problem to elliptic curves see
Alon, Angel, Benjamini and Lubetzky [1], for some extension see Dujella and
Elsholtz [12]. The case of |A| ≥ 4 leads to curves of genus g ≥ 2, which is the
reason why the Bombieri–Lang conjecture is related to it. We do not follow this
path here. Hegyvári and Sárközy ([30], Theorem 1) proved that for the set of
integer squares S2 ∩ [1, N ] the maximal dimension of a Hilbert cube is bounded
by d = O((logN)1/3). In a previous paper ([11], Theorem 3) we improved this to
d = O((log logN)2). Here we further reduce that bound.

Theorem 1.1 (Hilbert cubes in the squares). Let S2 denote the set of integer
squares. Let N be sufficiently large, let a0 be a non-negative integer and let A =
{a1, . . . , ad} be a set of positive integers such that H(a0; a1, . . . , ad) ⊂ S2 ∩ [1, N ].
Then

d ≤ 7 log logN.

A comparable bound was proved in the authors’ earlier paper ([11], Theorem 1)
for k-th powers (k ≥ 3) instead of squares. The treatment of higher powers was
easier for the following reason: by a deep theorem of Darmon and Merel [9], fol-
lowing the proof of Fermat’s last theorem, for k ≥ 3 there are no 3-progressions in
the set of k-th powers. On the contrary, the set of squares does contain arithmetic
3-progressions. We should remark that the special case a0 = 0 of subset sums
was previously studied by Csikvári ([8], Corollary 2.5), who proved in this case
the same bound d = O(log logN). His method of proof would not extend to the
general case of a0 �= 0.

Remark. With regard to our earlier result, Noga Alon kindly pointed out to us
that Lemma 5 of [11], which corresponds to Lemma 4.4 in this paper, is actu-
ally a version of a result of Erdős and Radó [14] on Δ-systems (or sunflowers).
On this subject small quantitative improvements are due to Kostochka [35], even
though the explicit dependence on the parameters h and v is not well understood,
and apparently at least one of the parameters h and v is fixed. For the set S2 of
squares, this would, assuming uniformity, possibly lead to the tiny improvement
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d = O((log2 N)2 log5 N
log4 N ), the logi N denoting the i-fold iterated logarithm. More-

over, the Erdős–Radó conjecture on these Δ-systems, for which Erdős [13] offered
a prize of $1000, would have implied d = O(log logN). Fortunately, it was possi-
ble to bypass the realm of Δ-systems and to prove for Hilbert cubes in the set of
squares the upper bound d = O(log logN) unconditionally.

Corollary 1.2 (Hilbert cubes in quadratic polynomials). Let f(x) = ax2 + bx+ c
be a quadratic polynomial where a, b, c ∈ Z such that a > 0 and 4a + b2 − 4ac ≥ 1,
and let S = {f(x) : x ∈ Z}. Let a0 be a non-negative integer and A = {a1, . . . , ad}
be a set of positive integers such that H(a0; a1, . . . , ad) ⊂ S ∩ [1, N ]. Then for
sufficiently large N , we have

d ≤ 7 log logN.

Note that the assumption 4a+b2−4ac ≥ 1 is not really necessary, but simplifies
the proof as it avoids possibly hitting the number zero which is excluded in our
definition of the set S2 of squares.

The method of proof allows us also to prove the following theorem, which
improves Theorem 2 in [11]. The special case of subset sums has been studied by
Schoen ([43], Corollary 2.2).

Theorem 1.3 (Hilbert cubes in progression-free sets). Let k ≥ 3 be a positive
integer, and let S denote a set of integers without an arithmetic progression of
length k. Moreover, let

c =
k

k − 1
.

Then, for sufficiently large N , the following holds true: if a0 is a non-negative
integer and A = {a1, . . . , ad} is a set of positive integers such that H(a0; a1, . . . , ad)
⊂ S ∩ [1, N ], then

d ≤ 2(k − 2)

(k − 1) log c
logN +

2

log c
+ 1.

Remark. A series expansion of log(1 + 1
k−1 ) shows that

2(k − 2)

(k − 1) log c
= (2k − 3) − 7

6k
− 11

12k2
+ O

( 1

k3

)
.

Remark. The upper bound in terms of N is close to the correct order of magni-
tude, as can be seen from the following example, which is a variant of an example
by Szekeres mentioned by Erdős and Turán [18].

Let k be a fixed prime. In base k, we study the set of integers avoiding the
digit k − 1. Let

H = H(0; a1, . . . , a1, . . . , as, . . . , as),

with

ai = ki−1 : i = 1, . . . , s =
⌊ logN

log k

⌋
,
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where all elements occur (k − 2)-fold. Then all n ∈ H can be written as n =∑s−1
i=0 bik

i, with bi ∈ [0, k−2]. This set does not contain any arithmetic progression
of length k and gives d ∼ k−2

log k logN .

