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Lower bounds for the truncated Hilbert transform

Rima Alaifari, Lillian B. Pierce and Stefan Steinerberger

Abstract. Given two intervals I, J ⊂ R, we ask whether it is possible
to reconstruct a real-valued function f ∈ L2(I) from knowing its Hilbert
transform Hf on J . When neither interval is fully contained in the other,
this problem has a unique answer (the nullspace is trivial) but is severely
ill-posed. We isolate the difficulty and show that by restricting f to func-
tions with controlled total variation, reconstruction becomes stable. In
particular, for functions f ∈ H1(I), we show that

‖Hf‖L2(J) ≥ c1 exp
(
− c2

‖fx‖L2(I)

‖f‖L2(I)

)
‖f‖L2(I),

for some constants c1, c2 > 0 depending only on I, J . This inequality is
sharp, but we conjecture that ‖fx‖L2(I) can be replaced by ‖fx‖L1(I).

1. Introduction and motivation

1.1. Hilbert transform

The Hilbert transform H : L2(R) → L2(R) is a well-studied unitary operator
given by

(Hf)(x) =
1

π
p.v.

∫
R

f(y)

x− y
dy,

where p.v. indicates that the integral is to be understood as a principal value. On
L2(R) it can alternatively be defined via the Fourier multiplier −i sgn(ξ). The
Hilbert transform appears naturally in many different settings in pure and applied
mathematics. In particular, it plays an important role in the mathematical study
of inverse problems arising in medical imaging (see §1.5), which motivates the
following fundamental question.

Inversion problem. Given two finite intervals I, J ⊂ R and a real-
valued function f ∈ L2(I), when can f be reconstructed from knowing
Hf on J?
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For illustration, let us consider first the particular case in which the intervals I
and J are disjoint. The Hilbert transform is an integral operator – thus if a func-
tion f is compactly supported and we consider the Hilbert transform Hf only
outside of that support, the singularity of the kernel never plays a role and the
operator is compact (i.e., smoothing). It is clear from basic principles in func-
tional analysis that the inversion of a compact operator will not yield a bounded
operator.

Figure 1. A function f on [0, 1] with ‖Hf‖L2([2,3]) ∼ 10−7‖f‖L2([0,1]).

1.2. The phenomenon in practice

Let us understand just how ill-posed the problem actually is. Consider the Hilbert
transform applied to functions with support on I = [0, 1] and then take its restric-
tion on J = [2, 3], leading to the truncated Hilbert transform

HT = χ[2,3]H(χ[0,1]f).

The operator HT : L2(R) → L2(R) is a compact integral operator. As a conse-
quence of it being compact, for every ε > 0 we can find a function f ∈ L2([0, 1])
with

‖HT f‖L2([2,3]) ≤ ε ‖f‖L2([0,1]).

Such f are actually very easy to find: let φ1, φ2, . . . , φn denote any n orthonormal
real-valued functions in L2([0, 1]) and consider the subspace

S = span(φ1, φ2, . . . , φn)

spanned by these functions. Then, putting

f =

n∑
k=1

ak φk

for real coefficients ak immediately implies that

‖HT f‖2L2([2,3]) =

∫ 3

2

(
HT

n∑
k=1

ak φk

)2
dx =

∫ 3

2

n∑
k,l=1

akal(HTφk)(HTφl) dx

=

n∑
k,l=1

akal

∫ 3

2

(HTφk)(HTφl) dx.
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This yields that the symmetric n× n matrix

A =
( ∫ 3

2

(HTφk)(HTφl) dx
)n
k,l=1

will satisfy the relation

inf
f∈S

‖HT f‖L2([2,3])

‖f‖L2([0,1])
=
√
λmin(A),

where λmin(A) denotes the least eigenvalue of A. Put differently, HT : S → HT (S)
may be a bijection but the inverse operator is very sensitive to noise in the mea-
surement because

‖H−1
T ‖HT (S)→S =

1√
λmin(A)

will be very big.

So far, this discussion could apply to a wide class of operators; focusing on our
situation, the key point is that the spectrum of HT is rapidly decaying and there-
fore λmin(A) will always be very small, independent of the n orthonormal functions
we pick; indeed (see equation (4.3)), there exist real constants C, β > 0 dependent
only on the intervals I, J such that

λmin(A) ≤ Ce−βn.

1.3. An explicit example

We consider a numerical example; let I = [0, 1], J = [2, 3] and consider the sub-
space spanned by

φi =
√
3χ[ i−1

3 , i3 ]
for 1 ≤ i ≤ 3.

The choice of these functions is solely motivated by the fact that HTφi can be
written down in closed form, which simplifies computation. Then the matrix A
has the eigenvalues

∼ {0.28, 0.00013, 2.2 · 10−8
}
, which are very rapidly decaying.

As a consequence, there exists a step function g, which is constant on the three in-
tervals of length 1/3 in [0, 1] (and is therefore certainly quite simple), but nonethe-
less satisfies

‖HT g‖L2([2,3]) ≤ 10−7 ‖g‖L2([0,1]).

It is interesting to compare this with a larger subspace. Pick now, for comparison,

φi =
√
5χ[ i−1

5 , i5 ]
for 1 ≤ i ≤ 5.

The smallest eigenvector of the arising matrix is λmin(A) ≤ 10−15, allowing for the
construction of a step function h with

‖HTh‖L2([2,3]) ≤ 10−15 ‖h‖L2([0,1]).
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Figure 2.The function g (n = 3).
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Figure 3.The function h (n = 5).

The contribution of our paper may now be phrased as follows: the fact that
these functions are highly oscillatory is not a coincidence; indeed, it is the pur-
pose of this paper to point out that an inverse inequality is true: reconstruction
becomes stable for functions with controlled total variation. While there are a vari-
ety of techniques for understanding how to bound oscillating quantities from above
(e.g. stationary phase), it is usually much harder to control oscillation from below
– finding sharp quantitative versions of the above statement falls precisely into this
class of problems; as such, we believe it to be very interesting. The same prob-
lem could be of great interest for more general integral operators, where a similar
phenomenon should be true generically (see Section 8).

1.4. Configurations of the intervals: four cases

The precise nature of the problem of reconstructing a function supported on I from
its Hilbert transform on J will depend on the relation between I and J . To address
this question adequately, it is useful to distinguish four cases:

1. The Hilbert transform is known on an interval J that covers the support I
of f (that is, I ⊂ J). In this case inversion is stable (the solution operator is
bounded) and an explicit inversion formula is known [23].

2. The Hilbert transform is known only on an interval J that is a subset of the
support I of f (that is, I ⊇ J). In tomographic reconstruction, this case is
known as the interior problem [6], [11], [13], [14], [24].
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3. The Hilbert transform is known only outside of the support of f (that is,
I ∩ J = ∅). We will refer to this scenario as the truncated Hilbert transform
with a gap. The singular value decomposition of the underlying operator has
been studied in [10].

4. If none of the above is the case and the Hilbert transform is known on an
interval J that overlaps with the support I of f, we call this the truncated
Hilbert transform with overlap. For this case a pointwise stability estimate
has been shown in [7]. The spectral properties of the underlying operator
are the subject of [3], [4].

In this paper, we consider Cases 3 and 4. For these, f is supported on I and
Hf is known on J , where I and J are non-empty finite intervals on R, such that
I �⊇ J and I �⊂ J. Let PΩ stand for the projection operator onto a set Ω ⊂ R:

(PΩf)(x) = f(x) if x ∈ Ω, (PΩf)(x) = 0 otherwise.

We will use the notation HT = PJHPI to denote the truncated Hilbert transform
(with a gap or with overlap), specialized to the intervals I and J .

1.5. Applications in medical imaging

The problem of reconstructing a function from its partially known Hilbert trans-
form arises naturally in computerized tomography: assume a 2D or 3D object is
illuminated from various directions by a penetrating beam (usually X-rays) and
that the attenuation of the X-ray signals is measured by a set of detectors. Then,
one seeks to reconstruct the object from the measured attenuation, which can
be modeled as the Radon transform data of the object. If the directions along
which the Radon transform is measured are sufficiently dense, the problem and
its solution are well-understood (cf. [18]). When the directions are not sufficiently
dense the problem is more complicated. One such setting is the case of truncated
projections and occurs when only a sub-region of the object is illuminated by a suf-
ficiently dense set of directions. Going back to a result by Gelfand and Graev [9],
the method of differentiated back-projection allows one to reduce the problem to
solving a family of one-dimensional problems which consist of inverting the Hilbert
transform data on a finite segment of the line. If one knew Hf on all of R, this
would be trivial, since H−1 = −H .
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In practice, Hf is measured on only a finite segment, giving rise to the different
configurations 1 through 4 and the resulting reconstruction problems. In this
paper, we focus on Case 3 (the truncated Hilbert transform with a gap) and Case 4
(the truncated Hilbert transform with overlap), which are the most unstable from
the point of view of functional analysis. In fact, both these cases are severely
ill-posed, meaning that the singular values of the underlying operator decay to
zero at an exponential rate. (For the asymptotic analysis of the singular value
decomposition in Case 3 we refer to Katsevich and Tovbis [12]; for Case 4, see [4].)
In Case 3, the Hilbert transform is an integral operator with a smooth kernel
and is thus compact. In general, one would expect Case 4 to be better behaved
with respect to the inversion problem as long as the functions have, say, a fixed
proportion of their L2-mass supported on I ∩ J . By considering the subproblem
arising in Case 4 when we consider functions with compact support bounded away
from J , we see that all the difficulties of Case 3 must also be present in Case 4.
Inverse estimates specifically tailored to Case 4, which show their strength precisely
for functions not supported away from J , are presented in Section 2.4.