The following lemma proved to be the key idea and may be of independent
interest; some variant of it is implicitly contained in Schoen ([43], Lemma 2.1).

Lemma 1.4 (A cube lemma for progression-free sets, exponential growth). Let
k ≥ 3 be a positive integer, and let S denote a set of integers without an arithmetic
progression of length k. Moreover, let a0 be an integer, let A = {a1, . . . , ad} be a
set of non-zero integers, and let H(a0; a1, . . . , ad) ⊂ S. Then

|H | ≥ 2
( k

k − 1

)d−1

− 1.

It is well known that for sets without progressions of length k = 3 one even has
that |H | = 2d for a0 �= 0. This is an exercise in Solymosi [45], see also Lemma 3
in [11].

1.2. Applications to pure powers and powerful numbers

As an immediate application one can also improve upon a result of Gyarmati,
Sárközy, and Stewart ([26], Theorem 6), where they studied the maximal dimen-
sion d of subset sums in the set of powerful numbers

W = {n ∈ N : p | n ⇒ p2 | n}.
They proved an upper bound of d = O((logN)3(log logN)−1/2). Note that they
study subset sums only, but their method of proof also seems to give the same result
for Hilbert cubes. For this problem they also prove a lower bound of d � (logN)1/2

for the maximal dimension which shows that this problem is indeed quite different
from the case of Hilbert cubes in the set of squares studied above.

Observing that the powerful numbers cannot contain very long arithmetic pro-
gressions, and making use of the exponential growth guaranteed by Lemma 1.4,
we can establish the following result.

Theorem 1.5 (Hilbert cubes in powerful numbers). Let W denote the set of pow-
erful numbers. Further, let a0 be a non-negative integer, and let A = {a1, . . . , ad}
be a set of positive integers such that H(a0; a1, . . . , ad) ⊂ W ∩ [1, N ]. Then

d ≤ 5 (logN)2

for sufficiently large N .

Finally, we study Hilbert cubes and subset sums in the set

V = {an : a, n ∈ N, n ≥ 2}
of pure powers. The set of pure powers behaves much more irregularly than the set
of powers of a fixed base a, or the set of n-th powers for fixed exponent n. There
are some interesting recent results on the set of pure powers, see for example [27].

As V ⊂ W , we obtain as a corollary to Theorem 1.5 the following result.
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Corollary 1.6 (Hilbert cubes in pure powers). Let V denote the set of pure powers.
Further, let a0 be a non-negative integer, and let A = {a1, . . . , ad} be a set of
positive integers such that H(a0; a1, . . . , ad) ⊂ V ∩ [1, N ]. Then

d ≤ 5 (logN)2

for sufficiently large N .

The last two results are an application of Theorem 1.3 with k = O(logN).
Restricting to subset sums, we achieve a considerable improvement on this bound:
indeed we show that the relevant homogeneous progressions are of the much shorter
size O(log logN/log log logN). Using this, we are able to adapt the method that
we presented in [11] to this situation. It might seem that the method based on
Lemma 1.4 is more powerful, as the exponential growth is better than the growth
established in step 3 of the proof of Theorem 4 in [11], see formula (4.2) below.
However, the previous method seems to be more flexible in situations where only
strong bounds on the length of homogeneous progressions rather than all progres-
sions are available. This way we obtain the following result.

Theorem 1.7 (Subset sums in pure powers). Let V denote the set of pure powers.
Further, let A = {a1, . . . , ad} be a set of positive integers such that H(0; a1, . . . , ad)
⊂ V ∩ [1, N ]. If the ai are pairwise distinct, then

d � (log logN)3

log log logN

for sufficiently large N ; in the general case, i.e. where the ai are not necessarily
distinct,

d � (log logN)4

(log log logN)2

holds true.

Note that we first assume here that the ai are distinct, as in the course of proof
we will invoke Lemma 4.4 and Lemma 4.5; otherwise, we have to allow for another
factor O(log logN/ log log logN) in the upper bound for d, as this is the maximal
multiplicity of the elements ai.

We are not aware of any previous result in the literature on this problem,
other than the above mentioned bound by Gyarmati, Sárközy, and Stewart ([26],
Theorem 6): their upper bound d = O((logN)3(log logN)−1/2) for the dimension
of subset sums in W remains valid for subset sums in V .

While it is easy to see that for any fixed exponent k the set of k-th powers
cannot contain a Hilbert cube of infinite dimension, Hegyvári and Sárközy ([30],
page 314) mention that it is an open question whether or not there exists an infinite
Hilbert cube in the set of pure powers. They relate this question to the widely
open Pillai conjecture stating that a fixed integer can be the gap between pure
powers only finitely often. Here we answer the question by Hegyvári and Sárközy
on Hilbert cubes in the set of pure powers, and with hindsight the problem was
not as difficult as anticipated.
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Theorem 1.8. There is no infinite Hilbert cube in the set V of pure powers.