1.6. Questions of regularity

In order to situate our results in terms of the role of regularity, it is worth observ-
ing that the actual problem of reconstruction is not easier for smooth functions.
This is easily seen in Case 3: when I and J are disjoint, there is less stability of
the inversion problem of the truncated Hilbert transform; in this case the trun-
cated Hilbert transform turns into a highly regular smoothing integral operator (in
contrast to the classical Hilbert transform which is the fundamental example of a
singular integral operator). Indeed, when I and J are disjoint, the singularity of
the Hilbert kernel never comes into play. This smoothing property of the truncated
Hilbert transform with a gap allows one to approximate any function f ∈ L2(I)
by C∞ functions fn such that HT fn → HT f in L∞(J). This can be seen from

‖HT fn −HT f‖L∞(J) ≤ c̃ ‖fn − f‖L1(I) ≤ c ‖fn − f‖L2(I),

where

c̃ = max
x∈I,y∈J

1

|y − x|
and c = c̃ · |I|1/2. Yet while the problem of reconstruction is in theory no easier for
smooth functions, our current methods will be able to obtain improved estimates
for smooth functions (whereas any argument yielding a sharp result should be
oblivious to questions of regularity). Another classical property we will make use
of is that one can always approximate a function of bounded variation by smooth
functions while controlling their total variation (TV). More precisely, we have the
following lemma (which we prove in § 9.1):
Lemma 1.1. Given a function f ∈ BV(I) satisfying f(x0) = 0 for at least one
x0 ∈ I, there exists a sequence fn ∈ C∞

c (I) such that

‖fn − f‖L2(I) → 0 and |fn|TV ≤ 3 · |f |TV .
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We note that the condition that f vanishes at least at one point in the in-
terval will not be a significant restriction in our applications of this lemma (see
Lemma 6.2, and subsequent remarks, for example).

Notation. In the following, I and J always denote finite open intervals on R. We
write CN

c (I) for the space of N -times differentiable functions compactly supported
on I. As conventional, Hk denotes the Sobolev space W k,2, and we recall the
following well-known inclusions for a finite interval Ω ⊂ R :

H1(Ω) ⊂W 1,1(Ω) ⊂ BV (Ω) ⊂ L2(Ω) ⊂ L1(Ω).

Acknowledgments. We are grateful to Angkana Rüland, Ingrid Daubechies,
Michel Defrise, Herbert Koch and Christoph Thiele for valuable comments.

2. Statement of results

2.1. Functions of bounded variation

Our first finding establishes a stability result for functions of bounded variation.
This seems to be the appropriate notion to exclude strong oscillation while still
allowing for rather rough functions with jump discontinuities. The total varia-
tion (TV) model has been studied as a regularizing constraint in computerized
tomography before, see e.g., [20].

Theorem 2.1. Let I, J ⊂ R be intervals in the configuration of Case 3 or Case 4
and consider functions f ∈ BV(I) supported on I. There exists a positive function
h : [0,∞) → R+ (depending only on I, J) such that

‖Hf‖L2(J) ≥ h
( |f |TV

‖f‖L2(I)

)
‖f‖L2(I),

where |·|TV denotes the total variation of f .

We conjecture
h(κ) ≥ c1 e

−c2κ

for constants c1, c2 > 0 depending only on I and J .
The relation between Theorem 2.1 and the reconstruction problem can easily be

made explicit. In the application of computerized tomography one needs to solve
HT f = g for f , given a right-hand side g. In practice, g has to be measured and
is thus never known exactly, but only up to a certain accuracy. Since the range of
the operator HT is dense but not closed in L2(J), the inversion of HT is ill-posed,
see [3]. As a consequence, the solution f to HT f = g does not depend continuously
on the right-hand side. In particular, small perturbations in g due to measurement
noise might change the solution completely, making the outcome unreliable. Given
a function g representing exact data, of which we know only a noisy measurement gδ

and the noise level ‖g − gδ‖L2(J) ≤ δ, quantitative results taking the form of
Theorem 2.1 will enable stable reconstruction, under the assumption that the true
solution fex to HT f = g has bounded variation (see Corollary 2.1).
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2.2. Weakly differentiable functions

We now turn our focus to proving quantitative versions of Theorem 2.1 for more
regular functions f . For weakly differentiable functions we can actually write

|f |TV =

∫
I

|fx(x)| dx

and thus identify the total variation with ‖fx‖L1(I). In light of Theorem 2.1, the
total variation seems to be the natural quantity with which to track the behavior
of regular functions, and we conjecture that

(2.1) ‖Hf‖L2(J) ≥ c1 exp

(
−c2

‖fx‖L1(I)

‖f‖L2(I)

)
‖f‖L2(I).

An inequality of this form would quantify the physically intuitive notion that
tomographic reconstruction is more difficult for inhomogeneous objects with high
variation in density than it is for relatively uniform objects. Our first result toward
this conjecture considers ‖fx‖L2(I) instead, which provides access to Hilbert space
techniques that allow us to prove the following statement:

Theorem 2.2. Let I, J ⊂ R be intervals in the configuration of Case 3 or Case 4.
Then, for any f ∈ H1(I),

(2.2) ‖Hf‖L2(J) ≥ c1 exp

(
−c2

‖fx‖L2(I)

‖f‖L2(I)

)
‖f‖L2(I),

for some constants c1, c2 > 0 depending only on I and J .

We note that Theorem 2.2 is weaker than the conjectured inequality (2.1): a
step function f , for example, can be approximated by smooth functions fn in such
a way that ‖(fn)x‖L1 remains controlled by the total variation of f . However,
this is no longer true for ‖(fn)x‖L2, which must necessarily blow up. Yet we may
improve on Theorem 2.2 if f is sufficiently smooth and obtain a result which in
certain cases is as strong as the conjectured relation (2.1):

Theorem 2.3. Let I, J ⊂ R be intervals in the configuration of Case 3 or Case 4.
Then there exists an order 2 differential operator LI and for any M ≥ 1 a dense
class AM of L2-functions (defined in §4) such that, for any f ∈ AM ,

(2.3) ‖Hf‖L2(J) ≥ c1,M exp

(
− c2,M

(‖(LM
I f)x‖L2(I)

‖f‖L2(I)

) 1
2M+1

)
‖f‖L2(I),

for some constants c1,M , c2,M > 0 depending only on I, J and M. As M → ∞,
c1,M , c2,M tend to finite limits c1, c2 > 0. Furthermore, C2M+1

c (I) ⊂ AM and
C∞

c (I) ⊂ ⋂∞
n=1An.

In certain examples, this result approaches the desired conjecture (2.1). Con-
sider, for instance, the interval I = (0, 1), use dilation to move the support of
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the function fN (x) = sin(2πNx)χ[0,1] strictly inside the unit interval and convolve
with a compactly supported C∞ bump function. In this case (LM

I fN)x contains
a main term of size (2πN)2M+1 cos(2πNx). Then, morally speaking, the theorem
implies

‖HfN‖L2(J) ≥ c1,M exp

(
− c2,M2πN

(
cJ

‖ cos(2πNx)‖L2(I)

‖fN‖L2(I)

) 1
2M+1

)
‖fN‖L2(I)

≥ c1 exp (−c2N)‖fN‖L2(I)

as M → ∞. Here c1,M , c2,M , c1, c2 are as in Theorem 2.3 and cJ is a constant
depending only on J (since we have fixed the interval I). This is of the form (2.1),
because in this example

(2.4) ‖(fN )x‖L1(I) / ‖fN‖L2(I) ≈ N.

2.3. A quantitative result for functions with bounded variation

Our next result gives a different type of result toward the conjecture (2.1), now
for functions f ∈W 1,1(I), and with quadratic scaling within the exponential. We
note that the inequality below is superior to the bound given by Theorem 2.2 only
for functions with ‖fx‖L2 � ‖fx‖2L1/‖f‖L2(I).

Theorem 2.4. Let I, J ⊂ R be intervals in the configuration of Case 3 or Case 4.
Then, for any f ∈ W 1,1(I),

‖Hf‖L2(J) ≥ c1 exp
(
− c2

|f |2TV

‖f‖2L2(I)

)
‖f‖L2(I),

for some constants c1, c2 > 0 depending only on I, J .

Theorem 2.4 provides a stability estimate (independent of a specific algorithm)
for the reconstruction of a solution f to HT f = g.

Corollary 2.1 (Stable reconstruction). Let g ∈ Ran(HT ), such that

HT fex = g,

and |fex|TV ≤ κ. Furthermore, let gδ ∈ L2(J) satisfy

‖g − gδ‖L2(J) ≤ δ

for some δ > 0, and define the set of admissible solutions to be

S(δ, gδ) = {f ∈W 1,1(I) : ‖HT f − gδ‖L2(J) ≤ δ, |f |TV ≤ κ}.
Then, the diameter of S(δ, gδ) tends to zero as δ → 0 (at a rate of the order
| log δ|−1/2).

Thus, under the assumption that the true solution fex to HT f = g has bounded
variation, any algorithm that, given δ and gδ, finds a solution in S(δ, gδ), is a
regularization method.
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As with Theorem 2.2, we are again able to improve on Theorem 2.4 by assum-
ing f is sufficiently smooth, in which case the inequality approaches in the limit
an inequality that is in certain cases as strong as the conjecture (2.1).

Theorem 2.5. Let I, J ⊂ R be intervals in the configuration of Case 3 or Case 4.
Then there exists an order 2 differential operator LI (defined in §4) such that for
any M ≥ 1 and any f ∈ C2M+1

c (I),

‖Hf‖L2(J) ≥ c1,M exp

(
− c2,M

( |LM
I f |TV

‖f‖L2(I)

) 2
4M+1

)
‖f‖L2(I),

for some constants c1,M , c2,M > 0 depending only on I, J and M , with the property
that as M → ∞, c1,M , c2,M tend to finite limits c1, c2 > 0.