For the set of powerful numbers this question seems more difficult. There
are, for example, infinitely many pairs of consecutive powerful numbers. In fact
solutions of the Pell equation x2 − 8y2 = 1 provide examples. However, one can
give conditional results using either of the following two well known conjectures.

Conjecture 1.9 (abc conjecture, [37]). Let ε > 0. Suppose that a + b = c for
non-zero integers a, b, c with (a, b, c) = 1, and let

P =
∏

p | abc
p,

the product taken over all primes p dividing abc. Then

max{|a|, |b|, |c|} �ε P
1+ε.

Conjecture 1.10 (Schinzel–Tijdeman conjecture [42]). If a polynomial P with
rational coefficients has at least three simple zeros, then the equation y2z3 = P (x)
has only finitely many solutions in integers x, y, z with yz �= 0.

Theorem 1.11. Assuming the abc conjecture, or assuming the Schinzel–Tijdeman
conjecture, there is no infinite Hilbert cube in the set W of powerful numbers.

Let us remark that Walsh [49] proved that the abc conjecture implies the
Schinzel–Tijdeman conjecture, but below we give two independent and quite short
proofs for Theorem 1.8, using either the abc conjecture or the Schinzel–Tijdeman
conjecture.

Acknowledgements. We would like to thank Noga Alon for pointing out to us
the connection to the work of Erdős and Radó [14]. In an attempt to avoid their
conjecture we got the idea of the present approach. We would also like to thank
Jörg Brüdern for a comment regarding Lemma 1.4, and the referee.

2. Proofs of Theorems 1.1 and 1.3

The following observation is key for proving Lemma 1.4.

Lemma 2.1. Let 0 < α < 1, let h be a non-zero integer and let B be a non-empty
set of distinct integers. If |B∩(B+h)| > (1−α)|B|, then B contains an arithmetic
progression of length 1/α� + 1 and difference h.

Proof of Lemma 2.1. Consider the shift operator f : Z → Z, defined by f(b) =
b + h, and its iterations. For given b ∈ Z, let r(b) denote the least non-negative
integer r with

{b, f(b), . . . , f r−1(b)} ⊂ B, but f r(b) = b + rh �∈ B.
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The assumption |{b ∈ B : b + h ∈ B}| > (1 − α)|B| implies that for each fixed
non-negative integer r, there are less than α|B| elements b ∈ B with this given
value r = r(b). Hence, for k ∈ N the number of elements b ∈ B with r(b) ≤ k is
less than kα|B|. If kα|B| ≤ |B|, then there exists a b ∈ B with r(b) ≥ k + 1. For
k = 1/α�, this gives r(b) ≥ 1/α� + 1.

Therefore B contains the arithmetic progression {b, b + h, . . . , b + (r − 1)h} of
length r ≥ 1/α� + 1. �

Proof of Lemma 1.4. Let

c =
k

k − 1

and
Hi = a0 + {0, a1} + · · · + {0, ai}.

Let us first assume that a0 �= 0. Suppose that |H | < 2 cd−1. Then there is some
i ∈ {1, . . . , d− 1} such that

|Hi+1|
|Hi| < c.

Noting that

|Hi+1| = |Hi + {0, ai+1}| = 2|Hi| − |(Hi + ai+1) ∩Hi| < c|Hi|,
for this i we find

|(Hi + ai+1) ∩Hi| > (2 − c)|Hi|.
Then by Lemma 2.1 and our definition of c the set Hi contains an arithmetic
progression of length ⌊ 1

c− 1

⌋
+ 1 = k

which is a contradiction, as S does not contain a progression of length k.
Finally, if a0 = 0, we argue as above, first ignoring that the empty sum is by

definition not part of the Hilbert cube, but then deduct it by means of the −1
expression in the statement of the result. �

As in our previous work [11] we make use of the following two results on squares:

Lemma 2.2 (Theorem 9 of Gyarmati [25]). Let S2 denote the set of integer
squares. For sufficiently large N the following holds true: if C,D ⊂ {1, . . . , N}
such that C + D ⊂ S2, then

min{|C|, |D|} ≤ 8 logN.

Lemma 2.3 (Fermat, Euler (see Volume II, page 440 of [10])). There are no four
integer squares in arithmetic progression.

Corollary 2.4. Let f(x) = ax2+bx+c be a quadratic polynomial where a, b, c ∈ Z

such that a > 0, and let S = {f(x) : x ∈ Z}. Then the set S does not contain four
integer squares in arithmetic progression.
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Let us remark that Setzer [44] proved this corollary using elliptic curves. Here
we show that it is a simple consequence of Lemma 2.3, and therefore allows for an
elementary proof.

Proof of Corollary 2.4. From 4af(x) + b2 − 4ac = (2ax+ b)2, it follows that if the
arithmetic four-progression P = {n, n + m,n + 2m,n + 3m} is contained in S,
then the dilated and translated four-progression {4an+ b2 − 4ac, 4an+ b2 − 4ac+
4am, 4an + b2 − 4ac + 8am, 4an + b2 − 4ac + 12am} will be in the set of squares,
contradicting Lemma 2.3. �

Proof of Theorem 1.1. Let

C = H(a0; a1, . . . , a�d/2�) and D = H(0; a�(d+1)/2�, . . . , ad).

By Lemma 2.3, as the sets C and D are a subset, or a shifted subset, of the set of
squares, C and D do not contain an arithmetic progression of length k = 4. Thus,
by Lemma 1.4 and Lemma 2.2, applied with k = 4 to both C and D individually,
we obtain

c�d/2� − 1 ≤ min(|C|, |D|) ≤ 8 logN,

where c = 4/3. Hence

d ≤ 2

log c
log logN + O(1) ≤ 6.96 log logN,

for sufficiently large N . �

Proof of Theorem 1.3. The proof is as the one above, except that we replace Lem-
ma 2.2 by the following lemma, due to Croot, Ruzsa and Schoen ([7], Corollary 1):

Lemma 2.5. If C,D ⊂ [1, N ] and C + D does not contain an arithmetic progres-
sion of length k, then

min(|C|, |D|) ≤
√

6N1−1/(k−1).

Then it follows that

d ≤ 2

log c

k − 2

k − 1
logN +

2

log c
+ 1,

for sufficiently large N . With c = k/(k − 1) the theorem follows. �

Remark. There are a number of results in the same spirit as Lemma 2.5. Results
of Green [22], Croot, �Laba and Sisask [6] and Henriot [31] lead to slightly stronger
estimates, when k is large. However, it appears, in our application to Theorem 1.3
this would not even improve the factor 2/ log c, so that we did not pursue this path.
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Proof of Corollary 1.2. From 4af(x) = (2ax + b)2 − b2 + 4ac, it follows that if

H(a0; a1, . . . , ad) ⊂ S ∩ [1, N ],

then

4aH(a0; a1, . . . , ad) + b2 − 4ac ⊂ S2 ∩ [4a + b2 − 4ac, 4aN + b2 − 4ac]

⊂ S2 ∩ [1, 4aN + b2 − 4ac].

Moreover,

4aH(a0; a1, . . . , ad) + b2 − 4ac = H(4aa0 + b2 − 4ac; 4aa1, . . . , 4aad).

The corollary now follows immediately from the proof of Theorem 1.1, and observ-
ing that

d < 6.96 log log(4aN + b2 − 4ac) + O(1) ≤ 7 log logN

for sufficiently large N . �

3. Hilbert cubes in powerful numbers. Proof of Theorem 1.5
and Corollary 1.6

We first give an upper bound on the maximal length of an arithmetic progression
in the set W of powerful numbers. Let

b, b + d, b + 2d, . . . , b + (k − 1)d ∈ W ∩ [1, N ].

Let p be a prime with (d, p) = 1. Observe that k ≥ 2p would imply that the
progression contains at least two elements which are divisible by p, and at least
one of these is not divisible by p2. Hence, if k ≥ 2p, then p divides d. From this it
follows that for a progression of length k the difference d is divisible by all primes
p ≤ k/2. As b + (k − 1)d ≤ N it follows that

∏
p≤k/2

p ≤ d ≤ N

k − 1
.

Taking logarithms it follows by the prime number theorem (with logarithmic
weight) that ∑

p≤k/2

log p =
k

2
+ o(k) ≤ log d ≤ logN.

Hence k ≤ (2 + o(1)) logN .

Then making use of Theorem 1.3 with k = (2 + o(1)) logN proves that

d ≤ (4 + o(1)) (logN)2

for sufficiently large N , which confirms Theorem 1.5. Since V ⊂ W , Corollary 1.6
then follows immediately.
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4. Proof of Theorem 1.7

4.1. Preparations

Lemma 4.1 (Erdős and Shapiro, page 862 of [16]). Let p be a prime and χ be
a multiplicative character modulo p that is not the principal character. Moreover,
let A and B be subsets of Z/pZ. Then∣∣∣∣∑

a∈A

∑
b∈B

χ(a + b)

∣∣∣∣ ≤ (p |A| |B|)1/2.

Lemma 4.2 (Gallagher’s larger sieve, [19]). Let S denote a set of primes and
A ⊂ [1, N ] such that for p ∈ S the set A lies modulo p in at most ν(p) residue
classes. Then the following bound holds, provided the denominator is positive:

|A| ≤ − logN +
∑

p∈S log p

− logN +
∑

p∈S
log p

ν(p)

.

Lemma 4.3 (Quantitative version of Linnik’s theorem, see Corollary 18.8 in [33]).
There exists a positive constant L such that if N ≥ QL, then∑

p≤N
p≡1 mod Q

log p � N

ϕ(Q)
√
Q
,

where the implied constant is absolute.