Note that Theorem 2.5 reduces to Theorem 2.4 for M = 0. It is again instruc-
tive to consider an example. For this purpose we can take fN(x) = sin(2πNx)
with the interval I = (0, 1) as before, and again use dilation and convolution with
a compactly supported C∞ bump function to bring fN into C2M+1

c (I). Then,
morally speaking, the theorem implies

‖HfN‖L2(J) ≥ c1,M exp
(
− c2,M

( (2πN)2M+1‖ cos(2πNx)‖L1(I)

‖fN‖L2(I)

) 2
4M+1

)
‖fN‖L2(I)

≥ c1 exp (−c′2N)‖fN‖L2(I)

as M → ∞; the relation (2.4) shows this is as strong as (2.1).
The proofs of both Theorem 2.2 and Theorem 2.4 (see Sections 5 and 6) are

in a similar spirit and hinge on TT ∗ arguments in combination with an eigenfunc-
tion decomposition of TT ∗. The eigenfunctions are well understood; the difficulty
is in putting this information to use in the most effective way. The proof of
Theorem 2.2 uses their orthogonality and the fact that an associated differential
operator is comparable to −Δ, but does not rely on the asymptotic behavior of the
eigenfunctions (merely on asymptotics of the eigenvalues). In contrast, the proof
of Theorem 2.4 uses an elementary estimate adapted to the eigenfunctions and in-
spired from classical Fourier analysis: this estimate is sharp but not sophisticated
enough to capture complicated behavior at different scales simultaneously. It is
not clear to us whether and how these arguments could be refined.

2.4. An improved estimate for Case 4

Case 3, with disjoint intervals I and J , is the worst case scenario in terms of
reconstruction from Hilbert transform data. It seems that reconstruction in Case 4,
the truncated Hilbert transform with overlap, is an easier task in the sense that one
would expect the inversion problem to be more stable. The singular values decay
to zero at a similar exponential rate in both cases, since the Hilbert transform with
overlap contains, at this level of generality, the Hilbert transform with a gap as a
special case (acting on functions supported away from I∩J). It is this ill-posedness



Lower bounds for the truncated Hilbert transform 33

that in practice has led to the concept of region of interest reconstruction. Here,
the aim is to reconstruct the function f only on the region where the Hilbert
transform has been measured. For the truncated Hilbert transform with overlap
this means reconstruction of f only on the overlap region I ∩ J .

The reason this problem of partial reconstruction inside I∩J may be more sta-
ble has an intuitive explanation: one would expect interaction with the singularity
of the Hilbert transform to be such that it cannot lead to significant cancellation.
More formally, one can consider the singular value decomposition of HT . In the
case where I ∩ J �= ∅, the singular values accumulate at both 0 and 1. More-
over, the singular functions have the property that they oscillate on I ∩ J and
are monotonically decaying to zero on I\J as the singular values accumulate at 1.
The opposite is true when the singular values decay to zero: the corresponding
singular functions oscillate on I\J , i.e., outside of the region of interest, and are
monotonically decaying to zero on I ∩ J . (For a proof of these properties we re-
fer to [8].) Figure 4 below illustrates the behavior of the singular functions for a
specific choice of overlapping intervals I and J .
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Figure 4. Examples of singular functions un (red) and vn (blue) for the overlap case
I = (0, 6), J = (3, 12). Left: For σn close to 0, the singular functions are exponentially
small on (3, 6) and oscillate outside of (3, 6). Right: For σn close to 1, the functions
oscillate on (3, 6) and are exponentially small outside of the overlap region.

A more precise estimate on the decaying part of the singular functions is the
subject of joint work by the first author with M. Defrise and A. Katsevich [5]. Let
I = (a2, a4) and J = (a1, a3) for real numbers a1 < a2 < a3 < a4, and let us
consider the singular functions un on I corresponding to the singular values σn
decaying to zero. Then, one can show that for any μ > 0 there exist positive
constants Bμ and βμ such that

‖un‖L2([a2,a3−μ]) ≤ Bμ e
−βμn

for sufficiently large index n. Exploiting this property, we can eliminate the de-
pendence in Theorem 2.4 on the variation of f within the region of interest.

Theorem 2.6. Let J = (a1, a3) and I = (a2, a4) ⊂ R be open intervals with a1 <
a2 < a3 < a4. Fix a closed subinterval J∗ = [a∗1, a

∗
3] ⊂ J with a∗1 < a2 < a∗3. Then

for any function f ∈ W 1,1(I) such that there exists at least one point x0 ∈ I \ J∗



34 R. Alaifari, L.B. Pierce and S. Steinerberger

at which f(x0) = 0, the following holds:

‖Hf‖L2(J) ≥ c1 exp
(
− c2

|χI\J∗f |2TV

‖f‖2L2(I)

)
‖f‖L2(I),

for some constants c1, c2 > 0 depending only on I, J and J∗.

Remark 1. Theorem 2.6 can be used in a similar fashion as Theorem 2.4 to obtain
a stability estimate analogous to Corollary 2.1. As prior knowledge we assume
|χI\J∗fex|TV ≤ κ and

∫
I fex = C. Then, the statement can be formulated similarly

as before, with the only change that the set of admissible solutions becomes

S(δ, gδ) =
{
f ∈W 1,1(I) : ‖HT f − gδ‖L2(J) ≤ δ, |χI\J∗f |TV ≤ κ,

∫
I

f = C
}
.

One can then adapt the proof of Corollary 2.1 to obtain that the diameter of
S(δ, gδ) tends to zero as δ → 0 at a similar rate as before of the order | log δ|−1/2.
The only difference to Corollary 2.1 is that now the constants in (6.4) depend not
only on I and J , but also on J∗.

Remark 2. Under the assumption that f does not vanish on I, we can improve on
Theorem 2.6, giving a lower bound with polynomial decay; see remarks following
Lemma 6.2. A stronger version of Theorem 2.6 for smoother functions can also
be derived by an iterated argument, analogous to the adaptation of Theorems 2.3
and 2.5 from the proofs of Theorem 2.2 and 2.4; we omit the details.

An interesting question that remains open is whether estimates of the form

(2.5) ‖Hf‖L2(J) ≥ h
( |f |TV

‖f‖L2(I)

)
‖f‖L2(I∩J)

are possible for a function h that shows a decay that is slower than the quadratically
exponential type in Theorems 2.4 and 2.6, yet does not introduce a differential
operator such as LI . Note that (2.5) would give a lower bound on ‖Hf‖L2(J) with
respect to ‖f‖L2(I∩J) instead of ‖f‖L2(I), which is why we could expect such a
function h to decay slower than in Theorems 2.4 and 2.6: if f is mainly supported
on I\J , i.e., away from the overlap, we will most likely not be able to improve on the
conjecture (2.1). If, however, f has a significant portion of its L2-mass inside the
overlap I ∩J, then ‖Hf‖L2(J) cannot be too small. In terms of a possible stability
estimate this implies that a regularization method guarantees good recovery only
within the overlap I ∩ J. Such a stability estimate would be of particular interest,
since in practice one only aims at reconstruction within the overlap (i.e., the region
of interest).

2.5. A word on the proofs

We note in advance that the results of Theorems 2.2 to 2.5 are such that the
statements for the truncated Hilbert transform with overlap follow from the cor-
responding statement for the truncated Hilbert transform with a gap. Indeed,
in Case 4, since J �⊂ I, we can always find an interval J∗ ⊂ J such that I and J∗
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are disjoint. Trivially, however,

(2.6) ‖Hf‖L2(J) ≥ ‖Hf‖L2(J∗),

so that a lower bound for ‖Hf‖L2(J∗) suffices. Therefore, in our proofs of The-
orems 2.2 to 2.5, we may restrict ourselves to Case 3, i.e., the truncated Hilbert
transform with a gap.

3. Proof of Theorem 2.1

Proof. Consider all g ∈ BV(I) and define for each such g the corresponding func-
tion g̃ = g/‖g‖L2(I), so that |g̃|TV = |g|TV/‖g‖L2(I). We will show that for any
fixed κ > 0 if we consider all such normalized g̃ for which |g̃|TV ≤ κ, then there
exists c0(κ) > 0 such that

(3.1) ‖Hg̃‖L2(J) ≥ c0(κ).

From this we may conclude that there exists a positive-valued function h such that

‖Hg‖L2(J) ≥ h

( |g|TV

‖g‖L2(I)

)
‖g‖L2(I).

The proof of (3.1) will proceed by contradiction. We begin by assuming the ex-
istence of a sequence fn∈BV(I) that has uniformly bounded variation |fn|TV≤κ,
uniform norm ‖fn‖L2(I) = 1, and such that ‖Hfn‖L2(J) is not bounded below, i.e.,

(3.2) lim
n→∞ ‖Hfn‖L2(J) = 0.

Step 1. The first step of the proof consists of showing that these assumptions
imply the uniform boundedness of fn, more precisely that the following holds:

(3.3) lim sup
n→∞

‖fn‖L∞(I) ≤ κ+ |I|−1/2.

Suppose that for some index N and some ε ∈ (0, |I|− 1
2 ), we have ‖fn‖L∞(I) ≤ κ+ε

for all n ≥ N . Then, we have found a sequence that is uniformly bounded with
the above bound in (3.3). If such an index N does not exist, we can find a
subsequence fnk

such that

‖fnk
‖L∞(I) > κ+ ε.

This together with the assumed bound on |fn|TV, requires that fnk
does not change

sign. Suppose w.l.o.g. that fnk
> 0. Then, |fnk

|TV ≤ κ implies

0 < ‖fnk
‖L∞(I) − κ ≤ fnk

(x), x ∈ I.

Hence, ∫
I

(‖fnk
‖L∞(I) − κ)2 dx ≤

∫
I

fnk
(x)2 dx,

which shows that
(‖fnk

‖L∞(I) − κ)2 · |I| ≤ 1,
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and therefore
‖fnk

‖L∞(I) ≤ κ+ |I|−1/2.

Step 2. This step relies on Helly’s selection theorem, which is a compactness
theorem for BVloc. Let Ω ⊂ R be an open set and fn : Ω → R a sequence of
functions with

sup
n∈N

(
‖fn‖L1(Ω) +

∥∥∥ d
dx
fn

∥∥∥
L1(Ω)

)
<∞,

where the derivative is taken in the sense of tempered distributions. Then there
exists a subsequence {fnk

} and a function f ∈ BVloc(Ω) such that fnk
converges

to f pointwise and in L1
loc(Ω). Moreover, |f |TV ≤ lim infn→∞ |fn|TV. Applying

Helly’s selection theorem to our sequence {fn} implies the existence of a subse-
quence {fnk

}, such that their pointwise limit f is in BV(I). Furthermore, the
uniform boundedness established in Step 1 yields that for each nk,

|fnk
(q)| ≤ ‖fnk

‖L∞(I) ≤ κ+ |I|−1/2.