4.2. A cube lemma for homogeneous arithmetic progressions

In this subsection we briefly recall some definitions from [11] and then collect
some results analogous to Theorem 1.3, but more suitable for a setting where only
information about homogeneous arithmetic progressions is available, thus confining
the applications to subset sums rather than to general Hilbert cubes. Let us first
remark that by a homogeneous arithmetic progression of length v we mean a set
{d, 2d, . . . , vd} for suitable d, v ∈ N. In the following, let S be any set of integers;
for our intended application, S will later be specialised to the set V of pure powers.
Moreover, let A = {a1, . . . , ad} be a set of distinct positive integers. We define f(N)
to be the minimum upper bound such that whenever B1, . . . , B5 ⊂ N such that

(4.1) Bi + Bj ⊂ S ∩ [1, N ]

for all distinct i, j ∈ {1, . . . , 5}, then

min
1≤i≤5

|Bi| ≤ f(N).

Further, let rA,h(n) be the number of ways of writing n as a sum of exactly h
elements in A, where the order of the summands is irrelevant, and let

g(h,N) = max
n≤N

rA,h(n).
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It turns out that g(h,N) can be uniformly bounded in terms of the length of
the longest homogeneous arithmetic progression in S; note that this bound is
independent of A.

Lemma 4.4. Let A = {a1, . . . , ad} ⊂ [1, N ] be a set of distinct integers, and
let H(0; a1, . . . , ad) ⊂ S ∩ [1, N ], where S is a set of positive integers without a
homogeneous arithmetic progression of length v ≤ 3. Then, for any h ≤ d,

g(h,N) ≤ h! (v − 1)h−1.

The proof of this lemma is exactly the same as for Lemma 5 in [11], taking
a0 = 0 throughout. Note that with a0 = 0 all arithmetic progressions occurring
in that proof turn out to be homogeneous, and note that we need to replace
v − 2 in Lemma 5 in [11] by v − 1 here, as with a0 = 0 the progressions of the
form 0, d, 2d, . . . , (v−1)d of length v occurring there would reduce to a homogeneous
progression d, 2d, . . . , (v − 1)d of length v − 1 here.

Our second main tool is the following result.

Lemma 4.5. Let A = {a1, . . . , ad} ⊂ [1, N ] be a set of distinct integers, and
suppose that H(0; a1, . . . , ad) ⊂ S ∩ [1, N ]. If d ≥ 5h + 4 for any h ∈ N, then

d ≤ 5 (h!f(N)g(h,N))1/h + 5h + 4.

Proof. This is basically the special case m = 1 and t = 5 of Theorem 4 in [11],
but since our function f(N) is defined slightly differently from f(5, N) there, let
us briefly outline the argument. Writing hˆS for the h-fold disjoint sumset of a
set S, and letting Bi = hˆAi, where A = A1 ∪ · · · ∪ A5 ∪ R for mutually disjoint
sets A1, . . . , A5, R with |A1| = |A2| = |A3| = |A4| = |A5| = d/5� and |R| ≤ 4, we
first note that as in step 3 in the proof of Theorem 4 in [11], we have

(4.2) |Bi| ≥ (|Ai| − h)h

h! g(h,N)
.

Now by assumption H(0; a1, . . . , ad) ⊂ S ∩ [1, N ], whence (4.1) is satisfied, so at
least one Bi satisfies the bound

(4.3) |Bi| ≤ f(N).

Rearranging (4.2) and (4.3) and noting that |A| = d then yields the result. �

4.3. Sumsets in pure powers

The following is close in spirit to Theorem 2 of Gyarmati, Sárközy and Stewart [26].
They proved an upper bound on |A|, assuming that A +′ A ⊂ V where A +′ A =
{a + a′ : a, a′ ∈ A, a �= a′}. Here we need a lemma for sums of distinct sets. The
following result about sums of five sets suffices for our purposes.
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Proposition 4.6. There exists a positive constant M with the following property:
If A1, . . . , A5 ⊂ [1, N ] and V denotes the set of pure powers, and if

Ai + Aj ⊂ V

for all distinct i, j ∈ {1, . . . , 5}, then

min
1≤i≤5

|Ai| � (logN)M .

For ease of exposition, we do not attempt to prove the best possible expo-
nent M , since it is irrelevant for our application of Proposition 4.6, but following
the more detailed argument in the proof of Theorem 2 in [26], one could for example
obtain the explicit value M = 48.

Proof. We follow the strategy of the proof of Theorem 2 in [26], but make some
necessary adjustments. Let

Ai = {ai1, . . . , aiti} (1 ≤ i ≤ 5),

and let us write each aij in the unique form

(4.4) aij = 2uij (4sij + eij),

where the uij , sij are non-negative integers and eij ∈ {−1, 1}. Note that all

uij ≤
⌊ logN

log 2

⌋
.