Moreover, the dominated convergence theorem implies that the uniform bound-
edness of fnk

and f , together with their pointwise convergence to f results in
convergence in the L2-sense, i.e.,

(3.4) ‖fnk
− f‖L2(I) → 0.

We recall the simple observation that the truncated Hilbert transform remains
bounded on L2, since

‖Hf‖L2(J) = ‖PJHf‖L2(R) ≤ ‖Hf‖L2(R) = ‖f‖L2(I).

Consequently, from (3.4) we deduce

‖Hfnk
−Hf‖L2(J) ≤ ‖fnk

− f‖L2(I) → 0.

Combining this with (3.2) yields ‖Hf‖L2(J) = 0. Lemma 5.1. in [3] states that
if f ∈ L2(I) and Hf vanishes on an open subset away from I, then f ≡ 0. This
contradicts the assumption ‖fn‖L2(I) = 1 and hence completes the proof. �

4. A differential operator

Our proofs of the remaining theorems make essential use of the singular value de-
composition of HT . Using an old idea of Landau, Pollak and Slepian [15], [16], [21]
(and later of Maass in the context of tomography [17]) in the form of Katsevich
[10], [11], we use an explicit differential operator to establish a connection to the
singular value expansion. The explicit form of the involved operators will allow us
to deduce that if ‖fx‖L2(I) is small, then there is some explicit part of the L2-norm
of f that is comprised of singular functions associated to the largest singular values.

Let HT denote the truncated Hilbert transform with a gap, so that we may
assume that J = (a1, a2) and I = (a3, a4) for real numbers a1 < a2 < a3 < a4.
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Let {σn;un, vn} be the singular value decomposition of HT . Note that, by defini-
tion, for ‖f‖L2(I) = 1,

‖HT f‖2L2(J) =

∞∑
n=0

|〈f, un〉|2 σ2
n.

Following Katsevich [10], we define the differential form

(Lψ)(x) := (P (x)ψx(x))x + 2(x− σ)2ψ(x),

where

P (x) =

4∏
i=1

(x− ai) and σ =
1

4

4∑
i=1

ai.

For a correct definition of an unbounded operator it is necessary to indicate the
domain it is acting on, as unbounded operators cannot be defined on all of L2

(Hellinger–Toeplitz theorem). Therefore, we let ACloc(I) denote the space of lo-
cally absolutely continuous functions on I and define the domains

Dmax := {ψ : I → C : ψ, Pψx ∈ ACloc(I);ψ,Lψ ∈ L2(I)}

and
D = {ψ ∈ Dmax : P (x)ψx(x) → 0 for x→ a+3 , x→ a−4 }.

We let LI be the restriction of L to the domain D and note that LI is a self-adjoint
operator [25].

Then, as shown in [10], a commutation property of LI with HT proves that
the functions {un} form an orthonormal basis of L2(I) and that they are the
eigenfunctions of LI , that is LIun = λnun with λn being the n-th eigenvalue
of LI . In addition, the asymptotic behavior as n→ ∞ of the eigenvalues λn of LI

as well as that of the singular values σn of HT is known. Katsevich and Tovbis [12]
have given the asymptotics as n → ∞ including error terms, from which we can
deduce that for all n ∈ N

λn ≥ k1 n
2,(4.1)

σn ≥ e−k2 n,(4.2)

where k1, k2 > 0 depend only on the intervals I and J .
We must also consider the M -th iterate LM

I of LI . For M ∈ N, let D(LM
I )

denote the domain of the self-adjoint operator LM
I . Then, we define the following

sets of functions in L2(I):

AM = {f ∈ L2(I) : f ∈ D(LM+1
I ) and LM

I f ∈ H1(I)}.

We note that these classes of functions are dense in L2(I) and that C2M+1
c (I) is a

subset of AM . Also, A =
⋂∞

M=1AM is dense in L2(I) and C∞
c (I) ⊂ A.
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Remark 3. The asymptotics in the results of Katsevich and Tovbis [12] are actu-
ally more precise than stated. In particular, setting I = (a3, a4) and J = (a1, a2)
and

K+ =
π√

(a4 − a2)(a3 − a1)
2F1

(1
2
,
1

2
, 1;

(a3 − a2)(a4 − a1)

(a4 − a2)(a3 − a1)

)
K− =

π√
(a4 − a2)(a3 − a1)

2F1

(1
2
,
1

2
, 1;

(a2 − a1)(a4 − a3)

(a3 − a1)(a4 − a2)

)
,

where 2F1 is the hypergeometric function, Katsevich and Tovbis derive

λn =
π2

K2
+

n2(1 + o(1)) and σn = e
−π

K+
K− n

(1 + o(1))

for sufficiently large n. These asymptotic relations allow one to state (4.1) and (4.2)
for all n ≥ N0, for some N0 ∈ N depending on I and J . One can then find explicit
constants k1 and k2 depending on I and J such that relations (4.1) and (4.2) hold
for all n ∈ N. Similarly, exploiting the asymptotics one can derive an upper bound
of the form

(4.3) σn ≤ K̃2 e
−K2n

with K2, K̃2 depending only on I and J .

5. Proof of Theorems 2.2 and 2.3

We now turn to the proof of Theorem 2.2, for which we exploit the following density
argument. Since H2(I) is dense in H1(I) with respect to the H1 topology and,
as can be easily verified, H2(I) ⊂ D, one can conclude that H1(I) ∩D is dense in
H1(I) with respect to the H1 topology. Thus, it suffices to prove the statement of
Theorem 2.2 for functions g in H1(I) ∩ D; for each such function we normalize it
to g̃ = g/‖g‖L2(I), so that to prove the theorem it would suffice to show that

‖Hg̃‖L2(J) ≥ c1 exp(−c2‖g̃x‖L2(I)).

We now therefore assume we have f ∈ H1(I)∩D with ‖f‖L2(I) = 1. Integration
by parts yields that for f ∈ H1(I) ∩D,

〈LIf, f〉 = −
∫ a4

a3

P (x)fx(x)
2 dx + (P (x)fx(x))f(x)

∣∣∣a4

a3

+

∫ a4

a3

2(x− σ)2f(x)2 dx

= −
∫ a4

a3

P (x)fx(x)
2 dx +

∫ a4

a3

2(x− σ)2f(x)2 dx,

so that

|〈LIf, f〉| ≤ ‖P‖L∞(I)‖fx‖2L2(I) + 2(a4 − a1)
2‖f‖L2(I) ≤ k3‖fx‖2L2(I) + k3,
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for some constant k3 > 0 depending only on I and J . Altogether, we thus have

(5.1)

∞∑
n=0

|〈f, un〉|2λn = |〈LIf, f〉| ≤ k3 ‖fx‖2L2(I) + k3.

Hence for any N ≥ 1, it follows from the asymptotic behavior λn ≥ k1n
2 that

1 = ‖f‖2L2(I) =

N∑
n=0

|〈f, un〉|2 +
∞∑

n=N+1

|〈f, un〉|2

≤
N∑

n=0

|〈f, un〉|2 +
∞∑

n=N+1

|〈f, un〉|2 λn
k1n2

≤
N∑

n=0

|〈f, un〉|2 + k−1
1 N−2

∞∑
n=N+1

|〈f, un〉|2 λn,(5.2)

so that, by (5.1),

N∑
n=0

|〈f, un〉|2 ≥ 1− k3 k
−1
1 N−2

(‖fx‖2L2(I) + 1
)
.

Hence choosing the least integer N such that

N2 ≥ 2 k3 k
−1
1 (‖fx‖L2(I) + 1)2 ≥ 2 k3 k

−1
1 (‖fx‖2L2(I) + 1),

and setting k4 = (2k3k
−1
1 )1/2 yields∑

n≤	k4(‖fx‖L2(I)+1)�
|〈f, un〉|2 ≥ 1

2
.

Then,

‖HT f‖2L2(J) =

∞∑
n=0

|〈f, un〉|2 σ2
n ≥

∑
n≤	k4(‖fx‖L2(I)+1)�

|〈f, un〉|2 σ2
n

≥
( ∑

n≤	k4(‖fx‖L2(I)+1)�
|〈f, un〉|2

)
σ2
	k4(‖fx‖L2(I)+1)�

≥ 1

2
e−2k2k4‖fx‖L2(I)−2k2(k4+1) ≥ k5 e

−2k2k4‖fx‖L2(I)

for some constant k5 > 0, as desired.
We now modify the above argument to prove the stronger result of Theorem 2.3

when f ∈ AM for some arbitrary M ∈ N. We start with the observation that for
‖f‖L2(I) = 1 and any N ≥ 1,

1 =

N∑
n=0

|〈f, un〉|2+
∞∑

n=N+1

|〈f, un〉|2 ≤
N∑

n=0

|〈f, un〉|2+
∞∑

n=N+1

|〈f, un〉|2
(
λn
k1n2

)2M+1
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≤
N∑

n=0

|〈f, un〉|2 + (k1N
2)−(2M+1)

∞∑
n=N+1

|〈f, λMn un〉|2λn

=

N∑
n=0

|〈f, un〉|2 + (k1N
2)−(2M+1)

∞∑
n=N+1

|〈f, LM
I un〉|2λn

=

N∑
n=0

|〈f, un〉|2 + (k1N
2)−(2M+1)

∞∑
n=N+1

|〈LM
I f, un〉|2λn.(5.3)

Now we recall that there is a constant k3 > 0 such that for g ∈ D ∩H1(I),

∞∑
n=0

|〈g, un〉|2λn = |〈LIg, g〉| ≤ k3 ‖gx‖2L2(I) + k3.

We apply this with g = LM
I f , to conclude from (5.3) that

N∑
n=0

|〈f, un〉|2 ≥ 1− (k1N
2)−(2M+1) k3 (‖(LM

I f)x‖2L2(I) + 1).

Hence choosing the least integer N such that

N ≥ (2k3k−(2M+1)
1 (‖(LM

I f)x‖L2(I) + 1)2
) 1

2(2M+1)

≥ (2k3k−(2M+1)
1 (‖(LM

I f)x‖2L2(I) + 1)
) 1

2(2M+1) ,

we see that for k4 = (2k3)
1/2(2M+1)k

−1/2
1 ,∑

n≤	k4(‖(LM
I f)x‖1/(2M+1)

L2(I)
+1)�

|〈f, un〉|2 ≥ 1

2
.

As before, we now obtain a lower bound

‖HT f‖2L2(J) =

∞∑
n=0

|〈f, un〉|2σ2
n ≥

∑
n≤	k4(‖(LM

I f)x‖1/(2M+1)

L2(I)
+1)�

|〈f, un〉|2σ2
n

≥
( ∑

n≤	k4(‖(LM
I f)x‖1/(2M+1)

L2(I)
+1)�

|〈f, un〉|2
)
σ2

	k4(‖(LM
I f)x‖1/(2M+1)

L2(I)
+1)�

≥ 1

2
exp(−2k2k4‖(LM

I f)x‖1/(2M+1)
L2(I) − 2k2(k4 + 1))

≥ k5 exp(−2k2k4‖(LM
I f)x‖1/(2M+1)

L2(I) )

for some constant k5 = (1/2)e−2k2(k4+1). We need only note that as M → ∞,

k4 → k
−1/2
1 and k5 → (1/2)e−2k2(k

−1/2
1 +1), both positive finite limits.
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6. Proof of Theorems 2.4 and 2.5

It is well known that smoothness of a function f : T → R translates into decay of
the Fourier coefficients f̂(n). This statement is usually proven using integration

by parts; in particular, f ∈ Ck yields |f̂(n)| ≤ Cf(k),kn
−k. However, it is easy to

see that for k = 1 it actually suffices to require f to be of bounded variation: this
observation dates back at least to a paper from 1967 (but is possibly quite a bit
older) of Taibleson [22], who showed that

|f̂(n)| ≤ 2π
|f |TV

n
.

We will show the analogous statement with the Fourier system replaced by the
singular functions un of the operator LI ; the argument exploits an asymptotic
expression and, implicitly, Abel’s summation formula as a substitute for integration
by parts.

Lemma 6.1. Let I and J be disjoint finite open intervals on R. There exists c > 0
depending only on the intervals I, J such that for any f of bounded variation that
is supported on I and vanishes at the boundary of the interval I,

|〈f, un〉| ≤ c
|f |TV

n
.

Proof. Without loss of generality, we may assume by density that f ∈ C1 (or,
alternatively, replace every integral by summation, and integration by parts by
Abel’s summation formula). Let I = (a3, a4). It suffices to show that

(6.1) ∀ x ∈ (a3, a4) :
∣∣∣ ∫ x

a3

un(z) dz
∣∣∣ ≤ c

n
.

Once this is established (see the appendix in §9.2 for the proof of the above state-
ment), we can write∣∣∣ ∫ a4

a3

f(x)un(x) dx
∣∣∣ = ∣∣∣ ∫ a4

a3

f(x)
( ∫ x

a3

un(z)dz
)
x
dx
∣∣∣

=
∣∣∣ ∫ a4

a3

fx(x)
( ∫ x

a3

un(z)dz
)
dx
∣∣∣ ≤ sup

a3≤x≤a4

∣∣∣ ∫ x

a3

un(z)dz
∣∣∣ ∫ a4

a3

|fx(x)| dx,

in which the boundary terms vanish by the assumption on f . �

6.1. Proof of Theorem 2.4

This section is split into two parts: we first assume that there exists a point x0 ∈ I
such that f(x0) = 0, and argue using that property. The second part of the section
is completely independent and establishes a stronger result in the case that f does
not change sign.
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In the first case, given g ∈W 1,1(I) we consider the normalization g̃ = g/‖g‖L2(I),
so that it would suffice to show that under the hypotheses of Theorem 2.4,

(6.2) ‖Hg̃‖L2(I) ≥ c1 exp(−c2 |g̃|2TV).

Thus we now consider f ∈ W 1,1(I) with ‖f‖L2(I) = 1 and such that f vanishes
at least at one point in I. If f vanishes at the endpoints of I, we may apply
Lemma 6.1 directly; otherwise we use Lemma 1.1 to approximate f ∈ BV(I) by a
sequence of fn ∈ C∞

c (I) (in particular, vanishing at the boundary of I) such that
‖fn− f‖L2(I) → 0 and |fn|TV ≤ 3|f |TV. Then if we prove (6.2) for each fn we can
conclude it holds for f , since

(6.3) c1 exp(−9c2 |f |2TV) ≤ ‖Hfn‖L2(J) ≤ ‖Hf‖L2(J) + ‖H(f − fn)‖L2(J),

and
‖H(f − fn)‖L2(J) ≤ C‖f − fn‖L2(I) → 0 as n→ ∞.

We may now assume that f vanishes at the boundary of I, and note that by
Lemma 6.1,

1 = ‖f‖2L2(I) =
N∑

n=0

|〈f, un〉|2 +
∞∑

n=N+1

|〈f, un〉|2

≤
N∑

n=0

|〈f, un〉|2 + c2 |f |2TV

∞∑
n=N+1

1

n2
≤

N∑
n=0

|〈f, un〉|2 + c2 |f |2TV

N
.

This implies that at least half of the L2-mass is contained within the first N =
�2c2 |f |2TV� frequencies. The remainder of the argument can be carried out as in
Theorem 2.2.

It remains to show that we can actually restrict ourselves to the case where
f(x0) = 0 for some x0 ∈ I. Assume now that we are in Case 3 (the argument
for Case 4 follows completely analogously by reducing it to Case 3 using (2.6)).
It is not difficult to see that we get a much stronger inverse inequality (with a
polynomial instead of a superexponential decay).

Lemma 6.2. Let I, J be as in Case 3 and assume that f has no root on I. Then,

‖Hf‖L2(J) ≥ |J |1/2
supx∈I,y∈J |x− y|

( |f |2TV

‖f‖2L2(I)

+
4

|I|
)−1/2

‖f‖L2(I).

Proof. Without loss of generality, we assume ‖f‖L2(I) = 1. Since I and J do not
overlap, we see that the kernel of the Hilbert transform has constant sign (which
sign depends on whether J is to the left or to the right of I). Therefore, since f
never changes sign, we have by Hölder and monotonicity,

‖Hf‖L2(J) ≥ 1

|J |1/2 ‖Hf‖L1(J) ≥ |J |1/2 1

supx∈I,y∈J |x− y| ‖f‖L1(I).
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Let us now assume that

‖f‖L1(I) ≤ ε.

Then, there certainly exists a point x0 with f(x0) ≤ ε/|I| and therefore

‖f‖L∞(I) ≤ ε

|I| + |f |TV.

As a consequence,

1 =

∫
I

f2 dx ≤ ‖f‖L∞(I)

∫
I

|f | dx,

and thus

‖f‖L1(I) ≥ 1

ε/|I|+ |f |TV
,

from which we derive that

ε ≥ 1

ε/|I|+ |f |TV
.

This shows that ε cannot be arbitrarily small depending on |I| and |f |TV and
simple algebra implies the stated result. �

Remark 4. When I, J are configured as in Case 4, repeating this argument shows
that the result of Lemma 6.2 continues to hold, with the factor |J |1/2 replaced by
1
2 |J \ I|1/2. This argument may also be suitably adapted to show that if f has no
root on I and J∗ is a subinterval of J that is disjoint from I, then

‖Hf‖L2(J) ≥ 1

2
|J∗\I|1/2 1

sup
x∈J∗,y∈I

|x− y|
( |χI\J∗f |2TV

‖f‖2L2(I\J∗)
+

4

|I \ J∗|
)−1/2

‖f‖L2(I\J∗).

This result may be seen as a suitable counterpart to Theorem 2.6.

6.2. Proof of Theorem 2.5

Proof. We now modify the argument used in the first part of the proof of The-
orem 2.4 to show Theorem 2.5, in which case f is assumed to be in C2M+1

c (I)
for some arbitrary M ≥ 1. We note that under this strong assumption, which
ensures that f and all its first 2M + 1 derivatives vanish at the endpoints of I,
it follows that LM

I f also vanishes at the endpoints of I. Thus we may apply
Lemma 6.1 directly to LM

I f .
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By Lemma 6.1 and the asymptotics for λn,

1 = ‖f‖2L2(I) =

N∑
n=0

|〈f, un〉|2 +
∞∑

n=N+1

∣∣∣λMn
λMn

〈f, un〉
∣∣∣2

=

N∑
n=0

|〈f, un〉|2 +
∞∑

n=N+1

∣∣∣ 1

λMn

〈
f, λMn un

〉 ∣∣∣2= N∑
n=0

|〈f, un〉|2 +
∞∑

n=N+1

1

λ2Mn

∣∣ 〈f, LM
I un

〉 ∣∣2
=

N∑
n=0

|〈f, un〉|2 +
∞∑

n=N+1

1

λ2Mn

∣∣ 〈LM
I f, un

〉 ∣∣2
≤

N∑
n=0

|〈f, un〉|2+ c2
∣∣LM

I f
∣∣2
TV

∞∑
n=N+1

1

(k1n2)2Mn2
≤

N∑
n=0

|〈f, un〉|2+
c2k−2M

1

∣∣LM
I f
∣∣2
TV

N4M+1
.