For i ∈ {1, . . . , 5}, u ∈ {0, 1, . . . , logN/ log 2�} and e ∈ {−1, 1} we define

Ai,u,e = {aij ∈ Ai : uij = u, eij = e}.

With this definition we have

Ai =
⋃

u≤�logN/ log 2�

⋃
e∈{−1,1}

Ai,u,e.

For a given i, choosing the parameters (ui, ei) such that |Ai,ui,ei | have maximal
cardinalities, it follows that

|Ai| � |Ai,ui,ei | logN (1 ≤ i ≤ 5).

If at least three of the five ui are zero, then we can without loss of generality
assume that u1 = u2 = 0 and e1 = e2. On the other hand, if at most two of the
five ui are zero, then we can without loss of generality assume that u1 > 0, u2 > 0
and e1 = e2. In either case, for a1 ∈ A1 and a2 ∈ A2 we obtain

a1 + a2 = 2u1(4s1 + e1) + 2u2(4s2 + e2) = 2g(2z + 1) = yq,
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where

g = g(u1, u2) =

{
u1 + 1 if u1 = u2

min{u1, u2} if u1 �= u2

is positive, s1, s2, z and y are suitable integers, and q is a prime dividing g(u1, u2).
Let

Q(u1, u2) =
∏

q|g(u1,u2)

q,

and observe that

(4.5) Q(u1, u2) � logN.

For a prime p ≡ 1 mod Q(u1, u2), we write Ap and Bp for the reductions of A1,u1,e1

and A2,u2,e2 , respectively, modulo p. The following result will be crucial for the
application of Gallagher’s larger sieve.

Lemma 4.7. Let ε > 0. Further, for fixed (u1, u2), let p be a prime with p ≡ 1
modQ(u1, u2), and let A and B ⊂ Z/pZ have the following property: If a ∈ A and
b ∈ B, then there is a prime q dividing g(u1, u2) and an element y ∈ Z/pZ, such
that a + b ≡ yq mod p. Then

|A| |B| �ε p
1+ε.

We postpone the proof of this lemma in order not to interrupt the flow of our
main argument. By Lemma 4.3, it follows that for N1 ≥ Q(u1, u2)

L we have

∑
p≤N1

p≡1 mod Q(u1,u2)

log p

p1/2+ε
� N

−1/2−ε
1

∑
p≤N1

p≡1 mod Q(u1,u2)

log p

� N
1/2−ε
1

ϕ(Q(u1, u2))
√
Q(u1, u2)

.(4.6)

Moreover, for N1 ≥ Q(u1, u2)L, the Brun–Titchmarsh theorem gives∑
p≤N1

p≡1 mod Q(u1,u2)

log p ≤ logN1

∑
p≤N1

p≡1 mod Q(u1,u2)

1

� logN1
N1

ϕ(Q(u1, u2))(logN1 − logQ)
� N1

ϕ(Q(u1, u2))
.(4.7)

For p ≡ 1 mod Q(u1, u2) write νA(p) for the cardinality of Ap, and νB(p) for the
cardinality of Bp. Then by Lemma 4.7 and (4.6) we get

∑
p≤N1

p≡1 mod Q(u1,u2)

log p

min{νA(p), νB(p)} � N
1/2−ε
1

ϕ(Q(u1, u2))
√
Q(u1, u2)

.
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Without loss of generality we may assume that

(4.8)
∑
p≤N1

p≡1 mod Q(u1,u2)

log p

νA(p)
� N

1/2−ε
1

ϕ(Q(u1, u2))
√

Q(u1, u2)
.

Applying Lemma 4.2, the bounds (4.5), (4.7) and (4.8), and choosing N1 =
(logN)L+1 we obtain

|A1,u1,e1 | ≤
− logN +

∑
p≤N1,p≡1 mod Q(u1,u2)

log p

− logN +
∑

p≤N1,p≡1 mod Q(u1,u2)
log p
νA(p)

�
− logN + N1

ϕ(Q(u1,u2))

− logN +
N

1/2−ε
1

ϕ(Q(u1,u2))
√

Q(u1,u2)

� N
1/2+ε
1

√
Q(u1, u2).

Since Q(u1, u2) � logN , and N1 = (logN)L+1 it follows that the hypothesis
N1 ≥ Q(u1, u2)L above is satisfied, and we obtain

|A1,u1,e1 | � (logN)L/2+2.

Hence
|A1| � (logN)L/2+3.

It remains to prove Lemma 4.7. We closely follow the proof of Lemma 2 in [26]
and will therefore be rather brief. It is convenient to write

Q = {q1, . . . , qK}
for the set of all primes dividing g(u1, u2). Now let

F (n) =

{
1 if xq ≡ n mod p is solvable for some q ∈ Q

0 otherwise.

Moreover, let F ∗(n) be as introduced in formula (2.9) in [26], i.e.