We now choose N to be the least integer such that

N ≥ (2c2k−2M
1

∣∣LM
I f
∣∣2
TV

)1/(4M+1)
,

so that with this choice, we may set k4 = (2c2k−2M
1 )1/(4M+1) to obtain the lower

bound

‖HT f, ‖2L2(J) =

∞∑
n=0

|〈f, un〉|2σ2
n ≥

∑
n≤	k4|LM

I f |2/(4M+1)
TV �

|〈f, un〉|2σ2
n

≥
( ∑

n≤	k4|LM
I f |2/(4M+1)

TV �
|〈f, un〉|2

)
σ2

	k4|LM
I f |2/(4M+1)

TV �

≥ 1

2
exp(−2k2(k4|LM

I f |2/(4M+1)
TV + 1)) ≥ k5 exp(−2k2k4|LM

I f |2/(4M+1)
TV )

with k5 = (1/2)e−2k2 . We need only note that as M → ∞, k4 → k
−1/2
1 . �

6.3. Proof of Corollary 2.1

Proof. Let f1 and f2 be elements in S(δ, gδ). From Theorem 2.4 and |f1− f2|TV≤
2κ, we obtain

‖f1 − f2‖L2(I) ≤ 1

c1
e
c24κ

2/‖f1−f2‖2
L2(I) ‖HT (f1 − f2)‖L2(J).

Linearity of HT and the properties of S then yield

‖f1 − f2‖L2(I) ≤ 1

c1
e
c24κ

2/‖f1−f2‖2
L2(I)‖HTf1 −HT f2‖L2(J)

≤ 1

c1
e
c24κ

2/‖f1−f2‖2
L2(I)(‖HT f1 − gδ‖L2(J) + ‖gδ −HT f2‖L2(J))

≤ 1

c1
e
c24κ

2/‖f1−f2‖2
L2(I) 2δ.



Lower bounds for the truncated Hilbert transform 45

This gives

log(‖f1 − f2‖L2(I))− c24κ
2

‖f1 − f2‖2L2(I)

≤ log
(2δ
c1

)
.

A lower bound on the left-hand side of the above inequality can be obtained by
observing that x2 log |x| ≥ −1/(2e) for real-valued x. Thus,

−
1
2e + 4c2κ

2

‖f1 − f2‖2L2(I)

≤ log
(2δ
c1

)
.

Hence, if δ is not too large (δ ≤ c1/2), we can conclude that

(6.4) ‖f1 − f2‖L2(I) ≤
√

1
2e + 4c2κ2

| log(2δ/c1)| . �

7. Proof of Theorem 2.6

We recall that Theorem 2.6 considers Case 4, with I ∩ J �= ∅. Let I = (a2, a4) and
J = (a1, a3) for a1 < a2 < a3 < a4 and let the subinterval J∗ of J be defined as
[a1 + μ, a3 − μ] for some μ > 0 sufficiently small so that a1 + μ < a2 < a3 − μ.
We think of J∗ as now being fixed for the remainder of the argument. For the two
accumulation points of the singular values of HT (the truncated Hilbert transform
with overlap), we use the convention σn → 1 for n→ −∞ and σn → 0 for n→ ∞.
The two main ingredients needed for the statement in Theorem 2.6 are the existence
of positive constants Bμ, βμ and c depending only on I, J and μ such that the
following holds for all n ∈ N:

1. ‖un‖L2(I∩J∗) ≤ Bμ e
−βμn,

2. sup
x∈I\J∗

| ∫ x

a3−μ un(z) dz| ≤ c/n.

These properties of the singular functions un corresponding to singular values close
to zero allow one to estimate the inner products 〈f, un〉. The proof of the first
statement can be found in [5] for sufficiently large n, i.e, n ≥ N0 for some N0 ∈ N.
Since ‖un‖L2(I) = 1 and N0 depends only on I, J and μ, one can easily deduce the
existence of constants Bμ, βμ depending only on I, J and μ such that (1) holds for
all n ∈ N. Note that we cannot merely apply Lemma 6.1 to prove (2), since in the
case where I ∩ J is nonempty, the functions un behave fundamentally differently
at the endpoint a3 of J , which lies in I. Thus we prove (2) directly in § 9.3.

Given any function g ∈W 1,1(I), we consider the normalization g̃ = g/‖g‖L2(I),
in which case to prove Theorem 2.6 it would suffice to show

(7.1) ‖Hg̃‖L2(J) ≥ c1 exp(−c2 |χI\J∗ g̃|2TV),

as long as g̃ satisfies the remaining hypotheses of Theorem 2.6.
Thus from now on we assume we are working with f ∈W 1,1(I) and ‖f‖L2(I)=1.

If f vanishes at the boundary of I\J∗, we may work directly with f . Otherwise,
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if f merely vanishes at least at one point in I \ J∗, then we may apply a small
modification of Lemma 1.1 to approximate f by functions fn ∈ C∞

c (I) that vanish
at the endpoints of I \ J∗ and such that ‖fn − f‖L2(I) → 0 and |χI\J∗fn|TV ≤
5|χI\J∗f |TV. Then having proved (7.1) for each fn we could conclude it holds
for f , since

c1 exp(−c2 25 |χI\J∗f |2TV) ≤ ‖Hfn‖L2(J) ≤ ‖Hf‖L2(J) + ‖H(f − fn)‖L2(J),

and ‖H(f − fn)‖L2(J) ≤ C‖f − fn‖L2(I) → 0 as n→ ∞.
Hence, we can assume ‖f‖L2(I) = 1 and f vanishes at the endpoints of I \ J∗,

so that ∣∣∣ ∫
I

f(x)un(x) dx
∣∣∣ ≤ ∣∣∣ ∫

I∩J∗
f(x)un(x) dx

∣∣∣ + ∣∣∣ ∫
I\J∗

f(x)un(x) dx
∣∣∣

≤ Bμ e
−βμn + |χI\J∗f |TV sup

x∈I\J∗

∣∣∣ ∫ x

a3−μ

un(z) dz
∣∣∣

≤ Bμ e
−βμn +

c

n
|χI\J∗f |TV.

The remainder of the argument is then similar to the proof of Theorem 2.4.
For any N ≥ 1,

1 = ‖f‖2L2(I) ≤
N∑

n=−∞
|〈f, un〉|2 +

∞∑
n=N+1

(
Bμ e

−βμn +
c

n
|χI\J∗f |TV

)2
≤

N∑
n=−∞

|〈f, un〉|2 + 2B2
μ

∞∑
n=N+1

e−2βμn + 2
c2

N
|χI\J∗f |2TV

≤
N∑

n=−∞
|〈f, un〉|2 + 2B2

μ

e−2βμN

e2βμ − 1
+ 2

c2

N
|χI\J∗f |2TV.

Let Ñ be the least integer such that, for all n ≥ Ñ ,

n e−2βμn ≤ c2B−2
μ

(
e2βμ − 1

)
and note that Ñ depends only on I, J and μ. Then, the choice

N = max{Ñ, �4c2(|χI\J∗f |2TV + 1)�}

guarantees that the sum
∑N

n=−∞ |〈f, un〉|2 contains at least half of the energy of f
and thus

‖HT f‖2L2(J) =

∞∑
n=−∞

|〈f, un〉|2 σ2
n ≥

N∑
n=−∞

|〈f, un〉|2 σ2
n ≥ 1

2
σ2
N ≥ k̃0e

−k0|χI\J∗f |2TV ,

for some constants k0, k̃0 depending only on I, J and μ.
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8. A remark on generalizations

Let I, J ⊂ R be disjoint intervals and let T : L2(I) → L2(J) be an integral operator
of convolution type,

(Tf)(x) =

∫
I

K(x− y)f(y) dy,

for some kernel K. Then we would generically expect an inequality of the type

(8.1) ‖Tf‖L2(J) ≥ h
( |f |TV

‖f‖L2(I)

)
‖f‖L2(I)

to hold true, for some positive function h : R+ → R+. The purpose of this section
is to show how to construct examples where the function h depends very strongly
on very fine properties of the kernel K.

8.1. Our example

For reasons of clarity, we set I = [0, 1] and take K : R → R to be a 1-periodic
smooth function. We define the integral operator T : L2([0, 1]) → L∞(R) by

(Tf)(x) =

∫ 1

0

K(x− y) f(y) dy.

The function Tf is also periodic with period 1. We will not specify the interval J
because it will be irrelevant. The main idea is that we can identify

Tf = K ∗ f
with a function on the torus T (normalized to have length 1). Expressing everything
in terms of Fourier series yields∑

n

T̂ f(n) =
∑
n

K̂(n)f̂(n).

We now see that if the Fourier coefficients of K and f are supported on disjoint
sets of frequencies, then we immediately get Tf = 0. Put differently, the only way
to ensure that Tf �= 0 for every f �= 0 is to ensure that K has no vanishing Fourier
coefficients.

Lemma 8.1 (Folklore). Let K ∈ L2(T). Then the span of {K(x− a) : a ∈ T} is
dense in L2(T) if and only if

∀ n ∈ Z, K̂(n) �= 0.

Proof. One direction is easy: if K̂(n) = 0 for some n ∈ Z, then einx serves as a
counterexample. As for the other direction, suppose g ∈ L2(T) is orthogonal to all
translations of K. Then, for any t ∈ T, by Parseval,

0 =

∫
T

K(x) g(x− t) dx =
∑
n∈Z

K̂(n) eint ĝ(n) =
∑
n∈Z

K̂(−n) ĝ(−n) eint.
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Since t was arbitrary, this means that the Fourier series∑
n∈Z

K̂(−n) ĝ(−n) eint

vanishes identically and since for all n, K̂(−n) �= 0, this implies that g = 0. �

Having established this lemma, the proof of an estimate of the type

‖Tf‖L2(J) ≥ h
( |f |TV

‖f‖L2(I)

)
‖f‖L2(I),

for some positive-valued function h is easy. If we take a minimizing sequence
fnk

∈ BV(I), Helly’s compactness theorem implies the existence of a convergent
subsequence fnk

→ f with a pointwise limit f ∈ BV(I). Assuming thatK ∈ L2(T)

has K̂(n) �= 0 for all n, Lemma 8.1 implies that the translates of K are dense
in L2(I). Then, however, it is impossible for the operator T to map f to 0 and
this proves the statement.

8.2. Conclusion

In order for an inequality of the type

‖Tf‖L2(J) ≥ h
( |f |TV

‖f‖L2(I)

)
‖f‖L2(I)

to hold true at all, fine properties of the Fourier coefficients of the kernel play
a crucial role. Furthermore, even assuming such an inequality to be true, the
quantitative rate of decay of h will directly depend on the speed with which the
Fourier coefficients decay to 0: it is thus possible to construct explicit examples
of kernels K for which the associated function h decays faster than any arbitrary
given function. These are very serious obstructions for any generalized theory of
bounding truncated integral operators from below if one were to hope that such a
theory could be stated in ‘rough’ terms (i.e., smoothness of the function, Lp-norms
of the kernel K and its derivatives). In the example above, bounding Fourier
coefficients K̂(n) from below seems unavoidable.

9. Appendix

9.1. Proof of Lemma 1.1

Proof. A function f ∈ BV(I) can be approximated by smooth functions in the
following way (see [2], Section 3.1): There exists a sequence {fn} ∈ C∞(I)∩BV(I)
such that

‖fn − f‖L1(I) → 0,(9.1)

|fn|TV → |f |TV.(9.2)

We are seeking an approximation by smooth functions that vanish at the boundary
of I. Since C∞

c (I) ⊂ BV(I) is dense in L1(I), one can find a sequence fn ∈ C∞
c (I)
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that satisfies (9.1). Now instead of (9.2), we use the fact that f(x0) = 0 for some
x0 ∈ I to note that ‖f‖L∞(I) ≤ |f |TV, and so instead of (9.2) we now have

(9.3) |fn|TV ≤ |f |TV + 2 ‖f‖L∞(I) ≤ 3 |f |TV.

Finally, L2-convergence can be obtained by noting that {fn} is uniformly bounded.
Indeed, suppose there exists a subsequence {fnk

} such that ‖fnk
‖L∞(I) > 3|f |TV+ε

for some small ε > 0. Then, each fnk
does not change sign. For supposing that it

did, we would have

|fnk
|TV ≥ ‖fnk

‖L∞(I) > 3 |f |TV + ε,

which contradicts (9.3).
Thus we may assume, without loss of generality, fnk

≥ 0, in which case we see
that for each x ∈ I,

‖fnk
‖L∞(I) − fnk

(x) ≤ |fnk
|TV.

This yields

0 < ε < ‖fnk
‖L∞(I) − 3 |f |TV ≤ ‖fnk

‖L∞(I) − |f |TV ≤ fnk
(x), ∀x ∈ I.

Furthermore,∫
I

(‖fnk
‖L∞(I) − 3 |f |TV) dx ≤ ‖fnk

‖L1(I) ≤ 2 ‖f‖L1(I),

which results in the uniform bound ‖fnk
‖L∞(I) ≤ 2‖f‖L1(I)/|I| + 3 |f |TV . Since

L1-convergence in (9.1) implies the existence of a subsequence {fnk
} of {fn} such

that fnk

pw−−→ f almost everywhere, the dominated convergence theorem results in

‖fnk
− f‖L2(I) → 0. �

9.2. Proof of Lemma 6.1

Proof. Here we will prove the statement

∀ x ∈ (a3, a4) :
∣∣∣ ∫ x

a3

un(z) dz
∣∣∣ ≤ c

n
,

where un is the n-th eigenfunction of LI with associated eigenvalue λn. We recall
we are in the case where I and J are disjoint, with I = (a3, a4). We choose
N0 ∈ N (depending only on I and J) such that the asymptotic form of un in [12]
is valid for all n ≥ N0. We first show the result for n ≥ N0. For this, we
note that on (a3, a4) and away from the points a3 and a4, the function un can be
approximated by the Wentzel–Kramers–Brillouin (WKB) solution. More precisely,
defining ε = εn := 1/

√
λn, it is true that for any sufficiently small δ > 0, the

representation of un in the form

un(z) =
K

(−P (z))1/4
[
cos
(1
ε

∫ z

a3

dt√−P (t) −
π

4

)
· (1 +O(ε1/2−δ))

+ sin
(1
ε

∫ z

a3

dt√−P (t) −
π

4

)
· O(ε1/2−δ)

]
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is valid for z ∈ [a3 + O(ε1+2δ), a4 − O(ε1+2δ)] and some positive constant K de-
pending only on a1, a2, a3, a4. Having this, we start by estimating∣∣∣ ∫ x

a3+O(ε1+2δ)

un(z) dz
∣∣∣

for x ∈ [a3 + O(ε1+2δ), a4 − O(ε1+2δ)]. We do this by first introducing ũn(z) =
(−P (z))−1/4un(z), for which∫ x

a3+O(ε1+2δ)

ũn(z)dz = Kε
[
sin
(1
ε

∫ x

a3

dt√−P (t) −
π

4

)
− sin

(1
ε

∫ a3+O(ε1+2δ)

a3

dt√−P (t) −
π

4

)]
· (1 +O(ε1/2−δ))

−Kε
[
cos
(1
ε

∫ x

a3

dt√−P (t) −
π

4

)
− cos

(1
ε

∫ a3+O(ε1+2δ)

a3

dt√−P (t) −
π

4

)]
· O(ε1/2−δ)

and hence ∣∣∣ ∫ x

a3+O(ε1+2δ)

ũn(z)dz
∣∣∣ ≤ K ε (1 +O(ε1/2−δ)).

It is known from the asymptotics derived in [12] that

(9.4) ε = εn =
2

K2 nπ
+O(n−1/2+δ).

Thus, there exists a constant c̃1 depending only on a1, a2, a3, a4 such that∣∣∣ ∫ x

a3+O(ε1+2δ)

ũn(z) dz
∣∣∣ ≤ c̃1

n
.

We can use this, together with integration by parts, to find an upper bound on the
above expression with ũn replaced by un:∫ x

a3+O(ε1+2δ)

un(z) dz =

∫ x

a3+O(ε1+2δ)

(−P (z))1/4 ũn(z) dz

= −
∫ x

a3+O(ε1+2δ)

d

dz
(−P (z))1/4

∫ z

a3+O(ε1+2δ)

ũn(t) dt dz

+
(
(−P (z))1/4

∫ z

a3+O(ε1+2δ)

ũn(t) dt
)∣∣∣x

a3+O(ε1+2δ)
.

This gives∣∣∣ ∫ x

a3+O(ε1+2δ)

un(z) dz
∣∣∣ ≤ sup

z∈[a3+O(ε1+2δ),x]

∣∣∣ ∫ z

a3+O(ε1+2δ)

ũn(t) dt
∣∣∣

·
∫ x

a3+O(ε1+2δ)

∣∣∣ d
dz

(−P (z))1/4
∣∣∣ dz + |P (x)|1/4 ·

∣∣∣ ∫ x

a3+O(ε1+2δ)

ũn(t) dt
∣∣∣ ≤ c1

n
,
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for some constant c1 that depends only on the points ai. Here we have used that
d
dz (−P (z))1/4 changes sign exactly once within (a3, a4) and hence∫ x

a3+O(ε1+2δ)

∣∣∣ d
dz

(−P (z))1/4
∣∣∣ dz ≤ sup

a3≤x≤a4

4 (−P (x))1/4.

What remains to be shown is the estimate for the contributions close to the
points a3 and a4. Since (by the definition of the operator LI) the asymptotic
behavior of un at a4 is identical to its behavior at a3, it suffices to find an upper
bound on ∣∣∣ ∫ x

a3

un(z)dz
∣∣∣, x ∈ (a3, a3 +O(ε1+2δ)].

On this interval, (a3, a3+O(ε1+2δ)], the eigenfunctions un can be approximated by
the Bessel function J0. (This approximation is specific to the case where I and J
are disjoint.) For this, we define the variable t = (a3 − z)/(ε2P ′(a3)). Then, the
asymptotic behavior of un has been found to be

un(z) =

{
b3 [J0(2

√
t) +O(ε1−2δ/3)], for t ∈ [0, 1)

b3 [J0(2
√
t) + t−1/4O(ε1−2δ/3)], for t ∈ [1,O(ε2δ−1)]

with a constant b3 = O(ε−1/2). A change of variables dx = −ε2P ′(a3)dt and
t(x) = a3−x

ε2P ′(a3)
= O(ε2δ−1) then yield∫ x

a3

un(z)dz = b3 ·
{∫ 1

0

[
J0(2

√
t) +O(ε1−2δ/3)

]
ε2(−P ′(a3)) dt

+

∫ O(ε2δ−1)

1

[
J0(2

√
t) + t−1/4O(ε1−2δ/3)

]
ε2(−P ′(a3)) dt

}
= O(ε3/2) ·

{∫ 1

0

[
J0(2

√
t) +O(ε1−2δ/3)

]
dt

+

∫ O(ε2δ−1)

1

[
J0(2

√
t) + t−1/4O(ε1−2δ/3)

]
dt
}
.

The first integral in the above sum is bounded, thus∫ x

a3

un(z)dz = O(ε3/2) +O(ε3/2) ·
∫ O(ε2δ−1)

1

[
J0(2

√
t) + t−1/4O(ε1−2δ/3)

]
dt.

To find an upper bound on the remaining integral, we first estimate it by∣∣∣ ∫ O(ε2δ−1)

1

[
J0(2

√
t) + t−1/4 O(ε1−2δ/3)

]
dt
∣∣∣

=
∣∣∣ ∫ O(ε2δ−1)

1

J0(2
√
t) dt+ t3/4 O(ε1−2δ/3)

∣∣∣O(ε2δ−1)

1

∣∣∣
≤
∣∣∣ ∫ O(ε2δ−1)

1

J0(2
√
t) dt

∣∣∣ +O(ε1/4+5δ/6).(9.5)
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Next, we make use of the asymptotic form of J0 for t→ ∞:

(9.6) J0(2
√
t) =

1√
π t1/4

[
cos
(
2
√
t− π

4

)
+O(t−1/2)

]
.

For some fixed, sufficiently large T , we can write

∣∣∣ ∫ O(ε2δ−1)

1

J0(2
√
t) dt

∣∣∣
≤
∣∣∣ ∫ T

1

J0(2
√
t) dt

∣∣∣+ ∣∣∣ ∫ O(ε2δ−1)

T

[ 1√
πt1/4

cos(2
√
t− π

4
) +O(t−3/4)

]
dt
∣∣∣

≤ ˜̃c2 +
∣∣∣ 1√

2π
t1/4
[− cos(2

√
t) + sin(2

√
t)
]∣∣∣O(ε2δ−1)

T

∣∣∣+O(ε−1/4+δ/2)

≤ c̃2 +O(ε−1/4+δ/2),(9.7)

for some constants c̃2 and ˜̃c2, where the second inequality is obtained by explicit
evaluation in Mathematica.