F ∗(n) =
K∑
�=1

(−1)�+1
∑

q1<···<q�
qi∈Q

1

q1 · · · ql
q1−1∑
j1=0

· · ·
q�−1∑
j�=0

χj1
q1 · · ·χj�

q�
(n),

where the χ are suitable multiplicative characters modulo p; note that we make
use of our assumption p ≡ 1 mod Q(u1, u2) here. Observe that F (n) = F ∗(n),
if (n, p) = 1. On the other hand, F (n) = 1 but F ∗(n) = 0, when n is divisible
by p. Consequently,∑

a∈A

∑
b∈B

F (a + b) ≤
∑
a∈A

∑
b∈B

F ∗(a + b) + min{|A|, |B|}

≤
∑
a∈A

∑
b∈B

F ∗(a + b) + (|A| |B|)1/2.
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As shown on page 6 of [26], χj1
q1 · · ·χj�

q� is the principal character if and only if
j1 = · · · = j� = 0. Thus,∑

a∈A

∑
b∈B

F ∗(a + b) =
∑

1
+
∑

2
,

where

∑
1

=

K∑
�=1

(−1)�+1
∑

q1<···<q�
qi∈Q

1

q1 · · · q�
∑

a∈A,b∈B
p�a+b

1

=
(

1 −
∏
q∈Q

(
1 − 1

q

)) ∑
a∈A,b∈B
p�a+b

1 ≤
(

1 −
∏
q∈Q

(
1 − 1

q

))
|A| |B|

and

∑
2

=

K∑
�=1

(−1)�+1
∑

q1<···<q�
qi∈Q

1

q1 · · · ql
∑

0≤j1<q1,...,0≤j�<q�
(j1,...,j�) �=(0,...,0)

∑
a∈A

∑
b∈B

χj1
q1 · · ·χj�

q�(a + b).

As remarked above, here the characters χj1
q1 · · ·χj�

q� are all different from the prin-
cipal character, whence Lemma 4.1 gives∣∣∣∑

a∈A

∑
b∈B

χj1
q1 · · ·χj�

q�(a + b)
∣∣∣ ≤ (p |A| |B|)1/2.

Hence ∣∣∣∑
2

∣∣∣ ≤ (p |A| |B|)1/2
K∑
�=1

∑
q1<···<q�

qi∈Q

1 ≤ (p|A| |B|)1/2 2K .

Note that K = ω(g(u1, u2)), where ω(t) denotes the number of distinct prime
factors of t. Summarising the above, we obtain∑

a∈A

∑
b∈B

F (a + b) ≤
(

1 −
∏

q|Q(u1,u2)

(
1 − 1

q

))
|A| |B|

+ 2ω(g(u1,u2))(p |A| |B|)1/2 + (|A||B|)1/2.
On the other hand, ∑

a∈A

∑
b∈B

F (a + b) = |A| |B|

by our assumption that for all a ∈ A and b ∈ B there exists a prime q ∈ Q such
that a + b ≡ xq mod p for some integer x. Consequently,∏

q|Q(u1,u2)

(
1 − 1

q

)
(|A| |B|)1/2 ≤ p1/2 2ω(g(u1,u2)) + 1
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holds. Let us recall that by the definition of Q(u1, u2), we have ω(g(u1, u2)) =
ω(Q(u1, u2)), and in general ω(n) ≤ 2 logn

log logn . Moreover, p > Q(u1, u2), as p ≡ 1

modQ(u1, u2). The result thus follows on noting that

2ω(g(u1,u2)) = 2ω(Q(u1,u2)) ≤ 22 logQ(u1,u2)/ log logQ(u1,u2) ≤ 22 log p/ log log p �ε p
ε

and ∏
q|Q(u1,u2)

(
1 − 1

q

)−1

� exp
( ∑

q≤Q(u1,u2)

1

q

)
� logQ(u1, u2) ≤ log p,

by Merten’s theorem. �

4.4. Subsetsums in pure powers

Recall that V denotes the set of pure powers. For N ∈ N write 	(N) for the
maximum positive integer 	 such that there exists x ∈ V such that all elements of
the arithmetic progression x, 2x, . . . , 	x are elements of V ∩ [1, N ].

Lemma 4.8. For sufficiently large N , we have

log logN

log log logN
� 	(N) � log logN

log log logN
.

Proof. For the lower bound, see the proof of Theorem 3 in [26]. The proof of
the upper bound starts with the observation that x cannot be odd, since other-
wise 2x ≡ 2 mod 4 would contradict 2x ∈ V . Therefore it follows that 2α||x, where
α ≥ 1. Then also 2α||nx for all odd n where n ≤ 	. In particular, from nx ∈ V we
conclude that nx must be a q-th power of an integer for some prime q dividing α.
Now 2α|x where x ≤ N , so α � logN , whence there are only

ω(α) � logα

log logα
= O

( log logN

log log logN

)
possibilities for q. An elementary but useful observation is: if n1, n2 ∈ N are both
square-free and n1x and n2x are both a q-th power for some prime q ≥ 2, then
necessarily n1 = n2: Write n1x = aq and n2x = bq for suitable a, b ∈ N. Then

n1

n2
=

(a
b

)q

.