This yields∣∣∣ ∫ x

a3

un(z) dz
∣∣∣ ≤ O(ε3/2)+O(ε3/2 · ε−1/4+δ/2)+O(ε3/2 · ε1/4+5δ/6) = O(ε5/4+δ/2),

where we have recalled from (9.4) that for sufficiently large n, ε = εn < 1. Conse-
quently, this integral decays at least as fast as O(n−1), and we may conclude that
there exists a constant c2 such that

(9.8)
∣∣∣ ∫ x

a3

un(z) dz
∣∣∣ ≤ c2

n
, x ∈ (a3, a3 +O(ε1+2δ)].

Altogether, this implies the existence of a constant c̃ depending only on I and J
for which ∣∣∣ ∫ x

a3

un(z) dz
∣∣∣ ≤ c̃

n
, x ∈ (a3, a4),

given that n ≥ N0. Trivially, however, the following upper bound can be derived
for n < N0 by noting that ‖un‖L2(I) = 1: for C = (a4 − a3)

1/2,∣∣∣ ∫ x

a3

un(z) dz
∣∣∣ ≤ ∫ a4

a3

|un(z)| dz ≤ C ≤ C N0

n
.

The assertion holds for all n ∈ N choosing c = max{c̃, CN0}. �

9.3. Proof of Relation (2) in §7
Here, we recall that we are considering Case 4, with I = (a2, a4) and J = (a1, a3)
overlapping intervals with a1 < a2 < a3 < a4, and μ > 0 is fixed so that a2 < a3−μ.
We will expand the above argument for bounding integrals of un to this case with
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overlap, As a consequence of the fact that σn → 0 (or equivalently λn → +∞), we
will prove that for all x ∈ [a3 − μ, a4],∣∣∣ ∫ x

a3−μ

un(z) dz
∣∣∣ ≤ c

n
.

As before, we define ε = εn = 1/
√
λn and omit the index. For sufficiently large n,

the WKB approximation is valid on [a3 − μ, a3 −O(ε1+2δ)] and is given by

un(z) =
K

(P (z))1/4
exp
(
−1

ε

∫ a3

z

dt√
P (t)

)
· (1 +O(ε1/2−δ)

)
,

for the same constant K as in §9.2. With this pointwise decay of un that is
exponential in n, one easily sees that for x ∈ [a3 − μ, a3 − O(ε1+2δ)] the integral
| ∫ x

a3−μ un(z)dz| decays faster than O(1/n).

Next, we consider x ∈ [a3 −O(ε1+2δ), a4]. We distinguish three different cases
into which we can split the integrals as follows: for x ∈ [a3 −O(ε1+2δ), a3],∣∣∣ ∫ x

a3−μ

un(z) dz
∣∣∣ ≤ ∣∣∣ ∫ a3−O(ε1+2δ)

a3−μ

un(z) dz
∣∣∣+ ∣∣∣ ∫ x

a3−O(ε1+2δ)

un(z) dz
∣∣∣;

for x ∈ [a3, a3 +O(ε1+2δ)],∣∣∣ ∫ x

a3−μ

un(z)dz
∣∣∣ ≤ ∣∣∣ ∫ a3−O(ε1+2δ)

a3−μ

un(z)dz
∣∣∣+∣∣∣ ∫ a3

a3−O(ε1+2δ)

un(z)dz
∣∣∣+∣∣∣ ∫ x

a3

un(z)dz
∣∣∣;

and for x ∈ [a3 +O(ε1+2δ), a4],∣∣∣ ∫ x

a3−μ

un(z) dz
∣∣∣ ≤ ∣∣∣ ∫ a3−O(ε1+2δ)

a3−μ

un(z) dz
∣∣∣

+ 2
∣∣∣ ∫ a3+O(ε1+2δ)

a3

un(z) dz
∣∣∣+ ∣∣∣ ∫ x

a3+O(ε1+2δ)

un(z) dz
∣∣∣.

The last inequality relies on a property of the singular functions un that is referred
to as transmission conditions (see [3] for details). Roughly, it states that the parts
of un on regions of size O(ε1+2δ) from the left and from the right of the point of
singularity a3 are the same as they approach the limit to a3.

If we let A represent an integral over an interval at least O(ε1+2δ) away from the
left of a3, B represent an integral within an O(ε1+2δ) neighborhood to the left or
right of a3 (the transmission conditions ensure the left-hand and right-hand cases
are equivalent), and C represent an integral over an interval at least O(ε1+2δ) away
from the right of a3, we see that the right hand sides of the above three inequalities
take the form A+B, A+B +B, and A+ 2B + C, respectively.

Integrals of the form A decay at least to order O(1/n), as remarked above.
Integrals of the form C may be shown to decay to order O(1/n) by the argument
of Section 9.2, since the behavior of un away from a3 is independent of whether I
and J intersect.
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What remains is to treat the case of integrals of the form B, that is, to show
that for x ∈ (a3, a3 +O(ε1+2δ)],∣∣∣ ∫ x

a3

un(z) dz
∣∣∣ ≤ c̃

n
,

for some c̃ > 0. For this, we can proceed in a similar fashion as in §9.2, with the key
change that where in §9.2 we used an approximation of un by the Bessel function J0
on this region, now, in the case of overlapping intervals I and J , un is no longer a
bounded function close to a3, but can be approximated by a linear combination of
the Bessel functions J0 and Y0. More precisely, substituting t = (a3−z)/(ε2P ′(a3))
yields,

un(z) =

⎧⎪⎪⎨⎪⎪⎩
b3 [J0(2

√
t) +O(ε1−2δ/3)] + c3[Y0(2

√
t) +O(ε3/2−δ/3)], t ∈ [0, 1)

b3 [J0(2
√
t) + t−1/4O(ε1−2δ/3)]

+c3 [Y0(2
√
t) + t−1/4O(ε1−2δ/3)], t ∈ [1,O(ε2δ−1)]

with constants b3 = O(ε−δ) and c3 = O(ε−1/2). As before, with a change of
variables dx = −ε2P ′(a3)dt, we obtain∫ x

a3

un(z)dz = b3ε
2(−P ′(a3)) ·

{∫ 1

0

[
J0(2

√
t) +O(ε1−2δ/3)

]
dt

+

∫ O(ε2δ−1)

1

[
J0(2

√
t) + t−1/4O(ε1−2δ/3)

]
dt
}

+ c3ε
2(−P ′(a3)) ·

{∫ 1

0

[
Y0(2

√
t) +O(ε3/2−δ/3)

]
dt

+

∫ O(ε2δ−1)

1

[
Y0(2

√
t) + t−1/4O(ε1−2δ/3)

]
dt
}
.

Using the results from the proof in §9.2 for the terms involving J0, this simplifies to∣∣∣ ∫ a3+O(ε1+2δ)

a3

un(z) dz
∣∣∣ ≤O(ε2−δ) +O(ε3/2) ·

{∣∣∣ ∫ 1

0

[
Y0(2

√
t) +O(ε3/2−δ/3)

]
dt
∣∣∣

+
∣∣∣ ∫ O(ε2δ−1)

1

[
Y0(2

√
t) + t−1/4O(ε1−2δ/3)

]
dt
∣∣∣}.

The first integral on the right-hand side of the above is bounded, since for small
arguments z, Y0(z) ∼ 2

π ln(z). For the second integral, the same argument as for J0
in (9.5)–(9.7) holds, but upon replacing the asymptotic form (9.6) by

Y0(2
√
t) =

1√
πt1/4

[
sin(2

√
t− π

4 ) +O(t−1/2)
]
.

This then allows us to state that∣∣∣ ∫ x

a3

un(z) dz
∣∣∣ ≤ c̃

n
, ∀x ∈ [a3, a3 +O(ε1+2δ)],
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and consequently, that for all x ∈ [a3 − μ, a4],∣∣∣ ∫ x

a3−μ

un(z) dz
∣∣∣ ≤ c

n
.
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Zürich, Switzerland.

E-mail: rima.alaifari@math.ethz.ch

Lillian B. Pierce: Department of Mathematics, Duke University, 120 Science Drive,
Durham NC 27708, and Hausdorff Center for Mathematics, Endenicher Allee 62,
Bonn, Germany.

E-mail: pierce@math.duke.edu, pierce@math.uni-bonn.de

Stefan Steinerberger: Department of Mathematics, Yale University, 10 Hillhouse
Avenue, 06511 CT, USA.

E-mail: stefan.steinerberger@yale.edu

R.A. was supported by a fellowship of the Research Foundation Flanders (FWO), L.B.P. is
supported in part by NSF grant DMS-1402121, and S. S. was partially supported by a Hausdorff
scholarship of the Bonn International Graduate School and the SFB Project 1060 of the DFG.

mailto:rima.alaifari@math.ethz.ch
mailto:pierce@math.duke.edu, pierce@math.uni-bonn.de
mailto:stefan.steinerberger@yale.edu

	Introduction and motivation
	Hilbert transform
	The phenomenon in practice
	An explicit example
	Configurations of the intervals: four cases
	Applications in medical imaging
	Questions of regularity

	Statement of results
	Functions of bounded variation
	Weakly differentiable functions
	A quantitative result for functions with bounded variation
	An improved estimate for Case 4
	A word on the proofs

	Proof of Theorem 2.1
	A differential operator
	Proof of Theorems 2.2 and 2.3
	Proof of Theorems 2.4 and 2.5
	Proof of Theorem 2.4
	Proof of Theorem 2.5
	Proof of Corollary 2.1

	Proof of Theorem 2.6
	A remark on generalizations
	Our example
	Conclusion

	Appendix
	Proof of Lemma 1.1
	Proof of Lemma 6.1
	Proof of Relation (2) in §7