Since n1/n2 is square-free, q
√
n1/n2 is irrational unless n1 = n2. Now write

N = {n ∈ N : n ≤ 	, n ≡ 1 mod 2 and n is square-free}.
As shown in the observation above, if n1, n2 ∈ N are distinct elements, then n1x
and n2x are a q1-th power and a q2-th power of a suitable integer, respectively,
where q1 and q2 are distinct primes. On the one hand, it is well known that |N | � 	.
On the other hand, we have seen that there are only O

(
log logN/log log logN

)
pos-

sibilities for those prime exponents q1, q2. Therefore, 	 = O
(
log logN/log log logN

)
.

�
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Proof of Theorem 1.7. By Lemma 4.4 and Lemma 4.8 we have

g(h,N) ≤ h!
(
c1

log logN

log log logN

)h−1

for a suitable absolute constant c1. Proposition 4.6 then reads

f(N) ≤ c2 (logN)M

for suitable absolute constants c2 and M . Now Lemma 4.5 gives

d ≤ 5
(
h! c2(logN)M h!

(
c1

log logN

log log logN

)h−1)1/h

+ 5h + 4.

Choosing h = log logN and using the trivial bound h! ≤ hh yields the claimed
result d = O

(
(log logN)3/log log logN

)
.

When allowing repeated values of the ai, it is clear that the maximal multi-
plicity is m = O

(
log logN/log log logN

)
, as the set of subset sums of m times

the same element ai generates a homogeneous arithmetic progression of length
m ≤ 	(N) = O

(
log logN/log log logN

)
. �

5. Proofs of Theorems 1.8 and 1.11

Let us first prove Theorem 1.8. We can adapt the proof of Theorem 4 of [26].
It is enough to show that there are no five infinite sets A1, . . . , A5 ⊂ Z such that
A1 + · · · + A5 ⊂ V . To this end we write the elements of each set Ai again in the
form (4.4). By relabeling A1, . . . , A5 if necessary, as in the proof of Proposition 4.6
we can without loss of generality assume that e1 = e2 and one of the following
is true:

Case 1: Both sequences u1j and u2j are bounded.

Case 2: Both sequences u1j and u2j are unbounded.

In each case we can finish the argument as in Case 1 or Case 2, respectively, in the
proof of Theorem 4 of [26].

Next, let us establish Theorem 1.11. We may assume that infinitely many
of the ai are distinct. For, otherwise, some element a occurs infinitely often,
generating an infinite arithmetic progression, which contradicts the observation
that arithmetic progressions can only be short compared to the size of any finite
interval [1, N ], i.e. k ≤ (2 + o(1)) logN , made above in the proof of Theorem 1.5.

Then first note that Granville ([21], Theorem 7) proved that the abc conjecture
implies that

lim
n→∞(tn+2 − tn) = ∞,

where tn denotes the n-th powerful number. The existence of an infinite Hilbert
cube in W would imply that the following values are all powerful, for i ≥ 3:

a0 + ai < a0 + a1 + ai < a0 + a1 + a2 + ai,
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but their difference is bounded, a contradiction. Finally, observe that P (x) = x(x+
a1)(x+ a1 + a2) has three distinct simple zeros. For every x ∈ H(a0; a3, a4, . . .) all
elements x, x+a1 and x+a1+a2 are powerful, so that the product is powerful, too.
But, assuming Conjecture 1.10, there are only finitely many possible values for x.
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[15] Erdős, P. and Sárközy, A.: Arithmetic progressions in subset sums. Discrete
Math. 102 (1992), no. 3, 249–264.
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[30] Hegyvári, N. and Sárközy, A.: On Hilbert cubes in certain sets. Ramanujan J. 3
(1999), 303–314.

[31] Henriot, K.: On arithmetic progressions in A+B+C. Int. Math. Res. Not. IMRN
2014, no. 18, 5134–5164.

[32] Hilbert, D.: Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen
Koeffizienten. J. Reine Angew. Math. 110 (1892), 104–129.

[33] Iwaniec, H. and Kowalski, E.: Analytic number theory. American Mathematical
Society Colloquium Publications 53, American Mathematical Society, Providence,
RI, 2004.
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[39] Rivat, J., Sárközy, A. and Stewart, C. L.: Congruence properties of the Ω-
function on sumsets. Illinois J. Math. 43 (1999), no. 1, 1–18.

[40] Ruzsa, I. Z.: Arithmetic progressions in sumsets. Acta Arith. 60 (1991), no. 2,
191–202.



1498 R. Dietmann and C. Elsholtz
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